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1. Introduction. Suppose that p(t) > 0, that both p(t) and f(t) are con­
tinuous functions on the half-line 0 < t < oo, and that X denotes a real para­
meter. Only real-valued functions will be considered in this paper. Let the 
differential equation 

(1) L(x) + Xx = 0, where L(x) = (pxf)' - fx, 

be of the limit-point type (3, p. 238), so that (1) and a linear homogeneous 
boundary condition 
(2«) x(0) cos a + x'(0) p(0) sin a = 0, 0 < a < TT, 

determine a boundary value problem on 0 < K oo for every fixed a. Let 
p«(X) denote the unique continuous monotone basis function on — oo < X < oo, 
normalized by p«(0) = 0, determining the eigendifferentials associated with the 
continuous spectrum, Ca (3, pp. 238-251). 

It is known that the set S' consisting of the set of cluster points of the spec­
trum, Sa, is independent of a (3, p. 251). Furthermore, in the standard ex­
amples of equations (1), the set Ca is independent of a; if, for example, f(t) is 
periodic, (4). The question was raised by Weyl (3, p. 252) as to whether the 
continuous spectrum is invariant under change of the boundary condition 
(2a), that is, as to whether the set Ca is always independent of a. Although this 
question will remain unanswered in this paper, except under a special assump­
tion, it still seems to be of interest to compare the various existing basis 
functions p«(X), belonging to different values a. Except in explicit, special cases 
(cf., e.g., 3, p. 264; 2, p. 59), very little seems to be known in this connection. 
A contribution to some knowledge in this direction is contained in the following: 

THEOREM (*). Let p(t) > 0 andf(t) be continuous onO < t < oo and suppose 
that (1) is of the limit-point type. Suppose that there exist a fixed interval A and 
two distinct boundary conditions (2ttl) and (2aa), a± ^ a2j such that A is in each 
of the sets Cai and C«2 and such that the basis function pai (X) is an absolutely 
continuous function of pa2 (X) on the interval A. Then 

(i) the interval A is in the continuous spectrum Ca for every boundary condition 
(2a), 0 < a < IT ; and 

(ii) the basis function pai (X) is an absolutely continuous function of every basis 
function p«(X) on the interval A (0 < a < w). 

Henceforth, for simplicity in notation, let PK(\) = p«fc(X) for k = 1, 2. It 
follows from (*) that, for any basis function pi(X) which is strictly increasing 
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on an interval A, there are only two possibilities: on the fixed interval A, either 
Pi(X) is an absolutely continuous function of every basis function p«(X) (indeed, 
the interval A is in the continuous spectrum of every boundary value problem 
(1), (2a) in the case (i)) or pi(X) is not an absolutely continuous function of any 
(other, existing) basis function p«(X) for which A is in Ca. 

2. Proof of (i) of (*). Let <j>k(t, X) = </>(/, X, ak), for k = 1 and 2, be solutions 
of (1) satisfying 
(3) <fo(0, X) = - s i n ak, p(0) 0'(O, X) = cos ak. 

Then the eigendifferentials are given by 

(4) <*$*(/, X) = 4>k(t,\)dpk(\), 
where 

x (ô$k)
2dt = ôpk o 

for arbitrary ô (see 3, p. 249). Let a 9e «i, «2 and let <£(/, X) = <£(/, X, a) be the 
solution of (1) satisfying 

(5) 0(0, X) = - s i n a, p(0) 4/(0, X) = cos a. 

It will be shown that the interval A of theorem (*) is in the set C«. To this end, 
suppose, if possible, the contrary. Then there exists a subinterval of A, say ô, 
such that 5 has no points in common with the (closed) set C«. Clearly, there 
exist continuous functions Ai(\) and A2(\) such that 

(6) «(*, X) = A,(X) (M/, X) + A2(X) 0(/, X). 

Since pi(X) is an absolutely continuous function of P2(X) on A, it follows 
(Radon-Nikodym) that there is a function B = B(\) such that 

(7) dPl(\) = B(\) Jp2(X) on A. 

It is clear from (7) that 

^ X B x dpi < oo. 

(It is understood, of course, that if B is zero for some values X, then, in the 
integrations with respect to pi, the set ô can be replaced by a set ôf such that 
B > 0 on 8' and JY dpi = J8 dpi.) Next, define the function M(t) by 

(9) M(t) = JV*(X)0(/,X)dpi(X), 

so that, by (6) and (7), 

(10) M(t) = f AiB~h<t>i dpi + f , 4 2 £ ^ 2 dp2. 

