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Abstract

Davey and Quackenbush proved a strong duality for each dihedral group Dm with m odd. In this paper
we extend this to a strong duality for each finite group with cyclic Sylow subgroups (such groups are
known to be metacyclic).
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1. Introduction

The first strong natural duality for nonabelian groups was established by Davey and
Quackenbush, see [2]. They showed that the dihedral group Dm admits a strong natural
duality if m is odd. In this paper we generalize this result to finite groups having all
Sylow subgroups cyclic. We assume that the reader is familiar with [2]. The definition
of a (natural) duality is given in [1, 2]; here we give it for the special case of finite
groups:

Let G = (G, •) be a finite group. We call G = <G; F, P, R,x) a (topological) dual
structure on the same set G, if

(a) each / € F is a group homomorphism / : G" -> G for some n € H,
(b) each / e P i s a group homomorphism / : dom(/) —> G, where dom(/ ) is a

subgroup of G" for some n e M,
(c) each r e R is a subgroup of G" for some n e N ,
(d) r is the discrete topology.
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The elements of F, P and R are called operations, partial operations and relations,
respectively, and we say that the structure G is algebraic over G. One consequence
of this definition is that every n-ary group word is a continuous homomorphism from
G" to G.

Also as a consequence of this definition we have that for each group A in the quasi-
variety D§P(G), the set of homomorphisms from A to G, denoted X\ := Hom(A, G),
is a closed substructure of G|/41 and for each X in the topological quasivariety D§CP(G),
the set of continuous homomorphisms from X to G, denoted A^ := Hom(.Y, G), is
a subgroup of G1*1. Moreover, for each group A e 0§P(G) there is a natural em-
bedding eA of A into its corresponding double dual A^A given by the evaluation map
eA : A —*• AxA such that eA(a)(f) = f (a) foreach/xe Xk. Hex is an isomorphism
for all A € DSP(G), then we say that G yields a {natural) duality for DSP(G). If the
analogous map c^ also is an isomorphism for each X e i§cIP(G), then we say that G
yields a full duality for DSP(G).

For instance, if G = Zm = (Zm;+) and Zm = (Zm;+, x) with F = {+},
P = 0 = R, then Zm yields a full duality for DSP(Zm), which in this case is the
variety of abelian groups satisfying mx = 0; this is a fragment of the usual Pontryagin
duality for all abelian groups.

Duality theory tells us that in order to show that G yields a full duality on i§P(G)
it is enough to prove the following three conditions:

CLO: for each n € N, every continuous homomorphism </>: G" —> G is a group
word on G.
INJ: G is injective in i§tP(G).
STR: for any X < G' where / ^ 0, and for each v e G'\X there exists a continuous
homomorphism <p: G' —• G such that 0 | x = 1 while 4>(y) ^ 1.

When these three conditions are satisfied we call this a strong duality; thus, a strong
duality is a full duality. All known full dualities are actually strong dualities. It has
long been conjectured that a full duality is always strong, but this remains an open,
challenging problem. We shall exhibit a strong duality for groups having cyclic Sylow
subgroups.

2. Preliminary results

For the main goal of the paper we need some structure theorems for groups. The
first is from Robinson, [5, page 281].

THEOREM 2.1 (Holder, Burnside, Zassenhaus). A finite group G has all its Sylow
subgroups cyclic if and only if it has a representation Zn x Zm such that (m, n) = 1;
thus, it is metacyclic.
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Let n = p\' • • • pi" so that Zn = Zp/>, x • • • x Zp* and Aut(ZJ = Aut(Zpj>,) x • • • x
Aut(Z et). Then the semidirect product Zn x H is determined by a homomorphism
p = ( p , , . . . , pk) from H into Aut(Zn), where p, is the corresponding homomorphism
from H into Aut(Zpft) and Zp^ x H is the corresponding semidirect product. The next
theorem tells us how to build recursively a strong duality for Z, x H from those for the
Z e, » H. As often happens in a recursive construction, we need to assume and prove
something a bit stronger in order to prove that the recursive construction is correct.
A strong duality for K = G » H will be called semidirect over H if the following
condition holds: let X be a closed substructure of (AT)', </>: X —• K a continuous
structure preserving map and <p'\ (H)' -*• K a continuous structure preserving map
extending the restriction of </> to (H)'; then there is a continuous structure preserving
map f: (K)' -*• K extending both <p and </>'.

Now and later in the paper, we make use of the following group theoretic lemma
from [2].

LEMMA 2.2. Let G be a group and let e be a retraction of G onto a subgroup H.
Let N be the kernel ofe and let

K := {(«, v) € G2 | e(u) = e(v)) = | J { ( e ~ W I * e //}

= {J{Nh xNh\heH\

be the congruence corresponding to N. Define a partial binary operation *, with
domain K, by xh * yh := xyhfor all x, y e N and h e H {that is, define u * v :=
u€(u)~lv = uc(v)~lvforall (u, v) e K).

