NON-NEGATIVE VALUES OF QUADRATIC FORMS

R. T. WORLEY

(Received 5 February 1969)
Communicated by E. S. Barnes

1. Introduction

In a paper [1] of the same title Barnes considered the problem of finding an upper bound for the infimum $m_{+}(f)$ of the non-negative values ${ }^{1}$ of an indefinite quadratic form f in n variables, of given determinant $\operatorname{det}(f) \neq 0$ and of signature s. In particular it was announced (and later proved - see [2]) that $m_{+}(f) \leqq(16 / 5)^{\frac{1}{t}}$ for ternary quadratic forms of determinant 1 and signature -1 . A simple consequence of this result is that $m_{+}(f) \leqq(256 / 135)^{\frac{1}{2}}$ for quaternary quadratic forms of determinant -1 and signature -2 .

In this paper it will be shown that one can do considerably better than $(16 / 5)^{\frac{1}{3}}$ for most ternary quadratic forms f of signature -1 , and that consequently $m_{+}(f)<(128 / 81)^{\frac{1}{4}}$ for quaternary quadratic forms of signature -2 . It should be pointed out that the restriction that $|\operatorname{det}(f)|=1$ is really no restriction at all as multiplication of a form of this type by $d^{\frac{1}{4}}$ gives a form f with $|\operatorname{det}(f)|=d$ and it plainly follows by the results that $m_{+}(f)<(128 d / 81)^{\frac{1}{4}}$ for all quaternary quadratic forms f with $|\operatorname{det}(f)|=d$ and of signature -2 .

2. Statement of results

The following are the results proved. For convenience the signature has been changed to +1 and $m_{-}(f)=m_{+}(-f)$ has been considered.

Theorem 1. Let $f(x, y, z)$ be a ternary quadratic form of signature 1 and let $|\operatorname{det}(f)|=d \neq 0$. Then $m_{-}(f)<(8 d / 3)^{\frac{5}{4}}$ unless f is equivalent to a multiple of one of the following forms:

$$
\begin{aligned}
& f_{1}(x, y, z)=x^{2}+x y+y^{2}+15 y z-15 z^{2} \\
& f_{2}(x, y, z)=x^{2}+x y+y^{2}+x z+32 y z-29 z^{2} \\
& f_{3}(x, y, z)=x^{2}+y^{2}+8 y z-8 z^{2}
\end{aligned}
$$

[^0]Furthermore $m_{-}\left(f_{1}\right)=6=(16 d / 5)^{\frac{t}{2}}, m_{-}\left(f_{2}\right)=9=(27 d / 10)^{\frac{1}{3}}$ and $m_{-}\left(f_{3}\right)=$ $4=(8 d / 3)^{\frac{1}{7}}$.

Theorem 2. Let $g(t, x, y, z)$ be a quaternary quadratic form of signature 2 and let $|\operatorname{det}(g)|=d \neq 0$. Then $m_{-}(g)<(128 d / 81)^{\frac{1}{t}}$.

3. Deduction of theorem 2

Let $g(t, x, y, z)$ be a quaternary quadratic form of signature 2 and let $|\operatorname{det}(g)|=d \neq 0$. If $m_{+}(g)=0$ we have $m_{-}(g)=0$ by Oppenheim [3] and so g satisfies the conclusion of Theorem 2. If $m_{+}(g)>0$ we may take $m_{+}(g)=1$; if this does not hold multiply g by $\left(m_{+}(g)\right)^{-1}$. Let $m_{-}(g)=a$; we assume $a>1$, else the symmetric minimum result of Oppenheim [4] yields $d \geqq \frac{7}{4}>\frac{81}{128} a^{4}$.

As $m_{+}(g)=1, g$ takes, for any $n>1$, a value v_{n} satisfying $1 \leqq v_{n}<1 \frac{1}{n}$. By applying a suitable integral unimodular transformation to g we obtain a form g_{n}, equivalent to g, of the shape

$$
\begin{equation*}
g_{n}(t, x, y, z)=v_{n}\left(t+\lambda_{n} x+\mu_{n} y+\delta_{n} z\right)^{2}+v_{n}^{-1} f_{n}^{*}(x, y, z) \tag{1}
\end{equation*}
$$

where f_{n}^{*} is a ternary quadratic form of signature 1 . If f_{n}^{*} were to take a value $u<0$ at $(x, y, z)=(X, Y, Z)$ then setting $(x, y, z)=(X t, Y t, Z t)$ gives a binary section of g_{n} of determinant $-u$, and this section cannot take a value in the open interval ($-a, 1$). Thus $u \leqq-a-\frac{1}{4} a^{2}$ by Segre [5], so $m_{-}\left(f_{n}^{*}\right) \geqq a+\frac{1}{4} a^{2}$. But $\left|\operatorname{det}\left(f_{n}^{*}\right)\right|=d$ and theorem 1 gives f_{n}^{*} a multiple of either f_{1}, f_{2} or f_{3}, or $(8 d / 3)^{\frac{1}{3}}>m_{-}\left(f_{n}^{*}\right)$. The latter possibility yields $(8 d / 3)^{\frac{1}{3}}>a+\frac{1}{4} a^{2}$, which implies that $m_{-}(g)=$ $a<(128 d / 81)^{\frac{4}{4}}$ since $\left(1+\frac{1}{4} a\right)^{3} a^{-1}$ has a minimum of $27 / 16$ attained at $a=2$.

It now remains to consider the possibility that, for each $n, f_{n}^{*}=m_{n} f_{j_{n}}(x, y, z)$ for $j_{n}=1,2$ or 3 . If $v_{n} \neq 1$ for any n we may choose a sequence n_{1}, n_{2}, \cdots such that as $n_{i} \rightarrow \infty$ we have $v_{n_{i}} \rightarrow 1, \lambda_{n_{i}} \rightarrow \lambda, \mu_{n_{i}} \rightarrow \mu, \delta_{n_{i}} \rightarrow \delta$ and $m_{n_{i}} \rightarrow m$ for some λ, μ, δ and m, and such that j_{n} remains fixed (say at j). Denoting $(t+\lambda x+\mu y+\delta z)^{2}$ $+m f_{j}(x, y, z)$ by $g^{*}(t, x, y, z)$ it is clear that by choosing n_{i} large enough we can get values of $g_{n_{i}}$, and thus g, arbitrarily close to any specified value of g^{*}. Hence $m_{+}\left(g^{*}\right)=1$ and $m_{-}(g) \leqq m_{-}\left(g^{*}\right)$, and we have reduced this case to the special case where $v_{n}=1$. Hence it remains only to show that if

$$
g=(t+\lambda x+\mu y+\delta z)^{2}+m f_{j}(x, y, z)=g_{j}(t, x, y, z)
$$

for $j=1,2$ or 3 then $m_{-}(g)<(128 d / 81)^{\frac{1}{4}}$.
(a) Let $g=g_{1}(t, x, y, z)$ and suppose that $m_{-}(g)=a \geqq(218 d / 81)^{\frac{1}{4}}=$ $\left(320 m^{3} / 3\right)^{\frac{1}{4}}$. As $m_{-}\left(f_{1}\right)=6$ and we require $m_{-}\left(m f_{1}\right) \geqq a+\frac{1}{4} a^{2}$, we must have $a^{4} \geqq 40\left(a+\frac{1}{4} a^{2}\right)^{3} / 81$ which is possible (for $a>1$) only if $a<4 \cdot 1$. Hence $m<1$. 3837. As $\left\|\lambda-\frac{1}{2}\right\|<\frac{1}{6},\left\|\lambda-\mu-\frac{1}{2}\right\|<\frac{1}{6}$ and $\left\|\mu-\frac{1}{2}\right\|<\frac{1}{6}$ are not simultaneously possible, ${ }^{2}$ consideration of $g(t, 1,0,0), g(t, 1,-1,0)$ and $g(t, 0,1,0)$
${ }^{2}\|x\|$ is used to denote the distance from x to the nearest integer.
yields $m \geqq 8 / 9$. Hence $a>2.94$. As f_{1} takes the value $-6, g$ has a section of the form $(t+\gamma)^{2}-6 m$, and as $5 \frac{1}{3} \leqq 6 m<8.31$ choosing $4 \leqq(t+\gamma)^{2} \leqq 6.25$ yields a contradiction to either $m_{+}(g)=1$ or $m_{-}(g)=a$ unless $6 m \geqq 4+a$. A number of iterations on this and $a \geqq\left(320 m^{3} / 3\right)^{\frac{1}{4}}$ yields $m>1.31$ and $a>3.9$. As f_{1} takes the value -9 (at $(4,1,-1)), g$ has a section of the form $(t+\rho)^{2}-9 m$. But $11.7<9 m<12.5$ and so choosing $9 \leqq(t+\rho)^{2} \leqq 12.25$ yields a contradiction to either $m_{+}(g)=1$ or $m_{-}(g)=a>3.9$. This shows that $m_{-}\left(g_{1}\right)<(128 d / 81)^{\frac{1}{2}}$.
(b) Let $g=g_{2}(t, x, y, z)$ and suppose that $m_{-}(g)=a \geqq(128 d / 81)^{\frac{1}{4}}=$ $\left(1280 m^{3} / 3\right)^{\frac{1}{4}}$. Then from $m_{-}\left(f_{2}\right)=9$ we get $a^{4} \geqq 1280\left(a+\frac{1}{4} a^{2}\right)^{3} / 2187$ which can hold only for $a<2.5$. Hence $m<\frac{3}{4}$. However we then have a value $(t+\lambda)^{2}+m$ of g which contradicts $m_{+}(g)=1$ if $0 \leqq(t+\lambda)^{2} \leqq \frac{1}{4}$. Hence $m_{-}\left(g_{2}\right)<(128 d / 81)^{\frac{1}{4}}$.
(c) Let $g=g_{3}(t, x, y, z)$ and suppose that $m_{-}(g)=a \geqq(128 d / 81)^{\frac{1}{4}}=$ $\left(1024 m^{3} / 27\right)^{\frac{1}{4}}$. Then from $m_{-}\left(f_{3}\right)=4$ we get $a^{4} \geqq 1024 m^{3} / 27 \geqq 16\left(a+\frac{1}{4} a^{2}\right)^{3} / 27$ which is possible only for $a=2$ and $m=\frac{3}{4}$. Considering $g(t, 1,0,0), g(t, 0,1,0)$ and $g(t, 3,0,1)$ yields that $\lambda=\mu=\frac{1}{2}, \delta=0$ in order that $m_{+}(g)=1$. But then $g(3,1,-1,1)=-1 \frac{1}{2}$ contradicting $m_{-}(g)=a=2$. This completes the deduction of Theorem 2.

