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Abstract. A new method to approach enumerative questions about rational curves on algebraic
varieties is described. The idea is to reduce the counting problems to computations on the Néron–
Severi group of a ruled surface. Applications include a short proof of Kontsevich’s formula for plane
curves and the solution of the analogous problem for the Hirzebruch surfaceF3.
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1. Introduction

1.1. STATEMENT OF THE PROBLEM

Let S be a smooth projective rational surface and letD be an effective devisor on
S. Let V (D) � jDj be the closure of the locus of irreducible rational curves. For
general results about the geometry ofV (D), we refer to[H] and to[CH].

If D has nonnegative self-intersection andV (D) is nonempty the dimension of
V (D) is known (cf. [K]):

r0(D) := dimV (D) = �(KS �D)� 1:

The problem that will study here is to compute the degrees

N(D) := degV (D)

of these varieties as subvarieties ofjDj �= Pr. Alternatively,N(D) is the number
of irreducible rational curves injDj that pass throughr0(D) general points ofS. If
S is the projective planeP2 andd = degD, then one also uses the notationN(d)
to denote the number of irreducible, rational curves of degreed passing through
3d� 1 general points.
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1.2. TERMINOLOGY AND NOTATION

We will work over the complex numbers. Throughout, the words ‘surface’ and
‘curve’ will refer to projective varieties.

If D andD0 are effective divisors (or divisor classes) on a surface, we will say
thatD > D0 if D �D0 is effective and nonzero.

We will denote byFn theHirzebruch surfaceFn = P(OP1�OP1(n)). On each
Fn with n > 1 there exists a unique curve of negative self intersection, which we
will denote byE and refer to as theexceptional curveon Fn . We will denote by
F a fiber of the projectionFn ! P1; the classes ofE andF generate the Picard
group ofFn , with intersection pairing given by

E2 = �n; (E � F ) = 1 and F 2 = 0:

Another useful divisor class is the class of a complementary section, that is, a
sectionC of the P1-bundleFn ! P1 disjoint fromE. Since(C � E) = 0 and
(C � F ) = 1, we see thatC � E + nF ; so the classesC andF also generate the
Picard group, with intersection numbers

C2 = n; (C � F ) = 1 and F 2 = 0:

For any positive integerm, we will denote byVm(D) � V (D) � jDj the closure
of the locus of irreducible rational curves,X having contact of order at leastm
with E at a smooth point ofX. These varieties will also be referred to a Severi
varieties. We setNm(D) := degVm(D).

1.3. METHODS AND RESULTS

Until very recently, the basic enumerative problem of determining the degrees
of Severi varieties was unsolved even in the case ofP2. In 1989 Ziv Ran [R]
described a recursive procedure for calculating the degrees of the Severi varieties
parametrizing plane curves of any degree and genus (see also [R2]). Recently,
M. Kontsevich discovered a beautiful and simple recursive formula in the case of
rational curves onP2 (see [KM] and [RT] for proofs). Kontsevich’s method was
based on his description of a compactified moduli space for maps ofP1 into the
surfaceS = P2; others (e.g., [DI], [KP] and [CM]) were able to use the same
method to derive similar formulas in the case of other surfacesS for which a
Kontsevich-style moduli space existed, such asS = P1 � P1, the ruled surface
S = F1 and del Pezzo surfaces.

It was our feeling that the reliance of Kontsevich’s method on the existence of
a well-behaved moduli space was not essential. We were especially interested in
whether a similar formula might be derived for the Hirzebruch surfacesFn .

In [CH], we succeeded in recasting the Kontsevich method so as to remove
the apparent dependence on the existence of a moduli space: as we set it up, it
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was necessary only to understand the degenerations of the rational curves in the
one-parameter families corresponding to general one-dimensional linear sections of
V (D). The resulting ‘cross- ratio method’ allowed us to derive a complete recursion
for all divisor classes on the ruled suraceS = F2 – that is, a formula expressing
N(D) in terms ofN(D0) forD0 < D - and a closed-form formula for certain divisor
classes on the ruled surfacesFn for anyn. (In fact, compactifications of the moduli
space of mapsP1 ! S do exist for these surfaces, but they contain in general many
components, only one of which parametrizes generically irreducible rational curves
and the others of which may have strictly larger dimension. Kontsevich’s method
can be carried out in these cases, as was done by Kleiman and Piene [KP]; but at
present we do not see how to use the resulting formulas to enumerate irreducible
rational curves.)

However, we were unable to go significantly beyond this point: a similarly
derived formula in [CH] for the degreesN(D) of Severi VarietiesV (D) on Fn

espressesN(D) not solely in terms ofN(D0) for D0 < D, but also in terms of the
degreesNk(D

00) of the Severi varietiesVk(D00) parametrizing curves with a point
of k-fold tangency with a fixed curveE � S. For example, ifS = F3, thenN(D)
is expresses as a function ofN(D0) and ofN2(D

00), whereN2(D
00) is the number

of irreducible rational curves injD00j that are simply tangent toE and pass through
the appropriate number (that is,r0(D

00) � 1) of general points ofF3. A complete
recursion in this case would have required a similar analysis of linear sections of
the Severi varietiesV2(D), which in turn would have necessitated an analysis of
Severi varieties parametrizing curves with more complicated tangency conditions.

In the end, it seems that one way or another we need to deal with the degrees
of these ‘tangetial’ loci as well. This difficulty led us to the discovery of a compu-
tational technique different from and simpler than the cross-ratio method, which
we will describe in the present paper. It involves an analysis of the same basic
object as the cross-ratio method – that is, the one-parameter family� ! � of
rational curves throughr0(D)�1 general points ofS and their limits – but extracts
more information from it. It is based on a description of the Néron–Severi group
of a minimal desingularization of� (we will therefore refer to it as the ‘rational
fibration method’). The main advantage of this technique for our present purposes
is that we are in fact able to compute the degrees of the tangential loci involved; at
least in all cases that we studied. It also yields other related formulas, such as the
number of irreducible rational curves having a node at a given general pointp 2 S

and passing throughr0(D)� 2 other general points.

1.4. CONTENTS OF THIS PAPER

In the following section we will describe the rational fibration method in general
setting. In the succeeding sections we will apply it in the casesS = P2; S = F2

andS = F3. In the first of these cases, we obtain another (simpler) proof of
Kontsevich’s formula, as well as some related formulas derived by Pandharipande
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[P]. In the second, we will recover the general recursion formula found originally
in [CH] for degrees of Severi varieties onF2. Finally, in the last section we derive
a complete set of recursions forF3, the first case for which the cross-ratio method
does not give a complete answer.

