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Abstract
Conjecture II.3.6 of Spohn in [47] and Lecture 7 of Jensen–Yau in [35] ask for a general derivation of universal
fluctuations of hydrodynamic limits in large-scale stochastic interacting particle systems. However, the past few
decades have witnessed only minimal progress according to [26]. In this paper, we develop a general method
for deriving the so-called Boltzmann–Gibbs principle for a general family of nonintegrable and nonstationary
interacting particle systems, thereby responding to Spohn and Jensen–Yau. Most importantly, our method depends
mostly on local and dynamical, and thus more general/universal, features of the model. This contrasts with previous
work [6, 8, 24, 34], all of which rely on global and nonuniversal assumptions on invariant measures or initial
measures of the model. As a concrete application of the method, we derive the KPZ equation as a large-scale limit
of the height functions for a family of nonstationary and nonintegrable exclusion processes with an environment-
dependent asymmetry. This establishes a first result to Big Picture Question 1.6 in [54] for nonstationary and
nonintegrable ‘speed-change’ models that have also been of interest beyond KPZ [18, 22, 23, 38].
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1. Introduction

Deriving rigorously continuum equations of classical fluid mechanics as large-scale descriptions of
locally conserved quantities in Newtonian particle systems is a famous open problem in mathematical
physics. However, it has seen little progress [5]. Morrey [41] gave a formal derivation based on local
equilibrium and local Gibbs states, but rigorous proof of necessary local ergodicity of Hamiltonian
systems has remained elusive. Considering instead statistical mechanical systems, which may be viewed
as Hamiltonian systems with additional randomness, largely resolves this difficulty. Indeed, there has
been remarkable progress on deriving many continuum fluid equations, known as hydrodynamic limits,
from stochastic interacting particle systems, largely based on the works of Guo-Papanicolaou–Varadhan
[28], Varadhan [48] and Yau [52] that make precise the two notions of local equilibrium and local Gibbs
states for stochastic systems; see [16, 37, 47] for thorough reviews in this direction.
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However, a complete picture of hydrodynamic equations via statistical mechanics requires
understanding conjecturally universal fluctuations of locally conserved quantities in the stochastic
model about hydrodynamic limits. (By ‘universal’, we mean a scaling limit for fluctuations that does
not depend on precise microscopic structures of the system at hand, only the choice of scaling and a
few numbers, such as moments of certain random variables.) To this end, much less is known. We dis-
cuss the history of this universality problem shortly. To highlight its significance, a general derivation
of universal local fluctuations was asked for by Spohn [47], in the form of Conjecture II.3.6, and by
Jensen–Yau [35], in the form of an open problem in Lecture 7; almost no progress has been made in the
past few decades according to [26]. Let us expand on this more precisely.

◦ Conjecture II.3.6 in [47] asks the question of how to use local statistics to derive scaling limits for
fluctuations of hydrodynamic limits in nonstationary interacting particle systems. The physical rea-
soning given therein supposes that the nonstationary particle system is sufficiently close to stationary
at local scales. (This is the ‘extended local equilibrium hypothesis’ therein.) Using this information,
one can then deduce formally what the scaling limit for fluctuations should be. The question, which is
what Conjecture II.3.6 asks, is how to prove (any of) this rigorously. (Technically, Conjecture II.3.6
in [47] asks about nonstationary particle systems whose hydrodynamic limits are also nonconstant.
We do not address this case simply because the scaling for the models that we study in this paper
does not seem to allow for it. We clarify this later in the introduction. In any case, the heart of
Conjecture II.3.6 in [47] is a method of using local statistics and local stationarity to derive scaling
limits for fluctuations. As smooth is approximately constant on local scales, a thorough investigation
for nonstationary systems with constant hydrodynamic limits should, in principle, shed light on the
case of nonconstant but smooth hydrodynamic limits.)

◦ Problem 3 in Section 7 of [35] asks the same as Conjecture II.3.6 in [47] with the same interest
in nonstationary models. ([35] also emphasizes interest in ‘nonequilibrium’ cases, which includes
the case of nonconstant hydrodynamic limit discussed in the previous bullet point.) [35], however,
notes that for nonstationary and/or nonequilibrium models, only one result [8] was available at the
time. In particular, [35] asks for progress beyond this specific work, which already addresses a large
class of models. We further discuss [8] shortly. ([35] also asks for scaling limits for fluctuations in
nonstationary and nonequilibrium systems in dimension d � 2. We do not address this case in this
paper, and we leave it for future work.)

Additionally, since Spohn [47] and Jensen–Yau [35], there has been a surge of activity and in-
terest in nonlinear KPZ statistics (where ‘KPZ’ means Kardar–Parisi–Zhang) as large-scale limits of
fluctuations [54]. To this end, even less is known.

We respond to these conjectures and open problems with a general derivation of the so-called
Boltzmann–Gibbs principle based on local dynamic properties of the stochastic model as asked for
by Spohn [47]. It combines well enough with stochastic analytic methods to rigorously derive KPZ
fluctuations from a large class of stochastic particle systems that are beyond perturbations of stochasti-
cally reversible models and therefore in some version of nonequilibrium, in the spirit of Problem 3
in Section 7 of [35]. To start, we discuss relevant prior work and questions of Spohn [47] and
Jensen–Yau [35]; see also Chapter 11 of [37].

◦ The Boltzmann–Gibbs principle was originally developed by Brox–Rost [6] to derive hydrodynamic
limit fluctuations. Their method succeeds only for statistically stationary/equilibrium systems. It has
since been streamlined [37, 40] and derived for many equilibrium models [7, 18, 20, 24, 25, 27, 39,
44, 45, 46, 53]. However, assuming, or even explicitly knowing, statistical equilibrium is certainly a
restrictive global constraint. For example, interactions with stochastic reservoirs, or so-called ‘open
boundaries’, immediately breaks any understanding of invariant measures [10] except for in special
situations. Moreover, it is not even believed that the equilibrium method should succeed in a general
nonequilibrium setting; see [8].

◦ To avoid a need for understanding global invariant measures explicitly, Jara–Menezes [34] adapted
the relative entropy method of Yau [52], which was originally introduced for deriving hydrodynamic
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limits, to rigorously implement the strategy of local equilibrium/Gibbs states due to Morrey [41].
However, as we work at the delicate fluctuation scale, in [34] the authors require a strong initial
closeness to local Gibbs states in a global sense; initially, the model is close to a Gibbs state at local
scales, but this must be true everywhere in order to solve a global many-body eigenvalue problem.
So, this method also depends on strong global assumptions. In any case, by this method, Jara–
Menezes derive fluctuations for a smoothly inhomogeneous exclusion process [34] whose variants
were studied in [14, 15, 34]. In [33], Jara–Landim do this for a class of exclusion processes with
additional Glauber-type disturbances/perturbations.

◦ In a groundbreaking work of Chang–Yau [8], hydrodynamic limit fluctuations were rigorously derived,
with continuum limit given by a linear Gaussian partial differential equation (PDE), basically without
any conditions on the initial data beyond being reasonable initial data for the limit stochastic PDE.
Chang–Yau [8] specialize to a system of diffusions; their work is similarly based upon solving a
many-body eigenvalue problem by means of large-deviations estimates and close-to-optimal log-
Sobolev inequalities for the global invariant measure. Therefore, although the results of Chang–Yau
[8] are for nonequilibrium systems, analysis of global Gibbs states/invariant measures is essential.
Moreover, it is unclear if the work of [8] can be used to access KPZ fluctuations in nonequilibrium
models. This is because the KPZ equation requires analytic considerations to solve when outside the
invariant measure, and the analysis in [8] seems difficult to upgrade at the level of appropriate norms;
see Remark 4.2.

In this paper, the Boltzmann–Gibbs principle is derived with local, and thus more general, consid-
erations involving only system dynamics, not by directly exploiting global invariant measures. Modulo
details, the ingredients for our method are listed below; for a more detailed illustration of the method,
see Section 3.2, which we have set up in a fairly general fashion.

◦ On local mesoscopic scales, the dynamics admit an almost-optimal and ‘elliptic’ log-Sobolev
inequality; this implies strong local relaxation of dynamics as assumed by Morrey [41]. This
assumption is very different than global assumptions in [8]. For example, in many models containing
interactions with stochastic reservoirs at localized ‘boundary’ points, the invariant measure is poorly
understood except for a small set of special cases [10]. For such ‘open boundary models’, the invari-
ant measures are by no means perturbations of their ‘boundary-free’ versions, even on macroscopic
scales; see [10]. In particular, this obstructs the approach of [8], which is based on calculations for
local marginals of an explicit global invariant measure. However, except in O(1)-many small sets near
the reservoirs, the local dynamics, and thus their invariant measures, are unaffected. Also, locally
near any reservoir, the system looks like a half-space model, which has better understood invariant
measures. Thus, the method in this paper has potential applications to open boundary models, which
are also of a nonequilibrium flavor and, again, behave quite differently than models without bound-
ary; see [10, 11, 26, 50]. See [50], in particular, for an application of the first steps of the method
developed herein to a class of open boundary models (whose invariant measures are unknown and
never used in [50]); we discuss this further in Section 1.3. In a similar spirit, the models in [34] do
not admit explicit invariant measures because of the smooth inhomogeneity; this is one motivation
for [34]. But locally, smooth is basically constant, so the inhomogeneity does not obstruct our method
(modulo a few perturbations). By the same token, our method seems to hold for fluctuations of smooth
nonconstant hydrodynamic limits as in [8, 34] after some perturbative adjustments. However, for the
scaling that gives nonlinear KPZ statistics, making sense of nonconstant hydrodynamic limits itself
seems to pose an issue. Indeed, these should formally be ‘infinite-time’ (or ‘infinite-speed’) viscosity
solutions to hyperbolic Hamilton–Jacobi equations, whose meaning is only clear for constant solu-
tions. For this reason only, we do not discuss fluctuations about nonconstant hydrodynamic limits in
this paper.

◦ On local mesoscopic scales, regularity of fluctuations is roughly that of a white noise, which is what
we expect for their stochastic partial differential equation (SPDE) limits; this is not an assumption
and usually falls out of the analysis, and it controls which local Gibbs states are relevant.
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◦ We emphasize these ingredients concern only local dynamics of the model. Properties of the global
invariant measure may be helpful at a technical level, but they should not be essential to deriving
SPDEs from fluctuations. For example, the methods in this paper use an explicit product measure that
happens to be an invariant measure for the entire process (as opposed to just the dynamics in a local
set). However, we do not necessarily require that this measure is invariant. All we need are entropy
production bounds (see Lemma 8.9). (Intuitively, these bounds are a convenient quantification of
local equilibration; see the first bullet point in this list. The aforementioned invariance just makes this
calculation much shorter than those in [50, 52]; see Lemma 7.4 in [50], for instance.)

As for initial data, we only require that it can be made sense of by the macroscopic SPDE. This is,
again, a basic requirement.

One upshot of the locality in our method is a Boltzmann–Gibbs principle which holds in a much
stronger topology than in [8]. Beyond being possibly of interest in its own right, this seems to be
important for deriving KPZ equation fluctuations, whose solution theory currently requires either a
strong stationary assumption [24] that we aim to avoid or analysis in relatively strong norms [3, 29].

Instead of developing a general theory of deriving Boltzmann–Gibbs principles, we specialize to
KPZ fluctuations in a class of nonintegrable and nonstationary interacting particle systems. The main
result of this paper, namely Theorem 1.8, is convergence of height function (or ‘current’) fluctuations to
the KPZ equation for a class of exclusion processes with environment-dependent dynamics. These are
of high interest both in KPZ [24] and beyond KPZ [18, 22, 23, 38, 39]. This adds to the almost empty
set of nonintegrable, nonstationary interacting particle systems for which universality of KPZ equation
fluctuations is proven.

