NON-NEGATIVE VALUES OF QUADRATIC FORMS

R. T. WORLEY

(Received 5 February 1969)

Communicated by E. S. Barnes

1. Introduction

In a paper [1] of the same title Barnes considered the problem of finding an upper bound for the infimum $m_+(f)$ of the non-negative values¹ of an indefinite quadratic form f in n variables, of given determinant $\det(f) \neq 0$ and of signature s. In particular it was announced (and later proved – see [2]) that $m_+(f) \leq (16/5)^{\frac{1}{5}}$ for ternary quadratic forms of determinant 1 and signature -1. A simple consequence of this result is that $m_+(f) \leq (256/135)^{\frac{1}{5}}$ for quaternary quadratic forms of determinant -2.

In this paper it will be shown that one can do considerably better than $(16/5)^{4}$ for most ternary quadratic forms f of signature -1, and that consequently $m_{+}(f) < (128/81)^{4}$ for quaternary quadratic forms of signature -2. It should be pointed out that the restriction that $|\det(f)| = 1$ is really no restriction at all as multiplication of a form of this type by d^{4} gives a form f with $|\det(f)| = d$ and it plainly follows by the results that $m_{+}(f) < (128/81)^{4}$ for all quaternary quadratic forms f with $|\det(f)| = d$ and of signature -2.

2. Statement of results

The following are the results proved. For convenience the signature has been changed to +1 and $m_{-}(f) = m_{+}(-f)$ has been considered.

THEOREM 1. Let f(x, y, z) be a ternary quadratic form of signature 1 and let $|\det(f)| = d \neq 0$. Then $m_{-}(f) < (8d/3)^{\frac{1}{3}}$ unless f is equivalent to a multiple of one of the following forms:

$$f_1(x, y, z) = x^2 + xy + y^2 + 15yz - 15z^2$$

$$f_2(x, y, z) = x^2 + xy + y^2 + xz + 32yz - 29z^2$$

$$f_3(x, y, z) = x^2 + y^2 + 8yz - 8z^2.$$

¹ A form $f(x, y, \dots, z)$ is said to take the value v if there exist integers x, y, \dots, z not all zero such that $f(x, y, \dots, z) = v$.

224

Furthermore $m_{-}(f_{1}) = 6 = (16d/5)^{\frac{1}{2}}, m_{-}(f_{2}) = 9 = (27d/10)^{\frac{1}{2}}$ and $m_{-}(f_{3}) = 4 = (8d/3)^{\frac{1}{2}}$.

THEOREM 2. Let g(t, x, y, z) be a quaternary quadratic form of signature 2 and let $|\det(g)| = d \neq 0$. Then $m_{-}(g) < (128d/81)^{\frac{1}{4}}$.

3. Deduction of theorem 2

Let g(t, x, y, z) be a quaternary quadratic form of signature 2 and let $|\det(g)| = d \neq 0$. If $m_+(g) = 0$ we have $m_-(g) = 0$ by Oppenheim [3] and so g satisfies the conclusion of Theorem 2. If $m_+(g) > 0$ we may take $m_+(g) = 1$; if this does not hold multiply g by $(m_+(g))^{-1}$. Let $m_-(g) = a$; we assume a > 1, else the symmetric minimum result of Oppenheim [4] yields $d \geq \frac{7}{4} > \frac{81}{128}a^4$.

As $m_+(g) = 1$, g takes, for any n > 1, a value v_n satisfying $1 \le v_n < 1\frac{1}{n}$. By applying a suitable integral unimodular transformation to g we obtain a form g_n , equivalent to g, of the shape

(1)
$$g_n(t, x, y, z) = v_n(t + \lambda_n x + \mu_n y + \delta_n z)^2 + v_n^{-1} f_n^*(x, y, z),$$

where f_n^* is a ternary quadratic form of signature 1. If f_n^* were to take a value u < 0at (x, y, z) = (X, Y, Z) then setting (x, y, z) = (Xt, Yt, Zt) gives a binary section of g_n of determinant -u, and this section cannot take a value in the open interval (-a, 1). Thus $u \leq -a - \frac{1}{4}a^2$ by Segre [5], so $m_-(f_n^*) \geq a + \frac{1}{4}a^2$. But $|\det(f_n^*)| = d$ and theorem 1 gives f_n^* a multiple of either f_1, f_2 or f_3 , or $(8d/3)^{\frac{1}{2}} > m_-(f_n^*)$. The latter possibility yields $(8d/3)^{\frac{1}{2}} > a + \frac{1}{4}a^2$, which implies that $m_-(g) = a < (128d/81)^{\frac{1}{4}}$ since $(1 + \frac{1}{4}a)^3a^{-1}$ has a minimum of 27/16 attained at a = 2.

It now remains to consider the possibility that, for each n, $f_n^* = m_n f_{j_n}(x, y, z)$ for $j_n = 1, 2$ or 3. If $v_n \neq 1$ for any n we may choose a sequence n_1, n_2, \cdots such that as $n_i \to \infty$ we have $v_{n_i} \to 1, \lambda_{n_i} \to \lambda, \mu_{n_i} \to \mu, \delta_{n_i} \to \delta$ and $m_{n_i} \to m$ for some λ, μ, δ and m, and such that j_n remains fixed (say at j). Denoting $(t + \lambda x + \mu y + \delta z)^2 + mf_j(x, y, z)$ by $g^*(t, x, y, z)$ it is clear that by choosing n_i large enough we can get values of g_{n_i} , and thus g, arbitrarily close to any specified value of g^* . Hence $m_+(g^*) = 1$ and $m_-(g) \leq m_-(g^*)$, and we have reduced this case to the special case where $v_n = 1$. Hence it remains only to show that if

$$g = (t + \lambda x + \mu y + \delta z)^2 + mf_j(x, y, z) = g_j(t, x, y, z)$$

for j = 1, 2 or 3 then $m_{-}(g) < (128d/81)^{\frac{1}{4}}$.

(a) Let $g = g_1(t, x, y, z)$ and suppose that $m_-(g) = a \ge (218d/81)^{\frac{1}{4}} = (320m^3/3)^{\frac{1}{4}}$. As $m_-(f_1) = 6$ and we require $m_-(mf_1) \ge a + \frac{1}{4}a^2$, we must have $a^4 \ge 40(a + \frac{1}{4}a^2)^3/81$ which is possible (for a > 1) only if $a < 4 \cdot 1$. Hence m < 1. 3837. As $||\lambda - \frac{1}{2}|| < \frac{1}{6}$, $||\lambda - \mu - \frac{1}{2}|| < \frac{1}{6}$ and $||\mu - \frac{1}{2}|| < \frac{1}{6}$ are not simultaneously possible,² consideration of g(t, 1, 0, 0), g(t, 1, -1, 0) and g(t, 0, 1, 0)

² ||x|| is used to denote the distance from x to the nearest integer.

yields $m \ge 8/9$. Hence a > 2.94. As f_1 takes the value -6, g has a section of the form $(t+\gamma)^2 - 6m$, and as $5\frac{1}{3} \le 6m < 8.31$ choosing $4 \le (t+\gamma)^2 \le 6.25$ yields a contradiction to either $m_+(g) = 1$ or $m_-(g) = a$ unless $6m \ge 4+a$. A number of iterations on this and $a \ge (320m^3/3)^4$ yields m > 1.31 and a > 3.9. As f_1 takes the value -9 (at (4,1,-1)), g has a section of the form $(t+\rho)^2 - 9m$. But 11.7 < 9m < 12.5 and so choosing $9 \le (t+\rho)^2 \le 12.25$ yields a contradiction to either $m_+(g) = 1$ or $m_-(g) = a > 3.9$. This shows that $m_-(g_1) < (128d/81)^4$.

(b) Let $g = g_2(t, x, y, z)$ and suppose that $m_-(g) = a \ge (128d/81)^{\frac{1}{4}} = (1280m^3/3)^{\frac{1}{4}}$. Then from $m_-(f_2) = 9$ we get $a^4 \ge 1280(a + \frac{1}{4}a^2)^3/2187$ which can hold only for a < 2.5. Hence $m < \frac{3}{4}$. However we then have a value $(t + \lambda)^2 + m$ of g which contradicts $m_+(g) = 1$ if $0 \le (t + \lambda)^2 \le \frac{1}{4}$. Hence $m_-(g_2) < (128d/81)^{\frac{1}{4}}$.