At this stage it should be pointed out that the deduction of Theorem 2 only requires theorem 1 for $d<435$, for from this theorem we have that excluding the three critical forms every ternary form of signature 1 takes a value in the interval $\left(-(8 d / 3)^{\frac{1}{3}},(d / 435)^{\frac{1}{3}}\right.$] by the method used in [6]. But where $f_{n}^{*}(x, y, z)$ is as in (1), we have $m_{-}\left(f_{n}^{*}\right) \geqq\left(a+\frac{1}{4} a^{2}\right)$ and $m_{+}\left(f_{n}^{*}\right) \geqq \frac{3}{4}$ (else choosing the square in (1) suitably gives a value v of g satisfying $0 \leqq v<\frac{1}{4} v_{n}+\frac{3}{4} v_{n}^{-1}<1$ for $v_{n} \leqq 1$, contradicting $\left.m_{+}(g)=1\right)$. Hence, neglecting the initial forms which may be treated as above, either $\left(a+\frac{1}{4} a^{2}\right)^{3}<8 d / 3$ which yields $a<(128 d / 81)^{\frac{1}{2}}$ as before or $d / 435$ $\geqq 27 / 64$. Then the assumption $a^{4} \geqq 128 d / 81$ yields $a>4.1266$. But by [2] $m_{-}\left(f_{n}^{*}\right) \leqq(16 d / 5)^{\frac{1}{3}}$ which yields $\left(a+\frac{1}{4} a^{2}\right)^{3} \leqq 81 / 40 a$ which is false for $a>4.1$. This contradiction is sufficient to complete the deduction of Theorem 2.

4. Proof of theorem 1

By a result of Oppenheim [3], $m_{+}(f)=0$ implies that

$$
m_{-}(f)=0<(8|\operatorname{det}(f)| / 3)^{\frac{1}{t}}
$$

for indefinite ternary forms. Hence in proving theorem 1 we may assume $m_{+}(f)>0$ and indeed $m_{+}(f)=1$ after multiplication by $\left(m_{+}(f)\right)^{-1}$. Furthermore we may also assume, by virtue of theorem 3.1 of [6], that f actually takes the value 1 . Thus it is only necessary to prove:

Theorem 3. Let $f(x, y, z)$ be a ternary quadratic form of signature 1 , let $|\operatorname{det}(f)|=d \neq 0$, and let $m_{+}(f)=1$ be attained by f. Then $m_{-}(f)<(8 d / 3)^{\frac{2}{3}}$ unless f is equivalent to one of the forms f_{1}, f_{2} or f_{3} as listed in theorem 1. Furthermore each of these forms has $m_{+}(f)=1$, while $m_{-}\left(f_{1}\right)=6, m_{-}\left(f_{2}\right)=9$ and $m_{-}\left(f_{3}\right)=4$.

We first show that it is necessary only to consider $d \leqq 823 \frac{7}{8}$. In order to avoid cluttering the proof of this we have a few lemmas.

Lemma 1. Let $k \geqq 9$ be an integer, define

$$
\begin{aligned}
K & =k^{2}+6 k+1, \quad t(S)=K^{2}(1+4 / S) / 64, \\
d_{1} & =K(K+12) / 64 \text { and } d_{2}=\max \left(\min \left\{t(S), 9(S+\sqrt{ } 5)^{2} / 64\right\}\right)
\end{aligned}
$$

where the maximum is taken over all positive integers S, and let this maximum be taken at S^{*}. Then $S^{*}=[K / 3]+1$ and $d_{2}=t\left(S^{*}\right)<d_{1}$.

Lemma 2 . Let $k \geqq 13$ be integral and let

$$
d_{k}(r, s)=\left(k^{2}+4 k\right)^{2}\left\{(r+2)^{2} s^{2}+4(r+2) s(r s+r+s)\right\} / 64(r s+r+s)^{2} .
$$

Then $k^{-3} d_{k}(r, s) \geqq k^{-3} d_{k}\left(S^{*}, S^{*}\right)>\frac{3}{8}$ for $k \geqq 14$ and $r \leqq s \leqq S^{*}$.
Lemma 3. Let $k \geqq 13$ be integral, let d_{1} be as in lemma 1 and let latisfy $0<l<1$. Then $F(k, l)=(k+l)^{3} /\left(d_{1}+\frac{1}{8} K l\right)$ has its supremum at $k=13, l=1$ and this supremum is less than $\frac{8}{3}$.

Proof of Lemma 1. Plainly $t(S)<d_{1}<9\left(\frac{1}{3} K+\sqrt{ } 5\right)^{2} / 64$ for $S>\frac{1}{3} K$, so $t(S)<d_{1}<9(S+\sqrt{ } 5)^{2} / 64$ for $S>\frac{1}{3} K$. It is also clear that $t(S)>d_{1}$ for $S<\frac{1}{3} K$. But as $K \not \equiv 0(\bmod 3)$ it follows that $S<\frac{1}{3} K$ implies that $3 S \leqq K-1$, and then

$$
9(S+\sqrt{ } 5)^{2} / 64 \leqq(K+3 \sqrt{ } 5-1)^{2} / 64<\left(K^{2}+12 K\right) / 64
$$

for $K>75$. Now for $K>120$ we have

$$
9\left(\frac{1}{3}(K-1)+\sqrt{ } 5\right)^{2} / 64<(K+5.75)^{2} / 64<K^{2}\left(1+12(K+2)^{-1}\right) / 64
$$

and so

$$
9([K / 3]+\sqrt{ } 5)^{2} / 64 \leqq 9\left(\frac{1}{3}(K-1)+\sqrt{ } 5\right)^{2} / 64<t([K / 3]+1) .
$$

Thus as $t(S)$ is a decreasing function of S and $9(S+\sqrt{ } 5)^{2} / 64$ an increasing one it follows that for $K>120$ we have $S^{*}=[K / 3]+1$ and $d_{2}=t\left(S^{*}\right)<d_{1}$. The lemma now follows on observing that $K>120$ for $k \geqq 9$.

Proof of Lemma 2. Since $d_{k}(s, s)=\left(k^{2}+4 k\right)^{2}(1+4 / s) / 64$ which is a decreasing function of s, since $s \leqq S^{*}$ and since $3 S^{*} \leqq K+2$ the lemma simply reduces to showing that $d_{k}(r, s)$ has negative derivative with respect to r, that $k^{-1}(k+4)^{2}$ $\left(1+12 /\left(k^{2}+6 k+3\right)\right)$ has positive derivative with respect to k for $k \geqq 14$ and that for $k=14, d_{k}\left(S^{*}, S^{*}\right)>1029$.

Proof of Lemma 3. This is a consequence of the fact that $F(k, l)$ positive derivative with respect to l and that $F(k, 1)$ has negative derivative with respect to k.

We are now in a position to prove the claim that it is only necessary to consider $d \leqq 823 \frac{7}{8}$ in proving theorem 3 .

Lemma 4. Let f satisfy the condition of theorem 3 and let $d>823 \frac{7}{8}$. Then $m_{-}(f)<(8 d / 3)^{\frac{1}{2}}$.