In view of (7) and (8), the inequality (a + b)2 < 2(a2 + b2), and the properties 
of the eigendifferentials (4), one has 
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(11) f°V(*) dt < 2 f (At'B-1 + A2
2) dPl< oo, 

Jo J s 

so that Af(/) is of class L2[0, <»). Moreover, M is differentiable and 

(12) M(0) = - (sin a) f B"* dpi, £(0) M'(0) = (cos a) f B~h dPl. 
Js JO 

Since each of the integrals of (12) is clearly different from zero, M(t) ^ 0. 
I t will be shown that M(t) is orthogonal to all eigenfunctions and eigen-
differentials belonging to the boundary value problem determined by (1) and 
(2a), and a contradiction will thus be obtained. 

Let M denote an eigenvalue on 8 = [Xi, X2] of the boundary value problem 
(1) and (2a). It will be supposed that Xi < n < X2; the treatment in case /x is 
an end-point will be clear. Let 5n denote the set of values X: [Xi, \x — 1/n] 
+ [JU + 1/w, X2] (n large), and define Mn(t) by 

(13) Mn(t) = f B~* 4>d9l. 
J 8n 

It will be first be shown that 

(H) r,Mn{t) m dt=o> 

where %(t) denotes an eigenf unction belonging to fx. 
The functions <j> and £ satisfy the equations 

(15) L(4) + X0 = 0, L(f) + MS = 0 

(cf. (1)), and hence for every T > 0, 

(16) f KL(*) - 0L(f)]<ft = (M - X) f «<ft. 
t/o Jo 

Moreover, an integration by parts shows that, for any two functions x, y 
possessing continuous second derivatives on 0 < t < oo, 

[x L(y) - y L(x)] dt = p(xy' - xfy) 
o 

(3, p. 223). An application of Fubini's theorem for the interchange of the order 
of integration shows that 

(18) J Mn£dt= j \j tëdt)B-*dPl, 

where Mn is defined by (13). Relation (18) implies, as a consequence of (16), 
(17), and the fact that Mn and £ satisfy the boundary condition (2a), that 

(19) JQ MAM = j 8 p(T)[cf>'(T, X) i(T) 

- 0(7\ X) S'(T)](ji - X)-1B^(X) dPl(\). 
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If A = A (t) is defined by 

(20) A(t)= f 0(*f X)0* - \)-lB-*(\) dPl(\), 
Jsn 

it is seen that 

(21) P V ( 0 dt<2 ( (AiB-1 + A*){p - \)~2dPl < oo 
J 0 J 8n 

and that 

(22) V{L(A))2dt < 2 ( (A^B-1 + A2
2) X2(M - \)~2 dPl < oo 

(3, p. 249, and relations (7), (8), and (11) above). Relation (19) can be ex­
pressed as 

(23) Jo MJdt = p(T)[A'(T) £(r) - A(T) £(T)]. 

It follows from (21) and (22) and the fact that £ and L(£) also belong to class 
L2[0, oo ) that the expression on the right side of (23) tends to zero as T —> oo 
(3, pp. 241-242). Consequently, relation (14) now follows. 

Next, it will be shown that 
/•oo 

(24) M{t) £(0 dt = 0. 
Jo 

In view of (14), it is sufficient to show that 

(25) (°°(M(t) - MH(t))*dt->0, a s ^ - > oo. 
Jo 

However, 

M J *[i+l/n 

<t>(t, X)5- è(X)JP l(X) 
P—l/n 

and hence 

J»0O /ÏJU+1M 

( A f - 1 T B ) 2 ^ < 2 (^ 1
2 5- 1 + ^2

2)rfp1. 
0 Jn-l/n 

The right side of (26) tends to zero when n —> oo and relation (24) now follows. 
It remains to be shown that M if) is orthogonal to all of the eigendifferentials 

of the boundary value problem (1), (2«). To this end, it is convenient to assume 
that ô = [ — Xi, Xi], where Xi > 0. (That this may be assumed without loss of 
generality is clear from the fact that the continuous spectrum is merely 
translated by a constant y if / is replaced by / + 7.) If the set Ca is not empty, 
then the eigendifferentials are given by 
(27) N = N(t, J) = J 0(/, X) dp(\), p(X) s Pa(X), 

where / is an arbitrary (say, closed) X-interval. Since the closed interval ô 
contains no points in common with the set Ca, it is sufficient to show that 
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J»oo 
M(t) N(t, J)dt = 0 

0 

for all closed intervals J having no point in common with ô. 
Consider then an interval J = [/zi, /X2], where Xi < JJLI. (The case in which 

M2 < — Xi can be treated similarly and will not be considered separately.) 
Suppose then that X is in ô and that /x is in / . It follows from the equations 

(29) L(<£(/, X)) + X*(/, X) = 0, L(*(/, /*)) + ri(t, n) = 0 

and the relations (16) and (17) that 

(30) J <p(t,\) 4>(t, n) dt 

= p(T)W{T,\) * ( 7 » - *(r,x) *'(rlM)] 0* - xr1. 
It follows readily from (30) that 

Mit) N(t, J)dt= £ P(T)[An'(T) Bn(T) - An(T) Bn'(T)], 
0 n = 0 

where If, iV, An, and 23w are defined by (9), (27), and 

(32) An(t) = J ] XWB-*(X) 0(/, X) dPl(X), B„(/) = J *(*, /*) / T ^ P C M ) . 