(c) Let $g = g_3(t, x, y, z)$ and suppose that $m_-(g) = a \ge (128d/81)^{\frac{1}{4}} = (1024m^3/27)^{\frac{1}{4}}$. Then from $m_-(f_3) = 4$ we get $a^4 \ge 1024m^3/27 \ge 16(a+\frac{1}{4}a^2)^3/27$ which is possible only for a = 2 and $m = \frac{3}{4}$. Considering g(t, 1, 0, 0), g(t, 0, 1, 0) and g(t, 3, 0, 1) yields that $\lambda = \mu = \frac{1}{2}$, $\delta = 0$ in order that $m_+(g) = 1$. But then $g(3, 1, -1, 1) = -1\frac{1}{2}$ contradicting $m_-(g) = a = 2$. This completes the deduction of Theorem 2.

At this stage it should be pointed out that the deduction of Theorem 2 only requires theorem 1 for d < 435, for from this theorem we have that excluding the three critical forms every ternary form of signature 1 takes a value in the interval $(-(8d/3)^{\frac{1}{5}}, (d/435)^{\frac{1}{5}}]$ by the method used in [6]. But where $f_n^*(x, y, z)$ is as in (1), we have $m_-(f_n^*) \ge (a + \frac{1}{4}a^2)$ and $m_+(f_n^*) \ge \frac{3}{4}$ (else choosing the square in (1) suitably gives a value v of g satisfying $0 \le v < \frac{1}{4}v_n + \frac{3}{4}v_n^{-1} < 1$ for $v_n \le 1$, contradicting $m_+(g) = 1$). Hence, neglecting the initial forms which may be treated as above, either $(a + \frac{1}{4}a^2)^3 < 8d/3$ which yields $a < (128d/81)^{\frac{1}{4}}$ as before or $d/435 \ge 27/64$. Then the assumption $a^4 \ge 128d/81$ yields a > 4.1266. But by [2] $m_-(f_n^*) \le (16d/5)^{\frac{1}{5}}$ which yields $(a + \frac{1}{4}a^2)^3 \le 81/40a$ which is false for a > 4.1. This contradiction is sufficient to complete the deduction of Theorem 2.

4. Proof of theorem 1

By a result of Oppenheim [3], $m_+(f) = 0$ implies that

$$m_{-}(f) = 0 < (8|\det(f)|/3)^{\frac{1}{3}}$$

for indefinite ternary forms. Hence in proving theorem 1 we may assume $m_+(f) > 0$ and indeed $m_+(f) = 1$ after multiplication by $(m_+(f))^{-1}$. Furthermore we may also assume, by virtue of theorem 3.1 of [6], that f actually takes the value 1. Thus it is only necessary to prove:

THEOREM 3. Let f(x, y, z) be a ternary quadratic form of signature 1, let $|\det(f)| = d \neq 0$, and let $m_+(f) = 1$ be attained by f. Then $m_-(f) < (8d/3)^{\frac{1}{3}}$ unless f is equivalent to one of the forms f_1, f_2 or f_3 as listed in theorem 1. Furthermore each of these forms has $m_+(f) = 1$, while $m_-(f_1) = 6, m_-(f_2) = 9$ and $m_-(f_3) = 4$.

We first show that it is necessary only to consider $d \leq 823\frac{7}{8}$. In order to avoid cluttering the proof of this we have a few lemmas.

LEMMA 1. Let
$$k \ge 9$$
 be an integer, define
 $K = k^2 + 6k + 1$, $t(S) = K^2(1+4/S)/64$,
 $d_1 = K(K+12)/64$ and $d_2 = \max(\min\{t(S), 9(S+\sqrt{5})^2/64\})$

where the maximum is taken over all positive integers S, and let this maximum be taken at S^{*}. Then S^{*} = [K/3]+1 and $d_2 = t(S^*) < d_1$.

LEMMA 2. Let $k \ge 13$ be integral and let

 $d_k(r,s) = (k^2 + 4k)^2 \{ (r+2)^2 s^2 + 4(r+2)s(rs+r+s) \} / 64(rs+r+s)^2.$

Then $k^{-3}d_k(r,s) \ge k^{-3}d_k(S^*, S^*) > \frac{3}{8}$ for $k \ge 14$ and $r \le s \le S^*$.

LEMMA 3. Let $k \ge 13$ be integral, let d_1 be as in lemma 1 and let l satisfy 0 < l < 1. Then $F(k, l) = (k+l)^3/(d_1 + \frac{1}{8}Kl)$ has its supremum at k = 13, l = 1 and this supremum is less than $\frac{8}{3}$.

PROOF OF LEMMA 1. Plainly $t(S) < d_1 < 9(\frac{1}{3}K + \sqrt{5})^2/64$ for $S > \frac{1}{3}K$, so $t(S) < d_1 < 9(S + \sqrt{5})^2/64$ for $S > \frac{1}{3}K$. It is also clear that $t(S) > d_1$ for $S < \frac{1}{3}K$. But as $K \neq 0 \pmod{3}$ it follows that $S < \frac{1}{3}K$ implies that $3S \leq K-1$, and then

$$9(S+\sqrt{5})^2/64 \leq (K+3\sqrt{5}-1)^2/64 < (K^2+12K)/64$$

for K > 75. Now for K > 120 we have

$$9(\frac{1}{3}(K-1)+\sqrt{5})^2/64 < (K+5.75)^2/64 < K^2(1+12(K+2)^{-1})/64$$

and so

$$9([K/3] + \sqrt{5})^2/64 \leq 9(\frac{1}{3}(K-1) + \sqrt{5})^2/64 < t([K/3] + 1).$$

Thus as t(S) is a decreasing function of S and $9(S+\sqrt{5})^2/64$ an increasing one it follows that for K > 120 we have $S^* = [K/3]+1$ and $d_2 = t(S^*) < d_1$. The lemma now follows on observing that K > 120 for $k \ge 9$.

PROOF OF LEMMA 2. Since $d_k(s, s) = (k^2 + 4k)^2(1 + 4/s)/64$ which is a decreasing function of s, since $s \leq S^*$ and since $3S^* \leq K+2$ the lemma simply reduces to showing that $d_k(r, s)$ has negative derivative with respect to r, that $k^{-1}(k+4)^2(1+12/(k^2+6k+3))$ has positive derivative with respect to k for $k \geq 14$ and that for k = 14, $d_k(S^*, S^*) > 1029$.

PROOF OF LEMMA 3. This is a consequence of the fact that F(k, l) positive derivative with respect to l and that F(k, 1) has negative derivative with respect to k.

We are now in a position to prove the claim that it is only necessary to consider $d \le 823\frac{7}{8}$ in proving theorem 3.

LEMMA 4. Let f satisfy the condition of theorem 3 and let $d > 823\frac{7}{8}$. Then $m_{-}(f) < (8d/3)^{\frac{1}{2}}$.

PROOF. Suppose to the contrary that $m_{-}(f) \ge (8d/3)^{\frac{1}{3}}$. Then $m_{-}(f) > (2197)^{\frac{1}{3}} = 13$. Let $k = [m_{-}(f)] \ge 13$ and let $l = m_{-}(f) - k$. Firstly if l = 0 then $k \ge 14$ and by theorem 2 of [7] it follows that either $d = d_{k}(r, s)$ for some appropriate $r \le s \le S^{*}$, or $d \ge \min(d_{1}, d_{2})$. But $\min(d_{1}, d_{2}) = d_{2} = t(S^{*}) > d_{k}(S^{*}, S^{*})$ by lemma 1, so by lemma 2 we have $k^{-3}d > \frac{3}{8}$, i.e. $m_{-}(f) < (8d/3)^{\frac{1}{3}}$. Secondly if l > 0 we write f as $(x + \lambda y + \mu z)^{2} + q(y, z)$, by choosing a suitable equivalent form, where q is an indefinite binary form, and let $m_{-}(q) = e$. Since q can take no values in $(-e, \frac{3}{4})$ we have by Segré [5] that $|\det(q)| \ge \frac{3}{4}e + \frac{1}{4}e^{2}$, i.e. $d \ge \frac{3}{4}e + \frac{1}{4}e^{2}$. As q takes values $-e(1+\delta)$ for arbitrarily small $\delta \ge 0$, f has a section of the form $(x + \rho t)^{2} - e(1 + \delta)t^{2}$ for arbitrarily small $\delta \ge 0$. Because these sections can take no values in the interval $(-m_{-}(f), 1)$ we have by the corollary to theorem 1 of [7] that $e(1+\delta) \ge \frac{1}{4}K+l$. Hence $e \ge \frac{1}{4}K+l$, so $d \ge d_{1} + \frac{1}{8}Kl$. Hence by lemma 3 we have $m_{-}(f) < (\frac{8}{3}d)^{\frac{1}{3}}$. This contradiction is sufficient to prove the lemma.