We have tried to keep this paper relatively self-contained; in particular it should
be intelligible to a reader unfamiliar with [CH]. We will, however, have to appeal
to Chapter 2 of [CH] for proofs of some of the basic assertions about the local
geometry of Severi varieties and the families of curves they parametrize.

2. The rational fibration method in general

2.1. OBJECTS AND MORPHISMS

As we indicated in the introduction, the rational fibration method, like the cross-
ratio method, involves studying a suitable general one-parameter family of rational
curves. To set it up, first letS be a smooth rational surface andD an effective
divisor onS. We will assume thatD has nonnegative self-intersection and that the
Severi varietyV (D) 6= ;, so that in particular we have dimV (D) = r0(D) =
�(KS �D)� 1. Now, chooser0(D)� 1 general pointsp1; : : : ; pr0(D)�1 2 S and
let � � V (D) be the closure of the locus of points[X] 2 V (D) corresponding to
irreducible rational curvesX passing through these points. Equivalently, if for any
point p 2 S we letHp � Pr by the hyperplane of points corresponding to curves
passing throughp, � will be the one-dimensional linear section ofV (D)

� = V (D) \

0
@r0(D)�1\

i=1

Hpi

1
A :

Now, let � � � � S ! � be the family of curves corresponding to� � jDj.
Consider the normalization�� of X �� �

� to arrive at a family

�� ! ��

over a smooth curve�� , whose general fiber is isomorphic toP1.
Next, we apply semi-stable reduction (which we should rather call ‘nodal reduc-

tion’, since our curves have genus zero): after making a base changeB ! �� and
blowing up the total space of the pullback family�� ��� B, we arrive at a family
f : Y ! B whose total space is smooth, whose general fiber is a smooth rational
curve and whose special fibers are all nodal curves. In fact, a base change will turn
out to be unnecessary in each of the three cases considered below – the minimal
desingularizationY of the total space�� already has this property – but this is
not relevant, since even a superfluous base change will not affect the subsequent
calculations. We will denote by� : Y ! S the composite map

� : Y ! �� ��� B ! �� ! � � �� S ! S:
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ENUMERATING RATIONAL CURVES: THE RATIONAL FIBRATION METHOD 213

Notice that� is a generically finite map, whose degree is equal to the product
of the degree of the mapB ! �� times the number of irreducible rational curves
in the linear seriesjDj passing through the pointsp1; : : : ; pr0(D)�1 andp (that is,
the degreeN(D) of the Severi varietyV (D)).

Here is a diagram of the basic objects and morphisms we have introduced:

Figure 1.

2.2. OUTLINE OF THE METHOD

As we indicated, our method involves calculating in the Néron–Severi group of the
total spaceY of our family. This is motivated by a simple observation: given any
two line bundlesL andM onS, we have

(��L � ��M) = degfB ! ��g �N(D) � (L �M):

Thus, in order to derive a formula forN(D), we want to compute intersection
numbers in the Ńeron–Severi group ofY. For example, ifS is the projective plane
P2 we can takeL = M = OP2(1). Then(��L)2 = N(D); so if we can compute
(��L)2 we get a formula forN(D).

What makes is possible to perform such calculations is the fact thatf expresses
Y as the total space of a one-parameter family of generically smooth rational
curves, so that to determine the class of a given divisor it is enough to know its
degree on each component of each fiber off . More precisely, the Picard group of
Y will be freely generated by the class of a fiber, the class of any section A off ,
and the classes of all the irreducible curves contained in fibers off and disjoint
fromA. Moreover, in terms of these generators the intersection pairing on Pic(Y)
is (except possibly for the self-intersection ofA) easy to describe. This means two
things: first, we can express a given divisor class as a linear combination of these
generators once we know its degree on each component of each reducible fiber and
onA; and second, having expressed two divisor classes as linear combinations of
these generators, we can readily compute their intersection number.
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The method we will apply in each case thus consists of five steps:

� First, we need to describe the reducible fibers ofY ! B; that is (given that
B will be in practice just the normalization�� of the base of our original
family �! �), the set of reducible curves in the linear seriesjDj through the
pointsp1; : : : ; pr0(D)�1 that are limits of irreducible rational curves through
these points, and the branches of� at each one. The characterization of such
curves is straightforward in the case ofS = P2 by simple dimension-counting.
In the case ofS = Fn with n > 2 it is less obvious, since in contrast with the
case ofP2 most reducible curves through the pointsp1; : : : ; pr0(D)�1 whose
components are all rational are not limits of irreducible rational such curves;
the answer is worked out in [CH]. In either case the number of such fibers will
be known inductively.

� Second, we need to describe the local structure of the family�� ! �� near
each reducible fiber; specifically, we need to know whether�� is smooth or if
we have to blow up. This likewise is straightforward in the case of the plane,
where in fact�� is smooth. It is more interesting in the case of the Hirzebruch
surfacesFn , where forn > 3 we see that�� will indeed have singularities;
again, this is worked out in [CH] and we will refer there for the relevant results.

� Third, we choose a basis for the Néron–Severi group ofY, and calculate the
intersection pairing on these classes.

� Fourth, since we know the images inS of the components of reducible fibers
of f :Y ! B, we can calculate the degrees on all such components of the
pullback��L of any line bundleL onS; and

� Fifth, we are able therefore to express the intersection numbers(��L � ��M)
for pairsL;M 2 PicS of line bundles onS.

Evidently, the particulars of this process will depend onS andD; for the moment
we shall just fix some notation and make some preliminary observations. First, for
b 2 B we use the common notationYb := f�1(b) to denote the fiber off overb.
The class in NS(Y) of such a fiber is denoted byY .

Secondly, recall that our family parametrizes curves through certain base points.
We pick two of them,q andq0, and we denote byA andA0 the corresponding
sections off . The following relations are clear:

Y 2 = A �A0 = 0 and A � Y = A0 � Y = 1:

Notice also that by symmetryA2 = 1
2(A � A0)2 which will be useful to compute

the left-hand side. In factA�A0 is supported on exactly those fibers whereq and
q0 lie on different components, the number of which we will be able to count.

One further note: the description above of the Néron–Severi group ofY as
generated by the classes ofA; Y and components of reducible fibers assumes that
the baseB of the family is connected, which we will not always know in practice.
This assumption is not essential, however: in caseB has irreducible components
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B1; : : : ; Bk we simply have to replace every multiple ofY in the formulas below
by a suitable linear combination of fibersYi lying over points ofBi. As the reader
may verify, this does not alter the outcome of the subsequent calculations.

