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Abstract
We take another look at the construction by Hofmann and Streicher of a universe (U, E l) for the interpre-
tation of Martin-Löf type theory in a presheaf category [Cop, Set]. It turns out that (U, E l) can be described
as the nerve of the classifier ˙Setop → Setop for discrete fibrations in Cat, where the nerve functor is right
adjoint to the so-called “Grothendieck construction” taking a presheaf P :Cop → Set to its category of ele-
ments

∫
C
P. We also consider change of base for such universes, as well as universes of structured families,

such as fibrations.

Keywords: universe; type theory; category theory; homotopy type theory; presheaf categories

Let Ĉ= [Cop, Set] be the category of presheaves on the small category C.

1. The Hofmann–Streicher Universe
In Hofmann and Streicher (1997), the authors define a (type-theoretic) universe (U, E l) with U ∈
Ĉ and E l ∈ ∫̂

C
U as follows. For I ∈C and A : (C/I)op → Set, let

U(I) = Cat
(
C/I

op, Set
)

(1)
E l(I,A) = A(idI) (2)

with an evidently associated action on morphisms. A few comments are required:

1. In (1), we have taken the underlying set of objects of the category Ĉ/I = [C/I
op, Set] (in

contrast to the specification in Hofmann and Streicher (1997)).
2. In (2), and throughout Hofmann and Streicher (1997), the authors steadfastly adopt a

“categories with families” point of view in describing a morphism
E−→U (3)

in Ĉ equivalently as an object in

Ĉ/U � ∫̂
C
U , (4)
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2 S. Awodey

that is, as a presheaf on the category of elements
∫
C
U, where:

E(I) =
∐

A∈U(I)
E l(I,A) .

Thus, the argument (I,A) ∈ ∫
C
U in (2) consists of an object I ∈C and an element A ∈U(I).

3. In order to account for size issues, the authors assume a Grothendieck universe U in Set, the
elements of which are called small. The category C is then assumed to be small, as are the
values of the presheaves, unless otherwise stated.

The presheaf U, which is not small, is regarded as the Grothendieck universe U “lifted” from
Set to [Cop, Set]. We will analyze the construction of (U, E l) from a slightly different perspective
in order to arrive at its basic property as a classifier for small families in Ĉ.

2. An Unused Adjunction
For any presheaf X on C, recall that the category of elements is the comma category,∫

C
X = yC/X ,

where yC :C→ [Cop, Set] is the Yoneda embedding, which we may suppress and write simply
C/X . While the category of elements

∫
C
X is used in the specification of the Hofmann–Streicher

universe (U, E l) at the point (4), the authors seem to have missed a trick which simplifies things:1

Proposition 1 (Awodey, 2023, §28). The category of elements functor
∫
C

: Ĉ−→ Cat has a right
adjoint, which we denote

νC : Cat−→ Ĉ .
For a small category A, we call the presheaf νC(A) the C-nerve of A.

Proof. As suggested by the name, the adjunction
∫
C
� νC can be seen as the familiar “realization �

nerve” construction with respect to the covariant post-composition functor C/− :C→ Cat, as
indicated below.

Ĉ Cat

C

C

νC

y
C/− (5)

In detail, for A ∈ Cat and c ∈C, let νC(A)(c) be the Hom-set of functors,
νC(A)(c)= Cat

(
C/c , A

)
,

with contravariant action on h : d → c given by pre-composing a functor P :C/c →A with the
post-composition functor

C/h :C/d −→C/c .
For the adjunction, observe that the slice category C/c is the category of elements of the
representable functor yc, ∫

C
yc ∼= C/c .
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Thus for representables yc, we indeed have the required natural isomorphism
Ĉ

(
yc , νC(A)

) ∼= νC(A)(c) = Cat
(
C/c , A

) ∼= Cat
( ∫

C
yc , A

)
.

For arbitrary presheaves X, one uses the presentation of X as a colimit of representables over the
index category

∫
C
X, and the easy-to-prove fact that

∫
C
itself preserves colimits. Indeed, for any

category D, we have an isomorphism in Cat,
lim−→
d∈D

D/d ∼= D .
�

When C is fixed, as here, we may omit the subscript from the expressions yC and
∫
C
and νC.