To complete the proof of theorem 3 we consider various sub-intervals of $(0, 823\frac{7}{8}]$ in turn.

LEMMA 5. Let f satisfy the conditions of theorem 3 and let $d \leq 67.5$. Then either $m_{-}(f) < (8d/3)^{\frac{1}{3}}$ or f is equivalent to either f_1 or f_3 . Furthermore

$$m_+(f_1) = m_+(f_3) = 1, \ m_-(f_1) = 6 \ and \ m_-(f_3) = 4.$$

PROOF. This is theorem C_8 combined with lemmas 2.8 and 2.9 of [6].

LEMMA 6. Let f satisfy the conditions of theorem 3 and let $67.5 < d \le 81$. Then $m_{-}(f) < (8d/3)^{\frac{1}{2}}$.

PROOF. Suppose $m_{-}(f) \ge (8d/3)^{\frac{1}{3}}$. Since f takes the value 1 we may choose an equivalent form $g = (x + \lambda y + \mu z)^{2} + q(y, z)$ where q is an indefinite binary form. Applying transformations which turn q into elements of the chain (q_{i}) of reduced forms equivalent to q, and applying suitable parallel transformations to x we obtain a chain of forms

$$g_i = (x + \lambda_i y + \mu_i z)^2 + (-1)^{i+1} a_{i+1} (z - F_i y) (z + S_i y),$$

each equivalent to f, with the following property. There exists a chain of positive integers p_i , $-\infty < i < \infty$, such that F_i and S_i are given by the simple continued fractions $(p_i, p_{i+1}, p_{i+2}, \cdots)$ and $(0, p_{i-1}, p_{i-2}, \cdots)$ respectively. Furthermore if $\Delta^2 = 4d$ denotes the discriminant of q then $a_{i+1}K_i = \Delta$ where $K_i = F_i + S_i$. In addition it is plain that $a_i \ge \frac{3}{4}$ for even i to ensure $m_+(f) = 1$.

If k denotes the integer part of $m_{-}(f)$ and if $m_{-}(f) > k$ then by the corollary to theorem 1 of [7] applied to $(x+\mu_i z)^2+(-1)^{i+1}a_{i+1}z^2$ for i odd we have that $a_{i+1} \ge \frac{1}{4}(k+1)^2+m_{-}(f)$. This yields $K_i \le \Delta(\frac{1}{4}(k+1)^2+(\frac{2}{3}\Delta^2)^{\frac{1}{3}})$ and this expression is a maximum for maximum Δ . Now $d > 67\frac{1}{2}$ implies $m_{-}(f) > 5.6462$,

t

so $a_{i+1} > 14.6462$ for even *i* and k = 5. Since $d \le 81$ implies $\Delta \le 18$ we have $K_i \le 1.2$ (*i* even), $K_i \le 24$ (*i* odd). These bounds imply that $p_i = 1$ (*i* even) and $6 \le p_i \le 22$ (*i* odd), so for *i* even we have $K_i > 1+2$ (0, 22, 1, 23) = 599/551, which implies that $a_{i+1} < 16.6$ (*i* even) in order that $d \le 81$.

For the remainder of the proof of this lemma *i* shall denote any even integer, and since the chain (p_i) is reversible at any point by the transformation y' = -ywe shall assume $F_i \leq 1 + S_i$. The suffix *i* shall be dropped from K_i , F_i , S_i , λ_i and μ_i , and the suffix i+1 from a_{i+1} unless ambiguity would result. $m_-(f)$ and $m_+(f)$ will be abbreviated to m_- and m_+ respectively.

In the section $(x+\mu)^2 - a$, in order not to contradict $m_+ = 1$ or the definition of m_- we need $(4-||\mu||)^2 - a \ge 1$, $a \le 15$ and $(3+||\mu||)^2 - a \le -m_-$. Hence

(2)
$$14||\mu|| < 6-m_{-}$$

and so $||\mu|| < .0253$. The bound on *a* now yields, as $aK = \Delta > \sqrt{270}$, that K > 1.0954. Thus $1.0435 < F \le 1.1$ and $F-1 \le S < 1.1565$. We now eliminate various ranges of S in turn.

(a) $S = (0, 6, 1, \dots) > (0, 6, 1, 23) > .1437$. This yields K > 1.1872, and iteration of $m_- > (\frac{2}{3}\Delta^2)^{\frac{1}{2}}$, $a \ge 9 + m_-$ gives $m_- > 5.94$, a > 14.94. Then 25.7 < a(1+F)(1-S) < 26.42, so choosing x with $20.25 \le (x+\lambda-\mu)^2 \le 25$ yields a contradiction (to $m_+ = 1$ or $m_- > 5.94$) unless $(x+\lambda-\mu)^2 < 20.48$. Thus $||\lambda-\mu-\frac{1}{2}|| < .03$, so $100 \le (x+2\lambda-2\mu)^2 < 101.3$ for some x. As 102.8 < T(2, -2) < 105.7 this yields a contradiction³. Hence we must have S < (0, 7, 1, 7) < 0.127.

(b) 0.1 < S < 0.127. Analysis as in (a) yields $m_- > 5.73$, a > 14.73 and that if F > 1.084 then $m_- > 5.92$. We have 27.83 < T(1, 2) < 30.53 where the lower bound may be increased to 28.33 if $F \le 1.084$. Furthermore if F > 1.084 we have 38.19 < T(2, 3) < 40.61. Considering $25 \le (x + \lambda + 2\mu)^2 \le 30.25$ yields a contradiction in g(x, 1, 2) unless $||\lambda + 2\mu - \frac{1}{2}|| \le .132(||\lambda + 2\mu - \frac{1}{2}|| < .09$ if $F \le 1.084$).

If F > 1.084 we have $||\mu|| < .006$ from (2) and so $||2\lambda + 3\mu|| < .27$. Then in g(x, 2, 3), $32.83 < (x+2\lambda+3\mu)^2 \le 36$ yields a contradiction unless T(2, 3) >38.75, when $36 \le (x+2\lambda+3\mu)^2 < 39.4$ yields a contradiction. Hence $F \le 1.084$ and so $||\lambda+2\mu-\frac{1}{2}|| < .09$ from the above.

Now from (2) we have $||\mu|| < .02$, so $||2\lambda - \mu|| < .28$, hence $32.71 < (x+2\lambda-\mu)^2 \leq 36$ for some x. But 33.9 < T(2, -1) < 38.02, so in order to avoid a contradiction we must have $T(2, -1) \leq 35$ and $||2\lambda - \mu|| < 0.1$. These imply S > .115, so S > .125 as $(0, 8, 1, \cdots) < .113$, and hence F < 1.075. Then K < 1.1685, $m_- > 5.85$, a > 14.85. Furthermore $(0, 12, 1, \cdots) > .076$, so F < (1, 13, 1, 13) < 1.072, so 29.25 < T(1, 2) < 30.53. Then with $25 \leq (x+\lambda+2\mu)^2$

³ For brevity we have denoted a(z-Fy)(z+Sy) by T(y, z) throughout the remainder of this paper.

 ≤ 30.25 we obtain a contradiction completing the elimination of this range for S. Hence $S \leq 0.1$, and as $(0, 9, 1, \dots) > 0.1$ we must therefore have S < (0, 10, 1, 10) < .0917.

(c) .077 < S < 0917. This possibility may also be eliminated by reference to g(x, 1, 2), g(x, 2, 3) and g(x, 2, -1). We have 27.82 < T(1, 2) < 30.02, so considering 25 $\leq (x+\lambda+2\mu)^2 \leq$ 30.25 yields $||\lambda+2\mu-\frac{1}{2}|| < .14$. Thus $||2\lambda+3\mu||$ < .3053, so 36 $\leq (x+2\lambda+3\mu) <$ 39.76 for suitable x. But 38.07 < T(2, 3) <43.6, so either (i) T(2, 3) < 38.76 or (ii) $T(2, 3) \geq$ 36+ m_- .

