
EXTENSIONS OF PSEUDOMETRICS 

H. L. SHAPIRO 

1. Introduction. If y is an infinite cardinal number, a subset 5 of a 
topological space X is said to be Py-embedded in X if every 7-separable continu
ous pseudometric on S can be extended to a 7-separable continuous pseudo-
metric on X. (A pseudometric d on X is y-separable if there exists a subset G 
of X such that |G| < 7 and such that G is dense in X relative to the pseudo-
metric topology Xd. A pseudometric d is continuous if d is continuous relative 
to the product topology on XXX.) We say that S is P-embedded in X if 
every continuous pseudometric on S can be extended to a continuous pseudo-
metric on X. 

The problem of extending a metric from a subspace was first studied by 
F. Hausdorff in 1930 (13). He showed that a continuous metric on a closed 
subset of a metric space can be extended to a continuous metric on the whole 
space. Bing (3) and Arens (1) rediscovered this result independently. The 
concept "P^-embedded" was introduced in 1953 by Arens (who called it 
"7-normally embedded") in connection with a generalization of the Tietze 
extension theorem. In this paper we generalize some of Arens' results and con
tinue a study of P7-embedding and P-embedding. 

The paper forms a portion of the author's doctoral dissertation written at 
Purdue University under the direction of Professor Robert L. Blair, to whom 
the author wishes to express his appreciation. 

In §2 we prove several necessary and sufficient conditions for a subset to be 
P7-embedded. We then discuss the concept of P-embedding with respect to 
other concepts, including measurable cardinal numbers, C-embedding, C*-
embedding, pseudocompactness, normality, and collectionwise normality. We 
show that if 5 is P-embedded in X, then 5 is C-embedded in X, but that the 
converse does not hold. However, if S is C-embedded in X, then 5 is P*^o-
embedded in X. This generalizes a result of Arens (2, Theorem 3.1). However, 
our proof is entirely different from Arens' in that ours uses a new characteriza
tion of o-embedding. 

In §5 we show that a topological space X is collectionwise normal if and 
only if every closed subset is P-embedded in X. This is analogous to the well-
known result that a topological space X is normal if and only if every closed 
subset is C-embedded in X. 

The notation and terminology will follow that of (11). For the definition of 
a normal cover, consult (25, p. 46 ). For the definition of collectionwise normal, the 
reader is referred to (4, p. 176). Other terms used in this paper are defined below. 
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If U = (Ua)a€i is a family of subsets of a space X, then by U|5 we mean the 
family ( Ua H S)a €7. We say that U has power at most y (7 an infinite cardinal 
number) if \I\ < 7. We say that the family (Ua)aa

 ls locally finite if for each 
x £ X there exist a neighbourhood G of X and a finite subset J oi I such that 
£ ^ Ua = 0 for every a Q J. When a family of subsets of a subspace 5 of X 
is said to be open, locally finite, etc., this refers to the topology of S. 

Next let X be a topological space, let 5 C -X\ let U = ( Ua)a a be a cover of X, 
and let 53 = ( F ^ e / be a cover of S. Then U is an extension of S3 if I = J and 
Uar\S = "Morallo: £ / . 

Following Kelley (16), we say that X is paracompact if X is regular and if 
every open cover of X has a locally finite open refinement. Thus a pseudometric 
space is paracompact. 

I f / is a real-valued continuous function on X, set 

Z(j) =Zx(f) = \x£X:f(x) = 0}. 

Call Z(f) the zero-set of f. The complement of Z(f) is called the cozero-set of f. 
If 5 C X, then 5 is a zero-set if 5 = Z(f), and 5 is a cozero-set \î S = X — Z(f). 
We denote the collection of all zero-sets in X by Z (X). We say that U = ( £/«)« €/ 
is a cozero-set cover of X if U is a cover of X and if Ua is a cozero-set for each 
a (z I. We define a zero-set cover of X in an analogous manner. 

Suppose that (2Ii, . . . , 2IW) is a finite sequence of covers of a set X, and that 
%i = (Ai(a))a<:ji for each i = 1, . . . , n. Then by A?=i 21* we mean the family 

C4i(ai) H . . . n^4n(an))(at.f...,aB)€i/lX...XJrB. 

2. Equivalent formulations. In this section we characterize P7-embedding 
in terms of locally finite cozero-set covers, normal cozero-set covers, normal 
open covers, locally finite normal open covers, and uniformly locally finite open 
covers. 

2.1. THEOREM. Suppose that X is a topological space, that S C X, and that 7 
is an infinite cardinal number. Then the following statements are equivalent: 

(1 ) SisPy-embeddedinX. 
(2) Every y-separable bounded continuous pseudometric on S can be extended 

to a y-separable bounded continuous pseudometric on X. 
(3) Every y-separable bounded continuous pseudometric on S can be extended to 

a continuous pseudometric on X. 
(4) Every normal locally finite cozero-set cover of S of power at most y has a 

refinement that can be extended to a normal open cover of X. 
(5) Every normal open cover of S of power at most y has a refinement that can be 

extended to a normal locally finite cozero-set cover of X of power at most 7. 

Before proving Theorem 2.1 we state some preliminary results that are 
interesting in themselves. Propositions 2.2 and 2.3 are clear but are worthy of 
note since they state the relationship between the topological structure induced 
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by a pseudometric and the given topology on the space. Theorem 2.4 states 
that every normal sequence of open covers determines a continuous pseudo-
metric. This was first shown by Tukey (25, Theorem 7.1) using results due to 
A. H. Frink (10). It can also be proved using (5, Chap. IX, §1,4, Proposition 2). 
Proposition 2.5 states a useful basic fact about open covers. 

2.2. PROPOSITION. Suppose that (X, X) is a topological space and that d is a 
pseudometric on X. Then d is continuous if and only if Xd C X. 

2.3. PROPOSITION. Suppose that (X, X) is a topological space and that d is a 
continuous pseudometric on X. If G is an open subset of X relative to Xd, then G 
is a cozero-set relative to X. 

