J. Austral. Math. Soc. 21 (1976) (Series A), 179-184.

A CRITERION FOR AUTOMORPHISMS OF CERTAIN GROUPS TO BE INNER

JOAN L. DYER

(Received 3 June 1974; revised 13 January 1975)

Communicated by M. F. Newman

Abstract

Let R be a normal subgroup of the free group F, and set G = F/[R, R]. We assume that F/R is a torsion-free group which is either solvable and not cyclic, or has a non-trivial center and is not cyclic-by-periodic. Then any automorphism of G whose restriction to R/[R, R] is trivial is an inner automorphism, determined by some element of R/[R, R]. This result extends a theorem of Šmel'kin (1967).

When S is a non-cyclic free solvable group, we may write S = F/R' where F is free, $R = \delta_k(F)$ is the k-th term of the derived series of F, and $R' = [R, R] = \delta_{k+1}(F)$. If α is any automorphism of S whose restriction to $\delta_k(F)/\delta_{k+1}(F)$ is trivial, Šmel'kin (1967) proved that α is an inner automorphism determined by some element $r \in \delta_k(F)/\delta_{k+1}(F)$; that is, for all $x \in S$, $\alpha(x) = rxr^{-1}$. His proof involves an analysis of the way in which S is embedded in a certain wreath product. The purpose of this note is to extend Šmel'kin's Theorem to a larger class of groups of the form F/R', where F is free of rank at least two and R is a proper normal subgroup of F. Specifically, we prove that any automorphism of F/R' which acts trivially on R/R' is inner, provided F/R is a torsion-free group which is either solvable and not cyclic, or has a non-trivial center and is not cyclic-by-periodic. The main tool we use is an application of the free differential calculus to F/R' due to Fox (1953) and Magnus (1939).

Suppose M is a left ZG module, where G is a group. A derivation $D: G \rightarrow M$ is a function which satisfies

$$D(uv) = D(u) + uD(v)$$

for all $u, v \in G$; it is determined by its values on any generating set of G. When D is extended linearly to give D: $\mathbb{Z}G \to M$, we have for all $f, g \in \mathbb{Z}G$

(1)
$$D(fg) = D(f)\varepsilon(g) + fD(g)$$
179

where $\varepsilon : \mathbb{Z}G \to \mathbb{Z}$ is the augmentation. When F is free and $\{X_i : i \in I\}$ is a basis for F then we may choose $DX_i \in M$ arbitrarily and extend to obtain a derivation $D: F \to M$. In particular, define $D_i: F \to \mathbb{Z}F$ to be that derivation for which

$$D_j X_i = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & \text{otherwise} \end{cases}$$

We note that, for all $X \in F$,

(2)
$$X-1 = \Sigma(D_i X)(X_i-1)$$

(since the left and right hand sides define derivations which agree on $\{X_i : i \in I\}$).

Now let R be a normal subgroup of the free group F, and set

$$G = F/R';$$
 $H = F/R.$

Let $\{X_i : i \in I\}$ be a basis for F, and define $x_i \in G$ to be the image of $X_i \in F$. Let T be the free left $\mathbb{Z}H$ module with basis $\{t_i : i \in I\}$. Under the canonical homomorphisms $F \to G \to H$, T will also be viewed as a $\mathbb{Z}F$ or $\mathbb{Z}G$ module. Let $D: F \to T$ be the derivation defined by

$$D(X) = \sum D_j(X)t_j.$$

Since $R' \leq \text{Ker } D$ there are induced derivations

$$\partial_i \colon G \to \mathbf{Z}H, \quad \partial \colon G \to T$$

for which

$$\partial_j(x_i) = \delta_{ij}, \qquad \partial(x) = \sum \partial_j(x)t_j.$$

It is a theorem of Fox (1953) and Magnus (1939) that $\partial: G \to T$ is an injection. We will exploit this fact in the remainder of this paper.

The group

$$\tilde{R} = R/R'$$

has a left **ZH** module structure with the action of H on \overline{R} induced by

$$r \to grg^{-1} = r^s,$$

 $r \in \overline{R}$, $g \in G$. The restriction of ∂ to \overline{R} is an injective ZH homomorphism.

