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ABSTRACT

Second order Bayes estimators, being the main tool in second order optimal
statistical theory, provide a natural basis for a new approach to the problem
of the prediction of functions of expectation functional for members of an
exponential dispersion family. A general formula, providing such prediction up
to the term of the order 1/n, is suggested and the application to the problem
of the prediction of the tail of distributions is demonstrated. The results are
illustrated with normal and gamma claim sizes. The numerical experiment
demonstrates the high effectiveness of the approach even for small sample sizes.
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1. INTRODUCTION

Let q be a risk parameter characterizing a member of a risk collective, and given
q, let Pq, the distribution of the claim X, be a member of a family of distribu-
tions {Pq,q ∈ Q ⊂ R1}. Furthermore, let p(q) be the prior distribution of q, the
so-called structure distribution. Then m = E

Q
# (X |q)dp(q) is called the collec-

tive fair premium, which is also known as an “industrial” mean. Let

x1, x2, ..., xn,

be n observations of individual experience, which conditionally on q are indepen-
dently distributed in accordance with Pq. Then xn = 1/n i 1= xi

n! is a consistent
estimator of the fair premium m(q) = E(X |q).

At the center of the Bayesian credibility theory is the fact, stated by Jewell
(1974), that the classical credibility formula (Bühlmann (1967)

(1 – zn) m + zn xn, (1)
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coincides with the predicted mean, i.e.

(1 – zn) m + zn xn = E(xn + 1 |x1, x2, ..., xn),

if the distribution of the claim size is a member of the Natural Exponential
Family (NEF) 

dPq = exq – k(q)dQ(x), x ∈ S ⊂ R1, q ∈ Q ⊂ R1, (2)

Q = {q | k(q) = ln8eqxdQ(x) < ∞}, and the conjugate prior density is given by 

dp(q) ∝ en0 (x0 q – k(q))dq. (3) 

More details about the relevance of conjugate prior densities were well investi-
gated in Diaconis and Ylvisaker (1979). Kaas, Dannenburg and Goovaerts (1997),
Nelder and Verrall (1997) and Landsman and Makov (1998) showed that this
phenomenon holds for the more general Exponential Dispersion Family (EDF),

dPq,l = el(xq – k(q))dQl(x), q ∈ Q ⊂ R1, l ∈ L ⊂ R+, (4) 

considered in Tweedie (1984), Nelder and Wedderburn (1972), and Jorgensen
(1986, 1987, 1992, 1997); here l is called dispersion parameter. For this family
the Bayes estimator of the mean m under the conjugate prior (3), given l, con-
tinues to be linear with respect to the sample mean xn, as follows:

,..., ,..., .E x x x E x x n n
n

m n n
nm q l l
l xn n n n1 1 1

0

0

0

= =
+

+
++^ ]^h g h (5) 

Although predicting the mean of a claim size is of immense importance, the
prediction of other functionals of loss distributions, namely variance, moments,
skewness and kurtosis, plays a significant role not only in credibility theory, but
also, for example, in predictive premium evaluation. However, exact expressions
for predicting such functionals are intractable, even for Bayesian prediction
with conjugate priors. One of the most important and difficult characteristic
to predict is the tail of a loss distribution, i.e.,

P(xn + 1 > T | x1, ..., xn), (6) 

the expected propensity of large claims. This is especially significant in a rein-
surance context, where dramatically deviated claims are the main concern.
However, the exact expression for (6) is quite complicated to evaluate even for
claim distributions belonging to EDF and the use of conjugate priors.

In this paper we evaluate the formula for the prediction of general type
functionals of distributions up to the term of order OP( n

1 ) and as an application
we consider the problem of predicting the tail area. This general result can cer-
tainly be applied immediately to other functionals, for example, the well-known
variance premium. Such applications are beyond the goals of this paper and
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will be discussed elsewhere. We use the approach based on the second order
(s.o.) Bayes estimators of some function of the mean, i.e., the estimators that
coincide with the Bayes estimators up to the term of order OP( n