If (Urc)w€N is a normal sequence of open covers of a space X and if d is a 
pseudometric on X, then we say that d is associated with (UW)W€N if the following 
three conditions are satisfied: 

(1) d is bounded by 1. 
(2) If k G N and if d(x, y) < 2~<*+1\ then x G st(y, U*). 
(3) If k G N and if x G st(y, U*), then d(x, y) < 2"<*-8>. 

2.4. THEOREM. If (UW)W€N is a normal sequence of open covers of a topological 
space X, then there exists a continuous pseudometric on X that is associated with 
( Un)neN-

2.5. PROPOSITION. Suppose that X is a topological space, that S C X, that 
U = {Ua)ati is an open cover of S, and that 33 is a normal open cover of X such 
that 33\S refines U. Then there exists a normal locally finite cozero-set cover 
SB = (Wa)a€I of X such that Wa C\ S C Uafor each a G / . 

Proof. Suppose that 33 is a normal open cover of X such that 33\S refines U. 
By (23, Theorem 1.2), there exists a locally finite cozero-set cover §1 = (Ap)peJ 

of X such that % refines 33. Since %\S refines U, there exists a function ir:J —> / 
such that A$C\ S (Z UT^) for each $ 6 / . For each a G / , let 

Wa = W^€7r-i(a) A p. 

Then one easily verifies that (Wa)aei is a locally finite cozero-set cover of X 
such that Wa C\ S (Z Ua for each a £ I. Since every locally finite cozero-set 
cover of X is normal (23, Theorem 1.2), the proof is now complete. 

2.6. LEMMA. Suppose that (X, X) is a topological space and that U = (Ua)aei 
is a normal open cover of X of power at most y (7 an infinite cardinal number). 
Then there exists a normal sequence (330 ÎŒ °f open covers of X such that 331 
refines U and such that, for each i G N, 33* has power at most y. 

Proof. By hypothesis, there exists a normal sequence (U*)*€N °f open covers 
of X such that Ui refines U. Let d be a continuous pseudometric associated 
with (Ui)ifcN (2-4). For each a G I, let 

Aa = W{5,(x,2-3) :5d(x,2~3) C Ua\. 
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Then §1 = (^4a)a6/ is an open cover of X relative to Xd (the topology on X 
determined by d) such that Aa C £/aforeacha G / . By 2.5, since (Sd(x, 2~z))x^x 

is a normal open cover of (X, Xd) that refines §(, there is a normal locally 
finite cozero-set cover SB = (Wa)a€i of (X, £d) such that T â C Aa for each 
a (z I. We therefore have a locally finite open cover of the normal space 
(X, Td). A repeated application of (22, Theorem 1.2), and the observation that 
the covers constructed therein are of power at most 7, give us a normal sequence 
(33z)z€N of open covers of X, relative to %d, such that 331 refines SB and such 
that, for each i G N, 33̂  has power at most 7. Since ï d C Ï and since SB 
refines U, the result now follows. 

Proof of 2.1. (1) implies (2). Let d be a 7-separable bounded continuous 
pseudometric on S. By (1), there exists a 7-separable continuous pseudometric 
e on X such that e\S X S = d. Now d < a for some a G R+. Then one easily 
verifies that d = e A a is a 7-separable bounded continuous pseudometric on 
X such that d\S X S = d. Thus (2) holds. 

(2) implies (3). This implication is immediate. 
(3) implies (4). Assume (3) and suppose that U is a normal locally finite 

cozero-set cover of 5 of power at most 7. By 2.6, there exists a normal sequence 
($30ï€N °f open covers of S such that 331 refines U and such that, for each 
i G N, 33* has power at most 7. Then, by 2.4, there exists a continuous pseudo-
metric d on 5 that is associated with (33*)*€N a n d d is 7-separable. Therefore, 
by (3), there is a continuous pseudometric d on X such that d\S X S = d. Let 
SB' = (Sd(x, 2~*))x(zX. Since (X, d) is a pseudometric space, it is paracompact, 
so there is a locally finite open cover SB of X such that SB refines SBr. By 2.2, 
2.3, and the fact that a locally finite cozero-set cover is normal, it follows that 
SB is a normal open cover of X relative to the given topology on X and one 
easily verifies that SB|5 refines U. 

(4) implies (5). This follows from (23, Theorem 1.2) and 2.5. 
(5) implies (1). Assume (5). Let X be the given topology on X and suppose 

that d is a 7-separable continuous pseudometric on S. For each m G N, let 

®w = (Sd(s,2-<"H-»))x€fl. 

Now consider any m G N. Since (5, d) is a 7-separable pseudometric space, 
there exists a locally finite open cover 3BW of S of power at most 7 such that 
SBW refines ©m. Moreover, SBm is normal relative to 3^ and therefore, by (5) 
and 2.5, there exists a refinement of SBW that extends to a locally finite normal 
cozero-set cover 33m of X of power at most 7. Then there exists a normal 
sequence (%$im)ien of open covers of X such that 33iw refines 33™ and such that, 
for each i G N, 33 *w has power at most 7. 

Now for all i, m G N, let 

I T = A?=133;' 
and 

It/* = A?=i33/. 
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Then for all i, m £ N, one easily verifies that 
(i) Um and U*m are open covers of X of power at most 7, 

(ii) U î+im <* U,mand Uiw refines Um, 
(iii) U w refines U,w and Um+1 refines IT, and 
(iv) Um\S refines ®w. 
Now again consider any m G N. It follows from (i) and (ii) that (Uiw)z-6N is 

a normal sequence of open covers of X. Then, by 2.4, there exists a continuous 
pseudometric rm on X that is associated with (Uim)^N and rw is 7-separable. 
By (ii) and (iv), we also have 

(*) If x, y £ S and if rm(x, y) < 2~3, then d(x, y) < 2~(m+2>. 

Define r: X X X -» R+ by r(x, y) = 2^meN2 mrm(Xi y)> One easily verifies that 
r is a continuous 7-separable pseudometric on X. 