LEMMA. Suppose H is torsion-free, and let $g \in G$, $r \in \overline{R}$. Then [g, r] = 1 implies $g \in \overline{R}$ or r = 1.

PROOF. We have $\partial[g, r] = (g-1)\partial r$. If $g \notin \overline{R}$, then the image of g-1 in $\mathbb{Z}H$ is not a zero divisor. Therefore $g \notin \overline{R}$ implies $\partial r = 0$, whence r = 1.

COROLLARY 1 (see L. Auslander and Schenkman (1965), M. Auslander and Lyndon (1955)). If H = F/R is torsion-free, then G = F/R' has trivial center and $\overline{R} = R/R'$ is a characteristic subgroup of G.

PROOF. If [z, r] = [z, g] = 1, where $g \in G - \overline{R}$ and $1 \neq r \in \overline{R}$, then z = 1 by the Lemma above. If $\alpha \in \text{Aut}(G)$, then $[\overline{R}, \alpha(\overline{R})] \leq \overline{R} \cap \alpha(\overline{R})$. If $[\overline{R}, \alpha(\overline{R})] =$ 1, then $\alpha(\overline{R}) \leq \overline{R}$; otherwise there is an $1 \neq r \in \overline{R} \cap \alpha(\overline{R})$. Since $[r, \alpha(\overline{R})] = 1$, $\alpha(\overline{R}) \leq \overline{R}$.

COROLLARY 2. Let $\alpha \in Aut(G)$ with H torsion-free. Assume that the restriction of α to \overline{R} is trivial.

(a) For all $x \in G$, $\alpha(x)x^{-1} \in \overline{R}$.

(b) If $\alpha(x) = x'$ for some (fixed) $r \in \overline{R}$ and all x in a normal subgroup N of G which contains \overline{R} properly, then $\alpha(x) = x' = rxr^{-1}$ for all $x \in G$.

PROOF. For each $r \in \overline{R}$ and $x \in G$,

$$x^{-1}rx = \alpha(x^{-1}rx) = \alpha(x)^{-1}r\alpha(x),$$

so $\alpha(x)x^{-1}$ commutes with r. By the Lemma above, $\alpha(x)x^{-1} \in \overline{R}$.

To prove (b), let $x \in N - \overline{R}$ and $y \in G$. Now

$$ryxy^{-1}r^{-1} = \alpha(yxy^{-1}) = \alpha(y)rxr^{-1}\alpha(y)^{-1},$$

or $y^{-r}\alpha(y)$ commutes with x'. Since $y^{-r}\alpha(y) \in \overline{R}$ and $x \notin \overline{R}$ the Lemma above implies that $\alpha(y) = ryr^{-1}$.

We can recognize elements of $\partial(\bar{R})$ in T by means of the criterion which follows; it appears in Bachmuth (1965) when G is free metabelian, and in Remeslennikov and Sokolov (1970) for arbitrary G = F/R'.

PROPOSITION (Bachmuth (1965), Remeslennikov and Sokolov (1970)). Let $t = \sum p_i t_i \in T$. Then $t = \partial(r)$ for some $r \in \overline{R}$ if and only if $\sum p_i(x_i - 1) = 0$.

PROOF. If $t = \partial r$, then $p_j = \partial_j r$ so $\sum p_j(x_j - 1) = 0$ follows from equation (2). To prove the converse, select $q_j \in \mathbb{Z}G$ which maps to $p_j \in \mathbb{Z}H$ when $p_j \neq 0$, and $q_j = 0$ otherwise. Put

$$q=\Sigma q_j(x_j-1).$$

Since $q \in \text{Ker} \{ \mathbb{Z}G \to \mathbb{Z}H \}$, there exist $r_1, \dots, r_m \in \overline{R}, s_1, \dots, s_m \in \mathbb{Z}G$ such that

$$\Sigma q_i(x_i-1) = q = \Sigma (r_k-1)s_k.$$

By equation (1),

$$\partial q = \partial \Sigma q_i (x_i - 1) = \Sigma p_i t_i = t$$
$$= \partial \Sigma (r_k - 1) s_k = \Sigma (\partial r_k) \varepsilon (s_k)$$

Define

$$r = r_1^{\varepsilon(s_1)} \cdots r_m^{\varepsilon(s_m)}.$$

Then $r \in \overline{R}$ and $\partial r = t$, as required.