1 ). The natural
impact of the s.o. Bayes estimators on credibility theory was shown in Lands-
man (2002). Second order Bayes estimators represent a main tool in the s.o.
optimal statistics theory. Levit (1980) and Bickel (1981) used the s.o. Bayes
estimators for constructing the s.o. minimax estimator of the mean parameter
of normal distribution. These results were generalized by Levit (1982) for the
case of an s-dimensional bounded parametric space and for more general dis-
tributions. Landsman and Levit (1990, 1991) studied the case where nuisance
parameters are present. Landsman (2001) explored the s.o. Bayes estimators of
the mean parameter for members of the EDF in the context of s.o. minimax
improvement of the sample mean xn (which is the maximum likelihood estima-
tor (MLE) for the EDF) for the unbounded space of all possible values of m.
We extend the approach suggested in Landsman (2001) for the evaluation of
the s.o. Bayes estimators of the function of the mean in the case of the EDF.

In section 2 we derive the s.o. Bayes estimators of some general function
of m, and in section 3 we apply this result for predicting the probability that
claim xn + 1 exceeds some large threshold T given previous claims x1, ..., xn. In
section 4 we illustrate the results with Normal and Gamma distributed claims
and report the results with a numerical experiment.

Finally, let us recall that the statement for random variable Yn = OP(1/n)
about random variable Yn is taken to mean that n |Yn | is bounded in probability,
i.e., for any e > 0 there exists Me > 0 that P(n |Yn | > Me) < e; and Yn = oP(1/n) is
taken to mean that nYn →P 0, n → ∞ (see, for example, Fuller (1996), Ch. 5).

2. SECOND ORDER BAYES ESTIMATOR OF A FUNCTION OF THE MEAN

Let c(m) be some function defined on the space M = k�(Q) of all possible values
of the mean m. It is well known that 

, ,... , ,...E x x x f x x x dc c m q c m q q qn n n
Q

1 2 1 2= = #]^^ ]^ ^gh h gh h (7) 

is the Bayes estimator of function c(m), given x1, x2, ..., xn. We say estimator
c*

n is a s.o. Bayes estimator of c(m) if it coincides with cn up to the term OP( n
1 ).

The following theorem represents the s.o. Bayes estimator of c(m).
We assume that the NEF which generates the EDF (see Jorgensen (1997),

Sect. 3.1) is regular, i.e., the parameter set Q is open or at least steep, i.e. (see
Brown (1986), Proposition 3.3),

,x dP ,
S

q l 3=# for q ∈ Q � int (Q)

Here int(Q) is the set of all intern points of Q. Then mean function (Brown (1986),
Theorem 3.6)

( ) ( )E X xdP km m q q q�,
S

q l= = = =#] g
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is one-to-one (X is a random variable distributed according to Pq,l. The vari-
ance is 

( ) ( ) ,Var X k Vq l q m s1 � 2= =] g (8) 

where V(m) is called the variance function. The predictive mean (5) is denoted by 

.n n
n

m n n
nm l l
l xn n

0

0

0

=
+

+
+

(9) 

Suppose that Q = (a,b) is an open finite or infinite interval, i.e., – ∞ ≤ a < b ≤ ∞.
(In the case of a steep family, instead of q one should write int(Q).)

Theorem 1. For x0 > 0, n0 > 0 let

( ) < ,k e dq q� ( ( ))n x kq q

Q

2 0 0 3-#

and c(x) be a twice continuously differentiable function. Then under the conjugate
prior (3) 

, ,...
( )

( ) .( )E x x x
n n
V

o nc m q c m
l

m
c m

2
1 1�n n

n
n P1 2

0

= +
+

+^^ ^
^

bh h h
h

l (10)

Proof. As c(x) is twice differentiable, using the Taylor expansion around mn one
can write 

( ) ( ) ( ) ( ) ( ) ( ) ,�c m c m m m c m m m c m m m
2
1� �n n n n n n

2= + - + - + -^ h (11) 

where |�| ≤ 1. Under the conjugate prior (3) one can show, straightforwardly,
that a posterior density has the form 

, ,... ( ) ,exp expf x x x n x k n x k dq q q q q qn
Q

1 2 0 0 0 0

1

= - -
-

� � � �#^ ]bc bceh glm l m (12)

where

x�0 = mn, (13)

n�0 = n0 + nl. (14)