From (*) it follows that 

(**) Ifx,ye S, if i > 3, and if r(x, y) < 2~\ then d(x, y) < 2-<*~1>. 

Define a relation i? on I as follows: 

x R y if r(x, y) = 0 (x, 31 Ç I ) . 

Observe that R is an equivalence relation on X. Let X* = X/R be the quotient 
space of X modulo R and let r: X —» X* be the canonical map. Then the 
formula 

r*(r(x), r(y)) = r(x, y) (x, y G X) 

determines a well-defined map r*: X* X X* —> R+ and one easily verifies that 
(X*, r*) is a metric space, that %r* is the quotient topology on X*, and that 
the canonical map r: X —> X* is an isometry. Since X* is a continuous image 
of X (i.e. with respect to Xr and ï r*) and since X has a dense subset A with 
|̂ 41 < 7, then X* also has a dense subset (namely r(^4)) with |r(^4)| < 7. 

Let 5* = r(S). By (**) it follows that we can define a map d*: 5* X S* -+ R+ 
as follows: 

d*(r(a)jr(b)) = d(a,b) (a,b Ç 5). 

Then one easily verifies that d* is a pseudometric on S*. 
Let 2)* be the metric uniform structure on 5* whose base consists of the 

single metric r*|S* X 5* (11, 15.3). By (**) it follows that d* £ 2)* and there
fore d* is a uniformly continuous function from S* X S* into R+ (11, 15N.1). 
Moreover, by (11, 15.11), d* can be extended to a uniformly continuous 
function from cl 5* X cl 5* into R+. One easily verifies that this extension 
(which we shall again denote by d*) is a pseudometric on cl S*. 

It now follows by (1, Theorem 3.4) that d* can be extended to a continuous 
pseudometric e on X*. Define d on X X X by d = e o (r X r) . Since r is 
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continuous relative to ï , d is a continuous pseudometric on X (2.2). Moreover, 

if Xj y G S, then 

d(x, y) = e(r(x)} r(y)) = d*( r (x) , r(y)) = d(x, y). 

Therefore d\S X S = d. Since d is continuous relative to Xr and since r is 
7-separable, it follows t h a t d is 7-separable. Therefore (1) holds. 

T h e proof is now complete. 

Remark 1. T h e only other mention of PT-embedding t h a t we are aware of is 
in Arens (1 , 2 ) . Arens called the concept "7-normally embedding" and proved 
the equivalence of (1) and (5) of Theorem 2.1 for the case in which X is a 
normal topological space and S is a closed subset of X (2, Theorem 2.4). 

Remark 2. T h e following example shows t h a t in the proof t h a t (5) implies (1) 
care mus t be taken in choosing the normal sequence t h a t refines ®m. 

Let X be an uncountable discrete space, let 5 be a countable subset of X , 
and let d be the discrete metric on S. Then d is Xo-separable on S. For each 
m e N , l e t ® m = ({*})* € 5 > le tSB w = ®n U ( Z - 5 ) , and let SB^ = ({x\)zex 

for each i £ N . If rm is a pseudometric on X t h a t is associated with ($$im)im, 
then rm is discrete for each m £ N, and therefore 

is discrete. I t follows tha t , in this case, d can be chosen to be discrete and 
therefore not Xo-separable. 

T h u s the proof of (2, Theorem 2.4) mus t be modified to obtain the required 
7-separable continuous pseudometric on X t h a t extends a given 7-separable 
continuous pseudometric on S. 

Remark 3. If X is a topological space, iiS C. X, and if 7 is an infinite cardinal 
number , then we can define 5 to be PT*'-embedded in X if every 7-separable 
bounded continuous pseudometric on S can be extended to a 7-separable 
bounded continuous pseudometric on X. Similarly, we can define 5 to be 
P*-embedded in X if every bounded continuous pseudometric on S can be 
extended to a bounded continuous pseudometric on X. However, in Theorem 
2.1 we saw t h a t 5 is P 7 -embedded in X if and only if S is P 7*-embedded in X. 
Moreover, in Theorem 2.8 we shall show t h a t 5 is P-embedded in X if and only 
if 5 is P*-embedded in X. T h u s it is unnecessary to define the concepts of 
P7*-embedding and P*-embedding since they do not really differ from Py-
embedding and P-embedding respectively. 

We now introduce some terminology. Suppose t h a t X is a topological space 
and t h a t ( P a ) a € / and (Gp)peJ are two families of subsets of X. We say t h a t 
(Fa)a£i is finite with respect to (Gp)pej if for each (3 G J there exists a finite 
subset Kp of / s u c h t h a t Fa C\ G$ = 0 if a $ Kp. We say t h a t (Fa)aU is uniformly 
locally finite in X if there exists a locally finite open cover (U\)\^K of X such 
t h a t (Fa)a£I is finite with respect to (U\)\eK. We say t h a t ( P a ) a € / is y-uniformly 
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locally finite in X (7 an infinite cardinal number) if there exists a locally 
finite open cover (U\)\eK of X of power a t most y such tha t (Fa)aei is finite 
with respect to (U\)\£K. 

M. Ka të tov originally defined "uniformly locally finite" in (15). I t is evident 
t h a t a uniformly locally finite family is locally finite. However, i t follows from 
(15, Theorem 5.4) t ha t the converse does not hold. 

2.7. T H E O R E M . Suppose that X is a normal space, that S is a closed subset of X, 
and that y is an infinite cardinal number. Then the following statements are 
equivalent: 

(1) S is P^-embedded in X. 
(2) Every locally finite open cover of S of power at most y has a refinement that 

can be extended to a locally finite open cover of X of power at most y. 
(3) If (Fa)aÇI is a y-uniformly locally finite family of subsets of S, then {Fa)aU 

is y-uniformly locally finite in X. 
(4) If {Ha)aU is a locally finite family of open subsets of S of power at most y 

and if (Fa)a€I is a family of closed subsets of S such that Fa C Ha for each a G / , 
then there exists a locally finite family (Ga)au °f open subsets of X such that 
Fa C Ga r\ S C Ha for each a £ I. 