Proof. Suppose to the contrary that $m_{-}(f) \geqq(8 d / 3)^{\frac{1}{3}}$. Then $m_{-}(f)>$ $(2197)^{\frac{t}{3}}=13$. Let $k=\left[m_{-}(f)\right] \geqq 13$ and let $l=m_{-}(f)-k$. Firstly if $l=0$ then $k \geqq 14$ and by theorem 2 of [7] it follows that either $d=d_{k}(r, s)$ for some appropriate $r \leqq s \leqq S^{*}$, or $d \geqq \min \left(d_{1}, d_{2}\right)$. But $\min \left(d_{1}, d_{2}\right)=d_{2}=t\left(S^{*}\right)>$ $d_{k}\left(S^{*}, S^{*}\right)$ by lemma 1 , so by lemma 2 we have $k^{-3} d>\frac{3}{8}$, i.e. $m_{-}(f)<(8 d / 3)^{\frac{1}{4}}$. Secondly if $l>0$ we write f as $(x+\lambda y+\mu z)^{2}+q(y, z)$, by choosing a suitable equivalent form, where q is an indefinite binary form, and let $m_{-}(q)=e$. Since q can take no values in $\left(-e, \frac{3}{4}\right)$ we have by Segré [5] that $|\operatorname{det}(q)| \geqq \frac{3}{4} e+\frac{1}{4} e^{2}$, i.e. $d \geqq \frac{3}{4} e$ $+\frac{1}{4} e^{2}$. As q takes values $-e(1+\delta)$ for arbitrarily small $\delta \geqq 0, f$ has a section of the form $(x+\rho t)^{2}-e(1+\delta) t^{2}$ for arbitrarily small $\delta \geqq 0$. Because these sections can take no values in the interval $\left(-m_{-}(f), 1\right)$ we have by the corollary to theorem 1 of [7] that $e(1+\delta) \geqq \frac{1}{4} K+l$. Hence $e \geqq \frac{1}{4} K+l$, so $d \geqq d_{1}+\frac{1}{8} K l$. Hence by lemma 3 we have $m_{-}(f)<\left(\frac{8}{3} d\right)^{\frac{1}{4}}$. This contradiction is sufficient to prove the lemma.

To complete the proof of theorem $3^{\text {- }}$ we consider various sub-intervals of ($0,823 \frac{7}{8}$] in turn.

Lemma 5. Let f satisfy the conditions of theorem 3 and let $d \leqq 67.5$. Then either $m_{-}(f)<(8 d / 3)^{\frac{1}{3}}$ or f is equivalent to either f_{1} or f_{3}. Furthermore

$$
m_{+}\left(f_{1}\right)=m_{+}\left(f_{3}\right)=1, m_{-}\left(f_{1}\right)=6 \text { and } m_{-}\left(f_{3}\right)=4
$$

Proof. This is theorem C_{8} combined with lemmas 2.8 and 2.9 of [6].
Lemma 6. Let f satisfy the conditions of theorem 3 and let $67.5<d \leqq 81$. Then $m_{-}(f)<(8 d / 3)^{\frac{1}{3}}$.

Proof. Suppose $m_{-}(f) \geqq(8 d / 3)^{\frac{1}{3}}$. Since f takes the value 1 we may choose an equivalent form $g=(x+\lambda y+\mu z)^{2}+q(y, z)$ where q is an indefinite binary form. Applying transformations which turn q into elements of the chain $\left(q_{i}\right)$ of reduced forms equivalent to q, and applying suitable parallel transformations to x we obtain a chain of forms

$$
g_{i}=\left(x+\lambda_{i} y+\mu_{i} z\right)^{2}+(-1)^{i+1} a_{i+1}\left(z-F_{i} y\right)\left(z+S_{i} y\right),
$$

each equivalent to f, with the following property. There exists a chain of positive integers $p_{i},-\infty<i<\infty$, such that F_{i} and S_{i} are given by the simple continued fractions $\left(p_{i}, p_{i+1}, p_{i+2}, \cdots\right)$ and $\left(0, p_{i-1}, p_{i-2}, \cdots\right)$ respectively. Furthermore if $\Delta^{2}=4 d$ denotes the discriminant of q then $a_{i+1} K_{i}=\Delta$ where $K_{i}=F_{i}+S_{i}$. In addition it is plain that $a_{i} \geqq \frac{3}{4}$ for even i to ensure $m_{+}(f)=1$.

If k denotes the integer part of $m_{-}(f)$ and if $m_{-}(f)>k$ then by the corollary to theorem 1 of [7] applied to $\left(x+\mu_{i} z\right)^{2}+(-1)^{i+1} a_{i+1} z^{2}$ for i odd we have that $a_{i+1} \geqq \frac{1}{4}(k+1)^{2}+m_{-}(f)$. This yields $K_{i} \leqq \Delta\left(\frac{1}{4}(k+1)^{2}+\left(\frac{2}{3} \Delta^{2}\right)^{\frac{1}{2}}\right)$ and this expression is a maximum for maximum Δ. Now $d>67 \frac{1}{2}$ implies $m_{-}(f)>5.6462$,
so $a_{i+1}>14.6462$ for even i and $k=5$. Since $d \leqq 81$ implies $\Delta \leqq 18$ we have $K_{i} \leqq 1.2$ (i even), $K_{i} \leqq 24$ (i odd). These bounds imply that $p_{i}=1$ (i even) and $6 \leqq p_{i} \leqq 22(i$ odd $)$, so for i even we have $K_{i}>1+2(0,22,1,23)=599 / 551$, which implies that $a_{i+1}<16.6$ (i even) in order that $d \leqq 81$.

For the remainder of the proof of this lemma i shall denote any even integer, and since the chain $\left(p_{i}\right)$ is reversible at any point by the transformation $y^{\prime}=-y$ we shall assume $F_{i} \leqq 1+S_{i}$. The suffix i shall be dropped from $K_{i}, F_{i}, S_{i}, \lambda_{i}$ and μ_{i}, and the suffix $i+1$ from a_{i+1} unless ambiguity would result. $m_{-}(f)$ and $m_{+}(f)$ will be abbreviated to m_{-}and m_{+}respectively.

In the section $(x+\mu)^{2}-a$, in order not to contradict $m_{+}=1$ or the definition of m_{-}we need $(4-\|\mu\|)^{2}-a \geqq 1, a \leqq 15$ and $(3+\|\mu\|)^{2}-a \leqq-m_{-}$.
Hence

$$
\begin{equation*}
14\|\mu\|<6-m_{-} \tag{2}
\end{equation*}
$$

and so $\|\mu\|<.0253$. The bound on a now yields, as $a K=\Delta>\sqrt{ } 270$, that $K>1.0954$. Thus $1.0435<F \leqq 1.1$ and $F-1 \leqq S<1.1565$. We now eliminate various ranges of S in turn.
(a) $S=(0,6,1, \cdots)>(0,6,1,23)>.1437$. This yields $K>1.1872$, and iteration of $m_{-}>\left(\frac{2}{3} \Delta^{2}\right)^{\frac{7}{2}}, a \geqq 9+m_{-}$gives $m_{-}>5.94, a>14.94$. Then $25.7<$ $a(1+F)(1-S)<26.42$, so choosing x with $20.25 \leqq(x+\lambda-\mu)^{2} \leqq 25$ yields a contradiction (to $m_{+}=1$ or $m_{-}>5.94$) unless $(x+\lambda-\mu)^{2}<20.48$. Thus $\left\|\lambda-\mu-\frac{1}{2}\right\|<.03$, so $100 \leqq(x+2 \lambda-2 \mu)^{2}<101.3$ for some x. As $102.8<$ $T(2,-2)<105.7$ this yields a contradiction ${ }^{3}$. Hence we must have $S<$ $(0,7,1,7)<0.127$.
(b) $0.1<S<0.127$. Analysis as in (a) yields $m_{-}>5.73, a>14.73$ and that if $F>1.084$ then $m_{-}>5.92$. We have $27.83<T(1,2)<30.53$ where the lower bound may be increased to 28.33 if $F \leqq 1.084$. Furthermore if $F>1.084$ we have $38.19<T(2,3)<40.61$. Considering $25 \leqq(x+\lambda+2 \mu)^{2} \leqq 30.25$ yields a contradiction in $g(x, 1,2)$ unless $\left\|\lambda+2 \mu-\frac{1}{2}\right\| \leqq .132\left(\left\|\lambda+2 \mu-\frac{1}{2}\right\|<.09\right.$ if $F \leqq 1.084$).

If $F>1.084$ we have $\|\mu\|<.006$ from (2) and so $\|2 \lambda+3 \mu\|<.27$. Then in $g(x, 2,3), 32.83<(x+2 \lambda+3 \mu)^{2} \leqq 36$ yields a contradiction unless $T(2,3)>$ 38.75, when $36 \leqq(x+2 \lambda+3 \mu)^{2}<39.4$ yields a contradiction. Hence $F \leqq 1.084$ and so $\left\|\lambda+2 \mu-\frac{1}{2}\right\|<.09$ from the above.

Now from (2) we have $\|\mu\|<.02$, so $\|2 \lambda-\mu\|<.28$, hence $32.71<$ $(x+2 \lambda-\mu)^{2} \leqq 36$ for some x. But $33.9<T(2,-1)<38.02$, so in order to avoid a contradiction we must have $T(2,-1) \leqq 35$ and $\|2 \lambda-\mu\|<0.1$. These imply $S>.115$, so $S>.125$ as $(0,8,1, \cdots)<.113$, and hence $F<1.075$. Then $K<$ $1.1685, m_{-}>5.85, a>14.85$. Furthermore $(0,12,1, \cdots)>.076$, so $F<$ $(1,13,1,13)<1.072$, so $29.25<T(1,2)<30.53$. Then with $25 \leqq(x+\lambda+2 \mu)^{2}$

[^1]$\leqq 30.25$ we obtain a contradiction completing the elimination of this range for S. Hence $S \leqq 0.1$, and as $(0,9,1, \cdots)>0.1$ we must therefore have $S<(0,10,1,10)<.0917$.
(c) $.077<S<0917$. This possibility may also be eliminated by reference to $g(x, 1,2), g(x, 2,3)$ and $g(x, 2,-1)$. We have $27.82<T(1,2)<30.02$, so considering $25 \leqq(x+\lambda+2 \mu)^{2} \leqq 30.25$ yields $\left\|\lambda+2 \mu-\frac{1}{2}\right\|<.14$. Thus $\|2 \lambda+3 \mu\|$ $<.3053$, so $36 \leqq(x+2 \lambda+3 \mu)<39.76$ for suitable x. But $38.07<T(2,3)<$ 43.6 , so either (i) $T(2,3)<38.76$ or (ii) $T(2,3) \geqq 36+m_{-}$.