Let us introduce the KPZ equation more precisely below, in which 𝜉 is Gaussian space-time white
noise on R�0 × T

1 with T1 = R/Z the torus, in which �̄� is constant and in which ∞ is meant to suggest
equation (1.1) as a scaling limit:

𝜕𝑇 h∞ = 2−1Δh∞ − �̄�∇h∞ − 2−1 |∇h∞|2 + 𝜉. (1.1)

The KPZ equation (1.1) was originally derived in [36] to be a universal model for dynamical interface
fluctuations describing the statistics of propagating fires, bacterial colonies, epidemic spread, tumor
growth and crack formations. However, it was already apparent in [36] the important observation that
u∞ = ∇h∞ describes hydrodynamic fluctuations. As for a brief history, in [3], Bertini–Giacomin show
that height function fluctuations in the asymmetric simple exclusion process (ASEP) converge to KPZ
with �̄� = 0. In [3], the integrability of ASEP is leveraged crucially. Related works [9, 12, 13] employed
the same integrability method to show convergence to KPZ for height function fluctuations in a limited
number of special systems. For nonintegrable models, there has only been a successful general approach
for stationary systems [24, 27]. Progress for nonintegrable, nonstationary particle systems is minimal
beyond a few works that we discuss after presenting Theorem 1.8. Environment-dependent speed-change
dynamics are of particular interest for KPZ (see Big Picture Question 1.6 of [54]), which is why we
study it here.

In a nutshell, the difficulty in universality of equation (1.1) and the Boltzmann–Gibbs principle is
as follows. Suppose we let h′ denote the solution to equation (1.1), but instead of |∇h′ |2 we have
F(∇h′) for a general F. In [36], a formal Taylor series implies h′ converges to equation (1.1) under a
‘critical scaling’ with an explicit F-dependent coefficient in front of the quadratic and explicit �̄� = �̄�(F);
see [31]. Such coefficients are wrong, however, unless F is a degree-two polynomial, in which case the
calculation is trivial because one already starts with KPZ. The picture for particle systems is similar.
General environment dependence roughly corresponds to general nonlinearities F whose effective limits
we must compute. Moreover, the integrable ASEP model that was studied in [3] is associated to degree-
2 F for which homogenization is formally trivial. Making precise the asymptotics for general F is the
heart of proving universality, and it is one of our main motivations.

One explanation for why the Taylor series heuristic in [36] is incorrect is that KPZ is a singu-
lar SPDE; the roughness of the 𝜉-noise makes the equation classically ill posed. A way of solving

https://doi.org/10.1017/fms.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.27


6 K. Yang

equation (1.1) (see [3]) is to instead define h∞ = − log Z∞ where Z∞ solves the stochastic heat equation
(SHE) below, which can be solved with Ito–Walsh calculus; this is the Cole-Hopf transform:

𝜕𝑇 Z∞ = 2−1ΔZ∞ − �̄�∇Z∞ − Z∞𝜉. (1.2)

We conclude by tying the Boltzmann–Gibbs principle and KPZ into the same story: The Boltzmann–
Gibbs principle is the mechanism by which the correct coefficients in the limit h′ → h∞, which we
discussed in a previous paragraph, are computed.

1.1. The Model

We start by introducing the interacting particle systems of interest as Markov processes on a finite
state space. In words, the process below is the ASEP system in [3] with additional environment-
dependent asymmetry of speed N that affects the nonlinearity in the dynamics of its height function in
nonintegrable fashion; the height function is constructed in Definition 1.1. The parameter 𝑁 ∈ Z>0 is a
scaling parameter we take infinitely large to recover limit SPDEs; this is the ‘large-N limit’.

◦ Define T𝑁 = Z/𝑁Z to be the microscopic N-point torus that we embed into the one-dimensional
lattice Z upon identifying every element in T𝑁 by an integer between 0 and 𝑁 − 1. Arithmetic on the
torus T𝑁 is taken mod N unless said otherwise.

◦ Provided any set K𝑁 ⊆ T𝑁, define the corresponding state space ΩK𝑁 = {±1}K𝑁 . For convenience,
we define Ω = ΩT𝑁. Elements of ΩK𝑁 sets are denoted by 𝜂 = (𝜂𝑥)𝑥∈K𝑁 . The interpretation of
𝜂-variables in terms of particles is the following. Adopting spin notation of [19], if 𝜂𝑥 = 1, there is a
particle at 𝑥 ∈ T𝑁. Otherwise, if 𝜂𝑥 = −1, there is no particle there.

◦ Consider 𝔡 : Ω → R independent of N and define 𝔡𝑥 (𝜂) = 𝔡(𝜏𝑥𝜂), in which 𝜏𝑥𝜂 shifts the
𝜂-configuration by 𝑥 ∈ T𝑁 to recenter at x so that (𝜏𝑥𝜂)𝑧 = 𝜂𝑧+𝑥 for all 𝑧 ∈ T𝑁. We now let L𝑥 denote
the infinitesimal generator for a symmetric simple exclusion process with speed 1 on {𝑥, 𝑥 +1} ⊆ T𝑁.
To specify it, for any 𝜂 ∈ Ω, let 𝜂𝑧,𝑤 ∈ Ω be the configuration defined by 𝜂𝑧,𝑤𝑥 = 𝜂𝑥 if 𝑥 ≠ 𝑧, 𝑤
and 𝜂𝑧,𝑤𝑧 = 𝜂𝑤 and 𝜂𝑧,𝑤𝑤 = 𝜂𝑧 . (In other words, 𝜂𝑧,𝑤 swaps occupation numbers at 𝑧, 𝑤.) For any
𝔣 : Ω→ R, we define

L𝑥𝔣(𝜂) = 𝔣(𝜂𝑥,𝑥+1) − 𝔣(𝜂).

We now define the generator of the Markov process of interest here via L𝑁 = L𝑁 ,S + L𝑁 ,A:

L𝑁 ,S = 2−1𝑁2
∑

𝑥∈T𝑁
L𝑥 and L𝑁 ,A = 2−1𝑁

3
2
∑

𝑥∈T𝑁

(
1𝜂𝑥=−1
𝜂𝑥+1=1

− 1 𝜂𝑥=1
𝜂𝑥+1=−1

) (
1 + 𝑁−

1
2𝔡𝑥

)
L𝑥 .

(1.3)

◦ Denote by 𝜂t the particle configuration at time t � 0 under the Markov process with generator
L𝑁 . More generally, given any t � 0, any 𝑥 ∈ T𝑁, and any functional 𝔣 : Ω → R𝑑 , we define
𝔣t,𝑥 = 𝔣(𝜏𝑥𝜂t); recall the spatial shift 𝜏𝑥 from above. (We will introduce assumptions on the initial
data 𝜂0 in Definition 1.6 below. For now, the reader can think of it as given for now.)

Definition 1.1. Define the following height function, in which h𝑁
𝑇 ,0 is equal to 2𝑁−1/2 times the net flux

of particles crossing 0, with the convention that leftward traveling particles count as positive flux; this
is the same height function as in [3] but now on the torus T𝑁. Also, we assume h𝑁

0,0 = 0.
We now define the Gartner transform, for which we introduce the renormalization term R = R1 +R2

with R1 = 2−1𝑁 − 24−1 and R2 = 𝑁1/2R2,1 + R2,2 + R2,3 = 𝑁1/2R2,1+2−1�̄� + R2,3, in which �̄� is from
Definition 2.2. The constant �̄� is the same constant appearing in the SHE(�̄�) scaling limit in our main
result of Theorem 1.8. We define the remaining two terms R2,1 and R2,3 shortly; roughly, they come

https://doi.org/10.1017/fms.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.27


Forum of Mathematics, Sigma 7

from the hydrodynamic flux of the 𝔡-asymmetry. First, we have

h𝑁
𝑇 ,𝑥 = h𝑁

𝑇 ,0 + 𝑁−
1
2
∑𝑥

𝑦=1
𝜂𝑇 ,𝑦 and Z𝑁

𝑇 ,𝑥 = Exp
(
−h𝑁

𝑇 ,𝑥 + R𝑇
)

on R�0 × T𝑁 . (1.4)

To define the renormalization counterterm R2,1, define E0 as the expectation with respect to the product
Bernoulli measure on Ω whose one-dimensional marginals have expectation equal to the hydrodynamic
limit 0. Define R2,1 = −2−1E0 (𝔡 − 𝔡𝜂0𝜂1) as the hydrodynamic limit of the flux of the environment-
dependent asymmetry. In particular, in the exponential defining Z𝑁, we look at height function fluctu-
ations after subtracting the leading-order hydrodynamic limit/flux. Indeed, hydrodynamic limits tell us
the normalized height function (not its fluctuations in h𝑁 ) is roughly R2,1 in expectation when close to
a constant density profile, and when multiplying by 𝑁1/2 to study fluctuations, we must renormalize by
𝑁1/2R2,1. This provides an interpretation, from interacting particle systems and hydrodynamic limits,
of renormalizations needed in [29] to make sense of KPZ.

To wrap up this construction, let us define the order 1 counterterm R2,3 = E0̃𝔰, where �̃� is a functional
defined in Definition 2.2. Roughly speaking, it captures, at a level of hydrodynamic limits, a transport-
induced growth of the height function coming from the 𝔡 asymmetry; this is the parallel, for the 𝔡
asymmetry, of the 24−1-term in the renormalization constant R1 which comes from the leading-order
asymmetry and that was also present in [3]; see Remark 2.3 for a more detailed explanation of R2,3.

Remark 1.2. We linearly interpolate values of functions on T𝑁 for all times to get a piecewise linear
function on 𝑁T1 = R/𝑁Z.

1.2. The theorem

Our main result is showing that Z𝑁 → SHE(�̄�) for a particular value of �̄� ∈ R that is determined by a
few statistics of the 𝔡-asymmetry; we shortly specify this value. First, we require a structural assumption
for the 𝔡-asymmetry, which is also necessary in the approach to universality of KPZ by what are known
as energy solutions in [24, 25], for example. Such an assumption is often called a gradient condition. It
implies (see [24, 25]) a family of explicit product invariant measures.

Assumption 1.3. The support of 𝔡 : Ω→ R, defined as the smallest subset of T𝑁 such that 𝔡 depends
only on 𝜂-variables in T𝑁, is contained in a neighborhood of 0 ∈ T𝑁 with radius at most the uniformly
bounded constant 𝔩𝔡 ∈ Z>0. There is a uniformly bounded functional 𝔴 whose support is contained in
the same neighborhood so that 𝔡∇X

1 𝜂 = 𝔡(𝜂1 − 𝜂0) = ∇X
1 𝔴 = 𝜏1𝔴 −𝔴.

Remark 1.4. We can perturb Assumption 1.3 to make invariant measures globally intractable. Little
would change if perturbations are not too large, so log-Sobolev inequalities on mesoscopic scales
drastically change. For example, perturbations that affect the system on global timescales but take too
long for mesoscopic dynamics to detect are certainly allowable.

We turn to scaling limits. This starts with the following rescaling operators that give ‘macroscopic’
coordinates.

Definition 1.5. Given 𝜓 : R�0 × T𝑁 → R, define Γ𝑁 ,X𝜓 : T1 → R via linearly interpolating values
of Γ𝑁 ,X𝜓𝑥 = 𝜓0,𝑁 𝑥 for 𝑥 ∈ 𝑁−1

T𝑁 ⊆ T
1. Define Γ𝑁𝜓 : R�0 × T

1 → R by interpolating values of
Γ𝑁𝜓t,𝑥 = 𝜓t,𝑁 𝑥 for 𝑥 ∈ 𝑁−1

T𝑁 ⊆ T
1.

We now present a class of initial conditions of the particle system/the height function for which the
KPZ equation limit will be established. We are almost forced to take some assumption of the following
kind because the limit SPDEs themselves need reasonable initial data to be well defined.