(5) If (Ha)a£i is a uniformly locally finite open cover of S of power at most 7, 
then there exists a uniformly locally finite open cover (Ga)açi of X such that 
Ga r\ S = Ha for each a G I. 

Proof. (1) implies (2). Since a locally finite open cover of a normal space is 
normal, this implication follows from 2.1. 

(2) implies (3). By hypothesis % = (Fa)a^i is a 7-uniformly locally finite 
family of subsets of 5 , so there exists a locally finite open cover U = (Up)$£j 
of 5 of power a t most 7 such t h a t $ is finite with respect to U. By (2) and 2.5, 
there exists a locally finite open cover 3S = ( V^)^eJ of X such t ha t V$ C\ S (Z Up 
for each /3 6 J. Clearly 25 has power a t most 7 and one easily verifies t h a t g is 
finite with respect to S3. 

(3) implies (4). Assume (3) and suppose t ha t (Ha)aei is a locally finite family 
of open subsets of 5 of power a t most 7 and t ha t (Fa)aeils a family of closed 
subsets of 5* such t h a t Fa C Ha for each a G / . Then, by (15, Theorem 5.1) 
and the fact t ha t the cover constructed in the proof therein is of power a t most 
7, (Fa)aei is 7-uniformly locally finite in S. Therefore, by (3), (Fa)a^i is 
7-uniformly locally finite in X. Hence, by (15, Theorem 5.1), there exists a 
locally finite family ((?'«)«€/ °f open subsets of X such tha t c\x Fa C G'a for 
each a £ I. Let {H,

a)a^i be a family of open subsets of X such t h a t 
H'a C\ S = Ha for each a £ I. Set Ga = Gf

a ^ H'a (a G / ) and observe t ha t 
(Ga)a£iisa locally finite family of open subsets of X such tha t Fa C GaC\ S C Ha 

for each a G / . Therefore (4) holds. 
(4) implies (5). We may assume tha t S is not empty . From (15, Theorem 

5.1) and the fact t ha t 5 is normal, it follows t ha t there exists a uniformly 
locally finite open cover (Aa)aei of S such t h a t cl^ Ha C Aa for each a G / . By 
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(4), there exists a locally finite family {Ua)a^i of open subsets of X such that 
els Ha C Ua H S C Aa for each a £ I. Since cl^ i7a = clx Ha and since X is 
normal, there exists, for each a Ç / , an open set Fa of X such that 

clx Ha C F a C c l x F « C I7«. 

For each a G 7, let Wa be an open subset of X such that Wa (^ S = Ha. Now 
choose an arbitrary /3 G 7 and define (Ga)aei a s follows: set 

G* = {V$r\ Ws) \J (X - 5 ) ; 

and if a 5* ft, let Ga = Fa H W .̂ Then one easily verifies that (Ga)afi is a 
uniformly locally finite open cover of X such that Ga r\ S = Ha for each a Ç I. 

(5) implies (1). Assume (5) and suppose that U = (Ua)açi is a normal 
locally finite cozero-set cover of 5 of power at most y. Since 5 is normal, there 
exists an open cover § = (Ha)aei of 5 such that cl5 Ha C Ua for each a £ I. 
Moreover, § is uniformly locally finite, so, by (5), there exists a uniformly 
locally finite open cover @ = (Ga)a^i of X such that Ga C\ S = Ha for each 
a G 7. Thus ® is a locally finite open cover of X of power at most y such that 
®\S refines U. Since ® is normal, it follows that 2.1(4) holds, whence S is 
P^-embedded in X. The proof is now complete. 

Remark. The equivalence of (1) and (2) of Theorem 2.7 was originally 
proved by Arens (2). 

2.8. THEOREM. If X is a topological space and if S C X, then the following 
statements are equivalent: 

(1) S is P-embedded in X. 
(2) S is Py-embedded in X for all infinite cardinal numbers y. 

This result is an immediate consequence of the equivalence of (1) and (3) 
of Theorem 2.1. 

Remark. From 2.8 it follows that the equivalences of Theorems 2.1 and 2.7 
remain valid if all mention of the infinite cardinal number y is deleted from 
them. 

3. Relation of P-embedding to some other topological properties. 
In Theorem 3.2 we shall show that a P-embedded subset is necessarily 
C-embedded, and in Theorem 3.3 we shall show that the converse holds if 5 is 
dense in X and |5| is non-measurable. In Theorem 3.5 we shall give an equiva
lent formulation of Ulam's problem, and in Theorems 3.6-3.8 we shall investi
gate some of the relationships between P-embedding and pseudocompact 
spaces. In 3.9 and 3.10, absolutely P-embedded completely regular spaces will 
be defined and characterized. 

3.1. LEMMA. Suppose that S is P-embedded in X. If f £ C(5), if Zs(f) ^ 0, 
and if f > 0, then there exists g G C(X) such that g\S = f. 
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Proof. L e t / 6 C{S) and suppose t h a t / > 0 and that Z = Zs(f) ^ 0. Define 
*,: 5 X 5 -> R by 

W*.y) = l/(*)-/(y)l (*,y€S). 
Then ^x is a continuous pseudometric on 5. Since 5 is P-embedded in X, there 
exists a continuous pseudometric donX such that d\S X S = \f/f. Let g: X —> R 
be defined by g(x) = infy€Z d(x, y) (x G X). Then g G C(X) and g\S = / . 

3.2. THEOREM. Suppose that X is a topological space. If S is P-embedded in X, 
then S is C-embedded in X. 

Proof. We may assume that 5 ^ 0 . L e t / G C(5). Fix an arbitrary a G 5; 
let / (a ) = a, and let g = (/ V a) - a and i = - ( ( f A o ) - a). By 3.1, 
there exist g, h £ C(X) such that g\S = g and h\S = A. Let k = (g — h) + a. 
Then one easily verifies that & G C(X) and that k\S = f. 

Remark. In §5 we shall show that the converse of Theorem 3.2 does not hold. 
In Theorems 4.9 and 5.4 we shall show that the converse holds if S is separ

able, or if \X\ is non-measurable and there exists a collectionwise normal 
space Y such that X C Y C vX. We now prove another partial converse. 