The first possibility yields $F>1.082, K>1.164, m_{-}>5.83, a>14.83$, $T(1,2)>28.17,\left\|\lambda+2 \mu-\frac{1}{2}\right\|<.11$ and $\|2 \lambda+3 \mu\|<.2453$ in turn. But now choosing x with $36 \leqq(x+2 \lambda+3 \mu)^{2}<39.1$ yields a contradiction since the improved bound on a yields $T(2,3)>38.55$.

Considering the second possibility we note that $36.92<T(2,-1)<40.03$, so $36 \leqq(x+2 \lambda-\mu)^{2} \leqq 42.25$ yields $\left\|2 \lambda-\mu-\frac{1}{2}\right\|<.35$ in order to avoid a contradiction. Hence $\left\|2 \lambda+3 \mu-\frac{1}{2}\right\|<.4512$, so $T(2,3)>(6.0488)^{2}+m_{-}>42.26$. This yields $F<1.0579, T(1,2)>28.658,\left\|\lambda+2 \mu-\frac{1}{2}\right\|<.055$ and $\|2 \lambda-\mu\|<$.2365 in turn. Then either $33.21<(x+2 \lambda-\mu)^{2} \leqq 36$ or $36 \leqq(x+2 \lambda-\mu)^{2}<39$ will yield a contradiction. This eliminates this range for S, so $S \leqq .077$. As $(0,12,1,23)>.077$ we must therefore have $S<(0,13,1,13)<.0718$.
(d) $.054<S<.0718$. This case is easily eliminated, for $27.78<T(1,-1)$ <29.3 which implies that $\left\|\lambda-\mu-\frac{1}{2}\right\|<.136$. Thus $\|2 \lambda-\mu\|<.298$ and choosing x with $36 \leqq(x+2 \lambda-\mu)^{2}<39.67$ yields a contradiction as $38.72<T(2,-1)<$ 41.6. Hence $S \leqq .054$, and as $(0,17,1,23)>.055$ we must have $S<(0,18,1,18)$ <. 0528 .
(e) $.0527<S<.0528$. This case yields $\|2 \lambda-\mu\|<.298$ as above, and since $38.72<T(2,-1)<41.672$ we obtain a contradiction unless $a>14.99$ and $F>1.0517$. This yields $K>1.1044, m_{-}>5.674$ and so our value $g(x, 2,-1)$ still yields a contradiction. Thus $S \leqq .0527$, and as $(0,18,1,23)>.0527$ we must have $S<(0,19,1,19)<.0502$.
(f) $.05<S<.0502$. This implies that $a F S<.791$, so $\left\|\lambda-\frac{1}{2}\right\|<.05$ in order to avoid a contradiction. Hence $\|2 \lambda-\mu\|<.126$, so we can choose x with $36 \leqq$ $(x+2 \lambda-\mu)^{2}<37.6$. As $40<T(2,-1)<41.85$ this gives a contradiction unless $\|2 \lambda-\mu\|<.018$ and $a<14.92$. Then $\|8 \lambda-\mu\|<.149$, so $81 \leqq(x+8 \lambda-\mu)^{2}<83.8$ for some x. But $F>1.0474$ in order that $T(1,1) \geqq \frac{3}{4}$, so $83.7<T(8,-1)<84.6$, yielding a contradiction. Hence as $(0,19,1, \cdots)>.05$ we must have $S \leqq(0, \overline{20,1})$ $=S^{\prime}$. But then $F S<\frac{1}{20}$ unless $F-1=S=S^{\prime}$, so $a F S<\frac{3}{4}$, yielding a contradiction, unless $a=15$ and $F-1=S=S^{\prime}$. But this implies $\Delta^{2}=270$, contradicting the initial assumption that $d>67.5$.

Lemma 7. Let f satisfy the conditions of theorem 3 and let $81<d \leqq 128 \frac{5}{8}$. Then $m_{-}(f)<(8 d / 3)^{\frac{3}{2}}$.

Proof. Suppose $m_{-}(f) \geqq(8 d / 3)^{\frac{7}{f}}$. We first observe that theorem 2 of [7],
together with its associated tables 1 and 2 , yield $d>96.7$, and consequently $m_{-}>6.364$. Analysis as at the beginning of the proof of lemma 6 yields that $K_{i}<30.244$ (i odd), $K_{i}<1.17834$ (i even), $p_{i}=1$ (i even), $6 \leqq p_{i} \leqq 29$ (i odd), $18.614<a_{i+1}<21.265$ (i even), $F_{i}>1.0333$ (i even) and $S_{i}<.1451$ (i even). Once again we drop the suffixes $i, i+1$ for even i, and take $F \leqq 1+S$.

In the section $(x+\mu)^{2}-a$, in order not to contradict $m_{+}=1$ or the definition of m_{-}we need

$$
\left(4 \frac{1}{2}-\left\|\mu-\frac{1}{2}\right\|\right)^{2}-a \geqq 1, a \leqq 19.25 \text { and }\left(3 \frac{1}{2}+\left\|\mu-\frac{1}{2}\right\|\right)^{2}-a \leqq-m_{-} .
$$

Hence

$$
\begin{equation*}
\left\|\mu-\frac{1}{2}\right\| \leqq\left(7-m_{-}\right) / 16 \tag{3}
\end{equation*}
$$

and so $\left\|\mu-\frac{1}{2}\right\|<.04$. We now proceed to exhaust all the possibilities for S.
(a) $S<.048$. This yields $36<T(1,-1)<37.84$ (bearing in mind that $F-1 \leqq S$), hence with $30.25 \leqq(x+\lambda-\mu)^{2} \leqq 36$ we require $\left\|\lambda-\mu-\frac{1}{2}\right\|<.12$ in order to avoid a contradiction. Thus $\|\lambda\|<.16$, so g takes a value at most $(.16)^{2}+19.25(1.048)(.048)<1$, contradicting $m_{+}=1$. Hence $S \geqq .048$. But $(0,20,1,6)<.048$, so $S>(0,19,1,20)>.0501$.
(b) A similar argument to the above, using $g(x, 1,2)$ and $g(x, 1,1)$, yields that $F>1.04$, and repetition yields $F>1.0415$ (which gives $F>(1,23,1,24)>$ 1.0417) and so $S<.137$ and $p_{i} \leqq 23$ for all odd i. As $(0,6,1, \cdots)>.14$ we must therefore have $S<(0,7,1,7)<.127$.
(c) $0.10<S<.127$. This yields $K>1.141, m_{-}>6.79, a>19.04$, and hence $\left\|\mu-\frac{1}{2}\right\|<.014$ from (3). Now $33.93<T(1,-1)<36.02$, so we need $\|\lambda-\mu\|$ $<.09$ in order to avoid a contradiction. Hence $\left\|2 \lambda-\mu-\frac{1}{2}\right\|<.194$, so $39.76<$ $\left(x_{1}+2 \lambda-\mu\right)^{2} \leqq 42.25$ and $42.25 \leqq\left(x_{2}+2 \lambda-\mu\right)^{2}<44.81$ for suitable x_{1}, x_{2}. One of these choices will give a contradiction as $43.7<T(2,-1)<48.64$. Hence $S \leqq .10$, so $S<.09167$ as in (b) of the proof of the previous lemma.
(d) $.09<S<.09167$. In this case $K>1.131, m_{-}>6.74, a>18.99$, and so $35.2<T(1,-1)<36.6$. Choosing $30.25 \leqq(x+\lambda-\mu)^{2} \leqq 36$ now yields a contradiction. Hence $S \leqq .09$, which implies that $S<(0,11,1,11)<.08392$.
(e) $.05<S<.08392$. In this case we have, observing that $S \geqq .0787$ implies that $K>1.12, m_{-}>6.69$ and $a>18.94$, that $35<T(1,-1)<37.49$. Hence choosing $30.25 \leqq(x+\lambda-\mu)^{2} \leqq 36$ yields $\left\|\lambda-\mu-\frac{1}{2}\right\|<.08$ in order to avoid a contradiction. Thus $\|\lambda+2 \mu\|<.20$, so $33<(x+\lambda+2 \mu)^{2} \leqq 36$ for suitable x. This yields a contradiction since $35<T(1,2)<39$, completing the proof of the lemma.

Lemma 8. Let f satisfy the conditions of theorem 3 and let $128 \frac{5}{8}<d \leqq 192$. Then $m_{-}(f)<(8 d / 3)^{\frac{1}{4}}$.