Definition 1.6. A probability measure on Ω is stable if the following conditions are satisfied. First, with
probability 1 under said measure, the total number of particles on T𝑁 is 𝑁/2. Equivalently, the sum of 𝜂𝑥

over 𝑥 ∈ T𝑁 under said measure is zero. Next, provided any 𝑝 � 1 and any 𝔩 ∈ Z and any 𝔲 ∈ [0, 2−1),
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we have the following estimate uniformly over T𝑁, in which ∇X
𝔩 is a spatial gradient ∇X

𝔩 𝜙𝑥 = 𝜙𝑥+𝔩 − 𝜙𝑥

for any 𝜙 : T𝑁 → R:

E|h𝑁
0,𝑥 |

2𝑝 �𝑝 1 and E|∇X
𝔩 h𝑁

0,𝑥 |
2𝑝 �𝑝,𝔲 𝑁−2𝑝𝔲 |𝔩 |2𝑝𝔲 . (1.5)

Also, Γ𝑁 ,Xh𝑁 converges in law as 𝑁 → ∞ with respect to the uniform norm on the space 𝒞(T1) of
continuous functions.

Remark 1.7. We make a few clarifications about Definition 1.6. The assumption that 𝜂𝑥 sums to
zero with probability 1 guarantees that 𝜂𝑇 ,𝑥 sums (over 𝑥 ∈ T𝑁 ) to zero with probability 1 for all
𝑇 � 0. Indeed, the total particle number is conserved. From this, we deduce the gradient relation
𝜂𝑇 ,𝑥 = 𝑁1/2 (h𝑁

𝑇 ,𝑥 − h𝑁
𝑇 ,𝑥−1).

Let us give examples of stable initial data. Take the product (mean-zero) Bernoulli measure on
{±1}T𝑁 . Condition on the subset of 𝜂 ∈ {±1}T𝑁 where 𝜂𝑥 sums to zero over 𝑥 ∈ T𝑁. A Brownian
bridge version of Donsker’s invariance principle implies that these are stable initial data, and the limit
of Γ𝑁 ,Xh𝑁 is a Brownian bridge on T1. These stable initial data give the stationary measure for the
𝜂 process. An example of a deterministic (and thus nonstationary) stable measure is given by the flat
data 𝜂𝑥 = (−1)𝑥 . In this case, the limit of Γ𝑁 ,Xh𝑁 is the zero function on T1. In general, given any
continuous function F on T1, one can construct stable initial data such that Γ𝑁 ,Xh𝑁 has limit F. (This
is a random walk bridge version of the fact that a Brownian bridge has dense support in 𝒞(T1).)

Finally, if Z𝑁 is uniformly bounded above and below, then Definition 1.6 is basically equivalent to
the same but h𝑁 is replaced by Z𝑁. Actually, we can take Z𝑁 singular as SHE is smoothing; this would
only change the topology in which we study Z𝑁.

Let 𝒟1 be the Skorokhod space until time 1 with values in 𝒞(T1); see [4] for the Skorokhod topology.
The final time 1 is not important and can be replaced by any fixed time independent of N. We will not
explicitly give here the transport coefficient �̄�, which appears in the limit SHE(�̄�), until Definition 2.2
because it requires nontrivial set up. The key feature is that it agrees with the equilibrium linear transport
coefficient in [24] given by a correction to a hydrodynamic limit contribution of the 𝔡-asymmetry.

Theorem 1.8. Suppose we take the sequence of Gartner transforms Z𝑁 with stable initial data for h𝑁 .
If we adopt Assumption 1.3, the renormalized sequence Γ𝑁 Z𝑁 converges to SHE(�̄�) with respect to
the Skorokhod topology on 𝒟1 with the initial data lim𝑁→∞ Exp(−Γ𝑁 ,Xh𝑁 ). The transport coefficient
�̄� ∈ R that determines the limit SHE(�̄�) is a derivative of an equilibrium expectation of the flux
corresponding to the 𝔡-asymmetry; see Definition 2.2.

Remark 1.9. Observe the 𝔡-asymmetry is biased to the left. Moreover, any jump 𝑥 + 1 → 𝑥 in the
system increases the value of h𝑁 at x. Thus, the average growth speed of h𝑁 increases as 𝔡 increases;
this is why the leading-order 𝑁1/2R2,1-renormalization from the 𝔡-asymmetry is proportional to 𝔡. This
implies the nonlinearity in the hydrodynamic limit, which resembles the role of general F in our Taylor
expansion discussion prior to equation (1.2), is proportional to and therefore ‘positive’ in 𝔡. Said Taylor
expansion heuristic ultimately deduces from this that the KPZ/SHE limits for fluctuations have +�̄�∇
instead of −�̄�∇; although the exact coefficients predicted by Taylor expansion are possibly incorrect if
not done carefully, its qualitative prediction for direction of transport/growth is correct, as substantiated
by Theorem 1.8.

To the author’s knowledge, Theorem 1.8 is a first result on nonintegrable and nonstationary interacting
particle systems in which a homogenized linear transport term �̄�∇ in SHE(�̄�) is obtained in the KPZ
limit. The proof estimates what-will-be-error terms quantitatively, so we can let the speed of the
𝔡-asymmetry to be a slightly larger power of N to obtain SHE(‘∞’), where ‘∞’ means follow a constant
diverging-speed characteristic. Also, as in [8], the Boltzmann–Gibbs principle is sometimes applied to
linearize environment dependence of symmetric dynamics, recovering a Laplacian in the limit from a
nonlinear second-order operator. The method herein can do this after a few refinements. In a nutshell, this
is homogenization in the top-order differential; Theorem 1.8 is homogenization of lower-order terms,
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while perturbations in the top order are more delicate. To give a complete discussion of our method,
we discuss the refinements in relation to [8]; see Remarks 4.11 and 5.6. But we defer details to future
work; they are not complicated once we give Remarks 4.11 and 5.6 and apply calculations already in [8]
that combine naturally and generally with the ideas in this paper. These details are also separate from
singular KPZ fluctuations of interest here.

1.3. Additional context

Theorem 1.8 can be interpreted in the following fashion. We establish in this paper a general method of
deriving the Boltzmann–Gibbs principle for interacting particle systems, and to illustrate its utility and
‘strength’, we obtain nonlinear and singular KPZ fluctuations for a general set of particle system height
functions. By ‘strength’, we refer to the fact that earlier work, including but certainly not limited to [6,
8, 24, 34], establishes Boltzmann–Gibbs principles that only hold in a sense that is too weak to address
the singular behavior of KPZ. Indeed, the KPZ equation and SHE are PDEs that must be interpreted
in a sufficiently strong topology to establish convergence in the context of particle systems [1, 3, 19];
while previous Boltzmann–Gibbs principles do not play well with the analytic procedure needed to
solve SHE, our method gives a Boltzmann–Gibbs principle that does, allowing us to rigorously derive
singular KPZ fluctuations. By ‘strength’, we also refer to local nature of our Boltzmann-Gibbs principle
and its derivation.

Towards universality of KPZ, Theorem 1.8 contributes to an almost empty set of nonstationary and
nonintegrable interacting particle systems for which convergence to KPZ is rigorously shown. In [19],
nonsimple exclusion processes of maximal-particle-jump length at most three are studied successfully.
These are basically integrable if one is able to analyze hydrodynamic limits [19]. In [49], the jump-
length condition in [19] was removed; the necessary ingredient was a very weak form of the Boltzmann–
Gibbs principle to show effective vanishing for a one-dimensional subspace of ‘fluctuating observables’
or ‘pseudo-gradients’ as defined in [49]. The key technical development here is to upgrade the weak
principle of [49] to a full Boltzmann–Gibbs principle that not only applies to fluctuating observables
but computes generally nonzero effective limits of general local observables. To this end, we develop
a nonstationary version of the multiscale renormalization of [24, 43]. This necessary multiscale step
is part of what makes the full Boltzmann–Gibbs principle more difficult compared to [49]; we use
only the more robust one-block step of [28] to analyze locally fluctuating terms, but to compute the
macroscopic effects of general local observables, we require the more difficult two-blocks step of [28].
Finally, with some rather technical multiscale refinements, [49] extends to KPZ fluctuations in open
boundary systems [50], for which little is known, by locality of its method; again, the same holds for our
Boltzmann–Gibbs principle, letting us add to the universality of the so-called open KPZ equation [11],
for which minimal progress has been made. Extensions of earlier work on hydrodynamic fluctuations
of linear Gaussian type, such as [8], to open boundary versions are also possible by using the method
herein and similar technical refinements. These are all currently being carried out by the author.

In [29, 30, 31, 32], regularity structures were used to study both the KPZ equation and its universality
for generalizations of KPZ for nonquadratic nonlinearities that we discussed earlier. However, regularity
structures depend on strong assumptions on the 𝜉-noise. To the author’s knowledge, it is not known how
to apply regularity structures to tackle either universality of KPZ or Boltzmann–Gibbs principles for
interacting particle systems. It would certainly be interesting to see these developments.

1.4. The infinite volume case

This paper treats particle systems on a discrete torus (with limit SPDE on a compact torus). The use of
the torus is purely for technical convenience as it gives a priori spatial compactness. (It is a frequent
assumption in studies of large-scale asymptotics of interacting particle systems; see [8], for instance.)
However, all our methods are spatially local, and the limit SPDE (1.1) is well posed on the full line R,
so the infinite volume case for systems on Z should be doable, for example, via the method in [49].
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1.5. Outline

As this paper has many technically involved moving pieces, we make an effort to explain many points.

◦ In Section 2, we derive an approximate microscopic version of SHE(�̄�) for Z𝑁. This is standard for
proving KPZ fluctuations.

◦ Section 3 proves Theorem 1.8 assuming three key ingredients, the last of which we show in Section 3
and the first two of which we outline. In particular, we introduce and discuss the Boltzmann–Gibbs
principle. We then outline the rest of the paper.

1.6. Conventions

We write here a list of conventions, including notation, that are used frequently in the paper.

◦ We use Landau big-Oh notation. Also, a � b is equivalent to a = O(b), and a � b is equivalent to
b � a.

◦ The notation SHE(�̄�) stands for the solution of SHE (1.2) with linear transport coefficient �̄�.
◦ We let 𝒟1/𝒞1 be the Skorokhod space of cadlag paths/space of continuous paths until time 1 valued

in 𝒞(T1).
◦ The microscopic length scale is order 1. The macroscopic length scale is order N. Mesoscopic length

scales are in between. The microscopic timescale is order 𝑁−2. The macroscopic timescale is order
1. Mesoscopic timescales are in between.

◦ Set T𝑁 = Z/𝑁Z and T1 = R/Z. Recall we chose an embedding T𝑁 ⊆ Z. For 𝛼 > 0, define
𝛼T1 = R/𝛼Z.

◦ Whenever we say I ⊆ T𝑁 for some subset I ⊆ Z, we mean its image under the mod-|T𝑁 | map
Z→ Z/𝑁Z = T𝑁 ⊆ Z.

◦ Provided any 𝑧 ∈ T𝑁, we let |𝑧 | denote the absolute value after the embedding T𝑁 ⊆ Z.
◦ For stable initial data, see Definition 1.6 and Remark 1.7. For rescaling operators Γ𝑁 ,X and Γ𝑁 , see

Definition 1.5.
◦ For any 𝜂 ∈ Ω and 𝑥 ∈ T𝑁, define 𝜏𝑥𝜂 to be the configuration defined by (𝜏𝑥𝜂)𝑧 = 𝜂−𝑥+𝑧 for all

𝑧 ∈ T𝑁 For any functional 𝔣 : Ω → R and 𝑥 ∈ T𝑁 and 𝑆 � 0, we define 𝜏𝑥𝔣 = 𝔣 ◦ 𝜏𝑥 : Ω → R to
recenter 𝔣 at x and 𝔣𝑆,𝑦 = 𝜏𝑦𝔣(𝜂𝑆).

◦ Given any functional 𝔣 : Ω → R, we define its support to be the smallest subset of T𝑁 for which
𝔣 depends only on 𝜂-variables in that subset. For example, if 𝔣(𝜂) = 𝜂0, then the support of 𝔣 is the
single point {0} ⊆ T𝑁 .