3.3. THEOREM. Suppose that X is completely regular, that S is dense in X, and 
that \S\ is non-measurable. Then the following statements are equivalent: 

(1) S is C-embedded in X. 
(2) S (S) is the relative uniform structure on S obtained from S(X). 
( 3 ) 5 is P-embedded in X. 

Proof. (1) implies (2). If / G C(F), let </y : Y X F - > R be defined as 
follows: 

Mx,y) = \f(x) -f(y)\ (x,ye Y). 

Let @(5) = {ft : / G C(S)} and let @(X)|5 = {tfy|S X 5 : / G C(Z)} . Then 
©(5) is a subbase for S (S) and ®(X) |5 is a subbase for the relative uniform 
structure on S obtained from S(X). One easily verifies that <&(X)\S = ®(S) 
and it follows that (2) holds. 

(2) implies (3). Equip 5 and X with the uniform structures S (5) and S(X) 
respectively (11, 15.5), let ty(S) denote the universal uniform structure on 5 
(11, 15G.4), and let 7(5, $(£)) denote the completion of (5, $(£)) (11, 15.8). 
Since |5| is non-measurable, we have, by (11, 15.21), that y(S, ty(S)) is real-
compact and hence y(S, ^3(5)) = vS. Since S is C-embedded (and dense) in X 
(11, 15P.4), it follows that vS = vX (11, 8.6). 

Suppose that d is a continuous pseudometric on S. By (11, 15N.4), d can 
be extended to a continuous pseudometric d on y(S, ty(S)) = uX. Let 
g = <Ï|X X X. Then e is a continuous pseudometric on X and e|5 X S = d. 
Therefore S is P-embedded in X. 

(3) implies (1). This is 3.2. 
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Remark. In Theorem 3.3 the hypothesis that \S\ is non-measurable was only 
necessary for applying (11, 15.21). For this reason we can replace this hypo
thesis by the apparently weaker hypothesis "for each continuous pseudometric 
d on S, the cardinal of every ^-discrete set in S is non-measurable." For the 
definition of ^-discrete, see (11, 15.15). 

3.4. THEOREM. If X is a discrete space, then the following statements are 
equivalent: 

(1) \X\ is non-measurable. 
(2) X is P-embedded in vX. 

Proof. (1) implies (2). This is immediate by 3.3. 
(2) implies (1). Assume (2) and suppose that \X\ is measurable. Since X is 

a discrete topological space, X ^ vX (11, Theorem 12.2). Let p G vX — X 
and let U = ({x})x^x- Then U is a locally finite cozero-set cover of X, and 
therefore, by 2.1 and 2.8, U has a refinement, which must be U itself, that can 
be extended to a locally finite cozero-set cover of vX. Therefore ({x})x^x is 
locally finite in vX, so there exists a neighbourhood U of p in vX such that 
U r\ X is finite. Thus U C\ X is closed in vX and it follows that 
(vX — (U C\ X)) C\ [/is a neighbourhood of p in vX. Since X is dense in vX, 
there exists an x G X such that x G (vX — (U C\ X)) C\ U, a contradiction. 

As an immediate consequence of 3.3 and 3.4 we have: 

3.5. THEOREM. The following statements are equivalent: 
(1) Every cardinal is non-measurable. 
(2) If X is completely regular and if S is a dense C-embedded subset of X, then 

S is P-embedded in X. 

The next three results investigate some of the relationships between P-
embedding and pseudocompact spaces. 

3.6. THEOREM. Suppose that X is completely regular and that \X\ is non-
measurable. Then X is P-embedded in (3X if and only if X is pseudocompact. 

Proof. This result follows from 3.3 and (11, 8A.4). 

3.7. THEOREM. Suppose that X is completely regular and that S is a pseudo-
compact subset of X. If S is C*-embedded in X, then S is P-embedded in X. 

Proof. We may assume that 5 ^ 0 . Let U = (Ua)a£i be a locally finite 
cozero-set cover of S. Since 5 is pseudocompact, there exists a non-empty 
finite subset K of / such that (Ua)a^Kis a cover of 5 (14, Theorem 1). (Actually, 
assuming that no Ua is empty, / must itself be finite.) By hypothesis, 5 is 
C*-embedded in X, so for each a G K there exists a cozero-set Va in X such that 
Var\ S = Ua. Since X — ÇUa£K Va) is a zero-set in X and since 5 is a pseudo-
compact C*-embedded subset of X, there exists a cozero-set G of X such that 
5 H G = 0 and X — ÇUaçK Va) C G. Fix an arbitrary /3 G K and define 
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SB = (Wa)aCK as follows: set WP = GV Vp; and if a * p, let Wa = Va. Then 
SB is a (finite) cozero-set cover of X such that SB|5 refines U. Therefore 5 is 
P-embedded in X. 

As an immediate consequence of 3.2, 3.7, and the fact that a C-embedded 
subset of a pseudocompact space is pseudocompact, we have: 

3.8. THEOREM. If X is a completely regular pseudocompact space and if 
S C X, then the following statements are equivalent: 

( 1 ) 5 is P-embedded in X. 
( 2 ) 5 is C-embedded in X. 
( 3 ) 5 is C*-embedded in X and S is pseudocompact. 

3.9. DEFINITION. Suppose that X is completely regular. We say that X is 
absolutely P-embedded if every embedding of X in a completely regular space is 
a P-embedding. We say that X is almost compact if \fiX — X\ < 1. For a dis
cussion of almost compact spaces, see (11, 6J and 15R). 

3.10. THEOREM. / / X is completely regular, then the following statements are 
equivalent: 

(1) X is absolutely P-embedded. 
(2) X is almost compact. 

Proof. (1) implies (2). Suppose that X C. Y and that Y is completely 
regular. Since X is P-embedded in F, it is C-embedded in Y (3.2). Therefore 
(11, 6J.5) holds, and it follows that X is almost compact. 