Then for cn we have from (7), (11), (12),

( )
( )

( ) ( ) ( )

exp

exp

n x k d

n x k d

c c m
q q q

c m m q m q q q

1

�

n n

n n

Q

Q

0 0

0 0#

= +
-

- -

� �

� �

#

#

bc

^ bc

l

h l" (15)
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( ) ( ) .exp� n x k dm q m c m m q m q q q
2
1 �n n n

Q

2

0 0+ - + - -� �# ^ ]^_ bch g hi l 1

Let us note first that for density (12)

, ,...,f x x x dm q q qn
Q

1 2# ] ^g h = x�0 = mn,

hence the second integral in the right hand side of (15) equals 0.
Using the Laplace method we evaluate the asymptotics of the right hand

side of (15), when n�0 = (n0 + nl) → ∞. In reference to the Laplace method see,
for example, Lindley (1980) and Tierney and Kadane (1986). For a general
form of this method, see Barndorff-Nielsen (1989, Sect. 6.2), where in our case
rn�0

(y) = – n�0 (x�0 y – k(y)). Recall that in our case rn(y) has only one minimum
equal to yn = q (x�0) in Q = (a,b), where the function q = q(m) is the inverse
function of function m = m(q) = k�(q). The Laplace method gives

exp
Q

# (n�0 (x�0 q – k(q))dq = p2 exp(n�0 (x�0 q(x�0 ) – k(q(x�0 )))

≈ (n�0 k�(q(x�0 ))–1/2 (1 + oP(1)), n�0 → ∞. (16)

To derive the asymptotics of the third integral in the right hand side of (15)
one should pass to a new variable of integration, m, and write

An = ( ( ) )m q mn
Q

2-# c�(mn + �(m(q) – mn))exp(n�0 (x�0q – k(q))dq

= ( )m mn
M

2-# c�(mn + �(m – mn))exp(n�0 (x�0 q(m) – k(q(m)))q�(m)dm,

where M = k�(Q) is the set of the all possible values of expectations of EDF.
As function k�(q) is monotone, continuous and a one-to-one function, Q (or
int(Q) for a steep family) is an open interval (finite or infinite), M is also an
interval (finite or infinite). Introduce

h(m) = x�0q(m) – k(q(m)).

The function h(m) has only one maximum m̂ = x�0 = mn, and 

h�(x�0 ) = [q �(m) (x�0 – m) – q�(m)] | m = x�0
= – q�(x�0 ) = – V(x�0 )–1.

Then a slight generalization of the asymptotics of the Laplace-type integral (see
Landsman (1996), Lemma 2) gives, putting in the cited Lemma k = 2 (taking
into account that q�(m) = V(m) –1 and using (13))

An = 2(p/2)1/2c�(mn)q�(x�0)
≈ exp(n�0 (x�0q(x�0) – k(q(x�0)))(n�0V(x�0 )–1)–3/2 (1 + oP(1))

= 2(p/2)1/2c�(mn)
≈ exp(n�0 (x�0q(x�0) – k(q(x�0)))(n�0)–3/2V(mn)1/2 (1 + oP(1)), (17)

n�0 → ∞.
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Substituting (16) and (17) into (15) and taking into account that k�(q(m)) = V(m)
and using (13), (14), we obtain (10). ¬

Remark 1. Although the approach considered in Tierney and Kadane (1986) is
also based on the asymptotics of the Laplace-type integrals, the suggested
approach, based on Lemma 2 (Landsman (1996)) seems preferable because it
results in terms of the maximal point q̂n of function L (in the notation of Tierney
and Kadane (1986)) or mn (in the notation of the paper), which does not depend
on g (in the notation of Tierney and Kadane (1986)) or c (in the notation of
the paper). At the same time the results of Tierney and Kadane (1986) require
additional knowledge of the maximal point q̂n

* of the second function L*, which
depends on function g (in the notation of Tierney and Kadane (1986)) or c (in
the notation of the paper).

If c(x) has k > 2 derivatives, Lemma 2 (Landsman (1996)) allows to clear-
ing the reminder term up to the term of order OP((n0 + nl)–k/2). In particular if
c(x) is three times continuously differentiable, by the same approach one can
write expression (10) more precisely as

E(c(m(q)) |x1,x2, ...,xn) = c(mn) +
2
1

(
( )

)n n
V

l
mn

0 +
c �(mn) + OP ( )n nl

1
/

0
3 2+

e o .