Proof. Suppose $m_{-}(f) \geqq(8 d / 3)^{\frac{1}{3}}$. By a method similar to that used in proving lemma 7 the results of [7] yield $d>149.3$ and $m_{-}>7.3565$. Again analysis as
in lemma 6 yields $K_{i}<37.051$ (i odd), $K_{i}<1.15471$ (i even), $p_{i}=1$ (i even), $7 \leqq p_{i} \leqq 35$ (i odd), $23.3565<a_{i+1}<26.254$ (i even), $F_{i}>1.02779$ (i even) and $S_{i}<\cdot 127$ (i even). As usual we drop suffixes for even i and take $F \leqq S+1$. Treatment of the section $(x+\mu)^{2}-a$ as in earlier lemmas yields that $a \leqq 24$ and

$$
\begin{equation*}
\|\mu\| \leqq\left(8-m_{-}\right) / 18 \tag{4}
\end{equation*}
$$

and so $\|\mu\|<.03575$. We now proceed to exhaust all possibilities for S.
(a) $0.1<S<0.127$. In this case $K>1.12779, m_{-}>7.83, a>23.83$ and $42.17<T(1,-1)<44.384$. Hence choosing $36 \leqq(x+\lambda-\mu)^{2} \leqq 42.25$ we get a contradiction unless $\|\lambda-\mu\|<.046$ and

$$
\begin{equation*}
T(1,-1) \geqq 36+m_{-} \tag{5}
\end{equation*}
$$

Now $47.75<T(1,2)<49.63$, and our bounds on $\|\lambda-\mu\|$ and $\|\mu\|$ imply that $\|\lambda+2 \mu\|<.16$ so with $46<(x+\lambda+2 \mu)^{2} \leqq 49$ we obtain a contradiction unless $\|\lambda+2 \mu\|<.02$ and $T(1,2) \leqq 48$. The latter yields $F>1.0408, K>1.1408$, $m_{-}>7.915, a>23.915$, and so from (5) we obtain $S<.11$. Thus $S<$ $(0,9,1,9)<.1011$. But then $68<T(2,3)<71$, while as $\|2 \lambda+3 \mu\|<.08$ we have $64 \leqq(x+2 \lambda+3 \mu)^{2}<66$ for some x. This contradiction yields $S \leqq 0.1$, so $S<.09167$.
(b) $.0769<S<.09167$. This implies that $K>1.0996, m_{-}>7.67$ and $a>23.67$, while if $F \geqq 1.05$ we obtain $K>1.1269, m_{-}>7.82$ and $a>23.82$. Now $43.567<T(1,-1)<46.01$. Considering $36 \leqq(x+\lambda-\mu)^{2} \leqq 42.25$ if $T(1,-1)<45.7$ and $42.25 \leqq(x+\lambda-\mu)^{2} \leqq 49$ if $T(1,-1) \geqq 45.7$ yields a contradiction unless $\|\lambda-\mu\|<.17$. Now $60.03<T(2,-1)<64.06$ if $F \geqq 1.05$: but $\|2 \lambda-\mu\|<.36$, so $58.3<(x+2 \lambda-\mu)^{2} \leqq 64$ for some x, yielding a contradiction unless $\|2 \lambda-\mu\|<.18$. Hence if $F \geqq 1.05$ we have $63.1<T(2,3)<69$ and $\|2 \lambda+3 \mu\|<.22$ (as $\|\mu\|<.01$ from (4)). Then either $60.5<(x+2 \lambda+3 \mu)^{2} \leqq 64$ or $64 \leqq(x+2 \lambda+3 \mu)^{2}<68$ yields a contradiction. Hence $F<1.05$.

We now have $47.61<T(1,2)<48.81$, so $42.25 \leqq(x+\lambda+2 \mu)^{2} \leqq 49$ yields a contradiction unless $\|\lambda+2 \mu\|<.12$ and $T(1,2) \leqq 48$. But $a(5-4 F+4 S-3 F S)<23.1$, so $T(2,3)<48+23.1=71.1$. As $T(2,3)>63.1$ and $\|2 \lambda+3 \mu\|<.26$, choosing either $59.9<(x+2 \lambda+3 \mu)^{2} \leqq 64$ or $64 \leqq$ $(x+2 \lambda+3 \mu)^{2}<68.3$ yields a contradiction. Hence $S \leqq .0769$ which implies that $S<(0,13,1,13)<.0718$.
(c) $.05<S<.0718$. This yields $K>1.07779, m_{-}>7.54, a>23.54$ and $\|\mu\|<.028$. Now $44<T(1,-1)<47$ and $45<T(1,2)<48.4$, so splitting up these ranges at 45.622 yields $\|\lambda-\mu\|<.172$ and $\|\lambda+2 \mu\|<.172$ by a method similar to that which gave $\|\lambda-\mu\|<.17$ in (b) above. Furthermore as $63.67<$ $T(2,3)<71.26$, working similar to that used at the end of (b) will give a contradiction unless $\left\|2 \lambda+3 \mu-\frac{1}{2}\right\|<.2332$. Now $\|\lambda+3 \mu\|<.2$, while $\left\|2 \lambda+3 \mu-\frac{1}{2}\right\|$ $<.2332$ implies that $\|\lambda+3 \mu\|>.0914$, so $139<(x+\lambda+3 \mu)^{2}<141.815$ for suitable x. As $139.428<T(1,3)<145.4$ we must have, in order to avoid a
contradiction, $\|\lambda+3 \mu\|<.15$ and $T(1,3)<140.815$. This latter implies that $a<23.775$, so $61.5<T(2,-1)<66.34$. However $\left\|2 \lambda+3 \mu-\frac{1}{2}\right\|<.2332$ yields $\left\|2 \lambda-\mu-\frac{1}{2}\right\|<.3452$, while $\|\lambda-\mu\|<.172,\|\lambda+2 \mu\|<.172$ and $\|\lambda+3 \mu\|<.15$ combine to yield $\|2 \lambda-\mu\|<.3308$, so $58.816<(x+2 \lambda-\mu)^{2}<61.6$ for suitable x. This $g(x, 2,-1)$ contradicts either $m_{+}=1$ or $m_{-}>7.54$. Hence $S \leqq .05$, so $S<(0,20,1,20)<.04773$.
(d) $.02779<S<.04773$. In this case $45<T(1,-1)<48$ and $45<T(1,2)$ <48, so $\|\lambda-\mu\|<.18$ and $\|\lambda+2 \mu\|<.18$ by a method similar to that used in (c). These imply $\|\lambda+\mu\|<.18$, so $(x+\lambda+\mu)^{2}<.033$ for suitable x. Hence $T(1,1)>.969$ to avoid contradicting $m_{+}=1$. This implies $F>1.03844$, so $S>.03844, K>1.0768, m_{-}>7.536$ and $a>23.536$. Then $140<T(1,3)<$ 144.63 and $139.61<T(1,-2)<144$, where the lower bound can be raised to 140 in the latter case unless both $a<23.61$ and $S>.042$, in which case $T(2,-1)<66.7$.

Suppose firstly that $T(1,-2)>140$. Then as $\|\lambda+3 \mu\|<.21$ and $\|\lambda-2 \mu\|<$.21 we can choose corresponding squares between 139 and 144 . These give a contradiction unless $\|\lambda+3 \mu\|<.13$ and $\|\lambda-2 \mu\|<.13$. Combining these, since $\|\mu\|<.03$, yields that $\|2 \lambda-\mu\|<.26$, so $59.9<\left(x_{1}+2 \lambda-\mu\right)^{2} \leqq 64$ and $64 \leqq\left(x_{2}+2 \lambda-\mu\right)^{2}<68.3$ for suitable x_{1}, x_{2}. One of these choices gives a contradiction as $64<T(2,-1)<70$.

The second case is dealt with similarly - we obtain $\|\lambda+3 \mu\|<.13,\|\lambda-2 \mu\|$ $<.143,\|2 \lambda-\mu\|<.286$, so $59.5<(x+2 \lambda-\mu)^{2} \leqq 64$ for suitable x. This gives a contradiction since $64<T(2,-1)<66.7$. This completes the proof of lemma 8 .

Lemma 9. Let f satisfy the conditions of theorem 3 and let $192<d \leqq 273 \frac{3}{8}$. Then either f is equivalent to $f_{2}(x, y, z)$ or $m_{-}(f)<(8 d / 3)^{\frac{f}{2}}$.