3. Plane curves

Here we study the casesS = P2. If D andDi are divisors onP2, we denote their
degrees respectively byd anddi. Since a divisor class in the plane is determined
by its degree, we will introduce the notationN(d) := N(D).

We have thatr0(D) = 3d�1, so we choose general pointsp1; : : : ; p3d�2 2 P2,
let� � V (D) be the locus of curves inV (D) containing the pointspi, and proceed
as described in the preceding section. To describe the resulting family of curves, let
� be the locus ofV (D) parametrizing degenerate curves (that is, curves that are
reducible or have singularities other than nodes). Since our curve� � V (D) will
intersect� only at general points of components of�, we may apply the results
of [DH] and [H] to conclude the following

A. Any fiberX of �! � is either

1. an irreducible curve with exactly� = (d� 1)(d� 2)=2 nodes;
2. an irreducible curve with exactly� � 1 nodes and a cusp;
3. an irreducible curve with exactly� � 2 nodes and a tacnode;
4. an irreducible curve with exactly� � 3 nodes and an ordinary triple point;

or
5. a curve having exactly two irreducible componentsX1;X2, of degreesd1

andd2, with exactly(d1 � 1)(d1 � 2)=2 and(d2 � 1)(d2 � 2)=2 nodes
respectively, and intersecting transversally ind1d2 points.

B. In cases 1, 3 and 4, the curve� is smooth at and the family�� ! �� is
smooth at the unique point of�� lying over. In case 2,� has a cusp at but
the family�� ! �� is still smooth at the unique point of�� lying over.

C. In case 5 the curve� hasd1d2 smooth branches at (corresponding to defor-
mations ofX smoothing any one of thed1d2 nodes ofX coming from a
point p 2 X1 \X2 of intersection ofX1 andX2). At each point of�� lying
over the fiber of the family�� ! �� has two smooth rational components
meeting transversally at one point (more precisely, it is the normalization of
X at the remaining(d1�1)(d1�2)=2+(d2�1)(d2�2)=2+ d1d2�1 = �

nodes ofX), and smooth total space.
D. Finally, if X � P2 is any curve of type 1–5 passing through the points

p1; : : : ; p3d�2, then conversely[X] 2 �; that is,X is a limit of irreducible
rational curvesX throughp1; : : : ; p3d�2.

We see in particular that the total space�� is smooth and that the fibers of�� ! ��

are all nodal, so that no further base changes or blow-ups are necessary; that is, we
may takeB = �� (as we stated earlier) andY = �� . Note also that every reducible

comp4059.tex; 8/07/1998; 12:09; v.7; p.7

https://doi.org/10.1023/A:1000446404010 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000446404010
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fiber ofY has precisely two irreducible components, meeting transversally at one
point.

We shall call a reducible fiber off a fiber of typeJ and we shall denote by
BJ the subset of points ofB such that the corresponding fiber is of typeJ, that
is, reducible. (This new piece of terminology probably seems pointless, but it will
be useful in the sequel.) For anyb 2 BJ , we then denote the two irreducible
components of the fiber overb by J1;b andJ2;b. We shall always denote byJ1;b the
component containing the pointq = p1. The picture ofY is thus:

Figure 2.

Let Di be the class of�(Ji;b). We denote byj(D1;D2) the number of all such
fibers, for any given decompositionD = D1 +D2. To determinej(D1;D2), note
first that ifX = X1 [X2 2 � is any reducible curve,Di the class ofXi, thenXi

can contain at mostr0(Di) of ther0(D)� 1 = 3d� 2 pointsp1; : : : ; p3d�2. Since

r0(D1) + r0(D2) = r0(D)� 1;

it follows that each componentXi must contain exactlyr0(Di) of the points
p1; : : : ; p3d�2. Thus, to specify such a curve, we have first to choose a decomposition
of the set� = fp1; : : : ; p3d�2g into disjoint subsets�1;�2 of cardinalityr0(D1)
andr0(D2) respectively, with the pointq = p1 2 �1; and then to choose, for each
i, one of theN(Di) curvesxi 2 V (Di) containing�i. The number of such curves
X is thus 

r0(D)� 2

r0(D1)� 1

!
�N(D1) �N(D2)

and since we have seen there are(D1 � D2) = d1d2 points ofB lying over each
point [X] 2 � corresponding to a curve of this type, we have
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j(D1;D2) = N(D1)N(D2)(D1 �D2)

 
r0(D)� 2

r0(D1)� 1

!

= N(d1)N(d2)d1d2

 
3d� 3

3d1 � 2

!
:

Note that by a simple dimension count, any of the curvesXi 2 V (Di) passing
throughr0(Di) of the pointsp1; : : : ; p3d�2 will be irreducible and nodal. By a
standard further argument as in Lemma 2.1 of [CH], we see that any pairX1;X2

of such curves will intersect transversally, so that the unionX = X1 [ X2 will
indeed be a curve as described in (5) above.

This completes the first two steps in the general method. Next, we give a basis
for the Ńeron–Severi group NS(Y). We now choose as a system of generators
for NS(Y) the classA of the section off :Y ! B coming from the base point
q = p1 of our family; the classY of a fiber of the mapf :Y ! B, and the classes
fJ2;bgb2BJ . Most of the pairwise intersection numbers of these classes are readily
given: we clearly have

(A � Y ) = 1

Y 2 = 0

(A � J2;b) = 0 8 b

(Y � J2;b) = 0 8 b

(J2;b � J2;b0) = 0 8 b 6= b0; and

(J2;b � J2;b) = �1 8 b:

In fact, there is only one intersection number that is not evident:A2. To compute
it we choose a base pointq0 6= q, so thatq0 determines a second sectionA0 of
Y ! B disjoint fromA. Since the base pointsp1; : : : ; p3d�2 of our family are
general points in the plane, by symmetry we haveA02 = A2; hence we can write

2A2 = (A�A0)2:

To compute the right-hand side, let

SJ = fb 2 BJ such thatq0 2 �(J2;b)g

be the collection of points inB over which the sectionsA andA0 meet different
components of the fiber; letnJ = jSJ j be the cardinality ofSJ . For everyb =2 SJ ; A

andA0 have the same intersection number with each component of the fiberYb.
For b 2 SJ , on the other hand, we have(A � J1;b) = 1 and(A � J2;b) = 0, while
(A0 � J1;b) = 0 and(A0 � J2;b) = 1. It follows that the classes

A and A0 �
X
b2SJ

J2;b
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have the same intersection number with every component of every fiber ofY ! B,
and so must differ by a multiple of the classY of a fiber: that is ,