3. SECOND ORDER PREDICTION OF THE TAILS

In this section we apply the results of the previous section for predicting the
probability that a claim exceeds a threshold T. Recall that q = q(m) is the inverse
function of m = m(q) = k�(q). Let 

F(T |q ) = P(X > T |q) = exp
T

3

# (l(xq – k(q))dQl(x) (18)

be the tail of the distribution of claim size,

mT(m) = expx
T

3

# (l(xq(m) – k(q(m)))dQl(x) (19) 

be a lower truncated expectation of the claim size, and 

VT (m) = l ( ) expx m
T

2-
3

# (l(xq(m) – k(q(m)))dQl(x) (20) 

be a lower truncated variance function. It is clear that F (T | q) | T = 0 = 1,
mT(m) |T = 0 = m, VT (m) |T = 0 = V(m). Denoting K = n0 /l, we observe that K plays
the role of Bühlmann’s coefficient in the case of EDF, because K = EpV(X |q) /
Vp(E (X |q) (see, for example, Landsman and Makov (1999), Sect. 3). Recall
that EpV(X |q) and Vp(E (X |q) are called expected process variance and vari-
ance of the hypothetical means (Young (1998)), respectively.
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Theorem 2. Under the conditions of Theorem 1

( > ,..., ) ( )

( ) ,

P x T x x T

K n o n

q m

mD

F

2
1 1 1

n n n

T n P

1 1 =

+
+

+

+ ^

b

h

l

where

T( ) ( )
( )

( ) ( ) ( ) ( )
( )

V
V

T T V
V

m m
m

q m m m m q m m
m

D F F �
T= - - -T ^ ^^h hh (21)

Proof. Setting 

c(m) = F(T |q(m)) (22) 

and taking into account that q�(m) = 1/m�(q) = 1/V(m), one can write straight-
forwardly from (18), after differentiation under the integral sign,

c�(m) = l [mT(m) – mF(T |q(m))] /V(m),

and from (19), (20)

( )
( )

( ) ( ) ( ( ( ) ( ( ))) ( )

( ) ( )

( ) ( ) ( ( ( ) ( ( ))) ( )

( ) ( )
( )

( ) ( ) ( ) ( )
( )

.

exp

exp

V
x x k dQ x

T V

V x x k dQ x

V V
V

T T V
V

c m
m
l q m l m l q m q m

q m m

m m l q m q m

m
l

m
m

q m m m m q m m
m

F

F F

� �

�

�

T

T

T
T

l

l

2
2= - -

-

- - -

= - - -

#

#

^

^ ^^

h

h hh

6

<

@

F

"

,
(23)

The proof of Theorem 2 follows from Theorem 1 after substituting (22) and
(23) into (10), from the well-known fact that the predictive density is given by 

,..., , ,...,f x x x f x f x x x dq q qn n n n
Q

1 1 1 1 2=+ +#^ ^ ^h h h (24) 

(see Aitchinson and Dunsmore (1975)) and from Fubini’s Theorem, providing
the equality

> ,..., ,... .P x T x x E T x xqFn n n1 1 1=+^ ]^h g h ¬

4. APPLICATIONS

In this section we apply the results of the previous section for the prediction
of the probability that a future claim, whose distribution is Normal or Gamma,
will exceed a large threshold.
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4.1. Predictive tails for Normal claim sizes

Conditionally on m,s2, the claim sizes x1, x2, ..., xn, xn + 1 are assumed to be nor-
mally distributed, N(m,s2). It is well-known that N(m,s2) is a member of EDF with
q = m, l = 1/s2, k(q) = 1/2q2 and V(m) = 1. Integrating by parts we get from (20)

( ) ( )
( )

( ) ( ) ( ) ,

expV x
x

T T T

m
p s

m
s

m

s m f s m s mF

2
1

2T
T

2
2

2

1 1 1

= - -
-

= - - + -

3

- - -

# e

_ _

o

i i

(25) 

where f(x) and F(x) are standard Normal density and distribution functions,
F(x) = 1 – F(x). Noticing that in this case V�(m) = 0 we obtain, substituting
(25) into (21),

DT (m) = s –1(T – m)f(s –1(T – m)).