(a) (The restriction of) * is a well-defined group operation on Nhfor each h € H.
Moreover, right translation by h is an isomorphism of (N; •) onto (Nh; *).
(b) The partial operation * is associative wherever it is defined. It will be commu-

tative wherever it is defined provided N is abelian.
(c) The map *: K —> G is a homomorphism if and only ifN is abelian.

THEOREM 2.3. Let Gi, G2, H be finite groups with G,, G2 abelian, such that their
sizes arepairwise relatively prime. / /K, = G, x H (given by p , : H —• Aut(G/)) each
admits a strong duality, then a strong duality holds for G = (G, x G2) x H (given by
(p , ,p 2 ) : H - • Aut(G,) x Aut(G2)).

PROOF. Lete, denote the retractions of G to K, by G; for (1,7) € {(1,2), (2, 1)},
e the retraction of G to H by G, x G2. Let K( = (A",; Fh />,, Rt, r) yield a strong
duality for DSP(K(). Let st(n) = g,(n)r,(n) be the size of the n-generated free group,
F,(n), in the variety generated by Kh where (qt(n), |G,|) = (rt(n), |H|) = 1. Also,
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let * be the partial operation given by the translation of the group operation on Gi x G2

as given by Lemma 2.2. We take

G = (G; {e,, e2}, F, U F2 U P, U P2 U {*}, /?, U R2, r ) ;

note that full operations on G, become partial operations on G. Also note that
e,£2 = «2«i = £• We will use the fact that £,|/e,_, is the retraction of K^ , onto H by
G,-. Because of our assumption of strong dualities, we may assume that £,!*,_, is part
of the duality for Ki_,.

Let g e G' for / finite or infinite, and let (j>: G' -> G be a continuous homomor-
phism. Then we have g = gxg2h_ with g. e G\ and /: € H'. Then £,(g) = g./t. Since
g — g h* g h and 0 preserves *,

<Hg) = *(£ ,*) * 4>{gJD = (p(et(g)) * cP(e2(g)).

That is, </>(#) is uniquely defined once <p(£i(g)) and </>(£2(g)) are known.
First we show that CLO holds. Due to the semidirect products involved, each

F,(n) is itself a semidirect product of a normal subgroup N,(n) and Fw(«), the n-
generated free group over H. Moreover, (|A^,-(n)|, \FH(n)\) = 1. That is to say,
qt(n) = q2(n) := q(n) for all n > 0. As each K; is a quotient of G, we have
IFc(n)\ > Ri.n)r\(n)r2(n). We show that equality holds, as does CLO, by showing
that there are at most q(n)r\(n)r2(n) continuous homomorphisms 0 : G" —> G. Since
<f> preserves [s, et, e2], <f> maps K" to K, and H" to H. In view of the strong dualities
assumed for each K;, there are at most q(n)rt (n)r2(n) restrictions of 0 to K" U K^;
we must show that this restriction has at most one extension to all of G". But that was
done in the last paragraph.

In order to prove INJ and that the duality will be semidirect over H, let X < G'
be a closed substructure for some set / and 0 : X —• G a continuous homomorphism.
Since <p preserves the retractions, <j>\Ki is a continuous homomorphism from X D K[
to Kj. Since INJ holds for K\ and the dualities are semidirect over H, we proceed
as follows: let Vo be an extension of <j>\Hi to H' and \^, an extension of \jr0 U 4>\K;
to Kj for i — 1, 2, and note that I^IIH' = ^ I w - Let g e G' where g = gxgjl
with g e G\ and h € / / ' . From what we have seen above, we must define yjr by

^ (£ ) : = ^i(£i(£)) * Vf2(f2(£))- If £ e X, then ^r(£,-(£» = </>(£,(£», so that V
extends 0; obviously, ^ extends V̂ o- Since i^l*' is a homomorphism, to show that ^
is a homomorphism, it is enough to show that i/r preserves £,-. Let g = g ^ h. On the
one hand,

On the other hand,
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Let itiigfc) = g\h and faig k) = g2h' where g{ e G, and h, h' e / / . In order for
gih* g2h' to be defined, we need to show that h = h'. We do this by showing that
ifi(h) = h and ^ 2 ® = h'; since ^\(K) = fad}), the result follows. Using the fact
that e2 commutes with ^ 1 , we have

h =

Similarly, ^2(A) = ^'- Then,

= g\h.

Finally, gih = g\h * h = V^i(g,^) * iM^) . showing that ^ preserves £1. In a similar
manner it preserves e2 and so it is a homomorphism.