The unit and counit maps of the adjunction
∫ � ν,

η : X −→ ν
∫
X ,

ε : ∫
νA−→A ,

are as follows. At c ∈C, for x : yc→X, the functor (ηX)c(x) :C/c →C/X is just composition
with x,

(ηX)c(x)=C/x :C/c −→C/X . (6)

For A ∈ Cat, the functor ε : ∫ νA→A takes a pair (c ∈C, f :C/c →A) to the object f (1c) ∈A,
ε(c, f )= f (1c).

Lemma 2. For any f : Y → X, the naturality square below is a pullback.

Y ν
∫

Y

X ν
∫

X.

f

ηY

ν f

ηX

(7)

Proof. It suffices to prove this for the case f : X→1. Thus, consider the square

X ν
∫

X

1 ν
∫

1.

ηX

η1

(8)

Evaluating at c ∈C and applying (6) then gives the following square in Set.

Xc Cat C/c , C/X

)

1c Cat C/c , C/1

)

C/−

C/−
(9)
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4 S. Awodey

The image of ∗ ∈ 1c along the bottom is the forgetful functor Uc :C/c →C, and its fiber under
the map on the right is therefore the set of functors F :C/c →C/X such that UX ◦ F =Uc, where
UX :C/X →C is also a forgetful functor. But any such F is easily seen to be uniquely of the form
C/x for x= F(1c) : yc→ X. �

Remark 3. The category of elements of the terminal presheaf 1 is C itself,
∫
1∼=C. So for every

presheaf X, there is a canonical projection
∫
X →C, and the functor

∫ : Ĉ→ Cat thus factors
through the slice category Cat/C.

Ĉ Cat/C

Cat

/1

C!

(10)

The adjunction
∫ � ν : Cat→ Ĉ factors as well, but it is the unfactored adjunction that is more

useful for the present purpose.

3. Classifying Families
For every presheaf X, the canonical projection

∫
X→C of Remark 3 is easily seen to be a discrete

fibration. It follows that for any natural transformation Y → X, the associated functor
∫
Y → ∫

X
is also a discrete fibration. Ignoring size issues for the moment, recall that discrete fibrations in
Cat are classified by the forgetful functor ˙Setop → Setop from (the opposites of) the category
of pointed sets to that of sets (cf. Weber, 2007). For every presheaf X ∈ Ĉ, we therefore have a
pullback diagram in Cat,

∫
X ˙Set

op

C Setop.
X

(11)

Using
∫
1∼=C and transposing by the adjunction

∫ � ν then gives a commutative square in Ĉ,

X ν ˙Set
op

1 νSetop.
X̃

(12)

Lemma 4. The square (12) is a pullback in Ĉ. More generally, for any map Y→X in Ĉ, there is a
pullback square

Y ν ˙Set
op

X νSetop .
(13)

Proof. Apply the right adjoint ν to the pullback square (11) and paste the naturality square (7)
from Lemma 2 on the left, to obtain the transposed square (13) as a pasting of two pullbacks. �
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Let us write V̇ → V for the vertical map on the right in (13); that is, let

V̇ = ν ˙Setop (14)
V = νSetop.

We can then summarize our results so far as follows.

Proposition 5. The nerve V̇ → V of the classifier for discrete fibrations ˙Setop → Setop, as defined
in (14), classifies natural transformations Y → X in Ĉ, in the sense that there is always a pullback
square,

Y V̇

X V.
Ỹ

(15)

The classifying map Ỹ : X → V is determined by the adjunction
∫ � ν as the transpose of the

classifying map of the discrete fibration
∫
Y → ∫

X.

The classifying map Ỹ : X → V of a given natural transformation Y → X is, of course, not in
general unique. Nonetheless, we can make use of the construction of V̇ → V as the nerve of the
discrete fibration classifier ˙Setop → Setop, for which classifying functors C→ Setop are unique
up to natural isomorphism, to infer the following proposition, which plays a role in Shulman
(2015),Gratzer et al. (2024) and elsewhere.

Proposition 6 (Realignment). Given a monomorphism c : C�X and a family Y → X, let yc :
C → V classify the pullback c∗Y → C. Then there is a classifying map y : X → V for Y → X with
y ◦ c= yc.

c∗Y V̇

Y

C V

X

c

yc

y (16)

Proof. Transposing the realignment problem (16) for presheaves across the adjunction
∫ � ν

results in the following realignment problem for discrete fibrations.
∫

c∗Y ˙Set
op

∫
Y

∫
C Setop

∫
X

∫
c

yc

ỹ (17)
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6 S. Awodey

The category of elements functor
∫
is easily seen to preserve pullbacks, hence monos; thus let

us consider the general case of a functor C :C�D which is monic in Cat, a pullback of discrete
fibrations as on the left below, and a presheaf E :C→ Setop with

∫
E∼=E over C.