The first possibility yields F > 1.082, K > 1.164, $m_- > 5.83$, a > 14.83, T(1, 2) > 28.17, $||\lambda + 2\mu - \frac{1}{2}|| < .11$ and $||2\lambda + 3\mu|| < .2453$ in turn. But now choosing x with $36 \leq (x + 2\lambda + 3\mu)^2 < 39.1$ yields a contradiction since the improved bound on a yields T(2, 3) > 38.55.

Considering the second possibility we note that 36.92 < T(2, -1) < 40.03, so $36 \le (x+2\lambda-\mu)^2 \le 42.25$ yields $||2\lambda-\mu-\frac{1}{2}|| < .35$ in order to avoid a contradiction. Hence $||2\lambda+3\mu-\frac{1}{2}|| < .4512$, so $T(2, 3) > (6.0488)^2+m_- > 42.26$. This yields F < 1.0579, T(1, 2) > 28.658, $||\lambda+2\mu-\frac{1}{2}|| < .055$ and $||2\lambda-\mu|| < .2365$ in turn. Then either $33.21 < (x+2\lambda-\mu)^2 \le 36$ or $36 \le (x+2\lambda-\mu)^2 < 39$ will yield a contradiction. This eliminates this range for S, so $S \le .077$. As (0, 12, 1, 23) > .077 we must therefore have S < (0, 13, 1, 13) < .0718.

(d) .054 < S < .0718. This case is easily eliminated, for 27.78 < T(1, -1) < 29.3 which implies that $||\lambda - \mu - \frac{1}{2}|| < .136$. Thus $||2\lambda - \mu|| < .298$ and choosing x with $36 \leq (x + 2\lambda - \mu)^2 < 39.67$ yields a contradiction as 38.72 < T(2, -1) < 41.6. Hence $S \leq .054$, and as (0, 17, 1, 23) > .055 we must have S < (0, 18, 1, 18) < .0528.

(e) .0527 < S < .0528. This case yields $||2\lambda - \mu|| < .298$ as above, and since 38.72 < T(2, -1) < 41.672 we obtain a contradiction unless a > 14.99 and F > 1.0517. This yields K > 1.1044, $m_{-} > 5.674$ and so our value g(x, 2, -1) still yields a contradiction. Thus $S \leq .0527$, and as (0, 18, 1, 23) > .0527 we must have S < (0, 19, 1, 19) < .0502.

(f) .05 < S < .0502. This implies that aFS < .791, so $||\lambda - \frac{1}{2}|| < .05$ in order to avoid a contradiction. Hence $||2\lambda - \mu|| < .126$, so we can choose x with $36 \leq (x+2\lambda-\mu)^2 < 37.6$. As 40 < T(2, -1) < 41.85 this gives a contradiction unless $||2\lambda - \mu|| < .018$ and a < 14.92. Then $||8\lambda - \mu|| < .149$, so $81 \leq (x+8\lambda-\mu)^2 < 83.8$ for some x. But F > 1.0474 in order that $T(1, 1) \geq \frac{3}{4}$, so 83.7 < T(8, -1) < 84.6, yielding a contradiction. Hence as $(0, 19, 1, \cdots) > .05$ we must have $S \leq (0, 20, 1) = S'$. But then $FS < \frac{1}{20}$ unless F-1 = S = S', so $aFS < \frac{3}{4}$, yielding a contradiction that d > 67.5.

LEMMA 7. Let f satisfy the conditions of theorem 3 and let $81 < d \leq 128\frac{5}{8}$. Then $m_{-}(f) < (8d/3)^{\frac{1}{2}}$.

PROOF. Suppose $m_{-}(f) \ge (8d/3)^{\frac{1}{2}}$. We first observe that theorem 2 of [7],

together with its associated tables 1 and 2, yield d > 96.7, and consequently $m_- > 6.364$. Analysis as at the beginning of the proof of lemma 6 yields that $K_i < 30.244$ (*i* odd), $K_i < 1.17834$ (*i* even), $p_i = 1$ (*i* even), $6 \le p_i \le 29$ (*i* odd), 18.614 $< a_{i+1} < 21.265$ (*i* even), $F_i > 1.0333$ (*i* even) and $S_i < .1451$ (*i* even). Once again we drop the suffixes *i*, *i*+1 for even *i*, and take $F \le 1+S$.

In the section $(x+\mu)^2 - a$, in order not to contradict $m_+ = 1$ or the definition of m_- we need

 $(4\frac{1}{2} - ||\mu - \frac{1}{2}||)^2 - a \ge 1, \ a \le 19.25 \text{ and } (3\frac{1}{2} + ||\mu - \frac{1}{2}||)^2 - a \le -m_-.$

Hence

(3)
$$||\mu - \frac{1}{2}|| \leq (7 - m_{-})/16$$

and so $||\mu - \frac{1}{2}|| < .04$. We now proceed to exhaust all the possibilities for S.

(a) S < .048. This yields 36 < T(1, -1) < 37.84 (bearing in mind that $F-1 \leq S$), hence with $30.25 \leq (x+\lambda-\mu)^2 \leq 36$ we require $||\lambda-\mu-\frac{1}{2}|| < .12$ in order to avoid a contradiction. Thus $||\lambda|| < .16$, so g takes a value at most $(.16)^2 + 19.25(1.048)(.048) < 1$, contradicting $m_+ = 1$. Hence $S \geq .048$. But (0, 20, 1, 6) < .048, so S > (0, 19, 1, 20) > .0501.

(b) A similar argument to the above, using g(x, 1, 2) and g(x, 1, 1), yields that F > 1.04, and repetition yields F > 1.0415 (which gives F > (1, 23, 1, 24) > 1.0417) and so S < .137 and $p_i \leq 23$ for all odd *i*. As $(0, 6, 1, \cdots) > .14$ we must therefore have S < (0, 7, 1, 7) < .127.

(c) 0.10 < S < .127. This yields K > 1.141, $m_- > 6.79$, a > 19.04, and hence $||\mu - \frac{1}{2}|| < .014$ from (3). Now 33.93 < T(1, -1) < 36.02, so we need $||\lambda - \mu|| < .09$ in order to avoid a contradiction. Hence $||2\lambda - \mu - \frac{1}{2}|| < .194$, so $39.76 < (x_1 + 2\lambda - \mu)^2 \le 42.25$ and $42.25 \le (x_2 + 2\lambda - \mu)^2 < 44.81$ for suitable x_1 , x_2 . One of these choices will give a contradiction as 43.7 < T(2, -1) < 48.64. Hence $S \le .10$, so S < .09167 as in (b) of the proof of the previous lemma.

(d) .09 < S < .09167. In this case K > 1.131, $m_- > 6.74$, a > 18.99, and so 35.2 < T(1, -1) < 36.6. Choosing $30.25 \le (x + \lambda - \mu)^2 \le 36$ now yields a contradiction. Hence $S \le .09$, which implies that S < (0, 11, 1, 11) < .08392.

(e) .05 < S < .08392. In this case we have, observing that $S \ge .0787$ implies that K > 1.12, $m_{-} > 6.69$ and a > 18.94, that 35 < T(1, -1) < 37.49. Hence choosing $30.25 \le (x + \lambda - \mu)^2 \le 36$ yields $||\lambda - \mu - \frac{1}{2}|| < .08$ in order to avoid a contradiction. Thus $||\lambda + 2\mu|| < .20$, so $33 < (x + \lambda + 2\mu)^2 \le 36$ for suitable x. This yields a contradiction since 35 < T(1, 2) < 39, completing the proof of the lemma.

LEMMA 8. Let f satisfy the conditions of theorem 3 and let $128 \frac{5}{8} < d \le 192$. Then $m_{-}(f) < (8d/3)^{\frac{1}{2}}$.

PROOF. Suppose $m_{-}(f) \ge (8d/3)^{\frac{1}{3}}$. By a method similar to that used in proving lemma 7 the results of [7] yield d > 149.3 and $m_{-} > 7.3565$. Again analysis as

in lemma 6 yields $K_i < 37.051$ (*i* odd), $K_i < 1.15471$ (*i* even), $p_i = 1$ (*i* even), $7 \le p_i \le 35$ (*i* odd), $23.3565 < a_{i+1} < 26.254$ (*i* even), $F_i > 1.02779$ (*i* even) and $S_i < \cdot 127$ (*i* even). As usual we drop suffixes for even *i* and take $F \le S+1$. Treatment of the section $(x+\mu)^2 - a$ as in earlier lemmas yields that $a \le 24$ and

(4)
$$||\mu|| \leq (8-m_{-})/18,$$

and so $||\mu|| < .03575$. We now proceed to exhaust all possibilities for S.