◦ For the 𝔩𝔡 length scale and the support of 𝔡 : Ω→ R, see Assumption 1.3.
◦ For tst or 𝜀ap and 𝜀RN, see Definition 3.1. For 𝜀1 and 𝜀RN,1, see Propositions 4.6 and 4.7. For Y𝑁 , see

Definition 3.5.
◦ Provided any finite, not necessarily uniformly bounded, set I, define the averaged summation∑̃

𝑥∈I = |I|−1∑
𝑥∈I.

◦ For any 𝜙 : T𝑁 → R and 𝔩 ∈ Z, define the spatial gradient on length scale 𝔩 by ∇X
𝔩 𝜙𝑥 = 𝜙𝑥+𝔩 − 𝜙𝑥 .

We also define the discrete Laplacian via the composition Δ = −∇X
1 ∇

X
−1. Lastly, define Δ !! = 𝑁2Δ

and ∇!
𝔩 = 𝑁∇X

𝔩 .
◦ For any 𝜓 : [0, 1] → R and t ∈ R, define the time gradient on timescale t by ∇T

t 𝜓s = 𝜓s+t − 𝜓s; if
s + t ∉ [0, 1], then replace s + t in the definition of ∇T

t 𝜓s by the boundary point {0, 1} closest to s + t.
◦ For any 𝑎, 𝑏 ∈ R, we define the discretized interval 	𝑎, 𝑏
 = [𝑎, 𝑏] ∩ Z.
◦ For any 𝑝 � 1, we let ‖‖𝜔;𝑝 denote the p-norm with respect to all the randomness in the particle

system. Provided any t � 0 and spatial setK and function 𝜙, we define ‖𝜙‖t;K = sup(𝑠,𝑦) ∈[0,t]×K |𝜙𝑠,𝑦 |.
◦ For any 𝑆, 𝑇 � 0, we define O𝑆,𝑇 = |𝑇 − 𝑆 | usually as an on-diagonal heat kernel factor; see

Proposition A.3.
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2. Approximate microscopic SHE

Definition 2.1. For 𝜎 ∈ R, let E𝜎 be the expectation with respect to product Bernoulli measure on Ω
with E𝜎𝜂𝑥 = 𝜎 for 𝑥 ∈ T𝑁.

Definition 2.2. Define 𝔮 = 1
2𝔡 −

1
2𝔡 · 𝜂0𝜂1. Its support is contained in 	−𝔩𝔡, 𝔩𝔡
 ⊆ T𝑁 for 𝔩𝔡 ∈ Z�1

uniformly bounded.

◦ Define �̃� = 𝜏−2𝔩𝔡𝔮 to shift the support of 𝔮 strictly to the left of 0 ∈ T𝑁. Define �̄� = �̃� −E0�̃� − �̄�𝜂0 with
�̄� = 𝜕𝜎E𝜎�̃� |𝜎=0.

◦ Define �̃�(𝜂) = −�̃�(𝜂) ·
∑2𝔩𝔡−1

𝑦=0 𝜂−𝑦 and the E0-fluctuation 𝔰 = �̃� − E0̃𝔰.

Remark 2.3. Recall E0̃𝔰 is a part of the renormalization constant in the exponential Z𝑁. To understand
this renormalization, since �̃� is local, we can write it as a polynomial in 𝜂𝑥-variables for x in a fixed
neighborhood of the origin. When we multiply its degree ≠ 1 monomials by a linear term to get �̃�, we
get a polynomial with no constant term and therefore zero E0-expectation. Thus, degree ≠ 1 terms in �̃�,
and therefore of 𝔮, do not produce constants that need to be renormalized. However, a linear term in
𝔮 can be cancelled into a constant after multiplication by a linear statistic since 𝜂2

𝑥 = 1, and nonzero
constants have nonzero E0-expectation, so these terms yield constants that then need to be part of the
renormalization of the height function and Z𝑁. On the other hand, if 𝔮 replaced by the linear functional
𝜂 ↦→ 𝜂0, then 𝜂𝑇 ,𝑥Z𝑁

𝑇 ,𝑥 ≈ 𝑐1𝑁1/2∇X
−1Z𝑁

𝑇 ,𝑥 + 𝑐2Z𝑁
𝑇 ,𝑥 with constants 𝑐𝑖 = 𝑐𝑖 ultimately follows by Taylor

expansion as in Section 2 of [19]. One can readily check that 𝑐2 is obtained by replacing �̃�(𝜂) by 𝜂 ↦→ 𝜂0
in �̃� and then taking E0. Therefore, the renormalization E0̃𝔰 in Z𝑁 can be equivalently computed by first
linearizing the �̃�-environment dependence to get ASEP without environment dependence as in [3] and
then computing the renormalization for this homogenized/linearized ASEP by following the classical
calculation in [3] of Bertini–Giacomin.

Proposition 2.4. We have the following with notation defined afterwards, in which |𝔟𝑖; | � 1 are possibly
random:

dZ𝑁
𝑇 ,𝑥 = ℒ𝑁 Z𝑁

𝑇 ,𝑥d𝑇 + Z𝑁
𝑇 ,𝑥d𝜉𝑁𝑇 ,𝑥 − 𝑁

1
2 �̄�𝑇 ,𝑥Z𝑁

𝑇 ,𝑥d𝑇 − 𝔰𝑇 ,𝑥Z𝑁
𝑇 ,𝑥d𝑇 + 𝑁−

1
2 𝔟1;𝑇 ,𝑥Z𝑁

𝑇 ,𝑥d𝑇

+ 𝑁−
1
2∇!

★

(
𝔟2;𝑇 ,𝑥Z𝑁

𝑇 ,𝑥

)
d𝑇.

◦ Let us first define the discrete first-order gradient ∇X
𝔩 𝜑𝑥 = 𝜑𝑥+𝔩 − 𝜑𝑥 provided any 𝔩 ∈ Z and

𝜑 : T𝑁 → R. We proceed to define Δ !! = 𝑁2∇X
1 ∇

X
−1 and ∇!

𝔩 = 𝑁∇X
𝔩 . The first term in the equation

above is defined by ℒ𝑁 = 2−1Δ !!+�̄�∇!
−1.

◦ The d𝜉𝑁•,𝑥-term is a martingale differential/compensated Poisson process corresponding to jumps
over {𝑥, 𝑥 + 1} ⊆ T𝑁. Put precisely, it is the following measure in T (given any x) that describes the
change in Z𝑁

𝑇 ,𝑥 according to clocks in the 𝜂 process:

d𝜉𝑁𝑇 ,𝑥 = (e2𝑁 −
1
2 − 1)1𝜂𝑇 ,𝑥=11𝜂𝑇 ,𝑥+1=−1 [dQ𝑁 ,S,→

𝑇 ,𝑥 − 1
2 𝑁2d𝑇]

+ (e−2𝑁 −
1
2 − 1)1𝜂𝑇 ,𝑥=−11𝜂𝑇 ,𝑥+1=1 [dQ𝑁 ,S,←

𝑇 ,𝑥 − 1
2 𝑁2d𝑇]

− (e2𝑁 −
1
2 − 1)1𝜂𝑇 ,𝑥=11𝜂𝑇 ,𝑥+1=−1 [dQ𝑁 ,A,→

𝑇 ,𝑥 − ( 1
2 𝑁

3
2 + 1

2 𝑁𝔡𝑥 (𝜂𝑇 ))d𝑇]

+ (e−2𝑁 −
1
2 − 1)1𝜂𝑇 ,𝑥=−11𝜂𝑇 ,𝑥+1=1 [dQ𝑁 ,A,←

𝑇 ,𝑥 − ( 1
2 𝑁

3
2 + 1

2 𝑁𝔡𝑥 (𝜂𝑇 ))d𝑇] .

The clocks Q𝑁 ,S,→
𝑇 ,𝑥 and Q𝑁 ,S,←

𝑇 ,𝑥 are Poisson processes in T of speed 2−1𝑁2. The clocks Q𝑁 ,A,→
𝑇 ,𝑥

and Q𝑁 ,A,←
𝑇 ,𝑥 are Poisson processes in T of speed 2−1𝑁3/2 + 2−1𝑁𝔡𝑥 (𝜂𝑇 ), which is positive for
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sufficiently large N as |𝔡 | � 1. Lastly, the predictable quadratic covariation between any two distinct
(compensated) Poisson clocks is zero.

◦ When we write ∇!
★, we sum over the choices ★ = 1,−2𝔩𝔡 with 𝔟2; depending possibly on ★ but still

uniformly bounded.

We provide a proof of Proposition 2.4 at the end of the subsection to avoid obstructing important
takeaways in this section. Roughly speaking, the particle system at hand is ASEP from [19] but with only
simple jumps and additional asymmetry 𝑁−1𝔡, and the Gartner transform Z𝑁 is also that of [19] but
with additional deterministic R2𝑡 drift in the exponential. In view of these two observations, we follow
the derivation of the microscopic SHE for the Gartner transform in Section 2 of [19]. Roughly, the only
difference is the 𝑁−1𝔡 asymmetry. As jumps in Z𝑁 are order 𝑁−1/2Z𝑁, the effect of 𝑁−1𝔡 asymmetry is
order 𝑁1/2Z𝑁 after time scaling. We linearize the flux 𝔮 of this 𝑁−1𝔡 asymmetry to get �̄� in Definition
2.2, and Taylor expansions/summation by parts give us the last three terms in the Z𝑁 -equation after
cancelling with the additional R2-drift in Z𝑁. The last three terms in the Z𝑁 equation ultimately vanish
in the large-N limit. Now, to make Proposition 2.4 useful, we consider its mild form.

Definition 2.5. We let H𝑁
𝑆,𝑇 ,𝑥,𝑦 on R2

�0 × T
2
𝑁 be the heat kernel defined by H𝑁

𝑆,𝑆,𝑥,𝑦 = 1𝑥=𝑦 and
𝜕𝑇 H𝑁

𝑆,𝑇 ,𝑥,𝑦 = ℒ𝑁 H𝑁
𝑆,𝑇 ,𝑥,𝑦 , where ℒ𝑁 acts on the backwards spatial variable 𝑥 ∈ T𝑁. Provided any

test function 𝜑 : R×T𝑁 → R, we additionally define a pair of space-time and spatial heat operators for
which we give three ways that each operator may be written in this paper:

H𝑁
𝑇 ,𝑥 (𝜑) = H𝑁

𝑇 ,𝑥 (𝜑𝑆,𝑦) = H𝑁
𝑇 ,𝑥 (𝜑•,•) =

∫ 𝑇

0

∑
𝑦∈T𝑁

H𝑁
𝑆,𝑇 ,𝑥,𝑦 · 𝜑𝑆,𝑦 d𝑆 (2.1a)

H𝑁 ,X
𝑇 ,𝑥 (𝜑) = H𝑁 ,X

𝑇 ,𝑥 (𝜑0,𝑦) = H𝑁 ,X
𝑇 ,𝑥 (𝜑0,•) =

∑
𝑦∈T𝑁

H𝑁
0,𝑇 ,𝑥,𝑦 · 𝜑0,𝑦 . (2.1b)

Corollary 2.6. Admit the setting and notation of Proposition 2.4. We have the stochastic integral
equation

Z𝑁
𝑇 ,𝑥 = H𝑁 ,X

𝑇 ,𝑥 (Z
𝑁
0,•) +H𝑁

𝑇 ,𝑥 (Z
𝑁 d𝜉𝑁 ) −H𝑁

𝑇 ,𝑥 (𝑁
1
2 �̄�Z𝑁 ) −H𝑁

𝑇 ,𝑥 (𝔰Z𝑁 ) + 𝑁−
1
2 H𝑁

𝑇 ,𝑥 (𝔟1;Z𝑁 )

+ 𝑁−
1
2 H𝑁

𝑇 ,𝑥

(
∇!
★

(
𝔟2;Z𝑁

))
.