To complete the proof of INJ we need to prove that x/r is continuous. By construc-
tion, both ^1 and ^2 are continuous. Using the same finite subset of / given by the
continuity of i/̂ ,, it is straightforward to prove the continuity of xffj O £,. Note that *
is continuous because it has finite domain. Thus, if is a composition of continuous
maps and so it is continuous. Moreover, we have shown that the duality is semidirect
over H.

To show STR we first note that restricted to Kj, STR holds. Also recall that <f> is
defined on g e G' if and only if it is defined on e,(g) 6 Kj for i = 1, 2. Let X < G'
be a closed substructure and y € G' — X for some set / ^ 0; we define 4>(x) := 1
for all £ G X. Then, without loss of generality, we may assume that either y e H'
or £i(y) i £i(X); in either case, e , ^ ) £ £i(X). Now we invoke STR for K[ with
respect to ex(y) and proceed as in the proof of INJ for G', and we are done. We leave
to the reader the verification that the value of this extension at y is not 1. •

3. The case n = p?

Thus, we can build up our strong duality for finite metacyclic groups from that for
metacyclic groups of the form G = ZPK X Zm, where (p,m) = 1. In this section we
show that there is a strong duality semidirect over Zm for these groups. We assume
that G is not abelian.

LetZp* = (a),Zm = {b)andab(= bab~x) = a*forsome* € N. Lety e AutCZ,,,)
be such that y(a) = ab and let the order of y be d (this means that ba — akb and
that a = yd{a) — ak\ so that pp\(kd - 1)). As G is not abelian, d > 1; for the
same reason, p > 2, and so Aut(Zp/i) = Zpi>-<(p-\). On the one hand, as there is a
group homomorphism from Zm to Aut(Zp«) sending b to y, d\m and so (d, p) = 1.
On the other hand, as d\p?~l(p - 1) and (d, p) = 1, we have that d\(p — 1). Thus,
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bda = a^bd = abd and so (bd) is in the center of G. Let us suppose that ab' = b> a.
Then a = (a)ft/ = ak'; hence, yj (a) = a and so d divides j . Thus,

CG(a') = (a, b"), CG(#) = (b) if d\j,

j , Z(G) = {b").

When Z(G) ^ 1 (that is, */ < m), there are some complications. For instance,
consider the case pp = 3, m = 4 and a* = a"1. In this 12-element group we have
Z(G) = (*2> and G/Z(G) = S3. But S3 is not in the quasivariety generated by
G (as S3 is monolithic but not a subgroup of G). Thus, the quasivariety generated
by G is not the variety generated by G. However, the variety generated by G is the
quasivariety generated by Z4 x S3, see Olshanskii [3]. In general, the variety generated
by G = Zpo x Zm is the quasivariety generated by

Zm x (G/Z(G)) = Zm x (Zp, x (Zm/Z(G))) = Z » x (Zp, a Zd).

In case Z(G) ^ 1, we will need to work 'over the center' by using the following
partial operation.

LEMMA 3.1. The mapping • : G x Z(G) —> G such that g * c = gc is a group
homomorphism.

We shall show that ISCP(G) is a dual quasivariety of DSP(G), where

G = ( G ; l , a , + , *, o, *, r).

Here, 1 is the constant operation and a is the automorphism of G fixing a and mapping
b to ab (we omit the routine but ugly computation that shows that such an a exists).
The four operations +, *, o, * are each obtained from the restriction of the group
operation • to certain subgroups of G2; each operation is a homomorphism. Thus, +
is the restriction of the group operation • to the abelian group Zm = {b). Next, * is the
binary partial operation obtained via Lemma 2.2 from Zpt and Zm. More precisely,
the domain of * is Ur=o'(^/>"^' x Zp'b'), and the operation is the translation of the
group multiplication: a'b> * akb> — aiJrkb>. By Lemma 2.2, * is an algebraic binary
partial operation. Let e: G -> Zm where e(a'b>) = b> is the retraction of G onto Zm

by Zpi< — (a). Note that if a map preserves * then it automatically preserves e, since
eia'b') = a'b1 * a~'b> and a~'b> is generated from a'ti by *. The binary partial
operation o is the restriction of the group operation • to the abelian group Zpn x Z(G).
Finally, the binary partial operation * is as given by Lemma 3.1. As always, r is the
discrete topology.

First we show that the condition CLO holds.
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LEMMA 3.2. |Hom(G", G)\ < m
n{p^yd"-^n-l)+n.