(2) implies (1). Suppose that X C Y and that Y is completely regular. 
Since X is almost compact, it follows, by (11, 6J), that X is C-embedded in 
PX, and hence X is pseudocompact. Again, by (11, 6J), X is C-embedded in Y. 
Therefore, by 3.7, X is P-embedded in Y. 

4. P^o-embedding and n o r m a l spaces. This section deals with normal 
spaces and the particular case of P7-embedding in which y = Ko- First we 
state four elementary results concerning cozero-set covers. In Theorem 4.5 we 
shall give several necessary and sufficient conditions for a topological space to 
be normal. (Note that a normal space need not be 7\.) These criteria for 
normality begin with Tukey (25), and although some of these conditions have 
appeared in one place or another in the literature, we are aware of no other 
attempt to organize them all into one theorem. Then, in Theorem 4.6, using 
earlier results of this section, we are able to sharpen many of the equivalences 
of Theorem 2.1. In 4.7 we shall prove that if 5 is C-embedded in X, then S is 

-embedded in X. 

4.1. THEOREM. Every countable cozero-set cover of a topological space X has a 
countable locally finite cozero-set refinement. 
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The idea for this theorem was first contained in the proof of (8, Theorem 2) 
and later in the proof of (18, Theorem 1 ). The reader is referred to these papers 
for the proof of Theorem 4.1. 

4.2. COROLLARY. Every countable cozero-set cover of a topological space is normal. 

Proof. This follows from 4.1 and (23, Theorem 1.2). 

Using 4.1, 4.2, and modifying the proof of (21, Theorem 3) we have: 

4.3. THEOREM. Every countable cozero-set cover of a topological space X has a 
countable star-finite normal cozero-set refinement. 

4.4. THEOREM. Every countable cozero-set cover of a topological space X has a 
countable star-finite normal cozero-set star-refinement. 

Proof. Suppose that U is a countable cozero-set cover of X. By 4.3, there 
exists a countable star-finite normal cozero-set cover 33 such that 23 refines U. 
Hence, there is a sequence (33z)z£N of open covers of X such that 33i refines It 
and 933 <* $2 <* 9Si (i.e. 233 <** U). By (23, Theorem 1.2), there exists a 
locally finite cozero-set cover SB such that SB refines 233. Thus SB <** U and 
U is countable, so, by (12, Theorem 1.2), there exists a countable open cover % 
such that 21 <* U. The proof of (12, Theorem 1.2) shows that 51 is a cozero-set 
cover if SB is a locally finite cozero-set cover. Therefore, by 4.3, there exists a 
countable star-finite normal cozero-set cover 33 of X such that 33 refines 31. 
Clearly 93 is the desired countable star-finite normal cozero-set star-refinement 
of U. 

Remark. The author is indebted to the referee for pointing out this result 
as well as its use in Theorem 4.5. 

4.5. THEOREM. If X is a topological space, then the following statements are 
equivalent: 

(1) X is normal. 
(2) If (Ua)aei is a point-finite open cover of X, then there exists a cozero-set 

cover (Va)a£i of X such that Va C Uafor each a £ I. 
(3) / / (Ua)a£i is a star-finite open cover of X, then there exists a cozero-set 

cover (Va)a£i of X such that Va C Ua for each a £ I. 
(4) Every countable point-finite open cover of X has a countable cozero-set 

refinement. 
(5) Every binary open cover of X is normal. 
(6) Every countable point-finite normal open cover of X has a countable star-

finite normal cozero-set star-refinement. 

Proof. (1) implies (2). Assume (1) and let (Ua)aei t>e a point-finite open 
cover of X. By (17, Theorem 33.4), there exists an open cover (Aa)aer of X 
such that cl Aa C Ua for each a (z I. Since X is normal, for each a £ I there 
exists fa e C(X) such that fa (cl Aa) C {0}Ja(X - Ua) C {1}, and 0 < / a < 1. 

https://doi.org/10.4153/CJM-1966-099-0 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1966-099-0


EXTENSIONS OF PSEUDOMETRICS 993 

Let Va = fa'1 ([0, 1/2)). Then (Va)aei is a cozero-set cover of X such that 
Va C Ua for each a £ I. 

(2) implies (4). This implication is immediate. 
(4) implies (5). This implication follows from 4.2. 
(5) implies (1). This follows from (25, p. 47). 
(2) implies (3). This implication is immediate. 
(3) implies (1). Assume (3). Let Fi and F2 be disjoint closed subsets of X 

and let Ui = X — Ft (i = 1, 2). Then U = (!7i, £/2) is a star-finite open 
cover of X. Hence there exists a cozero-set cover 23 = (Fi, F2) of X such that 
V* C P t ( i = l ) 2 ) . Now X — Vi and X — F2 are disjoint zero-sets and are 
therefore completely separated. Hence there exists / Ç C(X) such that 
f(X - Fi) C {0}, / ( Z - F2) C {1}, and 0 < / < 1. Let 

TFi = {x Ç X : / (*) < 1/3} and W2 = [x G X : / (x) > 2/3}. 

Then W\ and Pr2 are disjoint open sets such that Ft C Wt (i = 1,2). It 
follows that X is normal. 

(4) implies (6). This follows from 4.4. 
(6) implies (4). This implication is immediate. 
The proof is now complete. 

Remark 1. Let X be a topological space and let us consider the statement: 

(*) Every point-finite open cover of X is normal. 

Clearly, if (*) holds, then X is normal; but the converse is not valid. To see 
this latter assertion, let us consider the normal, non-collection wise normal 
space G of (20, Example 2). This example is due to Bing (4). However, Michael 
shows that every open cover of G has a point-finite open refinement. If G 
normal implies that (*) holds, then G is paracompact and therefore collection-
wise normal, a contradiction. 

Thus a topological space X is normal if and only if any one of the following 
statements holds: 

(1) Every countable star-finite open cover of X is normal. 
(2) Every star-finite open cover of X is normal. 
(3) Every countable locally finite open cover of X is normal. 
(4) Every locally finite open cover of X is normal. 
(5) Every countable point-finite open cover of X is normal. 