Proof of Proposition 2.4. We follow the derivation of the microscopic SHE in Section 2 of [19].
Following their first steps at the beginning of Section 2, we derive the following for the time-differential
of Z𝑁, which we discuss below:

dZ𝑁
𝑇 ,𝑥 = 𝑁2ΦS

𝑇 ,𝑥Z𝑁
𝑇 ,𝑥d𝑇 + 𝑁2ΦA,1

𝑇 ,𝑥Z𝑁
𝑇 ,𝑥d𝑇 + 𝑁2ΦA,2

𝑇 ,𝑥Z𝑁
𝑇 ,𝑥d𝑇 + R1Z𝑁

𝑇 ,𝑥d𝑇 + R2Z𝑁
𝑇 ,𝑥d𝑇 + Z𝑁

𝑇 ,𝑥d𝜉𝑁𝑇 ,𝑥 .

(2.2)

We clarify ΦS and ΦA,1 and ΦA,2 coefficients shortly. We briefly note, however, that equation (2.2)
is a martingale/Dynkin decomposition for Z𝑁, where the martingale is explicitly recorded in terms of
Poisson clocks in the particle system. In particular, to derive equation (2.2), one starts with the following
integral equation (that comes from the Dynkin formula), in which the stochastic integral on the left-hand
side (LHS) should be interpreted as integration of Z𝑁

𝑆,𝑥 against the measure d𝜉𝑁𝑆,𝑥 :∫ 𝑇

0
Z𝑁
𝑆,𝑥d𝜉𝑁𝑆,𝑥 = Z𝑁

𝑇 ,𝑥 − Z𝑁
0,𝑥 −

∫ 𝑇

0
(R + L𝑁 )Z𝑁

𝑆,𝑥d𝑆,

where R is the renormalization constant in Definition 1.1, and L𝑁 is the generator of the particle system.
Indeed, as in Section 2 of [19], integrating all of the clock terms in d𝜉𝑁𝑆,𝑥 accounts for the total change
Z𝑁
𝑇 ,𝑥 − Z𝑁

0,𝑥 . The drift terms in d𝜉𝑁𝑆,𝑥 account for the generator term L𝑁 Z𝑁
𝑆,𝑥 . The L𝑁 ,S part of L𝑁
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yields 𝑁2Φ𝑆Z𝑁 in equation (2.2), and the L𝑁 ,A part yields 𝑁2ΦA,1Z𝑁 + 𝑁2ΦA,2Z𝑁. (One can define
ΦS,ΦA,1,ΦA,2 for this to be true, at which point we are left to compute these terms.) In particular,
the claim about vanishing quadratic covariations follows since each (compensated) Poisson clock in
the statement of Proposition 2.4 comes from a different L𝑥 operator L𝑁 . The RZ𝑁 term on the right-
hand side (RHS) of the previous display comes from the fact that Z𝑁

𝑇 ,𝑥 exponentiates R𝑇 , and it gives
R1Z𝑁 + R2Z𝑁 in equation (2.2).

The exact formulas for ΦS and ΦA,1 are not important to this proof as we deal with them via citing
the calculations in Section 2 of [19]; the same applies to R1. The emphasis of this calculation will be
computing ΦA,2 and R2, the former of which is equal to the following ‘instantaneous’ growth/change in
Z𝑁 that results from motion of the particle system through the 𝔡-asymmetry:

ΦA,2
𝑇 ,𝑥

•
= 2−1𝑁−1𝔡𝑇 ,𝑥1𝜂𝑇 ,𝑥=−11𝜂𝑇 ,𝑥+1=1 (e−2𝑁 −

1
2 − 1) − 2−1𝑁−1𝔡𝑇 ,𝑥1𝜂𝑇 ,𝑥=11𝜂𝑇 ,𝑥+1=−1 (e2𝑁 −

1
2 − 1).

In Section 2 of [19], through Taylor expansion and lengthy though elementary calculations, the authors
identify the contribution in equation (2.2) of ΦS and ΦA,1 and R1 with a discrete approximation of the
continuum Laplacian. Precisely, they establish the identity

𝑁2ΦS
𝑇 ,𝑥Z𝑁

𝑇 ,𝑥 + 𝑁2ΦA,1
𝑇 ,𝑥Z𝑁

𝑇 ,𝑥 + R1Z𝑁
𝑇 ,𝑥 = 2−1Δ !!Z𝑁

𝑇 ,𝑥 . (2.3)

Provided equations (2.2) and (2.3), we are left with computing ΦA,2 and R2 contributions. To this end,
it will be convenient to first define E±,𝑁 = Exp(±2𝑁−1/2) − 1 along with two ‘trigonometric-type’
functions T±,𝑁 = E−,𝑁 ±E+,𝑁 . Let us also observe the identity 21(𝜂 = ±1) = 1±𝜂 for 𝜂 ∈ {±1}, which
can be checked immediately. This allows us to rewrite the indicator functions in ΦA,2 explicitly as local
functionals of the particle system and thus lets us compute as follows:

ΦA,2
𝑇 ,𝑥 = 8−1𝑁−1(1 − 𝜂𝑇 ,𝑥) (1 + 𝜂𝑇 ,𝑥+1)𝔡𝑇 ,𝑥E−,𝑁 − 8−1𝑁−1 (1 + 𝜂𝑇 ,𝑥) (1 − 𝜂𝑇 ,𝑥+1)𝔡𝑇 ,𝑥E+,𝑁 (2.4)

= 8−1𝑁−1T−,𝑁
(
𝔡𝑇 ,𝑥 − 𝔡𝑇 ,𝑥𝜂𝑇 ,𝑥𝜂𝑇 ,𝑥+1

)
+ 8−1𝑁−1T+,𝑁𝔡𝑇 ,𝑥∇

X
1 𝜂𝑇 ,𝑥 . (2.5)

As �̃�𝑇 ,𝑥 − 𝔮𝑇 ,𝑥 = ∇X
−2𝔩𝔡𝔮𝑇 ,𝑥 , where ∇X

−2𝔩𝔡 acts on x (see Definition 2.2), for the first term in equation
(2.5), we have

8−1𝔡𝑇 ,𝑥 − 8−1𝔡𝑇 ,𝑥𝜂𝑇 ,𝑥𝜂𝑇 ,𝑥+1 = 4−1�̃�𝑇 ,𝑥 − 4−1∇X
−2𝔩𝔡𝔮𝑇 ,𝑥 (2.6)

= 4−1�̄�𝑇 ,𝑥 + 4−1E0�̃� + 4−1�̄�𝜂𝑇 ,𝑥 − 4−1∇X
−2𝔩𝔡𝔮𝑇 ,𝑥 . (2.7)

We will now multiply the calculation (2.5) by Z𝑁, use the identity (2.7), and then add the additional drift
𝑁−2R2Z𝑁. We will match the resulting sum and identities to the non-Δ and non-𝜉𝑁 terms in the proposed
SDE for Z𝑁. For the purposes of clearer organization, we write these calculations in the following bullet
points. We address each term in equation (2.7) in written order. Let us clarify that, throughout the
following list, we may change 𝔟1; from line to line, but it is always a sum of an N-independent number
of order 𝑁−1/2 error terms that come from Taylor expansion. Lastly, recall R2 = 𝑁1/2R2,1 +R2,2 +R2,3.

◦ Let us first match 4−1𝑁T−,𝑁 �̄� from equation (2.7) plugged into equation (2.5) to −𝑁1/2�̄� in the
proposed SDE up to error O(𝑁−1/2). This follows, by definition of T−,𝑁 from immediately before
equation (2.5), via T−,𝑁 ∼ −4𝑁−1/2 + O(𝑁−3/2).

◦ Let us now match 4−1𝑁T−,𝑁 E0�̃�, obtained by plugging equation (2.7) in equation (2.5), with
−𝑁1/2R2,1 so that these terms cancel each other in the Z𝑁 SDE, again up to O(𝑁−1/2) that adds to
𝔟1;. By definition R2,1 = −2−1E0(𝔡 − 𝔡 · 𝜂0𝜂1) = −E0𝔮 = −E0�̃� since the product Bernoulli measure
in E0 is invariant under spatial shifts. It now suffices to again use T−,𝑁 ∼ −4𝑁−1/2 + O(𝑁−3/2).
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◦ We match R2,2 + 4−1𝑁T−,𝑁 �̄�𝜂 again obtained by plugging equation (2.7) in equation (2.5) to the
first-order operator −�̄�∇!

−1 = −𝑁�̄�∇X
−1 in ℒ𝑁 up to O(𝑁−1/2) to be absorbed into 𝔟1;:

4−1𝑁T−,𝑁 �̄�𝜂Z𝑁 + R2,2Z𝑁 = −�̄�∇!
−1Z𝑁 = −𝑁�̄�∇X

−1Z𝑁. (2.8)

We compute ∇X
−1Z𝑁 with Taylor expansion via its definition (see Section 2 of [19]):

∇X
−1Z𝑁

𝑇 ,𝑥 = e−h𝑁
𝑇 ,𝑥−1+R𝑇 − e−h𝑁

𝑇 ,𝑥+R𝑇 = (eh𝑁
𝑇 ,𝑥−h𝑁

𝑇 ,𝑥−1 − 1)Z𝑁
𝑇 ,𝑥

= (𝑁−
1
2 𝜂𝑇 ,𝑥 + 2−1𝑁−1 + O(𝑁−

3
2 ))Z𝑁

𝑇 ,𝑥 .

Thus, −𝑁�̄�∇X
−1Z𝑁 ∼ (−𝑁1/2�̄�𝜂 − 2−1�̄�)Z𝑁 + O(𝑁−1/2)Z𝑁 . On the other hand, Taylor expansion

gives 4−1𝑁T−,𝑁 �̄�𝜂 ∼ −𝑁1/2�̄�𝜂 +O(𝑁−1/2) that can again be absorbed by 𝔟1;. Recalling R2,2 = 2−1�̄�,
we get the desired matching (2.8).

◦ We move to −4−1𝑁T−,𝑁∇X
−2𝔩𝔡𝔮𝑇 ,𝑥 ·Z𝑁

𝑇 ,𝑥 again obtained by plugging equation (2.7) in equation (2.5).
We compute/match it as follows:

−4−1𝑁T−,𝑁∇X
−2𝔩𝔡𝔮𝑇 ,𝑥 · Z𝑁

𝑇 ,𝑥 + R2,3Z𝑁
𝑇 ,𝑥 = −𝔰𝑇 ,𝑥Z𝑁

𝑇 ,𝑥 + 𝑁1/2∇X
−2𝔩𝔡 (𝔟2;𝑇 ,𝑥Z𝑁

𝑇 ,𝑥). (2.9)

We clarify 𝔟2; shortly. We start with calculation below to be explained after; recall �̃� = 𝜏−2𝔩𝔡𝔮:

− 4−1𝑁T−,𝑁∇X
−2𝔩𝔡𝔮𝑇 ,𝑥 · Z𝑁

𝑇 ,𝑥 = −4−1𝑁T−,𝑁∇X
−2𝔩𝔡

(
𝔮𝑇 ,𝑥Z𝑁

𝑇 ,𝑥

)
+ 4−1𝑁T−,𝑁 �̃�𝑇 ,𝑥∇

X
−2𝔩𝔡Z𝑁

𝑇 ,𝑥

= −4−1𝑁T−,𝑁∇X
−2𝔩𝔡

(
𝔮𝑇 ,𝑥Z𝑁

𝑇 ,𝑥

)
+ 4−1𝑁T−,𝑁 �̃�𝑇 ,𝑥𝑁−1/2

(∑2𝔩𝔡
𝔧=1

𝜏𝑥−𝔧𝜂𝑇 + O(𝑁−1)
)
Z𝑁
𝑇 ,𝑥 . (2.10)

The first line follows by a discrete version of the Leibniz rule that can be verified by unfolding discrete
gradients and cancelling terms. The second line (2.10) follows by Taylor expanding ∇X

−2𝔩𝔡Z𝑁
𝑇 ,𝑥 as in

Section 2 of [19]. Because T−,𝑁 = −4𝑁−1/2 +O(𝑁−3/2), we can absorb O(𝑁−1) in equation (2.10) to
𝑁−1/2𝔟1; and drop it from equation (2.10). This also implies that the second term in equation (2.10)
is −̃𝔰Z𝑁 = −𝔰Z𝑁 − E0̃𝔰Z𝑁 = −𝔰Z𝑁 − R2,3Z𝑁 . Lastly, the first term in equation (2.10) has the
form 𝑁−1/2∇!