(The interchanges of the order of integration together with the interchange 
of the summation and integration are readily seen to be justified.) Relation 
(17) implies 

(33) p(T)[An'{T)Bn{T)-An(T)Bn'{T)]= f[BnL(An)-AnL(Bn)]dL 

By the Schwarz inequality, 

(34) | J BnL(An)dt\ < ( J o Bn
2dt) ( J o (L(An))

2dt) . 

From (32) and the fact that / = [JLH, /x2], 

(35) (œBn
2dt < f M_ 2 ( W + 1 )^P(M) < Mr2(re+1) f dpQi) < - , 

Furthermore, relations (6), (7), and (10) imply that 

(36) L(An) = - f \n+lA1 B~h 0! dPl - f \n+1 A 2 B h <t>2 dP2. 

Hence (cf. (4)), 

(37) V{L{An)f dt<2 ( \2ln+1)(Al
2B~1 + A,2) dPl 

< 2X1
2(K+1) J (Ax'ST1 + A2

2) dPl < co. 
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In particular, the functions Bn and L(An) are of class L2[0, » ) , while a similar 
analysis shows that An and L(Bn) are also in class L2[0, oo). Consequently, 
each term of the summation of (31) satisfies 

(38) P{T)[An'{T)Bn{T) - An(T) Bn'(T)] -> 0, as T-* oo 

(3, pp. 241-242). 
It now follows from (35), (37), and the inequality Xi/^-1 < 1, that 

,L(An)dt 
oo nT 

z U- 0, as N -

holds uniformly in T (0 < T < oo). Similarly, 

,L{Bn)dt 
oo /»r 

0, as iV -

holds uniformly in T (0 < T < oo). Hence, the series on the right side of the 
equation (31) tends to zero as T —> oo and so (28) follows. Thus the function 
M(t) of (9) is orthogonal to all eigenfunctions and eigendifferentials of the 
boundary value problem determined by (1) and (2a) and, as remarked earlier 
in this section, a contradiction is obtained. This completes the proof of part (i) 
of (*). 

3. Proof of (ii) of (*). Let <j> be defined as in §2, and let d$ denote the eigen­
differentials, so that 
(39) d$(t,\) = «(/, X)dp(X). 

Let M{t) = Ms(t) be defined by (9) where, now, ô is any interval contained in 
A. Then, by (3, pp. 250-251), the function Ms(t) has an expansion 

(40) M*(t) = £ ck **(/) + £ «(/, x) dr(x), 

where the <t>k denote the eigenf unctions of the boundary value problem (1), 
(2«) and the ck and dT(\) are given by 

J»oo /»oo 

MB(t) <t>k{t) dt, Ô'T = Mô(t) 5'$ dt {bf arbitrary). 
0 t / 0 

In view of the uniqueness properties associated with the expansion (40), 
however, it follows from (40) and (9) that ck = 0 and 
(42) B~h{\)dPl{\) = dT(\) 

holds on the interval 8. Thus, provided ô' is contained in ô, relation (42), the 
second relation of (41), and the Schwarz inequality imply 

/» / /»œ \ | / /»oo \ ^ 

(43) J f B~* dpi < ^ J Mô\t) dt) y Jo (ô'$)2 dt) . 

Henceforth, it will be convenient to put ô' = ô. From the properties of the eigen­
differentials (39), 
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J»oo 
(8<S>)2dt = Op. 

0 

It follows from (43), (44), (11), and the Schwarz inequality that 

(45) ( S J 5"* dp)' < 2(E J, (Ax
2 5-1 + A2

2) ^ P 1 ) ( Z Ja dp) , 
where the summations are taken over any sequence of intervals 8 contained in 
A. Let Z denote any subset of the interval A for which 

f dp(\) = 0. 

It follows readily from (45) and (8) that 

f J B~h(X) dpi(\)J < const. J dp(\) = 0; 

hence, 

I dpi = I Bh B~h dPl = 0. 

Thus the variation of pi(X) is zero over any set Z over which the variation of 
p(X) is zero. Hence pi(X) is an absolutely continuous function of p(X) (that is, 
by the Radon-Nikodym theorem, there is a function C(X) such that 
dpi(X) = C(X) dp(\)) and the proof of (ii) of (*) is now complete. 
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