COROLLARY 3. Suppose H is torsion-free. If $r \in \overline{R}$, $g \in G$, $t \in T$ satisfy

 $\partial r = (1-g)t$

then there exists $s \in \overline{R}$ such that $r = [s, g] = sgs^{-1}g^{-1}$.

PROOF. Set $t = \sum p_i t_i$. If $g \in \overline{R}$ then r = 1 = [1, g]. Suppose therefore that $g \notin \overline{R}$. We have

$$(1-g)\Sigma p_i(x_i-1) = \Sigma(\partial_i r)(x_i-1) = 0$$

by equation (2). Since 1-g is not zero and not a zero divisor in ZH, $\Sigma p_i(x_i-1)=0$ and $t=\partial s$ for some $s \in \overline{R}$. Using equation (1).

$$\partial [s, g] = (1 - g) \partial s = \partial r$$

and so r = [s, g].

We now prove the extension of Šmel'kin's Theorem stated in the introduction.

THEOREM. Suppose H = F/R is torsion-free. If either

(a) H is not cyclic-by-periodic and the center of H is not trivial, or

(b) H is solvable and not cyclic,

then the kernel of the restriction map $Aut(G) \rightarrow Aut(\overline{R})$ is $Inn(\overline{R})$.

PROOF. Assume that $\alpha \in \operatorname{Aut}(G)$ and $\alpha(r) = r$ for all $r \in \overline{R}$. We must show that α is inner. Define

$$D(x) = \partial(\alpha(x)x^{-1}).$$

Note that $\alpha(x)x^{-1} \in \overline{R}$ by Corollary 2(a), that $D: G \to \partial \overline{R} \leq T$ is a derivation, and that $\alpha(x) = x'$ if and only if $D(x) = (1-x)\partial r$. By Corollary 3, it suffices to show that D(x) = (1-x)t for some $t \in T$, and by Corollary 2(b) it is enough to verify that D(x) = (1-x)t for some $t \in T$ and all x in some normal subgroup of G which contains \overline{R} properly.

Since D(r) = 0 for all $r \in \overline{R}$, D induces a derivation $H \rightarrow \partial \overline{R}$ which we again denote by D. It suffices to prove that there exists some $t \in T$ such that

(3)
$$D(x) = (1-x)t$$

for all x in some non-trivial normal subgroup of H.

CASE (a). Let $1 \neq z$ belong to the center of *H*. Then for all $x \in H$, D([x, z]) = 0 which implies that

$$(1-z)D(x) = (1-x)D(z).$$

Since H is not cyclic-by-periodic, there exists an $x \in H$ which is of infinite order

182

modulo $\langle z \rangle$. Then the image of 1 - x in $\mathbb{Z}(H/\langle z \rangle)$ is not a zero divisor, and so

$$D(z) = (1-z)z$$

for some $t \in T$. It follows from equation (1) that (3) above holds for all $x \in \langle z \rangle$.

CASE (b) Since H is solvable, there exists a positive integer k such that

$$\delta_{k+1}(H) = 1, \qquad \delta_k(H) \neq 1$$

(that is, H has solvable length k, where $\delta_k(H)$ is the k-th term of the derived series of H). We will proceed by induction on k.

Suppose first that k = 1. Then H is abelian, and by case (a) we may also assume that H is cyclic-by-finite. Since H is torsion-free, it has unique roots and is locally cyclic. Let $1 \neq h \in H$ and let $\{h_i : i \in I\}$ be any generating set for H. There exist relatively prime integers e(i), f(i) such that

$$h^{\epsilon(i)} = h_i^{f(i)}, \quad i \in I.$$

There are then $y_i \in H$ such that

$$h_i = y_i^{m(i)}, \qquad h = y_i^{n(i)}$$

for suitable integers m(i), n(i). Equation (4) implies that e(i) divides m(i), and we may replace h_i by a suitable power of y_i so as to assume e(i) = 1 and $f(i) \ge 1$ in (4). If $\{f(i): i \in I\}$ is bounded, then H is finitely generated and therefore cyclic. This is excluded by hypothesis.