−2𝔩𝔡 (𝔟2;𝑇 ,𝑥Z𝑁
𝑇 ,𝑥) for |𝔟2; | � 1. Combining this paragraph with equation (2.10) gives the

desired matching (2.9).
◦ We are left with analyzing the last term in equation (2.5). For this first recall, the gradient condition that

we have assumed provides the current representation 𝔡𝑇 ,𝑥∇
X
1 𝜂𝑇 ,𝑥 = ∇X

1 𝔴𝑇 ,𝑥 , where 𝔴 is uniformly
bounded. Moreover, we observe that |T+,𝑁 | � 𝑁−1, which is a smaller estimate than what we had
for T−,𝑁 by a factor of 𝑁−1/2. Thus, we may employ the exact same argument as the previous bullet
point, precisely by replacing 𝔮 with 𝔴 and −2𝔩𝔡 with 1, to identify the last term in equation (2.5),
after multiplying by Z𝑁

𝑇 ,𝑥 , to be of the form 𝑁−1/2∇!
1(𝔟2;𝑇 ,𝑥Z𝑁

𝑇 ,𝑥) + O(𝑁−1/2)Z𝑁
𝑇 ,𝑥 . We clarify that,

here, there is no matching �̃�-terms with R2-terms because the 𝑁−1/2 factor we gain from having a
coefficient T+,𝑁 instead of T−,𝑁 renders all such terms order 𝑁−1/2, thus absorbed by 𝔟1;.

This completes the proof. �

3. Proof of Theorem 1.8

At a high level, the proof of Theorem 1.8 is built on an analysis of the semidiscrete stochastic integral
equation from Corollary 2.6. As with [19, 49], our main goal will be to prove that only the first two terms
therein contribute in the large-N limit in a ‘high probability’ sense. The last two terms on the RHS of this
equation are easily shown to vanish in the large-N limit by deterministic and analytic estimates, at least
if we assume that the Gartner transform and its space-time supremum are not totally ill behaved; such
assumption will ultimately be justified by virtue of the fact that the Gartner transform is supposed to
resemble the solution of SHE on the compact torus, which itself is uniformly continuous in space-time.
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But the 𝔰-term in Corollary 2.6 does not admit such an elementary analytic estimate since it does not
necessarily have a deterministically small prefactor. The probabilistic approach we take to study the
heat operator with the 𝔰-functional is based on the feature that it vanishes at a level of ‘hydrodynamic
limits’ since the global 𝜂-density for our initial data is roughly zero, and by construction the expectation
of 𝔰 with respect to the product Bernoulli measure of this 𝜂-density is also zero. Equivalently, in the
language of [19, 49] the 𝔰-term is ‘weakly vanishing’. We will make this ‘hydrodynamic’ argument
precise in Lemma 3.17.

We are left with analyzing the order 𝑁1/2 term in the stochastic equation of Corollary 2.6. Because
𝑁1/2 certainly diverges in the large-N limit, neither the previous analytic or hydrodynamic limit argu-
ments will succeed. In fact, if we replace the particle-system-dependent term �̄� with any local 𝔣 that has
‘zero hydrodynamic limit’ like 𝔰 above, it is likely false that the corresponding heat operator term in
Corollary 2.6 acting on 𝑁1/2𝔣Z𝑁 will vanish in the large-N limit, based on the equilibrium calculations
in [24], for example. Therefore, we must take advantage of �̄� being the local functional �̃� after subtract-
ing off its ‘leading order’ behavior beyond the hydrodynamic limit when averaged in space-time against
the heat kernel and Z𝑁. We will do this through a nonstationary first-order Boltzmann–Gibbs principle,
which will require a combination of analytic and probabilistic ingredients. The analytic considerations
required mainly amount to regularity estimates of Z𝑁, which by calculus implies regularity of h𝑁 and,
by definition, controls local invariant measures that are parameterized by 𝜂-density. For this reason, first
define the following stopping times, which uniformly control Z𝑁 and its space-time regularity. In the
construction below, we will require a strange integer condition that is ultimately unnecessary; it will just
make presentation later in the paper clearer and more convenient.

Definition 3.1. Consider 𝜀ap > 0 arbitrarily small but bounded below uniformly and chosen so that 𝑁 𝜀ap

is an integer. We note this may force 𝜀ap to be N-dependent, but this is okay; we only need its uniform
positivity and smallness. Define

𝔱ap
•
= inf

{
t ∈ [0, 1] : ‖Z𝑁 ‖t;T𝑁 + ‖(Z𝑁 )−1‖t;T𝑁 � 𝑁 𝜀ap

}
∧ 1, (3.1)

where ‖‖t;K is the ℒ∞([0, t] ×K)-norm. We now introduce space-time scales on which we want a priori
regularity estimates:

◦ We first define IT,1 •= {𝑁−2+𝔧𝜀ap }𝔧�0 ∩ [0, 𝑁−1]. Observe that 𝑁−2+𝔧𝜀ap are positive integer multiples
of 𝑁−2.

◦ We now define IT •= {𝔨𝑁−2+𝔧𝜀ap }, in which 1 � 𝔨 � 𝑁 𝜀ap and 𝔧 � 0 ranges over all indices for which
𝑁−2+𝔧𝜀ap � 𝑁−1.

We also define/assume 𝜀RN = 999−999 � 999999𝜀ap and then define the length scale 𝔩𝑁
•
= 𝑁1/2+𝜀RN .

We now define the two stopping times below in which we recall ∇X
𝔩 𝜙𝑥 = 𝜙𝑥+𝔩 − 𝜙𝑥 and ∇T

s 𝜓𝑡 ,𝑥 =
𝜓 (1∧(𝑡+s))∨0,𝑥 − 𝜓𝑡 ,𝑥 for (𝑡, 𝑥) ∈ [0, 1] × T𝑁:

𝔱T
RN
•
= inf

{
t ∈ [0, 1] : sups∈IT

(
s−1/4‖∇T

−sZ𝑁 ‖t;T𝑁

)
� 𝑁 𝜀ap

(
1 + ‖Z𝑁 ‖2t;T𝑁

)}
∧ 1 (3.2)

𝔱X
RN
•
= inf

{
t ∈ [0, 1] : sup1� |𝔩 |�𝔩𝑁

(
𝑁1/2 |𝔩 |−1/2‖∇X

𝔩 Z𝑁 ‖t;T𝑁

)
� 𝑁 𝜀ap

(
1 + ‖Z𝑁 ‖t;T𝑁 )

2
)}
∧ 1. (3.3)

We conclude by defining the stopping time 𝔱st = 𝔱ap∧𝔱T
RN∧𝔱

X
RN that is contained in [0, 1] with probability

1 and whose purpose is to supply a priori space-time control on the Gartner transform. Let us clarify that
the utility behind the two regularity stopping times 𝔱T

RN and 𝔱X
RN will be to yield a priori estimates that

are necessary to perform a renormalization scheme during the proof of the Boltzmann–Gibbs principle,
while the utility behind 𝔱ap is to avoid having to simultaneously apply probabilistic and analytic estimates
to study particle system data and control Z𝑁, the latter being ignorable if we look before the stopping
time 𝔱ap.
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Remark 3.2. The stopping time 𝔱ap also gives a priori lower bounds on Z𝑁. This will be important in
the proof of the Boltzmann–Gibbs principle. In particular, we require regularity estimates of the height
function. However, since the height function solves an equation that becomes a singular SPDE in the
large-N limit and because singular SPDE analysis becomes difficult to conduct at the level of the particle
system, we instead deduce regularity of height functions in terms of regularity of the Gartner transform
as the Gartner transform equation becomes a nonsingular SPDE in the large-N limit. Calculus then tells
us that a priori upper and lower bounds for the Gartner transform suffice to deduce regularity of the
height function.

Remark 3.3. We expect the Gartner transform to look like the solution of SHE in the large-N limit,
which, roughly speaking, has Holder regularity with exponent 2−1 in space and with exponent 4−1 in
time. Therefore, the conditions/inequalities defining the stopping times 𝔱ap and 𝔱T

RN and 𝔱X
RN are actually

quite lenient because of the 𝑁 𝜀ap factors and the assumption that 𝜀ap > 0 is universal and thus uniformly
bounded from below. In particular, we will eventually be able to show that these three stopping times
are all equal to 1 with sufficiently high probability, so their a priori estimates ‘self-propagate’.

Remark 3.4. The constant 999999 in 𝜀RN = 999999𝜀ap can be replaced by any sufficiently large but
universal constant.

To take advantage of stopping times in Definition 3.1, we now introduce the following auxiliary
processes, the first of which stops the Gartner transform at the minimum stopping time 𝔱st and the
second of which evolves according to the same type of SHE dynamic as the Gartner transform though
ignoring space-time sets where the conditions defining 𝔱st fail, thus making the second auxiliary process
amenable to the analysis of this paper, including the proof of the Boltzmann–Gibbs principle.

Definition 3.5. Define Y𝑁
𝑇 ,𝑥 = Z𝑁

𝑇 ,𝑥1(𝑇 � 𝔱st), and define the process U𝑁 onR�0×T𝑁 via the stochastic
equation

U𝑁
𝑇 ,𝑥 = H𝑁 ,X

𝑇 ,𝑥 (Z
𝑁
0,•) +H𝑁

𝑇 ,𝑥 (U
𝑁 d𝜉𝑁 ) −H𝑁

𝑇 ,𝑥 (𝑁
1
2 �̄�Y𝑁 ) −H𝑁

𝑇 ,𝑥 (𝔰U𝑁 ) + 𝑁−
1
2 H𝑁

𝑇 ,𝑥 (𝔟1;U𝑁 )

+ 𝑁−
1
2 H𝑁

𝑇 ,𝑥

(
∇!
★

(
𝔟2;U𝑁

))
,

where ∇!
★ means what it does in Proposition 2.4.

Remark 3.6. The product U𝑁 d𝜉𝑁 denotes compensated jumps of a martingale, where the jumps at
(𝑇, 𝑥) are given by the jumps of d𝜉𝑁 at (𝑇, 𝑥) from Proposition 2.4 times the value U𝑁 at (𝑇, 𝑥). In
fact, whenever we write a product of a space-time function and d𝜉𝑁, we mean exactly this where U𝑁 is
replaced by said space-time function. We additionally observe that for any functions F1, F2, we have the
identity F1d𝜉𝑁 −F2d𝜉𝑁 = (F1 −F2)d𝜉𝑁 , as F1d𝜉𝑁 and F2d𝜉𝑁 are coupled and always jump together.

To justify studying the U𝑁 process, let us observe that on the event 𝔱st = 1 we have not changed the
Z𝑁 equation in Corollary 2.6 and have simply defined U𝑁 with the same stochastic equation. Because
the stochastic equation is linear in the solution U𝑁, we have uniqueness of solutions with same initial
data by elementary considerations, and thus Z𝑁 = U𝑁 on such an event. In general, we have this
identification between Z𝑁 and U𝑁 until 𝔱st regardless of its value.

Lemma 3.7. Provided any t ∈ [0, 1], we have the containment of events {𝔱st = t} ⊆ ∩0�s�t∩𝑥∈T𝑁 {Z𝑁
s,𝑥 =

U𝑁
s,𝑥}.