(a) 0.1 < S < 0.127. In this case K > 1.12779, $m_- > 7.83$, a > 23.83 and 42.17 < T(1, -1) < 44.384. Hence choosing $36 \le (x + \lambda - \mu)^2 \le 42.25$ we get a contradiction unless $||\lambda - \mu|| < .046$ and

(5)
$$T(1, -1) \ge 36 + m_{-}$$
.

Now 47.75 < T(1, 2) < 49.63, and our bounds on $||\lambda - \mu||$ and $||\mu||$ imply that $||\lambda + 2\mu|| < .16$ so with $46 < (x + \lambda + 2\mu)^2 \leq 49$ we obtain a contradiction unless $||\lambda + 2\mu|| < .02$ and $T(1, 2) \leq 48$. The latter yields F > 1.0408, K > 1.1408, $m_{-} > 7.915$, a > 23.915, and so from (5) we obtain S < .11. Thus S < (0, 9, 1, 9) < .1011. But then 68 < T(2, 3) < 71, while as $||2\lambda + 3\mu|| < .08$ we have $64 \leq (x + 2\lambda + 3\mu)^2 < 66$ for some x. This contradiction yields $S \leq 0.1$, so S < .09167.

(b) .0769 < S < .09167. This implies that K > 1.0996, $m_- > 7.67$ and a > 23.67, while if $F \ge 1.05$ we obtain K > 1.1269, $m_- > 7.82$ and a > 23.82. Now 43.567 < T(1, -1) < 46.01. Considering $36 \le (x+\lambda-\mu)^2 \le 42.25$ if T(1, -1) < 45.7 and $42.25 \le (x+\lambda-\mu)^2 \le 49$ if $T(1, -1) \ge 45.7$ yields a contradiction unless $||\lambda-\mu|| < .17$. Now 60.03 < T(2, -1) < 64.06 if $F \ge 1.05$: but $||2\lambda-\mu|| < .36$, so $58.3 < (x+2\lambda-\mu)^2 \le 64$ for some x, yielding a contradiction unless $||2\lambda-\mu|| < .18$. Hence if $F \ge 1.05$ we have 63.1 < T(2, 3) < 69 and $||2\lambda+3\mu|| < .22$ (as $||\mu|| < .01$ from (4)). Then either $60.5 < (x+2\lambda+3\mu)^2 \le 64$ or $64 \le (x+2\lambda+3\mu)^2 < 68$ yields a contradiction. Hence F < 1.05.

We now have 47.61 < T(1, 2) < 48.81, so $42.25 \le (x+\lambda+2\mu)^2 \le 49$ yields a contradiction unless $||\lambda+2\mu|| < .12$ and $T(1, 2) \le 48$. But a(5-4F+4S-3FS) < 23.1, so T(2, 3) < 48+23.1 = 71.1. As T(2, 3) > 63.1and $||2\lambda+3\mu|| < .26$, choosing either $59.9 < (x+2\lambda+3\mu)^2 \le 64$ or $64 \le (x+2\lambda+3\mu)^2 < 68.3$ yields a contradiction. Hence $S \le .0769$ which implies that S < (0, 13, 1, 13) < .0718.

(c) .05 < S < .0718. This yields K > 1.07779, $m_- > 7.54$, a > 23.54 and $||\mu|| < .028$. Now 44 < T(1, -1) < 47 and 45 < T(1, 2) < 48.4, so splitting up these ranges at 45.622 yields $||\lambda - \mu|| < .172$ and $||\lambda + 2\mu|| < .172$ by a method similar to that which gave $||\lambda - \mu|| < .17$ in (b) above. Furthermore as 63.67 < T(2, 3) < 71.26, working similar to that used at the end of (b) will give a contradiction unless $||2\lambda + 3\mu - \frac{1}{2}|| < .2332$. Now $||\lambda + 3\mu|| < .2$, while $||2\lambda + 3\mu - \frac{1}{2}|| < .2332$ implies that $||\lambda + 3\mu|| > .0914$, so $139 < (x + \lambda + 3\mu)^2 < 141.815$ for suitable x. As 139.428 < T(1, 3) < 145.4 we must have, in order to avoid a

contradiction, $||\lambda + 3\mu|| < .15$ and T(1, 3) < 140.815. This latter implies that a < 23.775, so 61.5 < T(2, -1) < 66.34. However $||2\lambda + 3\mu - \frac{1}{2}|| < .2332$ yields $||2\lambda - \mu - \frac{1}{2}|| < .3452$, while $||\lambda - \mu|| < .172$, $||\lambda + 2\mu|| < .172$ and $||\lambda + 3\mu|| < .15$ combine to yield $||2\lambda - \mu|| < .3308$, so $58.816 < (x + 2\lambda - \mu)^2 < 61.6$ for suitable x. This g(x, 2, -1) contradicts either $m_+ = 1$ or $m_- > 7.54$. Hence $S \leq .05$, so S < (0, 20, 1, 20) < .04773.

(d) .02779 < S < .04773. In this case 45 < T(1, -1) < 48 and 45 < T(1, 2) < 48, so $||\lambda - \mu|| < .18$ and $||\lambda + 2\mu|| < .18$ by a method similar to that used in (c). These imply $||\lambda + \mu|| < .18$, so $(x + \lambda + \mu)^2 < .033$ for suitable x. Hence T(1, 1) > .969 to avoid contradicting $m_+ = 1$. This implies F > 1.03844, so S > .03844, K > 1.0768, $m_- > 7.536$ and a > 23.536. Then 140 < T(1, 3) < 144.63 and 139.61 < T(1, -2) < 144, where the lower bound can be raised to 140 in the latter case unless both a < 23.61 and S > .042, in which case T(2, -1) < 66.7.

Suppose firstly that T(1, -2) > 140. Then as $||\lambda + 3\mu|| < .21$ and $||\lambda - 2\mu|| < .21$ we can choose corresponding squares between 139 and 144. These give a contradiction unless $||\lambda + 3\mu|| < .13$ and $||\lambda - 2\mu|| < .13$. Combining these, since $||\mu|| < .03$, yields that $||2\lambda - \mu|| < .26$, so $59.9 < (x_1 + 2\lambda - \mu)^2 \le 64$ and $64 \le (x_2 + 2\lambda - \mu)^2 < 68.3$ for suitable x_1, x_2 . One of these choices gives a contradiction as 64 < T(2, -1) < 70.

The second case is dealt with similarly – we obtain $||\lambda + 3\mu|| < .13$, $||\lambda - 2\mu|| < .143$, $||2\lambda - \mu|| < .286$, so $59.5 < (x + 2\lambda - \mu)^2 \le 64$ for suitable x. This gives a contradiction since 64 < T(2, -1) < 66.7. This completes the proof of lemma 8.

LEMMA 9. Let f satisfy the conditions of theorem 3 and let $192 < d \le 273_8^3$. Then either f is equivalent to $f_2(x, y, z)$ or $m_-(f) < (8d/3)^{\frac{1}{2}}$.

PROOF. Suppose $m_{-}(f) \ge (8d/3)^{\frac{1}{3}}$. By a method similar to that used in earlier lemmas we have d > 220.5, $m_{-} > 8.377$, $K_i < 44.0906$ (*i* odd), $K_i < 1.13054$ (*i* even), $p_i = 1$ (*i* even), $9 \le p_i \le 43$ (*i* odd), $28.627 < a_{i+1} < 31.633$ (*i* even), $F_i > 1.0227$ (*i* even) and $S_i < .101$ (*i* even). As usual we drop the suffixes for even *i* and take $F \le S+1$. Then treatment of the section $(x+\mu)^2 - a$ as in earlier lemmas yields $a \le 29.25$ and $||\mu - \frac{1}{2}|| \le (9 - m_{-})/20$, from which we have $||\mu - \frac{1}{2}|| < .032$. We now proceed to eliminate all possibilities for S except that giving f_2 .

(a) S < .0457. We have 55.88 < T(1, 2) < 60.06 and 55.25 < T(1, -1) < 57.821. Choosing corresponding squares between 49 and 56.25 yields a contradiction unless $||\lambda + 2\mu|| < .19$ and $||\lambda - \mu|| < .032$. However these combine to give $||3\mu|| < .222$, plainly contradicting $||\mu - \frac{1}{2}|| < .032$. Hence $S \ge .0457$, so S > (0, 20, 1, 21) > .0477.