However we have shown that the word ''countable" cannot be omitted in 
part (5). 

Remark 2. If the word "point-finite" is deleted from condition (4) of Theorem 
4.5 and from condition (5) of Remark 1 above, then each becomes a charac
terization of a normal and countably paracompact space (23, Theorems 1.1 
and 1.2). 
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4.6. THEOREM. If X is a topological space and if S (Z X, then the following 
statements are equivalent: 

(1) S is -embedded in X. 
(2) Every countable cozero-set cover of S has a refinement that can be extended 

to a countable star-finite cozero-set cover of X. 
(3) Every countable star-finite cozero-set cover of S has a refinement that can be 

extended to a star-finite cozero-set cover of X. 
(4) Every countable star-finite cozero-set cover of S has a refinement that can be 

extended to a countable cozero-set cover of X. 

Proof. That (1) implies (2) follows from 2.1 and 4.3; obviously (2) implies 
(3); and that (3) implies (4) follows from 2.5. 

(4) implies (1). Assume (4) and suppose that U is a countable normal 
locally finite cozero-set cover of S. Then, by 4.3, there exists a countable star-
finite cozero-set cover 35 of 5 such that 33 refines U. By (4), 33 has a refinement 
that can be extended to a countable cozero-set cover 3B of X, and, by 4.1, 
there exists a countable locally finite cozero-set cover 21 of X such that 21 
refines SB. Since %\S refines U and since a locally finite cozero-set cover is 
normal, 2.1(4) holds and it follows that S is P-embedded in X. 

Remark 1. From Theorem 4.6 it follows that 5 is P^o-embedded in X if and 
only if every countable cozero-set cover of S has a refinement that can be 
extended to a countable cozero-set cover of X. The omission of the word 
''countable" from this condition renders it invalid for the characterization of 
P-embedding. If it were valid, the C-embedded subset constructed in 5.3 below 
would have to be P-embedded, which we shall show to be false. 

Remark 2. Although we strongly suspect that conditions similar to (2) 
through (4) of 4.6 are not equivalent to P7-embedding for arbitrary cardinal 
numbers y > Ko, we have been unable to prove or find a counterexample to 
this assertion. 

In §5 we shall show that if S is C-embedded in X, then 6* need not be P-
embedded in X. However, we shall now show that if S is C-embedded in X, 
then S is o-embedded in X. This theorem generalizes a result of R. Arens, 
which we state as a corollary in 4.8. 

4.7. THEOREM. Suppose that X is a topological space and that S C X. If S is 
C-embedded in X, then S is o-embedded in X. 

Proof. Let U = (Ui)ie^ be a countable star-finite cozero-set cover of 5. 
Thus, for each i G N, there exists ft Ç C (S) such that /* (x) ^ 0 if and only 
if x Ç Ut. By hypothesis 5 is C-embedded in X, so for each i 6 N, there 
exists ft e C(X) such that ft\S = f\. Let Vt = ( x f l : ft(x) j* 0}. Since S 
is C-embedded in X and since X — (U f € N Vt) is a zero-set in X that is disjoint 
from 5, there exists a cozero-set V such that X — (U i Ç N Vt) C V and 
Vr\S = 0. Let Wx = V\J Fxand Wt = F , for i = 2, 3, . . . . Since (Wt)iQi 
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is a countable cozero-set cover of X that extends U, 4.6(4) holds, so 5 is 

-embedded in X. 

4.8. COROLLARY (Arens, 2). If X is normal and if S is a closed subset of X, 

then S is o-embedded in X. 

Although 5 being C-embedded in X is not sufficient for 5 to be P-embedded 
in X, the next result shows that a special case of this situation does hold. 

4.9. THEOREM. If X is a topological space and if S is a separable subset of X> 
then the following statements are equivalent: 

( 1 ) 5 is P-embedded in X. 
( 2 ) 5 is C-embedded in X. 
(3) 5 is o-embedded in X. 

Proof. That (1) implies (2) is just 3.2; 4.7 states that (2) implies (3); and 
that (3) implies (1) follows from the fact that a continuous pseudometric on a 
separable space is Ko-separable. 

4.10. Example. We show that if 5 is C*-embedded in Xf then 5 need not be 
o-embedded in X. 

Let X = 0R - (0N - N) (11, 6P) and let 5 - N. Then 5 is C*-embedded 
in X but 5 is not C-embedded in X (11, 6P.4). Since 5 is not C-embedded in 
X and since 5 is separable, it follows, by 4.9, that 5 is not P^o-embedded in X. 

5. P-embedding and collectionwise normal spaces. In this section we 
state two theorems that lead us to the speculation that, roughly speaking, 
P-embedding relates to a collectionwise normal space as C-embedding does to 
a normal space. Specifically, Theorems 5.2 and 5.4 remain true if we replace 
* 'collectionwise normal" by "normal" and "P-embedded" by "C-embedded." 
In order to prove these theorems we shall first state (Theorem 5.1) several 
conditions that are necessary and sufficient for a normal space to be collection-
wise normal. These characterizations are due to Katëtov (15). 

5.1. THEOREM (Katëtov, 15). If X is normal, then the following statements 
are equivalent: 

(1 ) X is collectionwise normal. 
(2) If (Fa)a£T is a locally finite family of closed subsets of X with finite order, 

then there exists a locally finite family (Ga)aei of open subsets of X such that 
Pa C Ga for each a £ I. 

(3) For every closed S C X, if (Ha)aei is a locally finite family of open subsets 
of S and if (Fa)a£i is a family of closed subsets of S such that Fa C Ha for each 
a (z I> then there exists a locally finite family (Ca)a € / of open subsets of X such 
that Fa C Ga H 5 C Ha for each a G / . 

(4) For every closed S C X, if (Ha)aei is a uniformly locally finite open cover 
of 5, then there exists a uniformly locally finite open cover (Ga)aei of X such that 
Ga r\ S = Fa for each a Ç / . 
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(5) For every closed S QX, if (Fa)aç.i is a uniformly locally finite family of 
subsets of Sj then (Fa)a^i is uniformly locally finite in X. 