E ˙Set
op

F

C Setop

D

C

E

F (18)

We seek F :D→ Setop with
∫
F ∼= F over D and F ◦ C = E. Let F0 :D→ Setop with

∫
F0 ∼= F over

D. Since F0 ◦ C and E both classify E, there is a natural iso e : F0 ◦ C ∼= E. Consider the following
diagram

C (Set
∼=)op

Setop

D Setop

C

e

p1

p2

F0

f

(19)

where Set∼= is the category of isos in Set, with p1, p2 the (opposites of the) domain and codomain
projections. There is a well-known weak factorization system on Cat (part of the “canonical model
structure”) with injective-on-objects functors on the left and isofibration equivalences on the right.
Thus, there is a diagonal filler f as indicated. The functor F := p2f :D→ Setop is then the one we
seek. �

Of course, as defined in (14), the classifier V̇ → V cannot be a map in Ĉ, for reasons of size; we
now address this.

4. Small Maps
For any cardinal number α, call a set α-small if its cardinality is strictly less than α. Let Setα↪→Set
be the full subcategory of α-small sets. Call a map f : Y → X of presheaves α-small if all of the
fibers f−1

c {x} ⊆ Yc are α-small sets (for all c ∈C and x ∈ Xc). The latter condition is equivalent to
saying that for any element x : yc→ X, the set of lifts y : yc→ Y of x across f is α-small.

Y

yc X

f

x

y

(20)

Finally, call a presheaf X :Cop → Set α-small if the map X → 1 is α-small. This implies that all of
the values Xc are α-small sets, and so the functor X :Cop → Set factors through Setα↪→Set.
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Now let us restrict the specification (14) of V̇ → V to the α-small sets:

V̇α = ν ˙Setopα (21)
Vα = νSetopα .

Then, the evident forgetful map V̇α → Vα is a map in the category Ĉ of presheaves, and it is in fact
α-small, as the reader can easily check. Moreover, it has the following basic property, which is just
a restriction of the basic property of V̇ → V stated in Proposition 5.

Proposition 7. The map V̇α → Vα classifies α-small maps f : Y → X in Ĉ, in the sense that there is
always a pullback square,

Y V̇α

X Vα.
Ỹ

(22)

The classifying map Ỹ : X → Vα is determined by the adjunction
∫ � ν as (the factorization of) the

transpose of the classifying map of the discrete fibration
∫
X → ∫

Y .

Proof. If Y → X is α-small, its classifying map Ỹ : X → V factors through Vα↪→V , as indicated
below,

Y ν ˙Setα
op

ν ˙Set
op

X νSetα
op νSetop,

Ỹ

(23)

in virtue of the following adjoint transposition,

∫
Y ˙Setα

op ˙Set
op

∫
X Setα

op Setop. (24)

Note that the square on the right is evidently a pullback, and so the one on the left is one, too,
because the outer rectangle is the classifying pullback of the discrete fibration

∫
Y → ∫

X, as stated.
Thus, the left square in (23) is a pullback. �

5. Examples

1. Let α = κ a strongly inaccessible cardinal, so that ob(Setκ ) is a Grothendieck universe. Then,
the Hofmann–Streicher universe of (3) is recovered in the present setting as the κ-small
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8 S. Awodey

map classifier
E ∼= V̇κ −→ Vκ

∼= U
in the sense of Proposition 7. Indeed, for c ∈C, we have

Vκc = ν(Setopκ )(c)= Cat
(
C/c , Setopκ

) = ob(Ĉ/c) = Uc . (25)

For V̇κ we then have,
V̇κc = ν( ˙Setopκ )(c) = Cat

(
C/c , ˙Setopκ

)
∼=

∐
A∈Vκ c

CatC/c

(
C/c , A∗Setopκ

)
(26)

where the A-summand in (26) is defined by taking sections of the pullback indicated below.

A∗Setop
κ

˙Set
op
κ

C/c Setop
κA

(27)

But A∗Setopκ ∼= ∫
C/c

A over C/c , and sections of this discrete fibration in Cat corre-
spond uniquely to natural maps 1→A in Ĉ/c. Since 1 is representable in Ĉ/c, we can
continue (26) by

V̇κc ∼=
∐

A∈Vκ c
CatC/c

(
C/c , A∗Setopκ

)
∼=

∐
A∈Vκ c

Ĉ/c(1,A)

∼=
∐

A∈Vκ c
A(1c)

=
∐

A∈Vκ c
E l(〈c,A〉)

= Ec .