A�A0 = �
X
b2SJ

J2;b + nY

for some integern. In fact, n must be equal tonJ=2 by symmetry, but that is
irrelevant in any case: squaring both sides, we find that

(A�A0)2 =
X
b2SJ

J2
2;b = �nJ

and hence

A2 = �
nJ

2
:

Thus, it remains only to determine the numbernJ of reducible fibers ofY ! B

lying over curves in our original family in which the pointsq andq0 lie in different
components. We can do this in exactly the same way as we determined the total
number of reducible fibers: the only difference is that now we want to count only
decompositions� = �1 [ �2 in which q = p1 2 �1 and q0 = p2 2 �2. We

thus replace the binomial coefficient
�
r0(D)� 2
r0(D1)� 1

�
in the formula forj(D1;D2)

above with
�
r0(D)� 3
r0(D1)� 1

�
and sum over all pairsD1;D2 with D1 +D2 = D to

obtain

nJ =
X

D1+D2=D

N(D1)N(D2)(D1 �D2)

�
r0(D)� 3
r0(D1)� 1

�
:

This completes the third step of the process.
Now letL 2 Pic(P2) be any line bundle on the plane, and write the class of its

pullback toY as a general linear combination of our chosen generators

��L � caA+ cyY +
X
b2BJ

cbJ2;b:

We will denote byJL the third term on the right, that is, we set

JL :=
X
b2BJ

cbJ2;b;

this is not immediately useful, but will become so in the succeeding calculations.
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We now intersect both sides of the above equivalence with each of our chosen
generators of NS(Y) to determine the coefficientsca; cy andcb. First, by intersecting
both sides withY we find that

ca = (��L � Y ) = (L � ��Y ) = (L �D):

Next we intersect withA: we have

(��L �A) = (L � ��A) = 0

since� is constant on the curveA; and hence

cy = �A2(L �D) =
nJ

2
(L �D):

Finally, to determinecb we naturally intersect both sides with the class ofJ2;b; we
find that

cb = �(��L � J2;b) = �(L � ��J2;b) = �(L �D):

Thus, in sum,

��L � (L �D)A+
nJ

2
(L �D)Y �

X
b2BJ

(L �D2)J2;b:

For the final step in the process, we evaluate the self- intersection of��L: we
find

(��L)2 =
nJ

2
(L �D)2 �

X
b2BJ

(L �D2)
2

=
X

D1+D2=D

"
1
2N(D1)N(D2)(D1 �D2)

 
r0(D)� 3

r0(D1)� 1

!
(L �D)2

�N(D1)N(D2)(D1 �D2)

 
r0(D)� 2

r0(D1)� 1

!
(L �D2)

2

3
5 :

Applying this in caseL = O
P2 (1) and recalling that(��O

P2(1))2 = N(d), we
have

N(d) =
X

d1+d2=d

N(d1)N(d2)

"
d2d1d2

2

 
3d� 4

3d1 � 2

!
� d2

1d
2
2

 
3d� 3

3d1 � 2

!#
;
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and expanding outd2 = (d1 + d2)
2 and using the symmetry with respect tod1 and

d2 we get the well known recursive formula of Kontsevich

N(d) =
X

d1+d2=d

N(d1)N(d2)

"
d2

1d
2
2

 
3d� 4

3d1 � 2

!
� d1d

3
2

 
3d� 4

3d1 � 3

!#
:

Remark.In parts (A) and (B) of the statement of results quoted from [H] and
[DH], we describe completely all curvesX in the family�! � having other than
� nodes, and the local geometry of�� ! �� along each. This is in fact necessary
to describe the Ńeron–Severi group ofY, since even in those cases where a fiber is
irreducible it is a priori possible that�� will be singular along such a fiber, giving
rise to a reducible fiber ofY ! B. Looking back over the preceding calculation,
though, we see that even if this did happen, it would not affect the outcome of the
calculation, as long as the non-nodal singularities did not occur at base points of
the family: while the resolution of the singularities of�� would create additional
curves onY independent in NS(Y), the sectionsA andA0 and any line bundle
pulled back via� from P2, would all have degree 0 on these curves, and so the
relations of linear equivalence above would still hold.

Thus it was only necessary to observe that every curve singular at a base point
is an irreducible curve with� nodes. Since this statement will also hold for the
families of curves onFn that we will be considering in the following two sections,
we will in the sequel omit the description of the fibers�! � other than reducible
ones.

As another application, we give a formula for the numberN2(d) of plane,
irreducible, rational curvesX � P2 of degreed passing through 3d � 2 given
general points and tangent to a given general line` in the plane. Equivalently,
this is the degree of the subvarietyV2(D) of V (D) defined as the closure of the
locus of irreducible rational curves that are tangent to` in P2 at a smooth point of
[X] (notice thatV2(D) has codimension 1 inV (D)). To calculate this number, let
~L = ��1(`) � Y be the preimage of̀ under�. Then~L is an irreducible smooth
curve, and the morphismf :Y ! B restricts to a finite morphism~f : ~L ! B of
degreed on ~L. Moreover, the set of fibersYb � Y of f tangent to~L – that is, such
that the intersectionYb \ ~L has cardinality strictly less thand – corresponds to the
set of curvesXb in our original family�! � tangent tò . Thus,N2(D) is equal
to the degree of the ramification divisor of the morphism~f .

Now, using the adjunction formula, this degree is given by

N2(d) = (��O
P2(1))2 + (!Y=B � �

�O
P2(1));

where!Y=B is the relative dualizing sheaf of the family. Since we have already
calculated the class of��O

P2(1) above, it remains only to determine the class of
!Y=B in similar terms, and then we will be able to evaluate this expression. We
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do this as for��O
P2(1): we first express!Y=B as a linear combination of the

generators:

!Y=B � eaA+ eyY +
X
b2BJ

ebJ2;b

and then intersect both sides with the generators of NS(Y) to determine the coef-
ficients. First, intersecting withY , we find that

ea = (!Y=B � Y ) = �2

and then intersecting withA and using the fact that(!Y=B �A) = �A2 we find that

ey = A2:

Finally, we have(!Y=B � J2;b) = �1;8b 2 BJ , and it follows that the coefficients
eb are all 1. Thus, in sum,

!Y=B = �2A+A2Y +
X
b2BJ

J2;b:

We finally obtain a formula first found by Pandharipande [P]:

N2(d) = N(d) +
X

d1+d2=d

N(d1)N(d2)d1d
2
2

 
3d� 4

3d1 � 3

!

=
X

d1+d2=d

N(d1)N(d2)d1d2

"
d1d2

 
3d� 4

3d1 � 2

!