Proof. Suppose $m_{-}(f) \geqq(8 d / 3)^{\frac{1}{3}}$. By a method similar to that used in earlier lemmas we have $d>220.5, m_{-}>8.377, K_{i}<44.0906$ (i odd), $K_{i}<1.13054$ (i even), $p_{i}=1$ (i even), $9 \leqq p_{i} \leqq 43$ (i odd), $28.627<a_{i+1}<31.633$ (i even), $F_{i}>1.0227$ (i even) and $S_{i}<.101$ (i even). As usual we drop the suffixes for even i and take $F \leqq S+1$. Then treatment of the section $(x+\mu)^{2}-a$ as in earlier lemmas yields $a \leqq 29.25$ and $\left\|\mu-\frac{1}{2}\right\| \leqq\left(9-m_{-}\right) / 20$, from which we have $\left\|\mu-\frac{1}{2}\right\|<.032$. We now proceed to eliminate all possibilities for S except that giving f_{2}.
(a) $S<.0457$. We have $55.88<T(1,2)<60.06$ and $55.25<T(1,-1)<$ 57.821. Choosing corresponding squares between 49 and 56.25 yields a contradiction unless $\|\lambda+2 \mu\|<.19$ and $\|\lambda-\mu\|<.032$. However these combine to give $\|3 \mu\|<.222$, plainly contradicting $\left\|\mu-\frac{1}{2}\right\|<.032$. Hence $S \geqq .0457$, so $S>(0,20,1,21)>.0477$.
(b) $0.477<S<$.101. In this case $K>1.0704$, so $m_{-}>8.55$ and $a>28.8$. We have $55.26<T(1,2)<60$, so $\|\lambda+2 \mu\|<.19$ as above. Also $52.573<$ $T(1,-1)<57.05$, so with $49 \leqq(x+\lambda-\mu)^{2} \leqq 56.25$ we see that (i) $T(1,-1) \leqq$ 55.25 to avoid a contradiction similar to that in (a), and (ii) $\left\|\lambda-\mu-\frac{1}{2}\right\|<.181$.

Now $T(2,-1)=2 T(1,-1)-a(1+2 F S)$ and $a(1+2 F S)>31.49$, so $T(2,-1)$ <79.01. Suppose that $T(2,-1)>71.25$. Then $\|2 \lambda-\mu\|<.225$ else either 72.25 $\leqq(x+2 \lambda-\mu)^{2}<77$ or $67.65<(x+2 \lambda-\mu)^{2} \leqq 72.25$ will yield a contradiction. This implies that $\left\|\lambda-\mu-\frac{1}{2}\right\|>.121$, so we can replace (i) above by $T(1,-1)$ <53.45, yielding $T(2,-1)<75.41$. Repeating this cycle eventually leads to $\left\|\lambda-\mu-\frac{1}{2}\right\|>.182$, contradicting an earlier bound. We therefore have $T(2,-1) \leqq$ $71.25, S>.0938$, so $S>(0,9,1.0227)>.10022$. Then $F<1.03032 . K>1.12292$, $m_{-}>8.948, a>29.198$ and $\left\|\lambda-\frac{1}{2}\right\|<.0026$. Now $70.957<T(2,-1) \leqq 71.25$, so $64 \leqq(x+2 \lambda-\mu)^{2} \leqq 72.25$ yields $\|2 \lambda-\mu\|<.018$, which in conjunction with the bounds on $\left\|\mu-\frac{1}{2}\right\|$ and $\|\lambda+2 \mu\|$ yields $\|\lambda\|<.0103$. Then $\|5 \lambda+6 \mu\|<.07$, so $167<(x+5 \lambda+6 \mu)^{2} \leqq 169$ for suitable x, giving a contradiction, as $161<T(5,6)$ <168.7, unless $T(5,6)<168$. Hence $F>1.02298$, so $F \geqq(\overline{1,42,1,9})>1.0233$ (as $(1,43,1,9,1,8)<1.0229$, and $p_{i+3}=9$ on applying the results so far to the point $i+2$ with the chain reversed). In addition $181.53<T(6,7)<191.38$, and as $\left\|6 \lambda+7 \mu-\frac{1}{2}\right\|<.08$ suitable choice of x yields a contradiction unless $T(6,7)>191.198$. This implies $F<1.0235$, and as $(1,41,1,10)>1.0238$ we must have $F=(\overline{1,42,1,9)}$. Reversing the chain about $i-2$ and applying these results gives $S=(0, \overline{9,1,42,1})$.

That $a=29.25$ and $\left\|\lambda+\mu-\frac{1}{2}\right\|=0$ follows on observing that $0<g(x, 1,1)$ <1 unless equality holds in $(x+\lambda+\mu)^{2} \leqq \frac{1}{4}$ and $T(1,-1)=a / 39 \leqq \frac{3}{4}$. Similarly $\left\|10 \lambda-\mu-\frac{1}{2}\right\|=0$, which when added to $\left\|\lambda+\mu-\frac{1}{2}\right\|=0$ and compared with $\|\lambda\|<.0103$ yields $\|\lambda\|=0$. Then $\left\|\mu-\frac{1}{2}\right\|=0$ and the form is f_{2}, as desired. The proof that $m_{+}\left(f_{2}\right)=1$ and $m_{-}\left(f_{2}\right)=9$ is left till later.

Lemma 10. Let f satisfy the conditions of theorem 3 and let $273 \frac{3}{8}<d \leqq 375$. Then $m_{-}(f)<(8 d / 3)^{\frac{1}{3}}$.

Proof. Suppose $m_{-}(f) \geqq(8 d / 3)^{\frac{1}{3}}$. Then by the usual method we get $d>314.1$, $m_{-}>9.4263, K_{i}<51.64(i$ odd $), K_{i}<1.1066(i$ even $), p_{i}=1(i$ even $), 11 \leqq p_{i} \leqq$ 49 (i odd), $34.4263<a_{i+1}<37.241$ (i even), $F_{i}>1.02$ (i even) and $S_{i}<.0866$ (i even). As usual we drop the suffixes for even i and take $F \leqq S+1$. Then treatment of the section $(x+\mu)^{2}-a$ as in earlier lemmas yields $a \leqq 35$ and $\|\mu\|<$ $\left(10-m_{-}\right) / 22$ from which we get $\|\mu\|<.0261$. We now proceed to eliminate all possibilities for S.
(a) $S>.0621$. In this case we have $K>1.0821, m_{-}>9.816,\|\mu\|<.01$ and $a>34.816$. Then $64.18<T(1,-1)<67.14$, so with $56.25 \leqq\left(x+\lambda-\mu^{2}\right) \leqq$ 64 we must have $\left\|\lambda-\mu-\frac{1}{2}\right\|<.075$ to avoid a contradiction. This gives $\|2 \lambda+3 \mu\|$ $<.20$, and so either $96<(x+2 \lambda+3 \mu)^{2} \leqq 100$ or $100 \leqq(x+2 \lambda+3 \mu)^{2}<104.1$ yields a contradiction as $99<T(2,3)<107$. Hence $S \leqq .0621$, so $S \leqq(0,16,1)$, $<.05903$.
(b) $0.05<S<.0591$. Analysis as in (a) yields $K>1.07, m_{-}>9.725$ and $\|\mu\|<.013$. If $F<1.03$ we have $63<T(1,-1)>67.5$ and so with $56.25 \leqq$
$(x+\lambda-\mu)^{2} \leqq 64$ we require $\left\|\lambda-\mu-\frac{1}{2}\right\|<.101$ to avoid a contradiction. Then $\|2 \lambda+3 \mu\|<.267$ and as $100<T(2,3)<105$ we obtain a contradiction as in (a). Hence $F \geqq 1.03$. Then $93.7199<T(2,-1)<98$, and with $90.25 \leqq$ $(x+2 \lambda-\mu)^{2} \leqq 100$ we require $\|2 \lambda-\mu\|<.268$ to avoid a contradiction. Thus $\|2 \lambda+3 \mu\|<.32$, so $93.7<(x+2 \lambda+3 \mu)^{2} \leqq 100$ for suitable x, and as $96.17<$ $T(2,3)<102.6$ we get a contradiction unless $T(2,3) \leqq 99$. Because of the relation between F, K, m_{-}and a this last inequality yields $F>1.042, m_{-}>9.89$ and $a>34.89, T(2,3)>96.834,\|2 \lambda+3 \mu\|<.11$ and $\|\mu\|<.005$. That $\left\|\lambda-\frac{1}{2}\right\|$ is small comes from consideration of $g(x, 1,-1)$, so we must have $\left\|\lambda-\frac{1}{2}\right\|<.063$. Then $\left\|3 \lambda-\mu-\frac{1}{2}\right\|<.194$, and as $118.24<T(3,-1)<123.4$ we get a contradiction unless $T(3,-1)>120.14$. This is true only if $S<.0583$, so $S \leqq(0, \overline{17,1})$ $<.0558$ as $(0,16,1,50)>.0588$.