PROOF. The proof is essentially the same as that of Proposition 4 of [2]. Let
4> € Hom(G\ G). Since + is the original group operation on Zm, and (/> preserves
+, the restriction, <p\(z»r, is an abelian group homomorphism into Zm. There are
m" such homomorphisms. Next, we examine the possible extensions of each such
homomorphism. Let h = (hi,... hn) e (Zm)" and e~l(h) — Zp>hi x • • • x Zpi>hn =
Sh. Sh is an abelian group isomorphic to (Zpi>y under the operation * with h as its
identity element. SA must be mapped into e~l (<p(h)) which under * is isomorphic to a
subgroup of Zpe, and (/>\Sh must be an abelian group homomorphism from (Sh, *) to its
image. Since <f> preserves or, it is already defined on a(h), hence on ((a(h)), *) which
is a subgroup of size pp of (Sh, *) if h ^ 1, and is {h} if h = 1. So there are at most
(pf)"'1 extensions to Sh if h £ 1 and at most (pfi)n ifh = \. Finally, let h' e (Zm)"
be such that h~xh' G (Z(G))n. Then because of •, if we know cj> on Sh, then we know
<f> on Sh>. Since |Z m /Z(G) | = d, the number of continuous homomorphisms from G"
to G is not more than mn(p^yd"-iHr-l)+n. D

In [2], the proof is completed by a reference to the known result that this upper bound
is the size of the n-generated free group in the variety generated by the given group.
In the present case, we do not have such a formula at hand. However, since every
word is a continuous homomorphism, we only need to construct an n-generated group
of the appropriate size in the variety generated by G. One of the referees of an earlier
version of this paper gave an alternate proof by showing that the variety generated by
G is the product variety srfpl>srfd, whose free spectrum is known. The proof we give
here is more elementary and has the advantage that it is a more general approach to
producing dualities - one 'merely' constructs sufficiently large H-generated algebras.

LEMMA 3.3. Let a e (a)q and £ € G? be such that if(g)i = b'a\ then 0 < / <
d — 1. Then for every 0 < t < d —I the group generated by a and g contains a vector
at such that (a(), — (a), if(g)i = b'as and (a,), = 1, otherwise.

PROOF. Consider a = (aWl,..., aw«) and g = (bi'ar> ,...,ti< ar«). Without loss
of generality, we may assume that iu ^ iv for u, v < s and that for v > s there is
u < s with /„ = /„. Form the 5 x j matrix whose (w, v) component is the exponent
of a in the v-th component of gf. Then this matrix is a constant multiple of the
Vandermonde-matrix V = V(k'>, kh, ..., k'!), where the constant is
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Notice that this constant is not divisible by p. The determinant of V is

det V = Yl (*'' ~ **)•

As k'' — k'1 = k''(k''~'' — 1) is coprime with p, det V is a unit in Zp/>; hence, V is
invertible and the vectors asserted by the lemma are expressible in the terms of the
vectors a^". •

DEFINITION. Let ae {a)k and £ e G*. The vectors created in the previous lemma
are called the separation of a by g at the exponent /.

EXAMPLE 1. Let a = (1, a, a2, 1, a\ a, a) and £ = (b, a, ba2, b3a, b, b5a, Z>3).
Then ^ , = (1, a, 1,1, 1,1,1), a, = (1, I, a2, l , a \ 1, 1), a3 = (1, 1, 1, 1, 1, I, a). It
is clear that a = YY?=o dr an<^ £, = U> • • • > 1) if f does not occur in g as an exponent
of a in some component.

We exhibit an n-generated subgroup D of Gw"~1)("~1)+" of the appropriate size. We
define an n-by-[(d" — l)(n - 1) + n ] matrix M with entries from G, and take the group
generated by its rows. We define M by giving its columns. Take all the vectors b from
(b)n such that if (£), = br, then 0 < r < d - 1. For each such b take the vectors bt

(1 < / < n), that are the same as b except that the j-th coordinate is multiplied by a
from the right. For each b we omit the first bt which does not contain a as a coordinate.
For example if b = (1, 1, b, b2, b\ 1, b)T we omit £3 = (1, 1, ba, b2, b\ \,b)T. We
get n vectors from ( 1 , . . . , l ) r and n — 1 from each b / ( 1 , . . . , I ) 7 . These vectors
will be the columns of M. Given an element v e G(d""1)(n"1)+", we will index the
coordinates of v by the columns of M.

DEFINITION, b is called the b-part of £,; a column of M distinct from 6, but with
the same 6-part is called a b-mate of bt. A row vector of length (dn — l)(n — 1) + n
with an a in coordinate b', and a 1 in all other coordinates is called the a-part of bt.

LEMMA 3.4. In the variety generated by G, there is an n-generated group of size
at least mn(ppyd"-l)(n-u+n.

PROOF. We show that D, the group generated by the rows of M, is a group of the
required size. We show that D contains

(1) a subgroup H, of size (A7^)W"-')<«-i)+«.

(2) a subgroup H2 of size m".