� (d2
2 � d2)

 
3d� 4

3d1 � 3

!#
:

This technique can also be used to recover another formula of Pandharipande,
for the degree of the closure of the locus of irreducible rational curves of degreed

having a cusp. To obtain this, we simply apply Porteous’ formula to the differential

d(f � �) : TY ! (f � �)�TB�P2

of the mapf � � : Y ! B � P2; the classes onY involved have already been
calculated. It should also be possible to determine is similar fashion the degrees on
� of all the divisor classes introduced in [DH], and in particular obtain formulas
for the number of irreducible rational curves through 3d � 2 points and having a
tacnode, or the number of irreducible rational curves through 3d � 2 points and
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having a triple point, etc. At this point, however, we conclude our study of the plane
and turn to the Hirzebruch surfaces.

4. The general recursion forF2

Let nowS = F2. LetC;E andF be the curves onF2 described in Section 1. We
apply our method exactly as before: for any effective divisor classD on S with
V (D) 6= ;, we chooser0(D)�1 general pointsp1; : : : ; pr0(D)�1 of S and consider
the family � ! � of curvesX 2 V (D) passing through the pointspi; we let
�� ! �� andY ! B be derived from this family as in the general set-up.

We first describe the various types of reducible fibers that our familyY ! B

has. The following analysis is based on Propositions 2.1, 2.5, 2.6 and 2.7 of [CH].
In particular, the various types of degenerations can be classified as an application
of Proposition 2.5, and the singularities of� at the points 2 � corresponding
to each as an application of Proposition 2.6. Moreover, Proposition 2.7 assures us
that, just as in the case ofP2, the normalization�� is smooth and so the total space
Y coincides with�� . In particular, we see that no irreducible component of any
fiber ofY is mapped to a point by�.

With that said, we have the following calssification of irreducible fibers of
Y ! B:

TypeJ. Fibers having two smooth irreducible componentsJ1 andJ2, meeting
transversally at one point, such that�(Ji) = Di with Di > 0 and not equal to
E. We will always assume thatq 2 J1. For any decompositionD = D1 +D2

we have that the numberj(D1;D2) of fibers of typeJ such that�(Ji) = Di is

j(D1;D2) = N(D1)N(D2)(D1 �D2)

 
r0(D)� 2

r0(D1)� 1

!
:

The factor(D1 � D2) appears because, just as in the case ofP2, if [X] 2 �
corresponds to a curve of typeJ, in the normalization map� : B ! � the fiber
over[X] contains exactly(D1 �D2) points (here we are using Proposition 2.6
of [CH]).

We letBJ be the subset of pointsb in B whose fiberXb is a curve of
typeJ.

TypeG. Fibers having two smooth irreducible componentsG1 andGE, meet-
ing transversally at one point, such that�(GE) = E and�(G1) is simply
tangent toE. Clearlyq 2 G1. The total number of such fibers will not matter
in the subsequent calculation.

We letBG be the subset of pointsb in B whose fiberXb is a curve of
typeG.
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Type H. Fibers having three irreducible componentsH1;H2;HE , such that
�(HE) = E and�(Hi) = Di, withDi > 0 andD1+D2 = D�E (again, we
will choose the labelling so thatq 2 H1 always). By Proposition 2.6 of [CH],
if [X] 2 � is a point corresponding to this type of curve, then the fiber ofB

over� contains exactly(D1 � E)(D2 � E) points. Hence the total number of
fibers of typeH that correspond to a given decompositionD = D1 +D2 +E

is

h(D1;D2) =
X

D1+D2=D

N(D1)N(D2)(D1 �E)(D2 � E)

 
r0(D)� 2

r0(D1)� 1

!
:

And just like for the other types, we defineBH to be the subset of points ofB
parametrizing curves of typeH.

The picture ofY ! B thus looks like this:

Figure 3.

Now we choose the following set of generators for the Néron–Severi group ofY

fA; Y g [ fJ2;bgb2BJ [ fGE;bgb2BG [ fH2;b;HE;bgb2BH :

The following relations are obvious

G2
E;b = J2

2;b = H2
2;b = �1; H2

E;b = �2
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and the intersection number ofA with any generator other thanA andY is zero.
We computeA2 by the same argument as used in the preceding section. We

define

SH = fb 2 BH such thatq0 2 H2;bg

and we letnH = jSJ j. Then we have

nH =
X

D1+D2=D�E

N(D1)N(D2)(D1 �E)(D2 �E)

 
r0(D)� 3

r0(D1)� 1

!

Similarly, we letSJ andnJ to be defined exactly as in the preceding section, and
notice that the value ofnJ is expressed by the same formula that we had in the
plane. We obtain

A�A0 = �
X
b2SJ

J2;b �
X
b2SH

(HE;b + 2H2;b) + nY

for some integern. Hence

A2 = �
nJ + 2nH

2
:

Let nowL 2 Pic(F2). We want to compute the coefficients of��L as a linear
combination of the chosen generators of NS(Y). The number of generators being
quite large, it is now convenient to use the following notation: ifW is any of the
chosen generators, we shall denote byf��LgW the coefficient of��L with respect
toW . We shall then write

��L = f��LgAA+ f��LgY Y +GL + JL +HL

whereJL is defined just as in the preceeding section, and similarly

GL =
X

f��LgGE;bGE;b and

HL =
X

(f��LgH2;bH2;b + f��LgHE;b
HE;b):

We could now easily compute all the missing numbers in term of intersection
numbers onF2; only we don’t really need it. All we need is the expression for��C;
in fact we shall obtain a formula forN(D) by using the fact that(��C)2 = 2N(D).
The following numbers are obtained in a straightforward way, just as in the case of
P2.

f��CgA = (C �D) = a:

f��CgY = �(C �D)A2 =
a(nJ + 2nH)

2
:

f��CgGE = 0 for any generator of typeGE :

f��CgJ2;b = �(C � �(J2;b)):
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And for any curveH = H1 +H2 +HE of typeH such that�(Hi) = Di we have

f��CgHE
= �(C �D2) and f��CgH2 = �2(C �D2):

In conclusion, we get the same recursive formula that we obtained in [CH]:

THEOREM. For any effective divisorD 6= E onF2 with V (D) 6= ;,

N(D) =
1
2

X
D1+D2=D

N(D1)N(D2)(D1 �D2)

" 
r0(D)� 3

r0(D1)� 1

!
(D1 � C)(D2 � C)�

 
r0(D)� 3

r0(D1)� 2

!
(D2 � C)

2

#

+
X

D1+D2=D�E

N(D1)N(D2)(D1 �E)(D2 � E)

" 
r0(D)� 3

r0(D1)� 1

!
(D1 � C)(D2 � C)�

 
r0(D)� 3

r0(D1)� 2

!
(D2 � C)

2

#
:

5. The general recursion forF3

Let nowS = F3 and letC;E andF be as in 1.2. LetD be an effective divisor class
D onS with V (D) 6= ;. We also introduce in this case two additional subvarieties
of the linear seriesjDj: the subvarietyV2(D) of V (D) defined to be the closure
of the locus of irreducible rational curvesX tangent toE at a smooth pointX;
and the closureF (D) of the subvariety ofV (D) parametrizing irreducible curves
having a smooth point of intersection multiplicity 3 withE. Their degrees will be
denoted byN2(D) andN3(D) respectively.