2. By functoriality of the nerve ν : Cat→ Ĉ, a sequence of Grothendieck universes
U0 ⊆ U1 ⊆ . . .

in Set gives rise to a (cumulative) sequence of type-theoretic universes
V0�V1� . . .

in Ĉ. More precisely, there is a sequence of Cartesian squares,

V̇0 V̇1 . . .

V0 V1 . . . ,
(28)

in the image of ν : Cat−→ Ĉ, classifying small maps in Ĉ of increasing size, in the sense of
Proposition 7.
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3. Let α = 2 so that 1→ 2 is the subobject classifier of Set, and
= ˙Set

op
2 −→ Setop

2 =

is then a classifier in Cat for sieves, i.e. full subcategories S↪→A closed under the domains of
arrows a→ s for s ∈ S (equivalently, discrete fibrations whose fibers are truth-values). The
nerve V̇2 → V2 is then the usual subobject classifier 1→ � of the presheaf topos Ĉ,

1 = ν = V̇2 −→ V2 = ν = Ω .

4. Let i : ↪→ Setκ and p : Setκ → be the embedding-retraction pair with i : ↪→ Setκ

the inclusion of the full subcategory on the sets {0, 1} and p : Setκ → the retraction
that takes 0= ∅ to itself, and everything else (i.e. the non-empty sets) to 1= {∅}. There is
a retraction (of arrows) in Cat,

˙Setκ

Setκi p

(29)

where the left square is a pullback.
By the functoriality of (−op and) ν : Cat→ Ĉ, we then have a retract diagram in Ĉ, again with
a pullback on the left,

1 V̇κ 1

Ω Vκ Ω{−} [−]

(30)

where for any φ : X → � the subobject {φ}�X is classified as a small map by the composite
{φ} : X → Vκ , and for any small map A→ X, the image [A]�X is classified as a subobject
by the composite [α] : X → Vκ → �, where α : X → Vκ classifies A→ X. The idempotent
composite

||−|| = {[− ]} : Vκ −→ Vκ

is the propositional truncation modality in the natural model of type theory given by V̇κ → Vκ

(see Awodey et al., 2024).

6. Change of Base
Let F :C→D in Cat and consider the base change:

C [Cop,Set]

D [Dop,Set]

F

yC

F! F∗

yD

F ∗

(31)

How is the universal (small) map V̇C → VC in [Cop, Set] related to V̇D → VD in [Dop, Set] ?
For each c ∈C, we have the sliced functor F/c :C/c →D/Fc which is the component at c ∈C

of a natural transformation F/ :C/ →D/ ◦ F as functors C→ Cat.
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10 S. Awodey

C

Cat

D

F ⇓ F/

C/

D/ (32)

Indeed, for each h : c→ c′ there is a commutative square:

C/c C/c′

D/Fc D/Fc′

F/c

h◦

F/c′

(Fh)◦
(33)

The 2-cell F/ :C/ →D/ ◦ F in (32) (left Kan) extends to one,
∫
F : ∫

C
=⇒ ∫

D
◦ F!

Ĉ

Cat ,

D̂

F! ⇓ F

C

D
(34)

which has the following 2-categorical mate.
νF : F∗ ◦ νD =⇒ νC

Ĉ

Cat

D̂

νC

νD

F ∗ ⇑ νF

(35)

Evaluating at the (small) discrete fibration classifier ˙setop → setop, we obtain a commutative
square in Ĉ of the form
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F ∗V̇D V̇C

F ∗VD VC

γ̇

γ

(36)

where we have written
γ̇ = (νF) ˙setop
γ = (νF)setop

for the components of νF .

Proposition 8 (Base change for universes). For any functor F :C→D, the comparison square (36)
for universes is a pullback in Ĉ= [Cop, Set].

For the proof, we require the following.

Lemma 9. For any functor F :C→D and any c ∈C, the sliced functor F/c :C/c −→D/Fc is final.