From the above we can deduce that $138.8<T(4,-1)<146$ and that 137 $<(x+4 \lambda-\mu)^{2} \leqq 144$ for suitable x, so we get a contradiction unless $T(4,-1) \leqq$ 143. This implies that $S>.051$, so $S>(0,18,1,50)>.05268$, giving $143<$ $T(4,5)<153.8$. But the bounds on $\|2 \lambda+3 \mu\|$ and $\|\mu\|$ imply that $\|4 \lambda+5 \mu\|<$.225 , so $138.65<\left(x_{1}+4 \lambda+5 \mu\right)^{2} \leqq 144$ and $144 \leqq\left(x_{2}+4 \lambda+5 \mu\right)^{2}<149.46$ for suitable choices of x_{1}, x_{2}. One of these choices gives a contradiction. Thus $S \leqq .05$, so $S<(0,20,1,20)<.04773$.
(c) $.04<S<.04773$. This yields $m_{-}>9.652, a>34.652,\|\mu\|<.016$ and $66.4<T(1,-1)<68.55$, so $\left\|\lambda-\mu-\frac{1}{2}\right\|<.175$ to avoid a contradiction. Now $95.28<T(2,-1)<99.2$ so with $90.25 \leqq(x+2 \lambda-\mu)^{2} \leqq 100$ we deduce $\|2 \lambda-\mu\|<.2$. Thus $\|2 \lambda+3 \mu\|<.264$, so $94.78<(x+2 \lambda+3 \mu)^{2} \leqq 100$ for some x. As $97.02<T(2,3)<104.01$ we get a contradiction unless $\|2 \lambda+3 \mu\|<.1$ and $T(2,3) \leqq 99$. Then $F>1.0362$, so $144<T(4,-1)<151.8$. One of the values $(12-\delta)^{2}-T(4,-1),(12+\delta)^{2}-T(4,-1)$ yields a contradiction if $\|4 \lambda-\mu\|=\delta<\left(1+m_{-}\right) / 48$, so $\|4 \lambda-\mu\|>.221$. Hence $\left\|\lambda-\frac{1}{2}\right\|>.05$ and $\|2 \lambda+3 \mu\|>.054$. This decreases our upper bound on $T(2,3)$ to 98.0 yielding $F>1.04$. This gives $K>1.08, m_{-}>9.78,\|\mu\|<.01,\|4 \lambda-\mu\|>.224,\|2 \lambda+3 \mu\|$ $>.077$ and so on - this iteration eventually yields $F>1.048$ which is impossible as $F \leqq S+1$ and $S<.048$. Hence $S \leqq .04$, so $S<(0,25,1,25)<.0386$.
(d) $.03<S<.0386$. Following the method of (c) we obtain $m_{-}>9.575$, $a>34.575, \quad\|\mu\|<.02,67.14<T(1,-1)<68.919$, $\left\|\lambda-\mu-\frac{1}{2}\right\|<.204$ and $96.99<T(2,-1)<100.68$. But $\|2 \lambda-\mu\|<.428$, so $91.6<(x+2 \lambda-\mu)^{2} \leqq 100$ for suitable x Hence $T(2,-1) \leqq 99$ and $\|2 \lambda-\mu\|<102$. Following (c) again we have $\|2 \lambda+3 \mu\|<.182,98.18<T(2,3)<103.5,\|2 \lambda+3 \mu\|<.042, T(2,3)$ $\leqq 99, F>1.0321, S>.0321, a(3+2 S)>105.944$ and after a couple of iterations $F>1.033$. Thus $K>1.066, m_{-}>9.697, a>34.697, a(3+2 S)>106.381$, $F>1.0346$. Then $F>(1,27,1,50)>1.0357$, so $K>1.0714$ and $m_{-}>9.725$. Noting that $a>34.8$ implies that $F>1.0368$ to keep $T(2,3) \leqq 99$ we have $147<$ $T(4,-1)<153.64$. But $\|2 \lambda-\mu\|<.102$ and $\|\mu\|<\left(10-m_{-}\right) / 22<.013$ combine to yield $\|4 \lambda-\mu\|<.217$. As $.217<\left(1+m_{-}\right) / 48$ we can now obtain a contradiction
as in (c). Hence $S<.03$, so $S(0,33,1,33)<.0295$.
(e) $.02<S<.0295$. As $99<T(2,3)<102.79$ we obtain a contradiction by choosing x such that $90.25 \leqq(x+2 \lambda+3 \mu)^{2} \leqq 100$ unless $\left\|2 \lambda+3 \mu-\frac{1}{2}\right\|<.163$. This implies that $\left\|2 \lambda-\mu-\frac{1}{2}\right\|<.27$, so $90.25 \leqq(x+2 \lambda-\mu)^{2}<96$ for some x. As $98.376<T(2,-1)<102.144$ we obtain a contradiction unless $\left\|2 \lambda-\mu-\frac{1}{2}\right\|$ $<.1291$. Hence $\left\|\lambda-\frac{1}{2}\right\|>.1724$, so $(x+\lambda)^{2}<.1074$ for suitable x. Then $a F S>.8926$, yielding $S>.0248$. A similar treatment yields $\left\|\lambda-\mu-\frac{1}{2}\right\|>.1549$, $a(F-1)(S+1)>.8809$ and $F>1.0244$. Hence $K>1.0492, m_{-}>9.57$ and $\|\mu\|<.02$. Now $T(2,-1)<101.45$ and analysis as above gives $\left\|2 \lambda-\mu-\frac{1}{2}\right\|<$.086. This on combining with $\|\mu\|<.02$ yields $\|3 \lambda-\mu-l / 4\|<.14$ for $l=1$ or $l=-1$, so $123.4<(x+3 \lambda-\mu)^{2}<129.7$ for suitable x. But $128.3<T(3,-1)<$ 132.01 so we obtain a contradiction unless $T(3,-1)<128.7$. Thus $a<34.7$, $T(2,-1)<99.88,\|2 \lambda-\mu\|<.01,\|3 \lambda-\mu-l / 4\|<.03$ and $125.8<(x+3 \lambda-\mu)^{2}$ <127.23 for some x, yielding a contradiction as required.

Lemma 11. Let f satisfy the conditions of theorem 3 and let $375<d \leqq 499 \frac{1}{8}$. Then $m(f)<(8 d / 3)^{\frac{t}{4}}$.

Proof. Suppose $m_{-}(f) \geqq(8 d / 3)^{\frac{1}{3}}$. Then by the usual method we have $d>$ 435.06, $m_{-}>10.507, K_{i}<59.578$ (i odd), $K_{i}<1.08322\left(i\right.$ even), $p_{i}=1$ (i even), $12 \leqq p_{i} \leqq 57$ (i odd), $40.757<a_{i+1}<43.25$ (i even), $F_{i}>1.01724$ (i even) and $S_{i}<.066$ (i even). As usual we drop the suffixes for even i and take $F \leqq S+1$. The usual treatment of $(x+\mu)^{2}-a$ yields $a \leqq 41.25$ and $\left\|\mu-\frac{1}{2}\right\| \leqq\left(11-m_{-}\right) / 24$, so $\left\|\mu-\frac{1}{2}\right\|<.021$. We now proceed to exhaust all possibilities for S.
(a) $.05<S<.066$. In this case we have $K>1.06724, m_{-}>10.87$, $a>$ 41.12 and $\left\|\mu-\frac{1}{2}\right\|<.006$. As $81.4<T(1,2)<83.754$ we obtain, with $72.25 \leqq$ $(x+\lambda+2 \mu)^{2} \leqq 81$, a contradiction unless $\left\|\lambda+2 \mu-\frac{1}{2}\right\|<.038$. Then $\left\|2 \lambda-\mu-\frac{1}{2}\right\|$ $<.106$, so $107<(x+2 \lambda-\mu)^{2} \leqq 110.25$, which yields a contradiction, as $108<$ $T(2,-1)<114$, unless $T(2,-1) \leqq 109.25$. This is true only if $S>.06222$, so $F<1.021$ by our bound on K. Then we have a contradiction as $a(F-1)(S+1)$ $<.93$ while $\|\lambda+\mu\|<.05$ implies that $(x+\lambda+\mu)^{2}<.003$ for suitable x. Hence $S \leqq .05$, so $S<.04773$.
(b) $.04<S<.04773$. Analysis as in (a) yields $m_{-}>10.77, a>41.02$, $\left\|\mu-\frac{1}{2}\right\|<.01$ and $80.1<T(1,2)<83.03$, the lower bound being obtained by observing that if $F>1.035$ then $a>41.12$ as in (a). Then choosing x with 72.25 $\leqq(x+\lambda+2 \mu)^{2} \leqq 81$ yields a contradiction as $T(1,2)>83.01$ only if $a>41.24$ which implies that $m_{-}>10.8$. Hence $S \leqq .04$, so $S<.0386$.
(c) $S<.0386$. In this case $80<T(1,2)<82.66$, where the lower bound is obtained by observing that if $F>1.038$ then $a>41.12$ as in (b). Then choosing x with $72.25 \leqq(x+\lambda+2 \mu)^{2} \leqq 81$ yields a contradiction to either $m_{+}=1$ or $m_{-}>10.5$.

Lemma 12. Let f satisfy the conditions of theorem 3 and let $499 \frac{1}{8}<d \leqq 648$. Then $m_{-}(f)<(8 d / 3)^{\frac{1}{3}}$.