Now we proceed as before: we chooser0(D)�1 general pointsp1; : : : ; pr0(D)�1
of S and consider the family� ! � of curvesX 2 V (D) passing through the
pointspi; we let�� ! �� andY ! B be derived from this family as in the general
set-up. Our method will again provide us with a recursive formula for the degree
of V (D), but there will be now an important difference: the recursion will involve
as well the degreesN2(D) andN3(D) of the varietiesV2(D) andF (D). More
precisely, we are going to obtain three formulas:

(a) A formula expressingN(D) in terms ofN(D0) andN2(D
00), whereD0 < D

andD00 < D �E;
(b) A formula expressingN2(D) in terms ofN(D); N(D0); N2(D

00) andN3(D�
E), whereD0 < D andD00 < D �E; and

(c) A formula expressingN3(D � E) in terms ofN(D0) andN2(D
00), where

D0 < D andD00 < D �E.
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We now describe the various reducible fibers ofY ! B. Again we use the
results of [CH], in particular, Propositions 2.5 and 2.7 for the geometry of the
normalization mapB ! � and of the total space�� . By 2.7 we have that��

is smooth at points lying on fibers corresponding to typesJ;G andH below; in
other words, no irreducible component of a fiber belonging to one of these types is
mapped to a point ofF3.

Type J. (This is the exact analog of the typeJ for F2.) Fibers having two
smooth irreducible componentsJ1 andJ2, meeting transversally at one point,
such that�(Ji) = Di withDi > 0 and not equal toE. We will always assume
thatq 2 J1. For any decompositionD = D1 +D2 we have that the number
j(D1;D2) of fibers of typeJ such that�(Ji) = Di is

j(D1;D2) = N(D1)N(D2)(D1 �D2)

 
r0(D)� 2

r0(D1)� 1

!
:

We have the coefficient(D1 �D2) because, just as in the case ofP2, if [X] 2 �
corresponds to a curve of typeJ, in the normalization map� : B ! � the
fiber over[X] contains exactly(D1 �D2) points.

We letBJ be the subset of pointsb in B whose fiberXb is a curve of
typeJ.

TypeG. Fibers having two smooth irreducible componentsG1 andGE, meet-
ing transversally at one point, such that�(GE) = E and�(G1) has a smooth
point of contract of order 3 withE. Clearlyq 2 G1. The total number of such
fibers isN3(D).

We letBG be the subset of pointsb in B whose fiberXb is a curve of type
G.

TypeK . Fibers having four irreducible componentsK1;KE ;K0 andK2 form-
ing a chain in the given order, that isK1 \KE = K0 \KE = K0 \K2 = 1
so thatK2

1 = K2
2 = �1 andK2

E = K2
0 = �2. As usual, we have that

q 2 �(K1). Moreover,�(KE) = E and�(K1) is tangent toE; �(K0) is a
point ofE (namely, the pointE \ �(K2)), in fact the exceptional curveK0

arises from the fact that the surface�� is singular at the point corresponding
toE \ �(K2) (cf. Proposition 2.7 in [CH]). LetBK be the subset ofB whose
corresponding fiber is a curve of typeK . Finally, for any given decomposition
D = E + D1 + D2 we have that the numberk(D1;D2) of corresponding
fibers of typeK is given by

k(D1;D2) = N2(D1)N(D2)(E �D2)

 
r0(D)� 2

r0(D1)� 2

!
:
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K 0. These are just like the fibers of typeK with the only difference that the
point q belongs to the curve that is not tangent toE, that is, we have now
�(K2) tangent toE. We denote the irreducible components of such a fiber
K 0

1;K
0
0;K

0
E andK 0

2, forming a chain in the given order, so that

(K 0
1 �K

0
0) = (K 0

0 �K
0
E) = (K 0

E �K2) = 1

and

(K 0
1)

2 = (K 0
2)

2 = �1 and (K 0
E)

2 = (K 0
0)

2 = �2:

Moreover,�(K 0
E) = E and�(K 0

0) is a point ofE (namely, the pointE \

�(K 0
1)). We define as usualBK0 to be the subset ofB whose corresponding

fiber is a curve of typeK 0. Finally we see that the numberk0(D1;D2) of such
fibers is

k0(D1;D2) = N(D1)N2(D2)(D1 � E)

 
r0(D)� 2

r0(D1)� 1

!
:

TypeH. Fibers having four irreducible componentsH1;H2;H3 andHE, such
that �(HE) = E and�(Hi) = Di, with Di > 0 andD1 + D2 + D3 =
D � E. In Proposition 2.6 of [CH] we proved that if[X] 2 � is a point
corresponding to this type of curve, then the fiber ofB over� contains exactly
(D1 � E)(D2 � E)(D3 � E) points. Hence the total number of fibers of typeH
that correspond to a given decompositionD = D1 +D2 +D3 + E is given
by

h(D1;D2;D3)

= N(D1)N(D2)N(D3)(D1 � E)(D2 �E)(D3 �E) 
r0(D)� 2

r0(D1)� 2; r0(D2)

!
:

And, as usual, we defineBH to be the subset of points ofB corresponding to
curves of typeH.

Here is a picture displaying the various types of reducible fibers in our family:
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Figure 4.