Proof. Recall that a functor F :C→D is by definition final if for all G :D→ Set, the canonical
map lim−→G ◦ F → lim−→G is an iso, and this holds just if, for all d ∈D, the comma category d/F is
connected. Moreover, recall from Street and Walters (1973) that the comprehensive factorization
system (Fin, dFib) on Cat has the final functors as left orthogonal to the discrete fibrations. But
now note that the slice categories C/c and D/Fc have terminal objects, preserved by F/c :C/c −→
D/Fc. It therefore suffices to observe that the inclusion functor i : {1C}↪→C of a terminal object is
always final, so the same is true for F/c :C/c −→D/Fc by a familiar factorization property of the
left maps in an orthogonal factorization system. �

Proof. (of Proposition 8) Evaluating (36) at c ∈C, we obtain the following diagram of sets and
functions.

Cat D/Fc , ˙setop) (F ∗V̇D)c (V̇C)c Cat C/c , ˙setop)

Cat D/Fc , setop
)

(F ∗VD)c (VC)c Cat C/c , setop
)

γ̇c

γc

(37)

The outer square of this diagram is a pullback exactly if every square as follows has a diagonal
filler.

C/c ˙setop

D/Fc setop

F/c

(38)

Since the map on the right is the universal small discrete fibration, this condition obtains just in
case the map on the left is left orthogonal with respect to all small discrete fibrations (for “small”
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12 S. Awodey

sufficiently large), which holds just if it is a final functor, by the comprehensive factorization
system Street and Walters (1973). But by Lemma 9, this is the case for every c ∈C. �

7. Classifying Fibrations
Given the universal small family V̇ → V of Proposition 7, we first construct a classifier U̇ → U
for any structured notion of fibration using the method of classifying types developed in Awodey
et al. (2024) (which in turn is based on Shulman’s locally representable notion of fibered structure
(Shulman, 2019)). We consider the behavior of such universal maps under base change in the next
section.

Suppose that for each object X and family A→ X, there is a family Fib(A)→X that classifies
fibration structures on A→ X, in the sense that there is a bijection, natural in X, between sec-
tions of Fib(A)→X and (a notion of) fibration structures on A→ X. Naturality in X means that
Fib(A)→X is stable under pullback, in the sense that for any f : Y→X, we have two pullback
squares:

f∗A A

Y
f

X

Fib(f∗A) Fib(A)
(39)

Thus,
Fib(f ∗A)∼= f ∗Fib(A) .

It then follows from Proposition 7 that, if A→X is small, then Fib(A)→X is itself a pullback
of the analogous object Fib(V̇)→V constructed from the universal small family V̇→V . So again
there are two pullback squares,

A V̇

X V

Fib(A) Fib(V̇)
(40)

where the indicated map X → V is the canonical classifier of A→ X.

Proposition 10. There is a universal small fibration,
U̇ −→ U .

Every small fibration A→X is a pullback of U̇→U along a canonical classifying map X→U .

A U̇

X U
(41)
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Proof. We can take
U := Fib(V̇),

which comes with its canonical projection Fib(V̇)→V as in diagram (40). Now define U̇→U by
pulling back the universal small family,

U̇ V̇

U V.

Consider the following diagram, in which all the squares (including the distorted ones) are pull-
backs, with the outer vertical one coming from Proposition 7 and the lower horizontal one
from (40).

A V̇

U̇

Fib(A) U

X a

α
α′

V.
(42)

By assumption, a fibration structure α on A→X is a section of Fib(A)→ X, which is the pullback
of Fib(V̇)= U along the classifying map a : X → V ,

Fib(A)= a∗Fib(V̇)= a∗U .
Such sections therefore correspond uniquely to factorizations α′ of a : X → V , as indicated, which
in turn induce pullback squares of the required kind (41).

Finally, observe that the map U̇ → U has a canonical fibration structure. Indeed, consider the
following diagram, in which both squares are pullbacks.

U̇ V̇

U V

Fib( U̇) Fib(V̇)
(43)

Since Fib(V̇) is the object of fibration structures on V̇→V , its pullback Fib( U̇) is the object of
fibration structures on U̇→U . But since U = Fib(V̇) by definition, the lower square is the pull-
back of Fib(V̇)→V against itself, which does indeed have a distinguished section, namely the
diagonal

� : Fib(V̇)→Fib(V̇)×V Fib(V̇). �
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14 S. Awodey

8. Change of Base for Universal Fibrations
Now let F :C→D in Cat with V̇C → VC in Ĉ and V̇D → VD in D̂, related by the base change
geometric morphism

F! � F∗ � F∗ : Ĉ−→ D̂

as in Proposition 8, and suppose that we have a structured notion of fibration in Ĉ, classified by
U̇C → UC as in Proposition 10. Then, we can transfer a structured notion of fibration to D̂ by
declaring B→ Y to be a fibration in D̂ just if F∗B→ F∗Y is one in Ĉ; more precisely, we define a
fibration structure on B→ Y to be one on F∗B→ F∗Y . These structures are then classified in D̂,
as follows.