Since D is a derivation, (4) implies that

$$D(h) = (1 + \cdots + h_i^{f(i)-1})D(h_i).$$

Therefore each ZH component of $D(h) \in T$ has augmentation divisible by all f(i), and so has augmentation 0. Thus $D(h) \in (1 - H)T$. Since H is locally cyclic, there exist $g \in H$, $s \in T$ such that

$$D(h) = (1-g)s.$$

Choose $z \in H$ such that

$$g = z^a, \quad h = z^b$$

where b is positive and $a, b \in \mathbb{Z}$. Then

$$D(h) = D(z^{b}) = (1 + \cdots + z^{b-1})D(z) = (1 - z^{a})t.$$

Since ZH is a free left Z(z) module (with basis any complete set of right coset representatives of (z) in H), the equation above implies that D(z) = (1 - z)t for some $t \in T$. Thus (3) holds for all $x \in \langle z \rangle$.

For the inductive step, suppose that H has solvable length $k \ge 2$ and that (3) is satisfied for derivations from non-cyclic torsion-free solvable groups of smaller

solvable length. Then (3) holds for all $x \in H'$ if H' is not cyclic. We may therefore assume that H' is cyclic.

Let K be the centralizer of H' in H. Then K is a normal subgroup of H whose index is at most 2. Since the only torsion-free extension of a cyclic group by a group of order 2 is necessarily cyclic, it follows that K is not cyclic. If K' = 1, we are done by the induction hypothesis. Otherwise, $1 \neq K' \leq H'$ so K' is cyclic and contained in the center of K. Thus K is nilpotent, so K/K' is not periodic since $1 \neq K$ is torsion-free. Now case (a) applies to K, whence (3) is valid for all $x \in K$.

We conclude this paper by noting that G has automorphisms which are not inner but which act trivially on \overline{R} , when H is cyclic. In this case, we can choose a basis $X \cup \{X_i: i \in I\}$ for F such that $X \notin R$, $X_i \in R$ for all $i \in I$. Then $\partial \overline{R}$ is the free left $\mathbb{Z}H = \mathbb{Z}\langle x \rangle$ module on $\{t_i: i \in I\}$. Any automorphism of G whose restriction to \overline{R} is trivial fixes all x_i . It follows that the map

$$\alpha \mapsto \Sigma \varepsilon \partial_i (\alpha(x) x^{-1}) t_i$$

induces an isomorphism from Ker $\{\operatorname{Aut}(G) \to \operatorname{Aut}(\overline{R})\}/\operatorname{Inn}(\overline{R})$ to the free **Z** module on $\{t_i : i \in I\}$.

References

- L. Auslander and E. Schenkman (1965), 'Free groups, Hirsch-Plotkin radicals, and applications to geometry', Proc. Amer. Math. Soc. 16, 784-788.
- M. Auslander and R. C. Lyndon (1955), 'Commutator subgroups of free groups', Amer. J. Math. 77, 929-931.
- S. Bachmuth (1965), 'Automorphisms of free metabelian groups', Trans. Amer. Math. Soc. 118, 93-104.
- R. H. Fox (1953), 'Free differential calculus I', Ann. of Math. (2) 57, 547-560.
- W. Magnus (1939), 'On a theorem of Marshall Hall', Ann. of Math. (2) 40, 764-768.
- V. N. Remeslennikov and V. G. Sokolov (1970), 'Some properties of a Magnus embedding', Algebra i Logika 9, 566-578. Translation: Algebra and Logic 9, 342-349.
- A. L. Šmel'kin (1967), 'Two notes on free soluble groups', Algebra i Logika 6, 95-109.

Institute for Advanced Study Princeton, New Jersey U.S.A.

Lehman College C.U.N.Y. New York U.S.A.

184