Then, from Theorem 2, we get the prediction of the tail of the coming claim
up to the term OP n

1
_ i,

> ,..., ( )

( )
( ) .

P x T x x T

n n
T

T o n

s m

l
l

s
m

f s m

F

2
1 1

n n n

n
n P

1 1
1

0

1

= -

+
+

-
- +

+
-

-

^ _

_ b

h i

i l

Recall that the conjugate prior distribution for normal claims is also normal,
N(m,s2

0), where m is the collective fair premium and variance s2
0 = n

1
0
. Denote

k = s2/s2
0 , Bühlmann’s coefficient, then

n
n

n mm k k
kxn = + + +

is the credible mean, and

> ,..., ( )

( ) ( ) .

P x T x x T

n T T o n

s m

k s m f s m

F

2
1 1 1

n n n

n n P

1 1
1

1 1

= -

+ + - - +

+
-

- -

^ _

_ b

h i

i l
(26)

Remark 2. For Normal claims under normal prior one can calculate the exact
expression for the predictive tail. In fact, formulas (24) and (12) yield

f (xn + 1|x1, ..., xn) = n(0,s2) * n (x�0,1/n�0),

where the symbol * means the convolution between two normal densities with
parameters (0,s2) and (x�0,1/n�0) respectively. Here x�0 = mn, n�0 = n0 + nl = s0

–2 +
ns–2 (cf. (14)). Then f (xn + 1|x1, ..., xn) is the density of N(mn,s2 + 1/(s0

–2 + ns–2))
and 
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> ,...,
/( )

,P x T x x
n

T
s k

m
F

1 1
n n

n
1 1 =

+ +

-
+

J

L

K
K^

_

N

P

O
Oh
i

(27)

where k = s2/s2
0 . As

/( )
,

n n k o nk1 1

1
1

2
1 1 1

+ +
= -

+
+ b l

Taylor expansion of F shows that (26) well conforms with (27).

4.2. Predictive tails for Gamma claim sizes

Conditionally on l,�, the claim sizes x1, x2, ..., xn, xn + 1 are assumed to be
gamma distributed with shape and scale parameters l,� ∈ R+ respectively.
It is well known (see, for example, Jorgensen (1997), Ch.3), that the gamma fam-
ily is a member of the EDF with canonical parameter q = – �/l, dispersion
parameter l, cumulant function 

k(q) = – log(–q), (28) 

mean m = k�(q) = l /�, and variance function 

V(m) = m2. (29) 

Let us calculate the all ingredients of Theorem 2. Denote by G (x,l,�) the
gamma distribution function and let g (x,l,�) be the gamma density function.
Integrating by parts we have

( ) , , ( )

( )
( )

( ) , , ( ) ,exp

�

�
� �

g x dx

T T T

m m l m

l
m

m m l mG G

T
T

l
l

1

=

= - +

3

-

# ^

^ ^

h

h h

(30)

where G(x,l,�) = 1 – G (x,l,�), �(m) = l /m, and

( ) ( ) , , ( ) ( )
( )

( )

( ) ( ) , , ( ) .

exp�
�

�

V x g x dx T a T

T

m l m l m l l
m

m

l mm m lm l m

G

G1

T
T

T

l
l2

1
1

2

= - = -

+ - +

3 -
+# ^ ^

^

h h

h

(31)

Substituting (30) into (31) we obtain

( ) ( )
( )

( ) ( )

, , ( ) .

exp
�

�

V T a T T

T

m l
m

m l l m

m l m

G

G

1T

l
l

1

2

= - + -

+

-

^ ^

^

h h

h

(32)
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Substituting (30) and (32) into (21) and taking into account (29) we can derive
DT (m) from Theorem 2:

( ) ( )
( )

, , ( ) ( ) , ( )

( )
( )

( )
( )

( )
( )

( ) ( ) .