Fibration structures on F∗B→ F∗Y are classified in Ĉ by sections σ of Fib(F∗B)→ F∗Y ,

F ∗B

Fib(F ∗B)

F ∗Y.
σ

(44)

Applying the right adjoint F∗ and pulling back along the unit η, we obtain an object over Y that
classifies such sections.

Fib(B) := η∗F∗Fib(F∗B)−→ Y (45)

B F∗F ∗B

η∗F∗Fib(F ∗B) F∗Fib(F ∗B)

Y η F∗F ∗Y
(46)

Indeed, sections of Fib(B)→ Y correspond bijectively to lifts of the unit η across the image
F∗Fib(F∗B)→ F∗F∗Y under F∗, which are exactly sections of Fib(F∗B)→ F∗Y .

As before, it suffices to do this construction once in the “universal case,”

V̇D F∗F ∗V̇D

η∗F∗Fib(F ∗V̇D) F∗Fib(F ∗V̇D)

VD η F∗F ∗VD
(47)

to obtain the classifying type for fibrations in D̂ as (the domain of) the indicated map
UD := η∗F∗Fib(F∗V̇D)−→ VD . (48)
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Proposition 11. Let U̇D → UD be the pullback indicated below,

U̇D V̇D

UD VD.

where UD → VD is as defined in (48). Then, U̇D → UD classifies fibrations in D̂.

Proof. Proposition 10 applies once we know that Fib(− ) as defined in (45) is stable under pull-
back. It clearly suffices to show that, for each B→ Y , the horizontal square below is a pullback
when b : Y → VD is the canonical classifying map.

B V̇D

Fib(B) Fib(V̇D)

Y
b

VD
(49)

Fib(B)∼= b∗Fib(V̇D)
Inspecting the definitions (45) and (48), this follows from the naturality of the units η,

Y

b

η
F∗F ∗Y

F∗F ∗b

UD η F∗F ∗VD.
(50)

Indeed, consider the following cube, in which the front face is the naturality square (50) and
the top and bottom faces are the defining pullbacks (46) and (47) of Fib(B) and UD = Fib(V̇D)
respectively.

Fib(B) η∗F∗Fib(F ∗B) F∗Fib(F ∗B)

Y

b

η
F∗F ∗Y

F∗F ∗b

Fib(V̇D) η∗F∗Fib(F ∗V̇D) F∗Fib(F ∗V̇D)

VD η F∗F ∗VD
(51)
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It suffices to show that the right face is a pullback, and since F∗ preserves pullbacks, it therefore
suffices to show that the horizontal square below is a pullback.

F ∗B F ∗V̇D

Fib(F ∗B) Fib(F ∗V̇D)

Y
F ∗b

F ∗VD.F ∗ (52)

But that follows from the stability of Fib in Ĉ and preservation by F∗ of the classifying pullback
square for B→ Y . �

Thus, as claimed, we have:

Theorem 12 (Base change for universes of fibrations). Let F :C→D with base change
F! � F∗ � F∗ : Ĉ−→ D̂

and suppose that we have a structured notion of fibration in Ĉ classified by a universe U̇C → UC.
Then, the structured notion of fibration in D̂ determined by pullback along F∗ is classified by U̇D →
UD where

UD := η∗F∗Fib(F∗V̇D)−→ VD . (53)

Theorem 12 is used in Awodey et al. (2014) to move the universe of fibrations in a model of
type theory from the interval model in cubical species cSet = [�op × , Set] to the equivariant
one in cubical sets cSet= [�op, Set] along the base change induced by the projection functor
�op ×  →�op.

Acknowledgements. Thanks to Mathieu Anel, Reid Barton, Thierry Coquand, Marcelo Fiore, and Emily Riehl for discus-
sions, and to Evan Cavallo, Ivan Di Liberti, and Taichi Uemura for help with the references. This material is based upon work
supported by the Air Force Office of Scientific Research under awards FA9550-21-1-0009 and FA9550-20-1-0305.

Note
1 Other researchers including Christian Sattler have also noted the following description of the base objectU of the Hoffman–
Streicher universe (U, E l).
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