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A NEW VARIATIONAL METHOD FOR THE p(x)-LAPLACIAN
EQUATION

MAREK GALEWSKI

Using a dual variational method we shall show the existence of solutions to the Dirich-
let problem

-div(|Vtx(x)lp( l )-2Vu(z)) = Fu(x,«(x)), u e W0
1>p(l)(fi)

(0.1) z ( y ) | m = 0.

without assuming Palais-Smale condition.

1. INTRODUCTION

We shall show the existence of solutions to the Dirichlet problem

) = Fu(x,u(x)), u e

(1.1) u(x)\aa = 0,

by using a dual variational method. Here Q C RN is a bounded region, p, q € C(Q), and
l/(p(x)) + l/(g(x)) = 1 for x € Q, and Wo

lj>(x)(n) denotes the generalised Orlicz-Sobolev
space, see [5, 3]. Let p~ = inf p(x). We assume that p~ ^ 2.

Variational problems with (p,9)—growth conditions have been studied in the last
few years, see [4, 6] and references therein. Problems with (p, q)-growth conditions
are applied in elastic mechanics and electrorheological fluid dynamics, see [9, 10] and
references therein.

We construct a variational method which applies in the super-critical case without
assuming a type of Palais-Smale conditions. Thus we think that our approach may shed
new light on the study of Dirichlet problems with non-standart growth conditions. The
case of subcritical growth is considered by using theory of monotonne operators in [4].
But in [4] a type of the Palais-Smale condition is assumed in order to obtain the existence
of solutions in the supercritical case. The elliptic systems are considered in [6], where the
ideas from [4] are applied. We shall make use of the duality theory for convex functions,
see [2]. But since we need the convexity of F (the primitive of Fu with respect to the
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54 M. Galewski [2]

second variable) only on some interval, our approach seems to unite both super- and
sub-critical cases. In the derivation of the dual variational method, we use some ideas
developed in [8] for ordinary differential equations with super-critical growth.

In what follows Cs denotes the best Sobolev constant

||u|U.) ^ Cs||VU||p(l) for all u G Wo
lj>(l)(fl).

Since W0
1>p{x)(f2) is continuously embedded into Wo

llP~(fi), ([3]), we denote by Cx and C2

the following constants

(1.2)

(1.3)

||Vu||p- ^ Ci||Vu||p(x)

max|u(x) < Ca||Vu||p- for all u G W0
1|P(l)(fl)

We make the following assumptions.
F l . vol(fl) ^ (1/p- + l/q~)~l, and there exist a function z G C^fl) such that

Fu(-,z(-))GL°°(fl)and

ess sup

/= | -
Let

F2. F : Cl x I and .Fu : fi x J are Caratheodory functions, F is convex in u for
almost all x G fl, and moreover

(1.4) C\CiCs ess sup Fu(x,sup|z(s)|)
v sen J\

F3. Fu(i,0) 7̂  0, for almost all x G fl, and the functions x i-> \F(x, 0)| and
i-+ |F'(x,0)| are integrable. Moreover for almost all x G fl

(1.5) Fu(x, -suplz(s)l) ^ Fu(x,supU(s)|)v »en ' I v sen '

These assumptions make F : fl x / —> R convex and lower semi-continuous, where F*
denotes the Fenchel-Young conjugate of F, see [2].

Equation (1.1) is the Euler-Lagrange equation for the functional J : WQX\Q)

'-> n, ([4])

J{*)= f -j-AVu{x)\p{x)dx- f F{x,u(x))dx.
Jn P\x) Jn

With the growth conditions given above J is not well defined on Wo
llP^(fi). We shall

construct a subset of WQX' on which the integral / F(x, u(x)) dx is finite.
Jn

https://doi.org/10.1017/S0004972700034870 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034870


[3] A variational method 55

We invesitagate J, together with its dual functional Jo • W -» % given by

JD{v)= f F*(x,-d\vv{x))dx- [ -^\v(x)\qMdx,

here W = {v G L9(l)(fi) | divw e

The method which we use is based on the definition of the set X, see relation (2.2).

In its abstract formulation it is used in topological methods, compare with [1] where a

set similar to our set X is constructed but the existence result is obtained via a fixed

point theorem. We investigate J on a set X and Jo on a set Xd dual to X in a certain

sense. On these sets we look for critical values and critical points of both functionals.

Having established the relationship between the relevant critical point we get the solution

to (1.1).