Now we choose the following set of generators for the Néron–Severi group ofY:

fA; Y g [ fJ2;bgb2BJ [ fGE;bgb2BG [ fK2;b;KE;b;K0;bgb2BK[

[fK 0
2;b;K

0
E;b;K

0
0;bgb2BK0

[ fH3;b;H2;b;HE;bgb2BH :

The following relations are obvious:

G2
E;b = J2

2;b = K2
2;b = (K 0

2;b)
2 = K2

1;b = H2
2;b = �1;

K2
E;b = K2

0;b = (K 0
E;b)

2 = (K 0
0;b)

2 = �2;

H2
E;b = �3

and the intersection number ofA with any generator other thanA andY is zero.
It will also be convenient to have a symbol denoting the class in NS(Y) of all

generators of the same type. Therefore we introduce the classes

GE :=
X
b2BG

GE;b; J2 :=
X
b2BJ

J2;b;

KE :=
X
b2BK

KE;b; K0 :=
X
b2BK

K0;b; K2 :=
X
b2BK

K2;b;

K0
E :=

X
b2B0

K

K 0
E;b; K0

0 :=
X
b2B0

K

K 0
0;b; K0

2 :=
X
b2B0

K

K 0
2;b;
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and

HE :=
X
b2BH

HE;b; H3 :=
X
b2BH

H3;b; H2 :=
X
b2BH

H2;b:

We now use this notation immediately to write the class of the relative dualizing
sheaf!Y=B of the familyf :Y ! B. We have

!Y=B = �2A+A2Y + GE + J2 +KE + 2K0 + 3K2

+K0
0 + 2K0

E + 3K0
2 +He + 2h3 + 2h2:

Now we computeA2. Letq0 be a basic point different fromq, thenq0 determines
a sectionA0 such that(A � A0) = 0. As before, we get 2A2 = (A � A0)2 and we
can compute the right-hand side by expressing the differenceA � A0 as a linear
combination of components of fibers. So, letnJ be the number of fibers of typeJ
such thatq0 lies on a different component thanq. We have

nJ =
X

D1+D2=D

N(D1)N(D2)(D1 �D2)

 
r0(D)� 3

r0(D1)� 1

!
:

Now let nK be the number of fibers of typeK such thatq0 lies on a different
component thanq; we have

nK =
X

D1+D2=D�E

N2(D1)N(D2)(E �D2)

 
r0(D)� 3

r0(D1)� 2

!
:

We definenK0 analogously, and obtain

nK0 =
X

D1+D2=D�E

N(D1)N2(D2)(D1 �E)

 
r0(D)� 3

r0(D2)� 2

!
;

and similarlynH , for which we have

nH =
X

D1+D2+D3=D�E

N(D1)N(D2)N(D3)(D1 � E)(D2 �E)(D3 �E)

 
r0(D)� 3

r0(D1)� 1; r0(D2)� 1

!

(where we will denote by
�
n

a; b

�
the multinomialn!=a!b!(n� a� b)!).

Let SJ be the subset ofB consisting of those pointsb such thatYb is a fiber
of typeJ for which q andq0 lie on different components. ObviouslySJ contains
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nJ points. If b 2 SJ we writeYb = J1;b + J2;b (henceq 2 J1;b andq0 2 J2;b).
In a completely analogous fashion we defineSK , SK0 andSH . If b 2 SK then
we writeYb = K1;b +KE;b +K0;b +K2;b and similarly ifb is in SK0 or SH . We
therefore have that ifb 2 SK (respectively,b 2 SK0 andb 2 SH), thenq0 lies on
K2;b (respectively onK 0

2;b andH2;b). Now we have

A0 �A =
X
b2SJ

J1;b +
X
b2SK

(3K1;b + 2KE;b +K0;b)

+
X
b2SK0

(3K 0
1;b + 2K 0

0;b +K 0
E;b) +

X
b2SH

(H1;b �H2;b) + nY:

wheren is some integer that is irrelevant for our computation. Finally we obtain

A2 =
�nJ � 2nH � 6nK

2
:

Now, for anyL 2 Pic(F3), we have

f��LgA = (L �D);

f��LgY = �(L �D)A2

and

f��LgGE;b = �(L �E)

for any b in BG. These are obtained, in the given order, from the products
(��L � Y ) = (L �D); (��L �A) = 0 and(��L �GE;b) = (L �E)

Let us fix a fiber of typeJ which we write asJ1;b + J2;b as usual; letD2 be the
class inF3 of �(J2;b). From the product(��L � J2;b) = (L �D2) we see that

f��LgJ2;b = �(L �D2):

Fix now a fiber of typeK , which we shall write asK1;b +KE;b +K0;b +K2;b,
such that the image inF3 has corresponding divisor classesD1 for K1;b andD2 for
K2;b. The relation(��L �K1;b) = (L �D1) implies

f��LgKE;b
= (L �D1)� (L �D);

the above formula together with(��L �KE;b) = (L �E) gives

f��LgK0;b = 2(L �D1)� 2(L �D) + (L � E);

and the two previous formulas combined with(��L �K0) = 0 gives

f��LgK2;b = 3(L �D1)� 3(L �D) + 2(L �E):
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With completely analogous notation and procedure, for a fixed fiber of typeK 0

we have

f��LgK0

0;b
= (L �D1)� (L �D);

f��LgK0

E;b
= 2(L �D1)� 2(L �D);

f��LgK0

2;b
= 3(L �D1)� 3(L �D) + (L � E):

Finally, fix a fiber of typeH such that the class inF3 corresponding toHi;b isDi;
again the same procedure yields

f��LgHE;b
= (L �D1)� (L �D);

f��LgH3;b = (L �D1)� (L �D)� (L �D3)

and

f��LgH2;b = (L �D1)� (L �D)� (L �D2):

We shall also use the following short notation:

��L = (L �D)A+ (L �D)

�
�nJ � nH � 6nK

2

�
Y

�(L � E)GE + JL +KL +K 0L +HL (�)

Now we want to compute the intersection product onY of the pull-back of two
line bundlesL andM onF3. We easily have

(��L � ��M) = �(L �D)(M �D)A2 � (L � E)(M �E)f(D �E)

+(JL � JM ) + (KL �KM) + (K 0L �K 0M ) + (HL �HM ):

And now a completely straightforward computation yields

(JL � JM ) = �
X

D1+D2=D

j(D1;D2)(L �D2)(M �D2);

(KL �KM) = �
X

D1+D2=D�E

k(D1;D2)((L �E)((M �D1)� (M �D)) +

�(L �D2)(3(M �D2) + (M �E)));
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(K 0L �K 0M ) = �
X

D1+D2=D�E

k0(D1;D2)((L � E)(2(M �D1)� 2(M �D)) +

�(L �D2)(3(M �D2) + 2(M �E)))

and

(HL �HM ) = �
1
2

X
D1+D2+D3=D�E

h(D1;D2;D3)

�(�(L �D)(M �D) + ((L �D)(M �D1)

+(L �D1)(M �D)� (L �D1)(M �D1)

�(L �D2)(M �D2)� (L �D3)(M �D3)):

In the last formula, we divide by 2 becauseD2 andD3 are not distinguished
from one another.