We reiterate that working with the U𝑁 process will be convenient because of the a priori space-time
regularity estimates built into the Y𝑁 process therein, while Lemma 3.7 guarantees us Z𝑁 and U𝑁 are
equal on the event where 𝔱st = 1 which, as noted in Remark 3.3, we will show happens with sufficiently
high probability. Then, after taking advantage of the cutoff in the stopping time 𝔱st, we compare U𝑁 to
the following process that forgets the order 𝑁1/2 term in the Z𝑁 and U𝑁 equations.
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Definition 3.8. Define the process Q𝑁 on R�0 × T𝑁 via the following stochastic integral equation

Q𝑁
𝑇 ,𝑥 = H𝑁 ,X

𝑇 ,𝑥 (Z
𝑁
0,•) +H𝑁

𝑇 ,𝑥 (Q
𝑁 d𝜉𝑁 ) −H𝑁

𝑇 ,𝑥 (𝔰Q𝑁 ) + 𝑁−
1
2 H𝑁

𝑇 ,𝑥 (𝔟1;Q𝑁 ) + 𝑁−
1
2 H𝑁

𝑇 ,𝑥

(
∇!
★

(
𝔟2;Q𝑁

))
,

where ∇!
★ means what it does in Proposition 2.4.

We will now introduce the three key ingredients in the proof of Theorem 1.8. The first ingredient
shows 𝔱st = 1 with a notion of high probability we will introduce shortly. This first step allows us to
deduce Theorem 1.8 from itself but replacing Z𝑁 therein with U𝑁 introduced in Definition 3.5. The
second step then compares U𝑁 with the auxiliary process Q𝑁 in Definition 3.8. Proofs of these two
ingredients require the Boltzmann–Gibbs principle and take up the majority of this paper. The third step
is to then prove Theorem 1.8 but replacing Z𝑁 with Q𝑁. This last step is fairly standard, as noted at the
beginning of this section.

Definition 3.9. Consider any generic event E . In the following, we think of constants 𝛿 > 0 as arbitrarily
small but universal, and we think of constants 𝜅 � 0 as arbitrarily large but universal.

◦ We say E holds with high probability if for any 𝛿 > 0, we have P(E𝐶 ) � 𝛿+𝐶𝛿o𝑁, where o𝑁 →𝑁→∞ 0
uniformly in 𝛿.

◦ We say E holds with overwhelming probability if for any 𝜅 � 0, we have P(E𝐶 ) �𝜅 𝑁−𝜅.

Remark 3.10. Any event E that satisfies the probability estimate P(E𝐶 ) � 𝑁−𝛽 for some, not all,
constant 𝛽 > 0 holds with high probability because we may take o𝑁 = 𝑁−𝛽 . But, it does not necessarily
hold with overwhelming probability.

Proposition 3.11. The event {𝔱st = 1} holds with high probability.

Proposition 3.12. Define the difference process D𝑁 = U𝑁 −Q𝑁 on R�0 ×T𝑁. There exists a universal
constant 𝛽 > 0 such that the event {‖D𝑁 ‖1;T𝑁 � 𝑁−𝛽} holds with high probability, where the implied
constant is also universal.

Proposition 3.13. The rescaled process Γ𝑁 Q𝑁 is tight in the large-N limit in the Skorokhod space 𝒟1.
Moreover, every limit point in 𝒟1 of Γ𝑁 Q𝑁 is the solution of SHE(�̄�) with initial data equal to the
spatially rescaled initial data lim𝑁→∞ Γ𝑁 ,XZ𝑁.

Proof of Theorem 1.8. Proposition 3.11 shows the difference Z𝑁 − U𝑁 converges to 0 in probability
in the Skorokhod space 𝒟1; with high probability the difference is identically the zero process in 𝒟1.
Proposition 3.12 shows the difference D𝑁 = U𝑁 −Q𝑁 also converges to 0 in probability in 𝒟1 because
Proposition 3.12 shows that D𝑁 converges to 0 in probability with respect to the uniform metric on 𝒟1,
and the uniform metric on 𝒟1 is stronger than the Skorokhod topology on 𝒟1. To justify the last claim,
it is enough to take the identify function within the infimum on the RHS of (12.13) in [4]; though [4]
studies just R-valued processes, the same is true of processes valued in any separable Banach space,
including 𝒞(T1). Combining these two observations implies Z𝑁 −Q𝑁 → 0 in 𝒟1. Finally, observe that
Proposition 3.13 implies Γ𝑁 Q𝑁 converges to what we propose Γ𝑁 Z𝑁 converges to in 𝒟1. Because Γ𝑁

is a rescaling operator that is continuous with respect to the Skorokhod topology on𝒟1, as it only rescales
in space, standard probability shows Γ𝑁 Z𝑁 → SHE(�̄�) in 𝒟1 with initial data lim𝑁→∞ Γ𝑁 ,XZ𝑁. �

We have now established Theorem 1.8 by taking Proposition 3.11, Proposition 3.12 and
Proposition 3.13 for granted. Again, the proofs for Proposition 3.11 and Proposition 3.12 will be the
purpose for the rest of this paper after the current section, and for this we establish a version of the
nonstationary first-order Boltzmann–Gibbs principle. On the other hand, proof for Proposition 3.13 is
fairly straightforward, as we alluded to near the beginning of this section, provided the analysis in [19],
especially Lemma 2.5 therein and its proof. Also, Proposition 3.13 will be important in establishing
Proposition 3.11 and Proposition 3.12 because it will yield a priori stability/bounds for studying the
Z𝑁 -SPDE. With this in mind, we prove Proposition 3.13 in the current section. We will then conclude
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this section by writing an outline and discussion of the proofs of Proposition 3.11 and Proposition 3.12
whose details we devote the rest of this paper to. We first make the following point to avoid circular
logic. Proposition 3.13 consists of tightness of Γ𝑁 Q𝑁 and identification of limit points. Tightness is
independent of Propositions 3.11 and 3.12, but identification of limit points uses Propositions 3.11 and
3.12. Propositions 3.11 and 3.12, in turn, requires tightness of Γ𝑁 Q𝑁 .

3.1. Proof of Proposition 3.13

Following the proof of Theorem 1.1 in [19], which is given in Section 3 of [19], let us first show the
tightness claim in Proposition 3.13 with moment estimates for the auxiliary process Q𝑁 ; this is the analog
of Proposition 3.2 and Corollary 3.3 in [19]. Afterwards, we will identify subsequential limit points of
Γ𝑁 Q𝑁 in the Skorokhod space 𝒟1 as SHE(�̄�). This is the analog of the analysis behind Section 3.2
in [19], and it similarly amounts to proving that all the limit points of Γ𝑁 Q𝑁 satisfy a martingale
problem associated to SHE(�̄�). We emphasize there is no real difficulty in choosing nonzero �̄�.
Lemma 3.14. The sequence Γ𝑁 Q𝑁 is tight with respect to the Skorokhod topology on 𝒟1.
Proof. Provided heat kernel estimates and martingale estimates in Appendix A, the moment estimates
in Proposition 3.2 in [19] for the Gartner transform therein hold for Q𝑁 , as long as we remove the
exponential weights therein and then replace the spatial gradients therein with spatial gradients on the
torus T𝑁. Thus, it suffices to follow the proof of Corollary 3.3 in [19]. �

We are now left with identifying limit points in 𝒟1 of the sequence Γ𝑁 Q𝑁 . As we briefly alluded
to above, we will require the following martingale problem formulation of SHE(�̄�). Technically, the
following martingale problem formulation of SHE(�̄�) differs from the martingale problems for SPDEs
introduced and employed in [3, 19] and related papers unless �̄� = 0 because of the additional first-order
linear transport operator. But this transport is lower order and introduces only a linear drift.
Definition 3.15. Let us first choose any pair of spatial test functions 𝜓1;·, 𝜓2;· : T→ R and any pair of
space-time test functions 𝜙1;·, ·, 𝜙2;·, · : R�0 ×T→ R, where we recall that T = R/Z is the unit torus. We
also define the following bilinear pairings.

◦ Define 〈𝜓1;·, 𝜓2;·〉T =
∫
T

𝜓1;𝑥𝜓2;𝑥d𝑥 and for t ∈ [0, 1], let 〈𝜙1;·, ·, 𝜙2;·, ·〉t;T =
∫ t

0 〈𝜙1;s, ·, 𝜙2;s, ·〉Tds.

Consider a possibly random continuous process S·, · ∈ 𝒞1. Let us say S·, · solves the SHE(�̄�) martingale
problem if:
◦ We have S0, · = lim𝑁→∞ Γ𝑁 ,XZ𝑁 and the second moment bound ‖St,𝑥 ‖𝜔;2 � 1 uniformly over all

t ∈ [0, 1] and 𝑥 ∈ T.
◦ Let ℒ∗ be the formal adjoint of the continuum differential operator ℒ = 2−1Δ + �̄�∇ with respect to

the Lebesgue measure on T. For any smooth, time-constant test function 𝜙 ∈ 𝒞∞(T), the following
are local R-valued martingales in t ∈ [0, 1]:

mt (𝜙)
•
= 〈𝜙, St, ·〉T − 〈𝜙, S0, ·〉T − 〈ℒ

∗𝜙, S·, ·〉t;T and mt (𝜙)
2 − 〈𝜙2, S2

·, ·〉t;T. (3.4)

In [3, 19], the key feature of the martingale problem for SHE = SHE(0) is that any solution is equal
to the mild solution as probability measures on the path-space 𝒞1. It turns out solutions of SHE(�̄�)
share a similar property since SHE(�̄�) is still linear.
Lemma 3.16. If S ∈ 𝒞1 is a solution of the SHE(�̄�) martingale problem, then S = SHE(�̄�) as probability
measures on 𝒞1.

Let us now identify limit points in𝒟1 of the sequence Γ𝑁 Q𝑁 as SHE(�̄�) with the martingale problem
in Definition 3.15 and the uniqueness result Lemma 3.16. To this end, we follow Section 3.2 of [19]. The
first step is to compute the predictable bracket of the martingale differential Q𝑁 d𝜉𝑁 . The environment
dependence is lower order, so it is negligible in the large-N limit. We ultimately get a predictable
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bracket equal to that in Proposition 3.4 in [19] for 𝑚 = 1, after replacing all Gartner transforms therein
with Q𝑁 . The next step to identify Γ𝑁 Q𝑁 is then the following hydrodynamic limit, as was the situation
in Section 3.2 in [19]. Thus, the proof of Proposition 3.13 amounts to proving the following parallel to
Lemma 2.5 in [19].

Lemma 3.17. Consider any local function 𝔣 : Ω→ R whose support is a uniformly bounded neighbor-
hood of 0 ∈ T𝑁. Suppose E0𝔣 = 0, in which E0 is the expectation with respect to the product Bernoulli
measure on Ω whose one-dimensional marginals vanish in expectation. Let us define the space-time
shift 𝔣𝑆,𝑦 = 𝜏𝑦𝔣(𝜂𝑆). For any 𝜙 ∈ 𝒞∞(T) and t ∈ [0, 1], we have

lim
𝑁→∞

∫ t

0

∑̃
𝑦∈T𝑁

𝜙𝑦/𝑁 · 𝔣𝑆,𝑦Q𝑁
𝑆,𝑦 d𝑆 = 0. (3.5)

Proof. Recall Q𝑁 satisfies spatial regularity on macroscopic length scales as we explained in the proof
of Lemma 3.14. Thus, by following the proof of Lemma 2.5 in [19], it suffices to replace 𝔣𝑆,𝑦 in the
proposed limit with its spatial average over a block of length 𝛿𝑁1/2 with 𝛿 > 0 small but taken to zero
after taking the large-N limit. At this point, following the proof of Lemma 2.5 from [19] suffices because
we also have the pointwise moment estimate to bound Q𝑁 as argued in the proof of Lemma 3.14, and
because E0𝔣 = 0, the one-block and two-blocks schemes from Section 4 of [19] lets us replace the
block average of 𝔣 by the block average of 𝜂; these steps are successful here as well by virtue of entropy
production estimates in a finite volume of order N that is even better than the entropy production in
Lemma 4.1 in [19] that was used in the proof of Lemma 2.5 in [19]. Lastly, to estimate the block average
of 𝜂 of length 𝛿𝑁1/2 with 𝛿 > 0 vanishing after the large-N limit, it suffices to note 𝔱st = 1 with high
probability by Proposition 3.11, and 𝔱st = 1 implies regularity estimates for Z𝑁 that are used to show
the vanishing of the 𝜂-block average at hand; see the proof of Lemma 2.5 in [19] for more details on
this last point. This completes the proof. �

3.2. Strategy

Recall �̄� in Definition 2.2; it is the correction of a local statistic by its hydrodynamic limit and appropriate
linear projection. In what follows, all we need from boldface objects are that they are possibly random
but have space-time regularity at worst matching SHE or KPZ, and all we need from the H𝑁 operator
is that it is integration in space-time against a reasonably smooth test function (though in this paper, we
specify to the heat operator in Definition 2.5).