2. DUALITY RESULTS

We shall seek solutions to (1.1) in the form of a pair (x,v) G WQX'(Q X W) such

that

\Vu{x)\p{x)~2Vu(x) = v(x),

(2.1) - div v(x) = Fu (x, u(x)).

The system (2.1) may be viewed as a Hamiltonian system, and will be obtained with the

aid of a duality theory describing relations between critical points (that is, a variational

principle) of a certain kind and critical values (that is, a duality principle) of the action

and dual action functional.

In order to develop the duality theory for functionals J and Jo we shall construct

certain nonlinear subsets of the spaces W,, x)(fl) and (W,, *')* on which we shall look

for critical points.

We define ~X to be the set of functions u G Wo
llP(l)(f2) such that

llulltj"(*)(m ^ Cs ess sup Fu(i,sup|l(5)|)|, div(|VU(-)r(l)"2Vu(-))€L°°(n), and

u(x) e -sup|z(s)|,sup|z(s)| almost everywhere.
1- «en' ten' 'J

We also define the set X such that for all u 6 X the relation

(2.2) div(|Vu(z)|p(l)~2Vu(z)) =Fu(x,u(x)).

implies u € X.

PROPOSITION 2.1. X =X~.
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PROOF: Take any w&X. The solution x e Wo
llP(l)(ft) to

-div(|Vu(x)|p( l )-2Vu(x)) = Fu(x,w(x)),

u{x)\dn = 0,

exists by [4, Theorem 4.2]. Indeed, by Fl, F2, and F3 we get for any w € X

Fu(x, — sup|z(s)|) ^ Fu(x, w(x)) < Fu(x,sup|z(s)|) for almost all x e Q.
^ sen ' ^ sen '

Thus Fu(-,w(-)) e L°°(Q) and [4, Theorem 4.2] applies.
From the relation

[ -div(\Vu(x)\p{x)~2Vu(x))u{x)dx = f F«(x,w(x))u(x)dx,
n ^ ' Jn

we obtain

/ !Vu(x)|p(l) dx ^ f Fu{x,z{x))u(x) dx
Jn Jn

< ess sup IFu(a;,sup|l(s)M /|u(x)jdx
ien | ^ sen ' Jn

^ ( 1 ) vol(fi) ess sup Fu(x,sup|z(s)|)
\V~ a ' ten V «<=n /

\U\\p(x)-

So

Since

dx ^ Cs ess sup

we obtain by the assumptions that for HVull^ ^ 1

llVullP(x) ^ cs ess sup Fu(x,sup|l(5)|).
ien v sen '

If f \Vu(x)\p{x)dx > 1 we get f \Vu(x)\p{x)dx > ||Vu||j7x) so
Jn Jn

l|Vu||p(l) < llVull^j1 ^Cs ess nip Fu(x,sup|z(s)|)|.

By direct calculations using inequalities (1.3) and (1.2) we obtain for all x e

ess sup Fu(x,sup|j(s)|)j £ ||Vu||p(l) > ^l |Vn||p.

•max
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So by the assumptions for almost everywhere X € fi

\u{x)\ ess sup
xen

Fu (X, sup I z(s) I) ^ sup|z(s)|
^ sen ' sen

Thus u € X and we may put X = X. D

From now on we shall consider functional J on the set X. The dual functional JQ
will be considered on a set Xd which is the set of those v € W for which there exists
u € X such that

-divu(x) = Fx(x,u(x)).

Moreover for any v € Xd there exists exactly one u € X and for any u € X there
exists exactly one v € Xd.

We have the following lemmas.

LEMMA 2 . 2 . There exists a constant 7 such that for all u S X

F(x,u{x))dx
i

PROOF: By the convexity of F we get for almost all x € Q

F (T n{r\\ < PYT (\\ -X- W (T IIITWIIIT}

Thus by the assumptions

\f F{x,u(x))dx < f\F(x,0)\dx+ [\FU(X,U(X))U(X) dx
\Jn Jn Jn'

f f\ (
Jn sen Jn\ ^ sen

LEMMA 2 . 3 . There exists a constant 77 such that for allv €. Xd

I F* (x, - div v(x)) dx ^ rj.