For the proof of Theorem 5.1, the reader is referred to (15). 

5.2. THEOREM. If X is a topological space, then the following statements are 
equivalent: 

(1) X is collectionwise normal. 
(2) Every closed subset of X is P-embedded in X. 

Proof. (1) implies (2). Let S be a closed subset of X. It suffices to show that 
2.7(4) holds for all infinite cardinal numbers y. But this is immediate by 5.1 (3). 

(2) implies (1). Note first that since all closed subsets are P-embedded, they 
are C-embedded (3.2). Therefore X is normal. To show that X is collectionwise 
normal, we need only show that 5.1 (5) holds. But this is immediate from 2.7(3) 
and 2.8. 

Theorem 5.2 is implicitly proved by C. H. Dowker in (9) as is stated in 
Mathematical Reviews by E. Michael (19) and by A. H. Stone (24). However, 
the above is an explicit proof. 

5.3. Remark. If X is a topological space and if 5 is a closed subset of X, then 
S being C-embedded in X does not imply that S is P-embedded in X. For, let 
X be a normal topological space that is not collectionwise normal; cf. (4, 
Example G). Then, by 5.2, there exists a closed subset S of X that is not 
P-embedded in X; and, since S is a closed subset of a normal space, S is 
C-embedded in X. 

5.4. THEOREM. Suppose that X is a completely regular space, that S C X, and 
that \S\ is non-measurable. If there exists a collectionwise normal space Y such 
that X CZ Y d vX, then the following statements are equivalent: 

(1) S is C-embedded in X. 
(2) S(S) is the relative uniform structure on S obtained from (S(X). 
(3) 5 is P-embedded in X. 

Proof. (1) implies (2). The proof proceeds exactly as in the proof of the 
implication "(1) implies (2)" of 3.3. 

(2) implies (3). Let d be a continuous pseudometric on S. By 3.3, there 
exists a continuous pseudometric d on vS such that d\S X S = d. Moreover, 
by (11, 15P.4),5is C-embedded in X, and hence, by (11, 8.10(a)), cl„x 5 = vS. 
Since u5is closed in uX, vS P Fis closed in Y. Let e = d\ (vS P Y) X (vS P Y). 
Then e is a continuous pseudometric on vS P Y and therefore, by 5.2, there 
exists a continuous pseudometric e on F such that ë\ (vS P F) X (vS P Y) = e. 
Let p = ë\X X X. Then p is a continuous pseudometric on X and p\S X S = d. 
Thus S is P-embedded in X. 

(3) implies (1). This is just 3.2. 
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We shall now show that Theorem 5.4 remains true if we replace ''collection -
wise normal" by "normal" and "P-embedded" by "C-embedded." 

5.5. THEOREM. Suppose that X is a completely regular space and that S <Z X. 
If there exists a normal space Y such that I C ^ C vX, then the following 
statements are equivalent: 

( 1 ) 5 is C-embedded in X. 
(2) (5(5) is the relative uniform structure on S obtained from 6 (X) . 

Proof. (1) implies (2). The proof, like that of "(1) implies (2)" of 5.4, 
proceeds exactly as in the implication "(1) implies (2)" of 3.3. 

(2) implies (1). Equip 5 and X with the uniform structures (£(5) and E(X) 
respectively and let y S and yX denote the completions of (5, 6(5)) and 
(X, (SOT)) respectively. By (11, 15C.3), yS = c\yX 5 and, by (11, 15.13a), 
75 = vS and yX = vX. 

Suppose that / is a continuous real-valued function on 5. Then / can be 
extended to a real-valued continuous function / on vS = y S = cl7X 5. Then 
f\ySr\ F is a continuous function on a closed subspace of the normal space Y. 
Therefore there exists g G C(Y) such that g\yS C\ Y = /. Let h = g\X. Then 
h G C{X) and h\S — f. Therefore 5 is C-embedded in X. 

Remark. The following examples show that the requirement that X be a 
collectionwise normal space is independent of the requirement that vX be 
collection wise normal (see the hypothesis of Theorem 5.4). For, if X is the 
Tychonoff plank (11, 8.20), then X is not a collectionwise normal space, but 
vX is collectionwise normal. Moreover, if X is a S-product of an uncountable 
number of complete metric spaces that are not compact (6), then X is a collec
tionwise normal space, but vX is not collectionwise normal. 

We can, however, show 

5.6. THEOREM. Suppose that X is completely regular, that \X\ is non-measurable, 
and that there exists a collectionwise normal space Y such that X C Y C. vX. 
If X is normal, then X is collectionwise normal. 

Proof. If 5 is a closed subset of X, then 5 is C-embedded in X, and hence, 
by 5.4, 5 is P-embedded in X. Therefore, by 5.2, X is collectionwise normal. 

Our final result shows that P-embedding can be used to give a new proof 
that a paracompact space is collectionwise normal. 

5.7. THEOREM (Bing, 4). If X is a paracompact topological space, then X is 
collectionwise normal. 

Proof. First note that X is normal (7, Théorème 1). Now suppose that 5 is a 
non-empty closed subset of X and let U = (Ua)açi be a locally finite normal 
cozero-set cover of 5. For each a 6 / , let Va be an open subset of X such that 
Va C\ S = Ua. Then X — Wa f 7 Va and 5 are disjoint closed subsets of the 
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normal space X, so there exists an open subset G of X such that S C\ G = id 
and X — yJaei Va C G. Choose an arbitrary (3 6 / and define SB = (Wa)a€I 

as follows: set Wp = F ^ U G ; and if a ^ 0, let TFa = 7a . Then SB is an open 
cover of X, so there exists a locally finite open cover §1 of X such that 21 refines 
SB. Since X is normal, 31 is normal (4.5). Moreover, Sl|5 refines U, so it follows 
that 5 is P-embedded in X (2.1 and 2.8). Thus, by 5.2, X is collectionwise 
normal. 
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