Since the orders of H| and H2 are coprime, the group generated by them has size at
least m"(p»)W-|>"-l>+\
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In order to show (1), let g = (ft '1 , . . . , b!ia,..., b'n) be a column of M, v, the row
of M with b''a entry in coordinate g. First we construct a vector u/ € D having a
as its g coordinate, and 1 in all coordinates which are fe-mates of g. Let u/ = £, if
t{ = 0; notice that at a ft-mate coordinate of g the entry is 1. If r, ^ 0, consider g and
its ft-mates (in total, n — 1 columns). Then by the construction of M there is a unique
row v which contains no a in any of these columns, but only a fixed power of b, br;
this row corresponds to the first component of the ft-part of g which is not 1. If m does
not divide [r, f,], let u/' = vm~lr-'i]/'r • vl'-'l]/li. Then the g coordinate of w" is az, where

and the coordinate of every fc-mate of g is 1. Since m does not divide [r, r,], p does
not divide 2 and so there is a u e N such that

zu = 1 (mod p0).

Hence, (az)u = a. Let u/ = (]£")"• If »i divides [r, J;], then m does not divide
[r + ti, tj\, so let us use v • v_t instead of u, to construct u/' and u/. The g coordinate
of u/ is a, and the coordinate of every fc-mate of g is 1.

We next construct u^ e Dn(a)w""1) (""' )+" with the same property. Since (m, /?)=l ,
there is an x e N such that

x = 1 (mod pp); x =0 (mod m).

Let u ,̂ = (u/y. Then w^ e D n (a)W"-i)o-i)+i! wj th a in its g coordinate, and the
coordinate of every fc-mate of g is 1.

Now we recursively construct the a-part of g. Suppose for h -£ g that (w^j, ^ 1.
Then the &-part of h differs from the fc-part of g, say at component j . Look at «;,,
the separation of u^ by the j -th row of M at the exponent r,, where tj is the j -th
component of theft-part of g. Then(i£,) | = a a n d ^ , ) ^ = 1. As separation preserves
the entry 1, iteration eventually produes the a-part of g. Clearly, the set of all a-parts
of the columns of M generates ^ group of the required size.

In order to show (2), express e(jj.) with u, and H,. These elements belong to
^<</"-i)<n-i)+« a n ( j c i e a r iy generate a group H2 of order m". •

Now we have everything to show that CLO holds:

THEOREM 3.5. Each continuous homomorphism from G" to G is a word.

PROOF. By construction, each word is a continuous homomorphism. But by
Lemma 3.2 and Lemma 3.4, there are at most as many continuous homomorphisms
as there are words. •
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COROLLARY 3.6. The size of the n-generatedfree group in the variety generated by
G is mn(pfiyd"~1)(n~l)+" and the n-generatedfree group is a semidirect product:

(•J \W-l)(n-l)+n . . rjn
(Apt) » Lm.

Let us now try to prove INJ and STR and show that the duality is semidirect over

Zm. Thus, choose X < G' with / not empty, y_ e G' - X, and </> e Hom(X, G). We

want to extend <f> to \fr € Hom(G', G) so that if <j> == 1, then f (y) £ 1. Also, if cp' e

Hom(Z'm, G) and extends 4>\z'm, then we want to find f e Hom(G7, G) extending

both 4> and <j>'.

DEFINITION. Define Xm := X n Z'm, Xp := X n (Zp/» x Z(G)) ' , and for ft €

Z^ - (Z(G))7, define Xk:=XC\ (a)'b. Note that I € Xm, 1 e Xp, but that Xk may
be empty. Each of Xm,Xp, Xt is closed.

LEMMA 3.7. (a) + is fully defined on Xm and (Xm; + , r) is a closed substructure
of (Z'm; + , r), to which Pontryagin duality for abelian groups of exponent m applies;
(b) o is fully defined on Xp and (Xp;o, r) is a closed substructure of {{Zpti x

Z(G)) ' ;o , r), to which Pontryagin duality for abelian groups of exponent p^m/d
applies;
(c) for b € Z'm — (Z(G) ' , * is fully defined on Xk and (X*; *, r) is a closed sub-

structure of((a)'b; *, r) , to which Pontryagin duality for abelian groups of exponent
pfi applies;
(d) the effect of * is that for any c € X D Z(G)' , (X^,*,a, r) is isomorphic to

c; *, a, z) via multiplication by c.

PROOF. Everything is clear except for part (d) where we need to prove closure
under a and its preservation under multiplication. This follows from the fact that in
G, a(bc) = a(b)c, which we now prove. Since a(bc) = a(b)a(c), we need to show
that a(c) = c. Recalling that Z(G) = {bd}, this reduces to showing that a(bd) = bd.
But a(bd) = (a(b))d = (ab)d — asbd for some 5. On the other hand, we must have
a(bd) e Z(G). This means that a* = 1 and a(bd) = bd. •

Thus, <j>\Xp is a continuous o-homomorphism. By Pontryagin duality for abelian
groups of exponent pfint/d, there is a continuous o-homomorphism <j>\: (Zpn x
Z(G)) ' ->• ZPK x Z ( G ) which extends <f>\Xp. Also, since Z(G) < Zm and (p,m) = 1,
we may assume that 4>t extends </>'|z(o'-

Now define X'm := Xm(Z(G))'; clearly, X'm is closed under + . Define fa: X'm -+

Zm by fa(xc) := <p(x)<pi(c) forx e Xm and c e Z(G) ' .