PROOF: We need only show that the integral

/F*(x,-divt;(x))dx
Jn

is finite for any v € Xd. By the convexity of F we get for almost all x 6 fi

F*(x,-divt;(x)) ^ F'(x,0)

dx =

where ^(x) £ 9F*(x, - divu(x)). Since v £ Xd, it follows that there exists u € X such

that
-divu(x) = Fu(x,u(x)).
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Thus by convexity u(x) € dF*(x, - d i v u ( i ) ) . By the assumptions

\f F'(x,-d\w{x))dx ^ [\F*(x,0)\dx+ [ \u(x)\-\-diw{x)\dx
\Jn Jn in

^ /"|F*(x,O)|dx + sup|l(s)| f Fu(i,sup|5(s)|)\dx = r1.
Jn sen Jn\ v sen ' | rj

From the above lemmas it follows that J and Jo are well defined on X and Xd. We
consider a functional J * : X x Xd —> /? given by the formula

J*(u,v)= f F'(x,-divv(x))dx+ [ -}-r\Vu{x)\p{x) dx - f Vu(x)v{x)dx.
Jn Jn P\x) Jn

In the proof of the duality principle we shall make use of the following lemmas.

LEMMA 2 . 4 . For any v € Xd

inf J*(u,v) — JD(V)-

PROOF: Fix v e Xd. We obtain by a Fenchel-Young inequality

sup( / Vu(x)v(x)dx- f -^\Vu(x)\pix) dx\ ^ sup / -^\v{x)\"{x) dx
uexlJn JnPyx) J uexJn<l(x)

By the definition of Xd for a given v € Xd there exists uv £ X satisfying

(2.4) \Vuv(x)\pix)-2Vuv(x) = v(x).

Indeed, by definition for a given v G Xd there exists u £ X such that

— divt>(a;) = Fu(x, u(x)).

By relation (2.2) in turn for this u there exists uv such that

Thus we can define uv by (2.4). Relation (2.4) and the convexity relations give

[-L-\Vuv(x)\p{x) dx + [-L\v(x)\^ dx = [Vuv(x)v(x)dx.
Jn P(x) Jn 1\x) Jn

By the above

-J*{uv,v)= f Vuv{x)v(x)dx- f -iT|VTio(i)|p(l) dx - f F*(x,-divv(x))dx
Jn Jn P\x) Jn

(2.5) = f -^-r\v{x)\"{x)dx- f F'{x,-d\vv{x))dx.
Jn Q\x) Jn
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[7] A variational method 59

As a consequence of (2.3) and (2.5) we have

-JD(V) = -J*(uv,v) ^ sup -J#(u,v) < -JD{V)-
X D

LEMMA 2 . 5 . For any u

infdJ*(u,v) = J{u).

PROOF: Fix u € X. We obtain by the Fenchel-Young inequality

(2.6) sup { f(-diwv(x))u(x)dx- [ F*(x,-divv{x))dx\
v€(wi.pwy Un Jn )

^ sup { f u{x)f{x) - f F*(x, f(x)) dx)
feLtW(n) (Jn Jn )

^ sup [ F(x,u(x))dx= I F{x,u{x))dx.
/6i'(x'(n) Jn Jn

By definition of Xd we get there exists vu such that

-divuu(x) = Fu(x,u(x)).

By (2.7) and using the convexity of F we get

-J#(u,vu)= I (-divvu{x))u(x)dx - / F'(x,-di\vJx))dx - [ —r-r|Vu(z)|'>(

Jn Jn JnP(x)

(2.7) = f F(x,u(x))dx- f -^\Vu(x)\p{x)dx = -J(u).
Jn JnP(x)

As a consequence of the above relation we obtain by (2.6) and (2.7)

—J(u)= / Vu(x)vu(x)dx — / -7-r|Vu(x)| dx — / F'(x, — divvu(x))dx
Jn JnPW Jn

^ sup { f Vu(x)v(x) dx- f F' (x, - div v(x)\ dx}
vew (Jn Jn ) '

THEOREM 2 . 6 . (Duality Principle.)

inf J{u)= inf JD(v).

P R O O F : By Lemmas 2.4 and 2.5 we obtain

inf J(u) = inf inf J#(u, v)= inf inf J*(u,v)= inf JD(V).
uex K ' uexvex' K ' veJfuex v ;

 v€X" K rj
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3. VARIATIONAL PRINCIPLES

We shall use the duality results to derive necessary conditions for the existence of

solutions to (1.1).

THEOREM 3 . 1 . (Variational Principle.) Suppose that there exists u e X such

that
—oo < J(u) = inf J(u) < oo.