Proof. Suppose $m_{-}(f) \geqq(8 d / 3)^{\frac{1}{3}}$. Then by the usual method we have $d>$ 587.313, $m_{-}>11.613, K_{i}<64.613$ (i odd), $K_{i}<1.0607$ (i even), $p_{i}=1$ (i even), $21 \leqq p_{i} \leqq 62$ (i odd), $47.613<a_{i+1}<49.36$ (i even), $F_{i}>1.0158$ (i even) and $S_{i}<.045$ (i even). As usual we drop the suffixes for even i and take $F \leqq S+1$. Since $(0,21,1)>.045$ we have $S<(0,22,1,22)<.0436$. Furthermore $K>$ 1.0316 implies that $m_{-}>11.733$ and $a>47.733$. Treatment of the section $(x+\mu)^{2}-a$ as in earlier lemmas yields $a \leqq 48$ and $\|\mu\| \leqq\left(12-m_{-}\right) / 26$, so $\|\mu\|<.011$. We proceed to eliminate various ranges for S.
(a) $.032<S<.0436$. Then $m_{-}>11.88$ and $92.02<T(1,-1)<94.262$, so with $81 \leqq(x+\lambda-\mu)^{2} \leqq 90.25$ we obtain a contradiction unless $\|\lambda-\mu\|<.077$. As $\|\mu\|<.005$ we have $\|\lambda+\mu\|<.087$, so $(x+\lambda+\mu)^{2}<.008$ for some x. Hence $a(F-1)(S+1)>.992$, so $F>1.0198$, implying that $S<.041$. Now $\|3 \lambda-\mu\|<$.241 , so $162.79<\left(x_{1}+3 \lambda-\mu\right)^{2} \leqq 169$ and $169 \leqq\left(x_{2}+3 \lambda-\mu\right)^{2}<175.33$ for suitable x_{1}, x_{2}. However $170.4<T(3,-1)<177.31$, so one of the values $g\left(x_{1}, 3,-1\right), g\left(x_{2}, 3,-1\right)$ yields a contradiction. Thus $S \leqq .032$, so $S<(0,31,1,31)<.0313$.
(b) $.0158<S<.0313$. Following the method of (a) we have $93.1<$ $T(1,-1)<95.23, \quad\|\lambda-\mu\|<.14, \quad\|\lambda+\mu\|<.162, a(F-1)(S+1)>.973$ and $F>1.0196$. Similarly $\|\lambda\|<.151, a F S>.977$ and $S>.0199$. Hence $K>1.0395$ and $m_{-}>11.8$. Now if $S \geqq .0253$ we have $175.7<T(3,-1)<180.8$ where the lower bound may be increased to 177.12 if $S<.029$ and the upper bound decreased to 179.11 if $S \geqq .029$. If $S \geqq .029$ we have $K>1.048, m_{-}>11.88$, $T(1,-1)<94.57$ and $\|\lambda-\mu\|<.095$. In this case $\|3 \lambda-\mu\|<.295$, so $169 \leqq$ $(x+3 \lambda-\mu)^{2}<176.76$ for suitable x, giving a contradiction. If $.0253 \leqq$ $S<.029$ we have $T(1,-1)<94.77$ and $\|\lambda-\mu\|<.11$. Then $\|3 \lambda-\mu\|<.346$, so $169 \leqq(x+3 \lambda-\mu)^{2}<178.12$ for suitable x, giving a contradiction.

Hence $S<.0253$, so $S<(0,39,1,39)<.02502$. Then $179.2<T(3,-1)<$ 183.24 , while as $T(1,-1)<95.03$ we have $\|\lambda-\mu\|<.124,\|3 \lambda-\mu\|<.388$ and so $169 \leqq(x+3 \lambda-\mu)^{2}<179.3$ for suitable x. To avoid a contradiction we must have $\|3 \lambda-\mu\|<.095$, and this yields $\|\lambda\|<.035$. Considering $g(x, 1,0)$ as above now yields $F>1.0202$, so $255.1<T(5,-1)<264$. But $\|5 \lambda-\mu\|<\frac{1}{3}(5(.095)+$ $2(.008))<.166$ since λ and μ are small, so for suitable choices of x_{1} and x_{2} we have $250<\left(x_{1}+5 \lambda-\mu\right)^{2} \leqq 256$ and $256 \leqq\left(x_{2}+5 \lambda-\mu\right)^{2}<262$. One of these choices gives a contradiction.

Lemma 13. Let f satisfy the conditions of theorem 3 and let $648<d \leqq 823 \frac{7}{8}$. Then $m_{-}(f)<(8 d / 3)^{\frac{1}{3}}$.

Proof. Suppose $m_{-}(f) \geqq(8 d / 3)^{t}$. By the usual method we have $d>776.08$, $m_{-}>12.74, K_{i}<76.55$ (i odd), $K_{i}<1.0391$ (i even), $p_{i}=1$ (i even), $32 \leqq p_{i} \leqq$ 74 (i odd), $54.99<a_{i+1}<55.923$ (i even), $F_{i}>1.0133$ (i even) and $S_{i}<.0258$ (i even). As usual we drop the suffixes for even i and take $F \leqq S+1$. Then treatment of the section $(x+\mu)^{2}-a$ in the usual manner yields $a \leqq 55.25$ and
$\left\|\mu-\frac{1}{2}\right\| \leqq\left(13-m_{-}\right) / 28$. As $K>1.0266$ we have $m_{-}>12.86, a>55.11$ and $\left\|\mu-\frac{1}{2}\right\|<.005$. Now $108<T(1,-1)<109.76$ so with $100 \leqq(x+\lambda-\mu)^{2} \leqq$ 110.25 we obtain a contradiction unless $\left\|\lambda-\mu-\frac{1}{2}\right\|<.06$. But $109<T(2,1)<$ 111, so with $100 \leqq(x+\lambda+2 \mu)^{2} \leqq 110.25$ we obtain a contradiction unless $\left\|\lambda+2 \mu-\frac{1}{2}\right\|<.01$. Then $\|3 \mu\|<.06+.01=.07$, contradicting $\left\|\mu-\frac{1}{2}\right\|<.005$.

This now completes the proof of theorem 3 apart from showing that $m_{+}\left(f_{2}\right)=$ 1 and $m_{-}\left(f_{2}\right)=9$.

Lemma 14. Let f_{2} be defined as in theorem 1. Then $m_{+}\left(f_{2}\right)=1$ and $m_{-}\left(f_{2}\right)=9$.
Proof. As $f_{2}(x, y, z)=x^{2}+x y+y^{2}+x z+32 y z-29 z^{2}$ it is only necessary to show that f_{2} cannot take any of the values $0,-1,-2,-3,-4,-5,-6,-7$ and -8 , since $f_{2}(4,0,1)=-9$. The values $-1,-3,-4$ and -7 are eliminated by observing that $f_{2} \equiv(x-4 y-4 z)^{2}+3 y^{2}(\bmod 9)$. As $f_{2} \equiv x^{2}+x z+z^{2}(\bmod 5)$ after replacing z by $z-y$ it follows that $f_{2} \equiv 0(\bmod 5)$ iff $x=5 X$ and $z=5 Z$ for some integers, X, Z. Then $\frac{1}{5} f_{2} \equiv 3 y^{2}(\bmod 5)$, which implies that f_{2} does not take the value -5 , whilst f_{2} can take the value zero only at points $(x, y, z)=$ $5(X, Y, Z)$, which are not primitive. This implies f_{2} cannot take the value 0 at all.

The remaining even values are eliminated by considering congruencees modulo powers of 2 as follows. We have $4 f_{2} \equiv(x+2 y)^{2}+3(x+2 z)^{2}(\bmod 8)$ so f_{2} is even only if x is even. Writing $x=2 X$ yields $f_{2} \equiv(X+y)^{2}+3(X+z)^{2}+4 X z(\bmod$ $32)$, so $f_{2} \equiv 2(\bmod 4)$ is impossible. This eliminates the values -2 and -6 . Plainly $f_{2} \equiv 0(\bmod 8)$ only if y and z have the same parity. For y, z both even, say $y=2 Y, z=2 Z, f_{2}$ cannot take the value -8 at (x, y, z) else f_{2} would take the value -2 at (X, Y, Z), which we know is impossible. Hence if $f_{2}=-8$ then y and z are both odd. It is now clear that we must have $y-z \equiv 2(\bmod 4)$ and X odd to ensure $f_{2}=-8$ as otherwise $f_{2} \equiv 4(\bmod 8)$. Substituting $x=2 m+1$, $y=2 n+1, z=2 n+3+4 s$ yields

$$
f_{2}=16\left(m^{2}+3 m n+n^{2}+5 m-4 n-29 s+5 m s-13 n s-33 s-8\right),
$$

showing that f_{2} cannot take the value -8 .

References

[1] E. S. Barnes, 'The non-negative values of quadratic forms', Proc. London. Math. Soc. (3) 5 (1955) 185-196.
[2] E. S. Barnes and A. Oppenheim, 'The non-negatieve values of a ternary quadratic form', J. Lond. Math. Soc. 30 (1955) 429-439.
[3] A. Oppenheim, 'Value of quadratic forms I, Quart. J. Math. (Ox) (2) 4 (1953) 54-59.
[4] A. Oppenheim, 'Minima of indefinite quaternary quadratic forms,' Ann. Math. 32 (1931) 271-298.
[5] B. Segré, Lattice points in infinite domains and asymmetric diophantine approximations,' Duke Math. J. 12 (1945) 337-365.
[6] R. T. Worley, 'Asymmetric minima of indefinite ternary quadratic forms', J. Aust. Math. Soc. 7 (1967) 191-228.
[7] R. T. Worley, 'Minimum determinant of asymmetric quadratic forms'. J. Aust. Math. Soc. 7 (1967) 177-190.

Monash University, Clayton, Victoria

[^0]: ${ }^{1}$ A form $f(x, y, \cdots, z)$ is said to take the value v if there exist integers x, y, \cdots, z not all zero such that $f(x, y, \cdots, z)=v$.

[^1]: ${ }^{3}$ For brevity we have denoted $a(z-F y)(z+S y)$ by $T(y, z)$ throughout the remainder of this paper.