(b) 0.477 < S < .101. In this case K > 1.0704, so $m_- > 8.55$ and a > 28.8. We have 55.26 < T(1, 2) < 60, so $||\lambda + 2\mu|| < .19$ as above. Also 52.573 < T(1, -1) < 57.05, so with $49 \le (x + \lambda - \mu)^2 \le 56.25$ we see that (i) $T(1, -1) \le 55.25$ to avoid a contradiction similar to that in (a), and (ii) $||\lambda - \mu - \frac{1}{2}|| < .181$.

2FS) > 31.49 so

[11]

Now T(2, -1) = 2T(1, -1) - a(1 + 2FS) and a(1 + 2FS) > 31.49, so T(2, -1)< 79.01. Suppose that T(2, -1) > 71.25. Then $||2\lambda - \mu|| < .225$ else either 72.25 $\leq (x+2\lambda-\mu)^2 < 77$ or $67.65 < (x+2\lambda-\mu)^2 \leq 72.25$ will yield a contradiction. This implies that $||\lambda - \mu - \frac{1}{2}|| > .121$, so we can replace (i) above by T(1, -1)< 53.45, yielding T(2, -1) < 75.41. Repeating this cycle eventually leads to $||\lambda - \mu - \frac{1}{2}|| > .182$, contradicting an earlier bound. We therefore have $T(2, -1) \leq 1$ 71.25, S > .0938, so S > (0, 9, 1.0227) > .10022. Then F < 1.03032. K > 1.12292, $m_{-} > 8.948, a > 29.198$ and $||\lambda - \frac{1}{2}|| < .0026$. Now 70.957 $< T(2, -1) \leq .0125$ so $64 \leq (x+2\lambda-\mu)^2 \leq 72.25$ yields $||2\lambda-\mu|| < .018$, which in conjunction with the bounds on $||\mu - \frac{1}{2}||$ and $||\lambda + 2\mu||$ yields $||\lambda|| < .0103$. Then $||5\lambda + 6\mu|| < .07$, so $167 < (x+5\lambda+6\mu)^2 \leq 169$ for suitable x, giving a contradiction, as 161 < T(5, 6)< 168.7, unless T(5, 6) < 168. Hence F > 1.02298, so $F \ge (1, 42, 1, 9) > 1.0233$ (as (1, 43, 1, 9, 1, 8) < 1.0229, and $p_{i+3} = 9$ on applying the results so far to the point i+2 with the chain reversed). In addition 181.53 < T(6, 7) < 191.38, and as $||6\lambda + 7\mu - \frac{1}{2}|| < .08$ suitable choice of x yields a contradiction unless T(6,7) > 191.198. This implies F < 1.0235, and as (1, 41, 1, 10) > 1.0238 we must have F = (1, 42, 1, 9). Reversing the chain about i-2 and applying these results gives S = (0, 9, 1, 42, 1).

That a = 29.25 and $||\lambda + \mu - \frac{1}{2}|| = 0$ follows on observing that 0 < g(x, 1, 1)< 1 unless equality holds in $(x + \lambda + \mu)^2 \leq \frac{1}{4}$ and $T(1, -1) = a/39 \leq \frac{3}{4}$. Similarly $||10\lambda - \mu - \frac{1}{2}|| = 0$, which when added to $||\lambda + \mu - \frac{1}{2}|| = 0$ and compared with $||\lambda|| < .0103$ yields $||\lambda|| = 0$. Then $||\mu - \frac{1}{2}|| = 0$ and the form is f_2 , as desired. The proof that $m_+(f_2) = 1$ and $m_-(f_2) = 9$ is left till later.

LEMMA 10. Let f satisfy the conditions of theorem 3 and let $273\frac{3}{8} < d \leq 375$. Then $m_{-}(f) < (8d/3)^{\frac{1}{3}}$.

PROOF. Suppose $m_{-}(f) \ge (8d/3)^{\frac{1}{3}}$. Then by the usual method we get d > 314.1, $m_{-} > 9.4263$, $K_i < 51.64$ (*i* odd), $K_i < 1.1066$ (*i* even), $p_i = 1$ (*i* even), $11 \le p_i \le 49$ (*i* odd), $34.4263 < a_{i+1} < 37.241$ (*i* even), $F_i > 1.02$ (*i* even) and $S_i < .0866$ (*i* even). As usual we drop the suffixes for even *i* and take $F \le S+1$. Then treatment of the section $(x+\mu)^2 - a$ as in earlier lemmas yields $a \le 35$ and $||\mu|| < (10-m_{-})/22$ from which we get $||\mu|| < .0261$. We now proceed to eliminate all possibilities for S.

(a) S > .0621. In this case we have K > 1.0821, $m_- > 9.816$, $||\mu|| < .01$ and a > 34.816. Then 64.18 < T(1, -1) < 67.14, so with $56.25 \le (x + \lambda - \mu^2) \le$ 64 we must have $||\lambda - \mu - \frac{1}{2}|| < .075$ to avoid a contradiction. This gives $||2\lambda + 3\mu||$ < .20, and so either $96 < (x + 2\lambda + 3\mu)^2 \le 100$ or $100 \le (x + 2\lambda + 3\mu)^2 < 104.1$ yields a contradiction as 99 < T(2, 3) < 107. Hence $S \le .0621$, so $S \le (0, 16, 1)$, < .05903.

(b) 0.05 < S < .0591. Analysis as in (a) yields K > 1.07, $m_- > 9.725$ and $||\mu|| < .013$. If F < 1.03 we have 63 < T(1, -1) > 67.5 and so with $56.25 \le$

 $(x+\lambda-\mu)^2 \leq 64$ we require $||\lambda-\mu-\frac{1}{2}|| < .101$ to avoid a contradiction. Then $||2\lambda+3\mu|| < .267$ and as 100 < T(2, 3) < 105 we obtain a contradiction as in (a). Hence $F \geq 1.03$. Then 93.7199 < T(2, -1) < 98, and with $90.25 \leq (x+2\lambda-\mu)^2 \leq 100$ we require $||2\lambda-\mu|| < .268$ to avoid a contradiction. Thus $||2\lambda+3\mu|| < .32$, so $93.7 < (x+2\lambda+3\mu)^2 \leq 100$ for suitable x, and as 96.17 < T(2, 3) < 102.6 we get a contradiction unless $T(2, 3) \leq 99$. Because of the relation between F, K, m_ and a this last inequality yields $F > 1.042, m_- > 9.89$ and $a > 34.89, T(2, 3) > 96.834, ||2\lambda+3\mu|| < .11$ and $||\mu|| < .005$. That $||\lambda-\frac{1}{2}||$ is small comes from consideration of g(x, 1, -1), so we must have $||\lambda-\frac{1}{2}|| < .063$. Then $||3\lambda-\mu-\frac{1}{2}|| < .194$, and as 118.24 < T(3, -1) < 123.4 we get a contradiction unless T(3, -1) > 120.14. This is true only if S < .0583, so $S \leq (0, 17, 1) < .0558$ as (0, 16, 1, 50) > .0588.

From the above we can deduce that 138.8 < T(4, -1) < 146 and that $137 < (x+4\lambda-\mu)^2 \leq 144$ for suitable x, so we get a contradiction unless $T(4, -1) \leq 143$. This implies that S > .051, so S > (0, 18, 1, 50) > .05268, giving 143 < T(4, 5) < 153.8. But the bounds on $||2\lambda+3\mu||$ and $||\mu||$ imply that $||4\lambda+5\mu|| < .225$, so $138.65 < (x_1+4\lambda+5\mu)^2 \leq 144$ and $144 \leq (x_2+4\lambda+5\mu)^2 < 149.46$ for suitable choices of x_1 , x_2 . One of these choices gives a contradiction. Thus $S \leq .05$, so S < (0, 20, 1, 20) < .04773.