Then there exists v € Xd such that

(3.1) -diviJ(z) = Fu(x, «(*)),

(3.2) \Vu(x)\p{x)-2Vu(x)=v{x).

Moreover

(3.3) inf JD(v) = JD{v) = J{u) = inf J(u).
v£Xd «ex

PROOF: Since u G X, we may take v € Xd such that

— div v(x) = Fx (x, u(x)).

Thus (3.1) holds. By (3.1) and by the Fenchel-Young inequality we have

j(u) = f _l_|Vu(x)|p(:r) dx - f F(x,u{x)) dx
JnP(x) Jn

= - f(-dWv(x))Vu{x)dx+ [ Ft(x,-divv{x))dx+ f -?-|Vu(x)|p(l) dx
Jn Jn Jn P\x)

= - [ v(x)S7u(x) dx + [ -}—\Vu(x)\p{x) dx + f F*(x, -diviJ(i)) dx
Jn Jn P\x) Jn

> - f -}-r\v(x)\q{x) dx+ f F'(x, - divzJ(x)) dx = JD(v).
Jn Q\x) Jn

Hence J{u) ^ JD(v)- By Theorem 2.6 it follows that J(u) s$ inf JD(v) ^ JD{v). Hence
v£Xd

J(u) = JD{V) and

(3.4) / -i-|Vu(x)|p(l)dx - / F{xrfx)) dx
Jn V\x) Jn

= - f -^T|VU(x)|?(l)dx+ f F'(x,-divv{x)) dx.
Jn Q\x) Jn

By (3.1) and (3.4) it follows that
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Hence (3.2) holds. Assertion (3.3) follows by Duality Principle and since J(u) = JD{V)- D

A similar result may be derived for minimising sequences. Theorem 3.2 may be
viewed as an e-variational principle and it will be used in the proof of the existence
theorem. It differs from Theorem 3.1 in relation (3.2), which is now presented in a
i-subdifferential form.

THEOREM 3 . 2 . Let {UJ}, Uj £ X, j £ AT be a minimising sequence for J and
let - o o < inf J(UJ) < oo. If for Vj £ Xd, j £ Af we have

(3.5) -divw(u,-) = Fu(x,uj(x)),

then {VJ} is a minimising sequence for Jry. For any e > 0 there exists jo such that for

j 2 Jo

(3.6) 0 < / - r T |Vu,(x) |p ( l )da;+ / —-r \Vj(x)\q{x) dx - / vAx)VuAx)dx ^e.

Moreover

(3.7) inf JD(V) = inf JD{VJ) = inf J(u) — inf J{v.j).

P R O O F : Since Uj e X for j € M we obtain that there exists Vj € Xd such that (3.5)
is satisfied. We shall show that {VJ} is a minimising sequence for JD. By the above and
Fenchel-Young inequality we obtain reasoning as in the proof of Theorem 3.1 that for
any j € M

(3.8) J(UJ) > JD(vj).

By the Duality Principle and (3.8) we get

inf Jo(uj) ^ inf Jp{v) = inf J(u) — inf J (u , ) ^ inf JD{VJ).

Thus we get (3.7) and it follows that {VJ} is a minimising sequence for JD.

Let us take arbitrary e > 0. It follows that there exists jo such that for j ^ j0 we
have

J(UJ) < inf J{UJ) + e.

By (3.8) it now follows that for j ^ j0 we have JD(VJ) < inf J(UJ) + e. So

) < J(itj) < inf J(UJ) +

Thus we get (3.6) using the definitions of J and Jp-
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4. T H E EXISTENCE OF SOLUTIONS

We shall show that there exists an element u € Wo
lj>^(fi) which together with

a corresponding v € W satisfies system (2.1). We shall make use of the e-variational
principle for minimising sequences and the construction of sets X and Xd. It is not
the existence of the minimising sequences that is a really difficult to establish, but their
convergence to the pair satisfying system (2.1). Here the duality theory plays again an
important part.

THEOREM 4 . 1 . There exists a pair (TZ, v) € Wo1>p(l)(fi) x Wsatisfying the system

(2.1), that is,

(4.1) \Vu(x)\p(x)-2Vu(x)=v{x),

(4.2) - divtJ(z) = Fu(x,u{x)),

(4.3) inf JD(v) = JD(v) = J{u) = inf J(u).