Now we are ready to write down the three formulas that we mentioned at the
beginning of this chapter. Before we carry out the computation, we can explain
briefly the procedure. We have to look at the relation(�) and keep track of the
Severi degrees on which the characteristic numbers depend.

(a) The first relation we shall use is

(��C � ��C) = 3N(D):

This will give a formula expressing

N(D) in terms of N(D0) and N2(D
00) with

D0 < D and D00 < D �E:

This is clear; since(C �E) = 0 if we apply(LM) toL =M = OS(C) the Severi
degreeN3(D �E) disappears.

(b) Now we need a formula forN2(D). We will imitate what we did to compute
the degree of the variety of rational curves tangent to a fixed line in the plane. We
define ~E to be the class of the irreducible component of��1(E) that dominatesB.
Then we have

~E = ��E � 3GE � 2KE �K0 � 2K0
E �K0

0 �HE:

This is obtained as follows: for the coefficient ofGE we notice that for anyb 2 BG

we have( ~E � GE;b) = 0, while on the other hand(��E � GE;b) = �3. The same
procedure yields the remaining terms.

N2(D) = ~E2 + ( ~E � !Y=B):
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This will give a recursion expressing

N2(D) in terms of N(D); N(D0); N3(D �E); and N2(D
00) with

D0 < D and D00 < D �E:

(c) The third and last step will be to find a formula forN3(D � E). This will
be done by using

(��F � ��F ) = 0

which, as one can imply using(�), will give

N3(D �E) in terms of N(D0) and N2(D
00) with

D0 < D and D00 < D �E:

Example. If D = 2C we have on one hand that(��C � ��C) = 3N(2C), and
on the other hand our formulas give

(��C � ��C) = 3[�12A2 � 3j(C;C)� k(C + 2F; F )� 25k0(F;C + 2F )

�14h(F; F;C + F )� 2h(C + F; F; F )]:

Here are the relevant numbers for the caseD = 2C.

j(C;C) = 105; k(C + 2F; F ) = 14; k0(F;C + 2F ) = 2;

h(F; F;C + F ) = 7; h(C + F; F; F ) = 21; nJ = 60;

nK = nK0 = 2; nH = 13;

so that

A2 = 49

and we can conclude thatN(2C) = 69.
We will now state our main result forF3:

THEOREM. LetD 2 Pic(F3). LetN(D) be the number of irreducible rational
curves injDj that pass throughr0(D) general points. Then

N(D) =
1
3

X
D1+D2=D

N(D1)N(D2)(D1 �D2)

�

" 
r0(D)� 3

r0(D1)� 1

!
(D1 � C)(D2 � C)�

 
r0(D)� 3

r0(D1)� 2

!
(D2 � C)

2

#
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+
X

D1+D2=D�E

N2(D1)N(D2)(E �D2)

�

" 
r0(D)� 3

r0(D1)� 2

!
(D1 � C)(D2 � C)�

 
r0(D)� 3

r0(D1)� 3

!
(D2 � C)

2

#

+
X

D1+D2=D�E

N(D1)N2(D2)(E �D1)

�

" 
r0(D)� 3

r0(D1)� 1

!
(D1 � C)(D2 � C)�

 
r0(D)� 3

r0(D1)� 2

!
(D2 � C)

2

#

+
1
3

X
D1+D2+D3=D�E

N(D1)N(D2)N(D3)(E �D1)(E �D2)(E �D3) �

�

" 
r0(D)� 3

r0(D1)� 1; r0(D2)� 1

!

� [2(C �D1)(C �D2) + (C �D1)(C �D3)

+ (C �D2)(C �D3)� (C �D3)
2]

�

 
r0(D)� 3

r0(D1)� 2; r0(D2)

!

� [(C �D2)
2 + (C �D3)

2 + (C �D2)(C �D3)]

#
:

Proof. We just have to compute. Applying(�) to ��C gives

(��C)2 = �(C �D)2A2 �
X

D1+D2=D

j(D1;D2)(C �D2)
2

�
X

D1+D2=D�E

3k(D1;D2)(C �D2)
2

�
X

D1+D2=D�E

3k0(D1;D2)(C �D2)
2

�
X

D1+D2+D3=D�E

h(D1;D2;D3)[(C �D2)
2

+(C �D3)
2 + (C �D2)(C �D3)]:
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This gives

N(D) =
1
3

X
D1+D2=D

N(D1)N(D2)(D1 �D2)

�

" 
r0(D)� 3

r0(D1)� 1

!
(D1 � C)(D2 � C)�

 
r0(D)� 3

r0(D1)� 2

!
(D2 � C)

2

#

+
X

D1+D2=D�E

N2(D1)N(D2)(E �D2)

�

"
2

 
r0(D)� 3

r0(D1)� 2

!
(D1 � C)(D2 � C)

�

 
r0(D)� 3

r0(D1)� 1

!
(D1 � C)

2 �

 
r0(D)� 3

r0(D1)� 3

!
(D2 � C)

2

#

+
1
3

X
D1+D2+D3=D�E

N(D1)N(D2)N(D3)(E �D1)(E �D2)(E �D3)

�

"
(C �D)2

 
r0(D)� 3

r0(D1)� 1; r0(D2)� 1

!

�((C �D2)
2 + (C �D3)

2 + (C �D2)(C �D3))

�

 
r0(D)� 2

r0(D1)� 1; r0(D2)

!#
:

And this concludes the proof.
We will write as well the formulas for the degrees of the other loci that we need.

The first formula is obtained by

N2(D) = ~E2 + ( ~E � !Y=B);

which gives

N2(D) = �3N(D) + 9N3(D �E) + (E �D)A2

+
X

D1+D2=D

j(D1;D2)(E �D2)

+
X

D1+D2=D�E

6(k(D1;D2) + k0(D1;D2))

+
X

D1+D2+D3=D�E

h(D1;D2;D3)[2(E �D2) + 2(E �D3)� 1]:
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Finally, the degree of the Severi variety parametrizing rational curves having a point
of contact of order at least 3 withE is obtained by��F 2 = 0, which translates into

N3(D �E) = �(F �D)2A2

�
X

D1+D2=D

j(D1;D2)(F �D2)
2

�
X

D1+D2=D�E

k(D1;D2)[1+ 2(F �D2) + 3(F �D2)
2]

�
X

D1+D2=D�E

k0(D1;D2)[2+ 4(F �D2) + 3(F �D2)
2]

�
X

D1+D2+D3=D�E

h(D1;D2;D3)

�[(F �D)2 � 2(F �D)(F �D1) + (F �D1)
2

+(F �D2)
2 + (F �D3)

2]:
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