(c) .04 < S < .04773. This yields $m_- > 9.652$, a > 34.652, $||\mu|| < .016$ and 66.4 < T(1, -1) < 68.55, so $||\lambda - \mu - \frac{1}{2}|| < .175$ to avoid a contradiction. Now 95.28 < T(2, -1) < 99.2 so with $90.25 \leq (x + 2\lambda - \mu)^2 \leq 100$ we deduce $||2\lambda - \mu|| < .2$. Thus $||2\lambda + 3\mu|| < .264$, so $94.78 < (x + 2\lambda + 3\mu)^2 \leq 100$ for some x. As 97.02 < T(2, 3) < 104.01 we get a contradiction unless $||2\lambda + 3\mu|| < .1$ and $T(2, 3) \leq 99$. Then F > 1.0362, so 144 < T(4, -1) < 151.8. One of the values $(12 - \delta)^2 - T(4, -1)$, $(12 + \delta)^2 - T(4, -1)$ yields a contradiction if $||4\lambda - \mu|| = \delta < (1 + m_-)/48$, so $||4\lambda - \mu|| > .221$. Hence $||\lambda - \frac{1}{2}|| > .05$ and $||2\lambda + 3\mu|| > .054$. This decreases our upper bound on T(2, 3) to 98.0 yielding F > 1.04. This gives $K > 1.08, m_- > 9.78, ||\mu|| < .01, ||4\lambda - \mu|| > .224, ||2\lambda + 3\mu|| > .077$ and so on – this iteration eventually yields F > 1.048 which is impossible as $F \leq S+1$ and S < .048. Hence $S \leq .04$, so S < (0, 25, 1, 25) < .0386.

(d) .03 < S < .0386. Following the method of (c) we obtain $m_- > 9.575$, a > 34.575, $||\mu|| < .02$, 67.14 < T(1, -1) < 68.919, $||\lambda - \mu - \frac{1}{2}|| < .204$ and 96.99 < T(2, -1) < 100.68. But $||2\lambda - \mu|| < .428$, so $91.6 < (x + 2\lambda - \mu)^2 \leq 100$ for suitable x Hence $T(2, -1) \leq 99$ and $||2\lambda - \mu|| < 102$. Following (c) again we have $||2\lambda + 3\mu|| < .182$, 98.18 < T(2, 3) < 103.5, $||2\lambda + 3\mu|| < .042$, $T(2, 3) \leq 99$, F > 1.0321, S > .0321, a(3 + 2S) > 105.944 and after a couple of iterations F > 1.033. Thus K > 1.066, $m_- > 9.697$, a > 34.697, a(3 + 2S) > 106.381, F > 1.0346. Then F > (1, 27, 1, 50) > 1.0357, so K > 1.0714 and $m_- > 9.725$. Noting that a > 34.8 implies that F > 1.0368 to keep $T(2, 3) \leq 99$ we have 147 < T(4, -1) < 153.64. But $||2\lambda - \mu|| < .102$ and $||\mu|| < (10 - m_-)/22 < .013$ combine to yield $||4\lambda - \mu|| < .217$. As $.217 < (1 + m_-)/48$ we can now obtain a contradiction

as in (c). Hence S < .03, so S(0, 33, 1, 33) < .0295.

(e) .02 < S < .0295. As 99 < T(2, 3) < 102.79 we obtain a contradiction by choosing x such that $90.25 \leq (x+2\lambda+3\mu)^2 \leq 100$ unless $||2\lambda+3\mu-\frac{1}{2}|| < .163$. This implies that $||2\lambda-\mu-\frac{1}{2}|| < .27$, so $90.25 \leq (x+2\lambda-\mu)^2 < 96$ for some x. As 98.376 < T(2, -1) < 102.144 we obtain a contradiction unless $||2\lambda-\mu-\frac{1}{2}|| < .1291$. Hence $||\lambda-\frac{1}{2}|| > .1724$, so $(x+\lambda)^2 < .1074$ for suitable x. Then aFS > .8926, yielding S > .0248. A similar treatment yields $||\lambda-\mu-\frac{1}{2}|| > .1549$, a(F-1)(S+1) > .8809 and F > 1.0244. Hence K > 1.0492, $m_- > 9.57$ and $||\mu|| < .02$. Now T(2, -1) < 101.45 and analysis as above gives $||2\lambda-\mu-\frac{1}{2}|| < .086$. This on combining with $||\mu|| < .02$ yields $||3\lambda-\mu-l/4|| < .14$ for l = 1 or l = -1, so $123.4 < (x+3\lambda-\mu)^2 < 129.7$ for suitable x. But 128.3 < T(3, -1) < 132.01 so we obtain a contradiction unless T(3, -1) < 128.7. Thus a < 34.7, T(2, -1) < 99.88, $||2\lambda-\mu|| < .01$, $||3\lambda-\mu-l/4|| < .03$ and $125.8 < (x+3\lambda-\mu)^2 < 127.23$ for some x, yielding a contradiction as required.

LEMMA 11. Let f satisfy the conditions of theorem 3 and let $375 < d \le 499\frac{1}{8}$. Then $m(f) < (8d/3)^{\frac{1}{2}}$.

PROOF. Suppose $m_{-}(f) \ge (8d/3)^{\frac{1}{3}}$. Then by the usual method we have $d > 435.06, m_{-} > 10.507, K_i < 59.578 (i \text{ odd}), K_i < 1.08322 (i \text{ even}), p_i = 1 (i \text{ even}), 12 \le p_i \le 57 (i \text{ odd}), 40.757 < a_{i+1} < 43.25 (i \text{ even}), F_i > 1.01724 (i \text{ even}) and <math>S_i < .066 (i \text{ even})$. As usual we drop the suffixes for even *i* and take $F \le S+1$. The usual treatment of $(x+\mu)^2 - a$ yields $a \le 41.25$ and $||\mu - \frac{1}{2}|| \le (11-m_{-})/24$, so $||\mu - \frac{1}{2}|| < .021$. We now proceed to exhaust all possibilities for S.

(a) .05 < S < .066. In this case we have K > 1.06724, $m_- > 10.87$, a > 41.12 and $||\mu - \frac{1}{2}|| < .006$. As 81.4 < T(1, 2) < 83.754 we obtain, with $72.25 \leq (x + \lambda + 2\mu)^2 \leq 81$, a contradiction unless $||\lambda + 2\mu - \frac{1}{2}|| < .038$. Then $||2\lambda - \mu - \frac{1}{2}|| < .106$, so $107 < (x + 2\lambda - \mu)^2 \leq 110.25$, which yields a contradiction, as 108 < T(2, -1) < 114, unless $T(2, -1) \leq 109.25$. This is true only if S > .06222, so F < 1.021 by our bound on K. Then we have a contradiction as a(F-1)(S+1) < .93 while $||\lambda + \mu|| < .05$ implies that $(x + \lambda + \mu)^2 < .003$ for suitable x. Hence $S \leq .05$, so S < .04773.

(b) .04 < S < .04773. Analysis as in (a) yields $m_- > 10.77$, a > 41.02, $||\mu - \frac{1}{2}|| < .01$ and 80.1 < T(1, 2) < 83.03, the lower bound being obtained by observing that if F > 1.035 then a > 41.12 as in (a). Then choosing x with 72.25 $\leq (x + \lambda + 2\mu)^2 \leq 81$ yields a contradiction as T(1, 2) > 83.01 only if a > 41.24 which implies that $m_- > 10.8$. Hence $S \leq .04$, so S < .0386.

(c) S < .0386. In this case 80 < T(1, 2) < 82.66, where the lower bound is obtained by observing that if F > 1.038 then a > 41.12 as in (b). Then choosing x with $72.25 \le (x + \lambda + 2\mu)^2 \le 81$ yields a contradiction to either $m_+ = 1$ or $m_- > 10.5$.

LEMMA 12. Let f satisfy the conditions of theorem 3 and let $499\frac{1}{8} < d \leq 648$. Then $m_{-}(f) < (8d/3)^{\frac{1}{2}}$. PROOF. Suppose $m_{-}(f) \ge (8d/3)^4$. Then by the usual method we have d > 587.313, $m_{-} > 11.613$, $K_i < 64.613$ (*i* odd), $K_i < 1.0607$ (*i* even), $p_i = 1$ (*i* even), $21 \le p_i \le 62$ (*i* odd), $47.613 < a_{i+1} < 49.36$ (*i* even), $F_i > 1.0158$ (*i* even) and $S_i < .045$ (*i* even). As usual we drop the suffixes for even *i* and take $F \le S+1$. Since (0, 21, 1) > .045 we have S < (0, 22, 1, 22) < .0436. Furthermore K > 1.0316 implies that $m_{-} > 11.733$ and a > 47.733. Treatment of the section $(x+\mu)^2 - a$ as in earlier lemmas yields $a \le 48$ and $||\mu|| \le (12-m_{-})/26$, so $||\mu|| < .011$. We proceed to eliminate various ranges for S.