P R O O F : We first show that J is bounded from below on X. From Lemma 2.2 it
follows that

J(x) = / —-r | Vu(z) | p ( l ) dx - f F(x, «(i)) dx > - 7 .
Jn P\x) Jn

Now we put b — J{x0) for a fixed x0 e X and consider the Lebesgue set

S b = { x € X : J ( x ) ^ b } .

By a direct calculation we get for all x G Sb

[
nP+

It follows that Sb is relatively weakly compact in WO
1>P^(Q). Thus we may choose in Sb

a weakly convergent minimising sequence {UJ} for a functional J. This sequence is up
to a subsequence strongly convergent in U~ (Q.) and thus convergent almost everywhere.
We denote its limit by u. We may now observe that J is weakly lower semicontinuous on
Sb- Indeed,

Wo
ljKl)(fi) 3 x ^ 1 _L- |Vu(z) | p ( x ) dx G R

Jn P\x)

being convex and lower semicontinuous is weakly lower semicontinuous ([2]). Since the

limit
lim / Fu(x,Uj(x))dx = / Fu(x,u(x))dx

exists we get

(4.4) lim inf J(UJ) > J{u).
j—•OO
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Thus J(u) = inf J(u).
uex

We now choose the sequence {VJ} in such a way that Vj € Xd for j G J\f and

(4.5) -divwj(z) = Fu(x,Uj(x)).
We investigate the convergence of {VJ} and {— d\Wj}.

From relation (4.5) we obtain that {-divvj} is convergent almost everywhere to a
certain function w(x) = Fu(x,u(x)). We observe that w € L°°(fi). From Theorem 3.2 it
follows that {VJ} is a minimising sequence for Jo and we get for j sufficiently large and
a fixed e > 0,

f Jz-^M^dx- f F(x,Uj(x))dx
Jn P(x) Jn

- f F'(x,-dWVj(x))dx+ f -L\Vj(x)\^
z)dx^e.

Jn Jn Q\x)

By the above, by definition of {UJ} and by Lemma 2.3 it follows that {VJ} is weakly
convergent in L'W(f2). We denote its limit by v. We show that divtJ = w. Since Co°(fl)
is dense in Wo

x'p(z'(fi), ([5]), we may proceed as follows. We take any / e CQ°(Q) and
calculate

/ Vf(x)v(x)dx = lim / Vf{x)vj(x)dx
Jn J->°° Jn

= — lim / f(x) divVj(x) dx
>-»oo y n

= - f f(x)w(x)dx
Jn

Thus by the Euler-Lagrange lemma for mutliple integrals, ([7]), we get divU = w and so
relation (4.2) holds .

By Theorem 3.2 and relation (4.5) it follows that

i m & ( L ^ y ' V u j ( x ) | P ( I ) d x + L w)Hx)\q{x)dx -1vj{x)vu*ix)dx)=°-
Thus

0 * ^^ii^^'^^i^'^
^ lim inf / -j-^lVuAx^dx + hm inf / -i-|wi(*)|«(') dx

+ lim / div vAx)uAx) dx
J-»oo Ja

> f -L\Vu(x)\p{x)dx+ f -L\v(x)\«')dx+ I divv(x)u(x)dx 2 0.
JnP(z) JnQKx) Jn
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The last relation follows by the Fenchel-Young inequality. Hence

L ^)'w(x)|P(I) dx - LHx)v~u{x) dx+L ^{x)]q{x) dx=°-
So (4.2) is satisfied. Relation (4.3) follows by Duality Principle, (4.4) and since
JD(v) = J(u).

COROLLARY 4 . 2 . There exists ueX such that

-div(|V5Z(z)|p(x)~2V«(z)) = Fu(x,u(x))-.

J ( u ) = i n f J(u).

PROOF: It suffices to prove that lim u, = u € X in the proof of Theorem 4.1.
J-+OO

Indeed, we must show that

(4.6)

(4.7)

and

(4.8)

We infer

for all j

that

and

ess sup ,(z,sup|z(s)|)v sen '

u(x) e — sup|2(s)|,sup|2:(s)| almost everywhere
L sen sen J

|()|
sen sen

IK'IL^Hn) ^ Cs ess sup

l irv. I n f Ho, II -» IIjTll

Thus (4.6) holds. By definiton of the sequence {UJ} we also get

sen

Since {UJ} is convergent almost everywhere, we get (4.7). To prove (4.8) we observe that

Fu(x,u{s)) ^ Fu(x,sup|z(s)|)v sen '

for almost all x. D
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