exp

exp

� �

�
�

�
� �

V
V

T T

T T T

T T T

m m
m

l m m m m m l m

l
m

m
m
l

m
l

m

m l
m

m m l

D

G

G

G G2

1 2

1
1

T
T

T

l
l

l
l

1

2

1

= - - -

= - +
-

-

= - - +

-

-

^ ^^

^ d

^ ]^

h hh

h n

h gh

(33)

Let G (x,l) and g(x,l) be standard gamma distribution and density functions,
i.e., having a scale parameter equal to 1. Then (33) reduces to 

( ) ,T T g Tm l m m l l m lD 1
1

T = - +bb bll l (34)

Recall that mn is the predicted mean of the future claim, calculated by the credi-
bility formula (9) and set

.R T
mn

n
=

Then for a predictive tail we yield the following result from Theorem 2 and (34)

> ,..., ,

, .

P x T x x R

K n R R g R o n

l l

l
l l l

G

2
1

1
1 1

n n n

n n n P

1 1 =

+
+

- + +

+^ ^

b ^ b

h h

l h l; E

(35)

Putting in (35) l = 1 we obtain the predictive tail for exponentially distributed,
EXP (q), claim sizes 

> ,..., ( ) .expP x T x x R K n R R o n1
2
1 1

2
1

n n n n n P1 1 = - +
+

- ++^ ^b bh hl l (36)

Remark 3. For exponential claims under conjugate (gamma) prior we can cal-
culate the exact expression for the predictive tails. In fact, formulas (24) and (12)
yield, taking into account (28),

,...,

.

exp expf x x x
n

n x
x n x d

n x

n

n x

x

q q q q q
G 1

1
1

n n

n

n
n

n

n

1 1

0

0 0

1

1 0 0
0

0 0

0

0 0

1

2

0

0

0

=
+

- -

=
+

+

3

+

+

+

+

- +

�

�

�

�

� �
� �

� �

�

� �

#

J

L

K
KK

^

b

b

^ b

^N

P

O
OO

h

l

l

h l

h

294 ZINOVIY LANDSMAN

https://doi.org/10.2143/AST.34.2.505144 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.2.505144


Then, taking into account (14) and (13), we have
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Using the Taylor expansion of the function ln(1 + �) up to the term O(�3), � → 0
we get
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Then, taking into account that
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we obtain from (37) and (38)
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which well conforms with (36).

4.3. Numerical experiment

In this subsection we illustrate how sharp the s.o. predictive formula performs.
We generated 1000 samples of sizes n = 8 in Normal-Normal and Exponential-
Gamma experiments respectively with Bühlmann coefficient K = 4. For each
experiment we calculated predictive value-at-risks (VaR) using exact formulas
for predictive tails ((27) and (37)), their first order (f.o.) approximations (obtained
by simply substituting the predictive mean into tail’s functional (18) before
prediction) and s.o. predictive tails’ formulas. Figures 1, 2, show that the s.o.
tails’ prediction piercingly estimates the exact predictive tails and is significantly
superior to the f.o. prediction.
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FIGURE 2: Predictive VaRs for exponential losses, m = 100.

FIGURE 1: Predictive VaRs for normal-normal experiment, m = 10.

296 ZINOVIY LANDSMAN

 

 

https://doi.org/10.2143/AST.34.2.505144 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.2.505144


ACKNOWLEDGEMENTS

The author is grateful for the valuable comments of two anonymous referees
and wishes to thank the Israel Edelstein Grant Foundation for financial sup-
port and Olga Furman for her assistance in generating the Figures.

REFERENCES

AITCHINSON, J., DUNSMORE, I.R. (1975) Statistical Prediction Analysis. Cambridge University
Press, Cambridge.

BARNDORFF-NIELSEN, O.E. (1989) Asymptotic Techniques for Use in Statistics. Chapman and
Hall, London, New York 

BICKEL, P.J. (1981) Minimax estimation of the mean of a normal distribution when the parameter
space is restricted. Ann. Statist., 9(6), 1301-1309.

BROWN, L.D. (1986) Fundamentals of Statistical Exponential Families. Lecture Notes – Monograph
series, Hayward, CA.