(a) .032 < S < .0436. Then $m_- > 11.88$ and 92.02 < T(1, -1) < 94.262, so with $81 \leq (x+\lambda-\mu)^2 \leq 90.25$ we obtain a contradiction unless $||\lambda-\mu|| < .077$. As $||\mu|| < .005$ we have $||\lambda+\mu|| < .087$, so $(x+\lambda+\mu)^2 < .008$ for some x. Hence a(F-1)(S+1) > .992, so F > 1.0198, implying that S < .041. Now $||3\lambda-\mu|| < .241$, so $162.79 < (x_1+3\lambda-\mu)^2 \leq 169$ and $169 \leq (x_2+3\lambda-\mu)^2 < 175.33$ for suitable x_1, x_2 . However 170.4 < T(3, -1) < 177.31, so one of the values $g(x_1, 3, -1), g(x_2, 3, -1)$ yields a contradiction. Thus $S \leq .032$, so S < (0, 31, 1, 31) < .0313.

(b) .0158 < S < .0313. Following the method of (a) we have 93.1 < T(1, -1) < 95.23, $||\lambda - \mu|| < .14$, $||\lambda + \mu|| < .162$, a(F-1)(S+1) > .973 and F > 1.0196. Similarly $||\lambda|| < .151$, aFS > .977 and S > .0199. Hence K > 1.0395 and $m_- > 11.8$. Now if $S \ge .0253$ we have 175.7 < T(3, -1) < 180.8 where the lower bound may be increased to 177.12 if S < .029 and the upper bound decreased to 179.11 if $S \ge .029$. If $S \ge .029$ we have K > 1.048, $m_- > 11.88$, T(1, -1) < 94.57 and $||\lambda - \mu|| < .095$. In this case $||3\lambda - \mu|| < .295$, so $169 \le (x+3\lambda-\mu)^2 < 176.76$ for suitable x, giving a contradiction. If $.0253 \le S < .029$ we have T(1, -1) < 94.77 and $||\lambda - \mu|| < .11$. Then $||3\lambda - \mu|| < .346$, so $169 \le (x+3\lambda-\mu)^2 < 178.12$ for suitable x, giving a contradiction.

Hence S < .0253, so S < (0, 39, 1, 39) < .02502. Then 179.2 < T(3, -1) < 183.24, while as T(1, -1) < 95.03 we have $||\lambda - \mu|| < .124$, $||3\lambda - \mu|| < .388$ and so $169 \leq (x + 3\lambda - \mu)^2 < 179.3$ for suitable x. To avoid a contradiction we must have $||3\lambda - \mu|| < .095$, and this yields $||\lambda|| < .035$. Considering g(x, 1, 0) as above now yields F > 1.0202, so 255.1 < T(5, -1) < 264. But $||5\lambda - \mu|| < \frac{1}{3}(5(.095) + 2(.008)) < .166$ since λ and μ are small, so for suitable choices of x_1 and x_2 we have $250 < (x_1 + 5\lambda - \mu)^2 \leq 256$ and $256 \leq (x_2 + 5\lambda - \mu)^2 < 262$. One of these choices gives a contradiction.

LEMMA 13. Let f satisfy the conditions of theorem 3 and let $648 < d \le 823\frac{7}{8}$. Then $m_{-}(f) < (8d/3)^{\frac{1}{2}}$.

PROOF. Suppose $m_{-}(f) \ge (8d/3)^{\frac{1}{3}}$. By the usual method we have d > 776.08, $m_{-} > 12.74$, $K_i < 76.55$ (*i* odd), $K_i < 1.0391$ (*i* even), $p_i = 1$ (*i* even), $32 \le p_i \le 74$ (*i* odd), $54.99 < a_{i+1} < 55.923$ (*i* even), $F_i > 1.0133$ (*i* even) and $S_i < .0258$ (*i* even). As usual we drop the suffixes for even *i* and take $F \le S+1$. Then treatment of the section $(x+\mu)^2 - a$ in the usual manner yields $a \le 55.25$ and $||\mu - \frac{1}{2}|| \le (13 - m_{-})/28$. As K > 1.0266 we have $m_{-} > 12.86$, a > 55.11 and $||\mu - \frac{1}{2}|| < .005$. Now 108 < T(1, -1) < 109.76 so with $100 \le (x + \lambda - \mu)^{2} \le 110.25$ we obtain a contradiction unless $||\lambda - \mu - \frac{1}{2}|| < .06$. But 109 < T(2, 1) < 111, so with $100 \le (x + \lambda + 2\mu)^{2} \le 110.25$ we obtain a contradiction unless $||\lambda + 2\mu - \frac{1}{2}|| < .01$. Then $||3\mu|| < .06 + .01 = .07$, contradicting $||\mu - \frac{1}{2}|| < .005$.

This now completes the proof of theorem 3 apart from showing that $m_+(f_2) = 1$ and $m_-(f_2) = 9$.

LEMMA 14. Let f_2 be defined as in theorem 1. Then $m_+(f_2) = 1$ and $m_-(f_2) = 9$.

PROOF. As $f_2(x, y, z) = x^2 + xy + y^2 + xz + 32yz - 29z^2$ it is only necessary to show that f_2 cannot take any of the values 0, -1, -2, -3, -4, -5, -6, -7and -8, since $f_2(4, 0, 1) = -9$. The values -1, -3, -4 and -7 are eliminated by observing that $f_2 \equiv (x-4y-4z)^2 + 3y^2 \pmod{9}$. As $f_2 \equiv x^2 + xz + z^2 \pmod{5}$ after replacing z by z-y it follows that $f_2 \equiv 0 \pmod{5}$ iff x = 5X and z = 5Zfor some integers, X, Z. Then $\frac{1}{5}f_2 \equiv 3y^2 \pmod{5}$, which implies that f_2 does not take the value -5, whilst f_2 can take the value zero only at points (x, y, z) =5(X, Y, Z), which are not primitive. This implies f_2 cannot take the value 0 at all.

The remaining even values are eliminated by considering congruencees modulo powers of 2 as follows. We have $4f_2 \equiv (x+2y)^2 + 3(x+2z)^2 \pmod{8}$ so f_2 is even only if x is even. Writing x = 2X yields $f_2 \equiv (X+y)^2 + 3(X+z)^2 + 4Xz \pmod{32}$, so $f_2 \equiv 2 \pmod{4}$ is impossible. This eliminates the values -2 and -6. Plainly $f_2 \equiv 0 \pmod{8}$ only if y and z have the same parity. For y, z both even, say y = 2Y, z = 2Z, f_2 cannot take the value -8 at (x, y, z) else f_2 would take the value -2 at (X, Y, Z), which we know is impossible. Hence if $f_2 = -8$ then y and z are both odd. It is now clear that we must have $y-z \equiv 2 \pmod{4}$ and X odd to ensure $f_2 = -8$ as otherwise $f_2 \equiv 4 \pmod{8}$. Substituting x = 2m+1, y = 2n+1, z = 2n+3+4s yields

$$f_2 = 16 (m^2 + 3mn + n^2 + 5m - 4n - 29s + 5ms - 13ns - 33s - 8),$$

showing that f_2 cannot take the value -8.

References

- [1] E. S. Barnes, 'The non-negative values of quadratic forms', Proc. London. Math. Soc. (3) 5 (1955) 185-196.
- [2] E. S. Barnes and A. Oppenheim, 'The non-negative values of a ternary quadratic form', J. Lond. Math. Soc. 30 (1955) 429-439.
- [3] A. Oppenheim, 'Value of quadratic forms I, Quart. J. Math. (Ox) (2) 4 (1953) 54-59.
- [4] A. Oppenheim, 'Minima of indefinite quaternary quadratic forms,' Ann. Math. 32 (1931) 271-298.
- [5] B. Segré, Lattice points in infinite domains and asymmetric diophantine approximations," Duke Math. J. 12 (1945) 337-365.
- [6] R. T. Worley, 'Asymmetric minima of indefinite ternary quadratic forms', J. Aust. Math. Soc. 7 (1967) 191-228.
- [7] R. T. Worley, 'Minimum determinant of asymmetric quadratic forms'. J. Aust. Math. Soc. 7 (1967) 177-190.

Monash University, Clayton, Victoria