LEMMA 3.8. X' is a closed subset ofZ'm, and fa is a continuous -\--homomorphism.
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PROOF. Let i i X'm, and so z i Xm. Thus, there is a finite F c / such that
z'lf = z\F implies that z' i Xm. For c € Z(G) f choose d(c) e Z(G)' with
d(c)| f = c and with d(c"') = (d(c))~u, note that there are only finitely many such
d(c). Then zd(c) <£ X'm as z <£ X'm, implying that zd(c) <£ Xm. Consequently,
there is a finite E£ c. I such that j£|£c = zcL(c)\Ec implies that u; ^ Xm. Define
E := FU (J{£c I £ 6 Z(G)F}; £ is finite. Choose z' so that z'U = z\E- Suppose
that j ' 6 ^ ; then z' = x'c' for some x' 6 Xm and d e Z(G)'. Take c := c ' | f . Then
z'^Cc"1) e X'm asz/ e x ; . But z ' ^ c " 1 ) ! ^ , = ^ ( c " 1 ) ! ^ - , so that z'dic'1) i X'm,
implying that z.' £ X'm. Thus, the clopen set {z' I z'le = Z|E} is disjoint from X'm and
X'm is closed.

Next, we need to see that <p2 is well defined; let xc = .K'C' with ^, x' e Xm

and c,c' e Z(G)'. We need to see that ^'(x)0,(c) = <j>'{*)4>x{d). But in X^
we have dc~x = ( i ' )~ '^ 6 Xm, so that 0,(c/)0,(c-') = ^iCc'c"1) = ^'Cc'c"1) =

). Fromx = x^dc~l and as c'c"1 e Xm, we have 0'(x) = (^'(i'c'c"1) =
"1) = 0'(x')0,(c')0i(c-'), and the result follows.

Finally, continuity follows since <̂ )' and <j>\ are continuous by assumption, • is
continuous since it has a finite domain and thus, 02 is a composition of continuous
functions, and so is continuous. D

If 0, extends 0'|Z<G)'» then cj>2 = 0'|Z<G)'- By Pontryagin duality for abelian groups
of exponent m, there is a continuous +-homomorphism (/>3: (Zm)' —> Zm which
extends </>2; we may assume that fa = <j>'. Thus, if we can prove INJ and STR, then
the duality will be semidirect over Zm. We now describe Y, the substructure of G1

generated by Z'm U (Zpn x Z(G))' , prove that Y is closed, define an extension (f>4 of
<p' to Y and prove that 04 is a continuous homomorphism.

DEFINITION. We define Y to be U( Yb I £ e (Zm)'}, where

(a) for £ € Z(G)1, K& := (a)'6, else
(b) f o r £ € X m , n :=X f e , e l se
(c) for b€X'm with £ = £'c where b[ e Xm and c e Z(G)' , ^ := A^c, else
(d) Kfc:=(

LEMMA 3.9. Y is a closed subset of G'.

PROOF. Let Y' = \J{Yk | b e X'J, and note that Y' = X(Z(G)) ' . Then Y =
U,-<a'(Zm)>u Y>- A s ZL is closed, so is each {a'(Z'm)). As a has finite order, there are
only finitely many such sets. Thus, we need only prove that Y' is closed. Let v' £ Y'.
First suppose that e(y') £ X'm. As X'm is closed, there is a finite / y c / such that
Z\F = y'\Fr, implies that e(z) ^ X'm, so that z ^ T. Otherwise, let e ( / ) = tf = be
with £ € Xm and c 6 Z(G)' . Define y_ := y'c"1 and note that y e Yk-X. As JC is
closed, there is a finite Fy c. I such that Z|FV = >>|FV implies that z_ £ X. Hence, if
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L'\F, =y\Fy,then£c-l\Fy = y\Fy andso^'c"1 i Yk implying that z' i Y'. That is, we
have shown that if y' <£ J", then there is an open neighbourhood of y' disjoint from
Y', so that F is clos~ed. ~ D

LEMMA 3.10. Y is a substructure of G'.

PROOF. This readily follows from Lemma 3.7, •

DEFINITION. We define fa: Y -» G by choosing y e Yk where beZ'm:

(a) for b e Z(G)', define fa(y) := fa (y), else
(b) for b e Xm, define fa{y) := <j>'(y), else \
(c) for b e X'm with b = 6'c where V e Xm and c e Z(G)', define 04()O :=

(d) ^ € Z ,̂ — X ,̂ with ot(fc) = afe for some a e (a)' so that y — (g)'b for some i,
and we define 04(y) := (f>\(a)'(p3(b).