BÜHLMANN, H. (1967) Experience rating and probability. The Astin Bull. 4, 199-207.
DIACONIS, P. and YLVISAKER, D. (1979) Conjugate priors for exponential families. The Annals of

Statist. 7, 269-281.
FULLER, W.A. (1996). Introduction to Statistical Time Series, Wiley. New York.
JEWELL, W.S. (1974) Credible means are exact Bayesian for exponential families. Astin Bull. 8,

77-90.
JORGENSEN, B. (1986) Some properties of exponential dispersion models. Scan. J. Statist. 13,

187-198.
JORGENSEN, B. (1987) Exponential dispersion models (with discussion). J. Roy. Statist. Soc. Ser.

B 49, 127-162.
JORGENSEN, B. (1992) Exponential dispersion models and extensions: A review. Internat. Statist.

Rev. 60, 5-20.
JORGENSEN, B. (1997) The Theory of Dispersion Models. Chapman and Hall, London.
KAAS, R., DANNENBURG, D. and GOOVAERTS, M. (1997) Exact credibility for weighted observa-

tions. Astin Bull. 27(2), 287-295.
LANDSMAN, Z. (1996) Sample quantiles and additive statistics: information, sufficiency, estimation.

Journal of Statistical Planning and Inference, 52, 93-108.
LANDSMAN, Z. (2001) Second order minimax estimation of the mean value for Exponential Dis-

persion models. Journal of Statistical Planning and Inference, 98, 57-71.
LANDSMAN, Z. (2002) Credibility theory: A new view from the theory of second order optimal

statistics. Insurance: Mathematics & Economics, 30, 351-362.
LANDSMAN, Z. and LEVIT, B. (1990) The second order minimax estimation: nuisance parameters

and hypoelliptic operators. Probability Theory and Mathematical Statistics, Proceedings of
the Fifth International Vilnius Conference, 2, 47-58, VSP, Utrecht.

LANDSMAN, Z. and LEVIT, B. (1991) Second order asymptotic minimax estimation in the presence
of a nuisance parameter. Problems of Information Transmissions, 26(3), 226-244.

LANDSMAN, Z. and MAKOV, U. (1998) Exponential dispersion models and credibility. Scand.
Actuarial J., 1, 89-96.

LANDSMAN, Z. and MAKOV, U. (1999) On stochastic approximation and credibility. Scand. Actua-
ial J., 1, 15-31.

LEVIT, B. (1980) Second order minimaxity. Theory of Prob. Appl. 25, 3, 561-576.
LEVIT, B. (1982) Second order minimax estimation and positive solutions of elliptic equations.

Theory Prob. Appl. 27(3), 525-546.
LINDLEY, D.V. (1980) Approximate Bayesian Methods. Bayesian Statistics. Proceedings of the 1st

International Meetings held in Valencia, 223-237.
NELDER, J.A. and VERRALL, R.J. (1997) Credibility theory and generalized linear models. Astin

Bull., 27(3), 71-82.

SECOND ORDER BAYES PREDICTION OF EXPONENTIAL DISPERSION 297

https://doi.org/10.2143/AST.34.2.505144 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.2.505144


NELDER, J.A. and WEDDERBURN, R.W.M. (1972) Generalized linear models. J. Roy. Statist. Soc.
Ser. A 135, 370-384.

TIERNEY, L. and KADANE, J.B. (1986) Accurate approximations for posterior moments and mar-
ginal densities JASA, 81, 393, 82-86.

TWEEDIE, M.C.K. (1984) An index which distinguishes between some important exponential
families. In Statistics: Applications and New Directions. Proceedings of the Indian Statistical
Golden Jubilee International Conference (Eds. J.K. Ghosh and J. Roy), 579-604. Indian Sta-
tistical Institute.

YOUNG, V.R. (1998) Credibility using a loss function from spline theory: Parametric models with
a one-dimensional sufficient statistic. North American Actuarial Journal, 2, 1, 101-117.

ZINOVIY LANDSMAN

Department of Statistics
University of Haifa
Mount Carmel, Haifa 31905, Israel.
E-mail: landsman@stat.haifa.ac.il

298 ZINOVIY LANDSMAN

https://doi.org/10.2143/AST.34.2.505144 Published online by Cambridge University Press

https://doi.org/10.2143/AST.34.2.505144