LEMMA 3.11. <p4 e Hom(P, G).

PROOF. We have already proved that Y is a closed substructure of G'. Inspection
of the definition of </>4 shows that it is a function from Y into G. Since (pA extends 03,
it preserves +, and since fa extends </>,, it preserves o. It is easily checked that fa
preserves * on each Yk. For *, cases (a) - (c) are straightforward; we prove case (d).
Note that both b and b£ fall into case (d). Lety e Kandce Z(G)'; we must show that
fa{y_*c) = fa(y)*fa(c). Thus, fa(y_*c) = fa(yg) = fa(a'(bc)) = faia^foibc) =
{fa{g^)fa{b))fa{c) = fa(a' b)<pi(c) — fa(y)*fa(c). Finally, using the fact that a fixes
each element of Zm x Z(G) and that a commutes with multiplication by any elemet
of Z(G)', we see that fa preserves a. That is, fa is a homomorphism. For continuity,
recall that Y = [j^iZ'J) U X(Z(G))'. Now, fa\(Zm)' - fa is continuous. Likewise
for each i, fa\a'uzm)') is continuous. Next, note that for y e Y^ where b € Xm and
c e Z(G)', fa(y) = faiyc'^faic) is the composition of continuous functions aiid so
is continuous. Thus, we have decomposed Y into finitely many closed sets such that
the restiction of fa to each is continuous. Consequently, fa is continuous. •

THEOREM 3.12. Without loss of generality, we may assume that Z'm U (Zpn x
Z(G))' c X.

PROOF. By Lemma 3.9 - Lemma 3.11, Y is a closed substructure of G' containing
X, and fa 6 Hom(P, G) extends cj>'. We need to verify that for ye Y — X, we could
have chosen fa so that fa(y) ^ 1. If y € (Zp» x Z(G))', then we could have chosen
0, so that fa(y) = fa(y)~£ \. Now let y_ e Yk for b i Z(G)'. As Yt c X for
b e Xm, we have either b e X'm — Xm or be Z'm - X'm. In the first case, b = fe'c with
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y € X, c e Z(G)' - X andyc"1 e X. Then&OO = 0'(y£-')0i(c); if 0'(yc-') £ \,
then we could have taken 0i(c) = 1, and otherwise have taken 0i(c) ^ 1- Finally, if
beZ'm — X'm, then we could have taken 03(6) ^ 1; as 04(y) = a'fcib) for some i,

1. •

THEOREM 3.13. Let b € Z^; without loss of generality, we may assume that
(a)'b(Z(G))' c X.

PROOF. We assume that Z'm U {Zp> x Z(G)) ' c X. The proof is similar to that
of Theorem 3.12 and the lemmas preceding it. We state, but do not prove, how to
proceed. Let Y = X U (a)'b(Z(G))'; Y is a closed substructure of (G)' containing
X. Next, Xb is a closed substructure of ((a)'b;*, r ) , and 4>'\xb is a continuous
homomorphism. Hence, by Pontryagin duality for abelian groups of exponent pfi,
there is a continuous homomorphic extension <p$ of <p'\xb to (a)'fe. Now define
06: I7 - • G by <j>eiy) '•= 4>'iy) for ^ e X, and otherwise for y e X^c, define
<p6(y) := 4>5(yc~l)<t>'(c). Then <p6 is a well-defined continuous homomorphism on Y
extending <p'. If y 6 K — X, then we may assume y 6 {a}'b and so could have chosen
4>5 so that foOO = 0S00 / 1. •

We note two immediate corollaries.

COROLLARY 3.14. IflNJ holds, then so does STR.

COROLLARY 3.15. If 1 is finite, then this special case oflNJ, where X is a sub-
structure (necessarily closed) ofG', holds.

It is tempting to invoke the second corollary by noting that as <p' is continuous,
it depends only on some finite subset F c / . Just project X into GF and extend
the projection of 0'. Unfortunately, since G involves proper partial functions, the
projection of X need not be a substructure and the projection of <p' need not be
extendable to a structure preserving map on GF. We can invoke Theorem 3.13
to extend <j>' to a homomorphism on G', but we have no reason to believe that
this extension is continuous. The following lemma from [2] is the key to ensuring
continuity of an extension.

LEMMA 3.16. Let A and I be sets with A finite. Suppose that, for every finite
F c / , each element of AF is labeled either 'good' or 'bad' and that if F' c F and
x 6 AF is 'bad', then so is xjp e AF. Then either there is a finite F c. I such that
each element of AF is 'good' or there is an .x 6 A' such that x]F is 'bad' for each
finite F C / .
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Let us apply Lemma 3.16 to Z'm. For b G Z'm and finite F C /, define

TF := {(x\F, <(>'{x)) | x e X and e(*|f) = b\F).

Notice that r£ = r£ if b\F = b[\F. Call b\F 'good' if T^ is a subset of the graph of
a *-preserving map defined on £-'(&|/r) = e~l(b)\F; otherwise, call b\F 'bad'. Let
F ' C f and let n denote the natural restriction map from e~l(b)\Ftos~l(b)\F-. If y is
an extension of F^, to a *-preserving map on the *-substructure generated by e~l (b\F>),
then y ° n is an extension of Tjr to a *-preserving map on the *-substructure generated
by s~x{b\F). Hence 'badness' is hereditary in the sense required by Lemma 3.16.
Thus, by Lemma 3.16, either x

(a) there is a finite subset F of I such that every member b of Z£ is 'good',
or
(b) there exists beZ'm such that for all finite F c / , b\F is 'bad'.

LEMMA 3.17. Case (b) cannot occur.

PROOF. Assume that beZ'm such that for all finite F c /, b\F is 'bad'; that is, for
every finite subset F of /, the set

r i = {(x\F, <t>'(x)) | x G X and e(£|f) = £|f}

is not a subset of a *-preserving map defined on the ^-substructure generated by
£-'(£|F). Define Y := X U (a)b(Z(G))'. Then by Theorem 3.13, Y is a closed
substructure of G' and 0' can be extended to a continuous homomorphism <j>" on Y.
Consequently, <p" depends only on some finite F c /; that is, for x, *' G K with
x | f = i ' | f , we have tf>"(x) = 0"C*'). Since e(ft|f) = e(b)\F and since £-'(&) c Y,
we have

T^ = {(x\F, 4>'(x)) I i e X and e(x|F) = &|F)

But this latter set is the projection of the graph of a *-homomorphism on a total *-
algebra, and so is the graph of a *-homomorphism on {a)F which extends Pj, contrary
to assumption. This contradiction shows that Case (b) cannot occur. •

Thus, we are left with Case (a). Let F be a finite subset of / such that every member
b of ZF

m is good. Let Y be the *-closure of X\F in GF.

LEMMA 3.18. Y is a closed substructure of GF.
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PROOF. AS GF is finite, every subset is closed. By assumption, Y is closed under
*. As Z'm U (Zp/. x (Z(G)) ' c X, ZF U (Zpl, x (Z(G))F C X\F; thus, Y is closed
under + and o. As X is closed under • and contains Z(G) ' , it is clear that Y is closed
under *. For closure under a, let ab, db e X\F. Then ot(a'fe) = da(b) 6 X\F and
aa'fc e y. Thus, a(adb) = ada(b) = aft * a ( a ' i ) e K. Inductively, we see that 7
is closed under of. •

Next, we want to define a homomorphism yfr: Y -+ G whose graph extends the
union of the VF. By our assumption on F, we can do this on each Yb := YC\(a)Fb for
each beZF. But unless we take care, we will not preserve *. Let V*: J^ -»• G be
one such extension. Then for each c e Z(G) F , we must define TJ/bciy) '•= ^biyc'1)?.
With this definition used for all cosets of Z(G) F in ZF, we can readily verify that
\(r extends the union of the TF and is a homomorphism. Since F is finite, \jr is
automatically continuous.

THEOREM 3.19. INJ holds in DSCP(G).

PROOF. By Corollary 3.15, we can extend ty to a continuous homomorphism
4>F: GF ->• G. Now define <p so that for ^ € G', (/>(̂ ) := (j>F(x]F). Then </) is
a continuous homomorphism extending </>'. •

THEOREM 3.20. The structure G yields a strong duality semidirect over Zm on
DSP(G), where G = Zp/> xi Zm w/^ (m, /?) = 1.

PROOF. By Theorem 3.5, condition CLO holds. By Theorem 3.19, condition INJ
holds. By Corollary 3.14, condition STR holds. •

THEOREM 3.21. Groups having all Sylow subgroups cyclic are dualizable.

PROOF. By Theorem 2.1 all these groups G can be represented as a semidirect
product of cyclic groups G = \ Z m * Zn where (m,n) — 1. If m — Y\PT>

 t n e n

Zm = ]~[Zp«., where (/>,-, n) = 1. As by Theorem 3.20 there is a strong duality for
the groups Zp»i x Zm, Theorem 2.3 implies that G is dualizable. •

In a companion article [4] we prove that no finite group containing a non-abelian
nilpotent subgroup is dualizable. That is, in order for a finite group to be dualizable,
it must have abelian Sylow subgroups. From Olshanskii [3] we know that these
are exactly the finite groups generating residually small varieties. We conjecture
that every finite group with abelian Sylow subgroups is dualizable. We have only
rudimentary results in this direction; for instance, we know that the alternating group
A5 is dualizable.
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