Proposition 3.11 and Proposition 3.12 effectively follow by showing the order 𝑁1/2-term in the U𝑁

equation is small. Indeed, this would imply the estimate in Proposition 3.12 by standard methods for
linear equations, as the U𝑁 equation in Definition 3.5 and the Q𝑁 equation in Definition 3.8 differ
only in this 𝑁1/2 term. On the other hand, provided that U𝑁 ≈ Q𝑁 via Proposition 3.12, space-time
estimates for U𝑁 are inherited from those for Q𝑁 , which we have already shown behaves like SHE(�̄�)
and therefore satisfies significantly improved versions of the estimates defining 𝔱st, namely replacing
𝜀ap therein with 𝜀ap/999 for example. Thus, U𝑁 satisfies improved versions of the regularity estimates
defining 𝔱st. Using Lemma 3.7, this implies that Z𝑁 satisfies the same estimates before the stopping
time 𝔱st, after which we may extend these estimates after the stopping 𝔱st upon directly studying Z𝑁 on
very short/submicroscopic timescales. This shows the estimates defining 𝔱st are self-propagating, and
thus 𝔱st = 1, with high probability as claimed in Proposition 3.11.

We now discuss showing the order 𝑁1/2-term in the U𝑁 equation from Definition 3.5 is small, which
we state as the following heuristic that is usually known as a Boltzmann–Gibbs principle; we will prove
a stronger version of the following.

Heuristic 3.18. We have the convergence-in-probability ‖H𝑁 (𝑁1/2�̄�Y𝑁 )‖1;T𝑁 → 0 in the large-N
limit.
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3.2.1. Approach via mesoscopic equilibrium
The strategy for Heuristic 3.18 is based on replacing �̄� by its invariant measure expectation via ergodic
theory on the mesoscopic length scale 𝑁1/2+𝜀RN . By invariant measure, we technically mean a canonical
measure expectation of parameter 𝜎 given by the 𝜂-density on a block of length of order 𝑁1/2+𝜀RN ;
see Definition 4.4 for what this means. The philosophy, coming from [28], of this approach is that the
particle system evolves on extremely fast 𝑁2 timescales, and thus on mesoscopic/local scales, relaxation
to invariant measure happens quickly.

To make this discussion a little more concrete, we will present evidence of the following statement.
Again, we refer the reader to Definition 4.4 for the canonical measure used below. We also refer the reader
to Lemma 1 and Lemma 3 in [24] for another set of results that are slightly weaker but philosophically
analogous to the following.

Heuristic 3.19. Let Ecan
1/2+𝜀RN

(𝜏𝑦𝜂𝑆) be canonical measure expectation of �̄�𝑆,𝑦 on a block of length scale
𝔩𝑁 = 𝑁1/2+𝜀RN whose 𝜎-parameter is equal to the 𝜂-density in a length 𝔩𝑁 neighborhood of the support
of �̄�𝑆,𝑦 . We have the convergence in probability ‖H𝑁 (𝑁1/2 (�̄�𝑆,𝑦 − Ecan

1/2+𝜀RN
(𝜏𝑦𝜂𝑆))‖1;T𝑁 → 0 in the

large-N limit.

To explain the benefit of Heuristic 3.19, Proposition 8 in [24] basically shows |Ecan
1/2+𝜀RN

(𝜏𝑦𝜂𝑆) | �

𝔩−1
𝑁 = 𝑁−1/2−𝜀RN . This beats 𝑁1/2, so it remains to prove Heuristic 3.19. We clarify that this bound only

holds if the 𝜂-density at scale 𝔩𝑁 is controlled by 𝔩−1/2
𝑁 , which is basically equivalent to h𝑁 and Z𝑁

satisfying regularity estimates defining 𝔱X
RN in Definition 3.1.

3.2.2. Evidence for Heuristic 3.19
The replacement that we proposed in Heuristic 3.19 will not be performed in one step. We need to replace
�̄� by its canonical measure expectations on progressively larger length scales until we hit 𝔩𝑁 = 𝑁1/2+𝜀RN ,
with every length scale being a small but universal power of N larger than the previous scale. This
‘renormalization’ is similar to that of Lemma 2 in [24]; see also proofs of Theorems 1.1 and 1.2 in [43].
In what follows, log𝑁 (a) =

log a
log 𝑁 is the base N logarithm.

Heuristic 3.20. For 𝔩 ∈ Z�0 larger than the length of the support of �̄�, we let Ecan
log𝑁 𝔩 (𝜏𝑦𝜂𝑆) be canonical

measure expectation of �̄�𝑆,𝑦 on a neighborhood of the support of �̄�𝑆,𝑦 with length scale 𝔩. Take 𝜀RN,1 > 0
sufficiently small but universal. We have the following uniformly, in probability, in all 𝔩-indices larger
than the length of the support of �̄�𝑆,𝑦 that also satisfy 𝑁 𝜀RN,1 𝔩 � 𝔩𝑁 :

‖H𝑁 (𝑁
1
2 Rlog𝑁 𝔩 (𝜏𝑦𝜂𝑆)Y𝑁

𝑆,𝑦)‖1;T𝑁 →𝑁→∞ 0 (3.6)

where Rlog𝑁 𝔩 (𝜏𝑦𝜂𝑆) = Ecan
log𝑁 𝔩 (𝜏𝑦𝜂𝑆) − Ecan

𝜀RN,1+log𝑁 𝔩 (𝜏𝑦𝜂𝑆).

Let 𝔩0 ∈ Z�0 be any uniformly bounded length scale that is larger than the length of the support of �̄�. We
additionally have the claimed convergence in probability in Heuristic 3.19 if we replace Ecan

1/2+𝜀RN
(𝜏𝑦𝜂𝑆)

therein by Ecan
log𝑁 𝔩0

(𝜏𝑦𝜂𝑆).

Let us focus on the proposed bound for R terms in Heuristic 3.20 and discuss necessary adjustments
for the difference between �̄� and Ecan

log𝑁 𝔩0
afterwards; analyses of both will be similar to each other except

for an important technical obstruction faced by the latter difference. The first key observation for the R
terms is their fluctuation property; with respect to any invariant canonical measure on the support of R,
the function R vanishes in expectation. Given that the support of R is mesoscopic in scale and given the
fastness to invariant measures on mesoscopic length scales, the functional R is rapidly fluctuating on
mesoscopic timescales. To take advantage of these fluctuations, we average R on mesoscopic space-time
scales, in contrast to macroscopic scales that are used in [8]. Assuming we can replace R by such time
average for now and additionally assuming that the law of the particle system around the support of R
is an invariant canonical measure, we would be able to control this mesoscopic space-time average of
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R as if it were the space-time average of a noise by the Kipnis–Varadhan inequality; see Appendix 1.6
in [37]. To be precise, if 𝔩(Rlog𝑁 𝔩) is twice the support length of Rlog𝑁 𝔩 ,

|𝔱−1
av

∫ 𝔱av

0
𝔩−1
av

∑
|𝑤 |�𝔩av

𝜏𝑤 ·𝔩 (Rlog𝑁 𝔩 )Rlog𝑁 𝔩 (𝜏𝑦𝜂𝔯)d𝔯 | � 𝑁−1𝔱
− 1

2
av 𝔩
− 1

2
av 𝔩(Rlog𝑁 𝔩) |Rlog𝑁 𝔩 |. (3.7)

Thus, the LHS exhibits Brownian behavior in space-time. The factor 𝑁−1 on the RHS, which makes
equation (3.7) extremely useful for obtaining Heuristic 3.20, comes from the fact that the system evolves
at a speed 𝑁2. Therefore, convergence to invariant measure happens on timescales of order 𝑁−2, creating
more fluctuation before time 𝔱av. In a similar spirit, the factor 𝔩(Rlog𝑁 𝔩) on the RHS of equation (3.7),
which actually makes equation (3.7) worse as we increase the length scale of the support of Rlog𝑁 𝔩 in
Heuristic 3.20, comes from the fact that we require the particle system to converge to invariant measure
in a neighborhood of the support of Rlog𝑁 𝔩 in order to exploit its fluctuations; this happens more slowly
as the support of Rlog𝑁 𝔩 increases. As for |Rlog𝑁 𝔩 |:
◦ Heuristic 3.19 replaces �̄� by the Ecan

1/2+𝜀RN
-term that has good deterministic bounds. This feature of

Ecan
1/2+𝜀RN

is not exclusive to the length scale 𝔩𝑁 = 𝑁1/2+𝜀RN . Precisely, as length scales of Ecan terms in
Heuristic 3.20 defining R terms increases, such Ecan functionals decrease in magnitude as noted after
Heuristic 3.19, and therefore so do R functions. It turns out that this competition between 𝔩(Rlog𝑁 𝔩)
and |Rlog𝑁 𝔩 | on the RHS of equation (3.7) almost perfectly cancel because Ecan

log𝑁 𝔩 and Rlog𝑁 𝔩 are
controlled by the inverse of the length scale. This is why the multiscale replacement in Heuristic 3.20
is feasible.

Provided the previous bullet point, we will want to take 𝔱av ∼ 𝑁−1 and 𝔩av � 1. Actually, for our
applications of estimates of the form (3.7) in this paper, we will take 𝔱av slightly smaller than 𝑁−1 and 𝔩av
a mesoscopic length scale noticeably larger than simply 𝔩av � 1, but this is entirely for technical reasons.

3.2.3. Replacement by space-time averages
In the discussion of Heuristic 3.20 given after its statement, we omitted an important issue of replacing
Rlog𝑁 𝔩 terms with space-time averages. We first explain why we can replace by spatial averages.
◦ Recall in the paragraph following the above single bullet point that we want to replace Rlog𝑁 𝔩 by its

spatial average on length scale 𝔩av � 1. If we replace Rlog𝑁 𝔩 in the heat operator in Heuristic 3.20
with its spatial average on length scale 𝔩av, the error is controlled by the difference between Rlog𝑁 𝔩

and its spatial translations, where the length scale for the translations are at most 𝔩av𝔩(Rlog𝑁 𝔩); see
the LHS of equation (3.7). These differences are spatial gradients of Rlog𝑁 𝔩 ; to bound these when
multiplied by Y𝑁 and plugged into the heat operator, we apply summation by parts. This lets us
transfer the spatial gradients from Rlog𝑁 𝔩 to Y𝑁 and the H𝑁 heat kernel, so it suffices to estimate
these spatial gradients of smoother objects. The heat kernel is macroscopically smooth, so its spatial
gradients carry a factor of 𝑁−1. The Y𝑁 term is constructed with a priori spatial regularity bounds;
by Definition 3.1 and Definition 3.5, such Y𝑁 factor is basically macroscopically spatially Holder- 1

2
continuous. Adding these two estimates for the spatial regularity of the H𝑁 heat kernel and of Y𝑁 , the
error in introducing the spatial average of Rlog𝑁 𝔩 in Heuristic 3.20 is basically at most the following;
recall from Definition 3.5 that Y𝑁 is basically bounded and recall from earlier in this paragraph that
the max length scale of spatial gradients here is 𝔩av𝔩(Rlog𝑁 𝔩):

𝑁−1𝔩av𝔩(Rlog𝑁 𝔩)𝑁
1
2 |Rlog𝑁 𝔩 | + 𝑁

1
2 |Rlog𝑁 𝔩 |𝑁

− 1
2 𝔩

1
2
av𝔩(Rlog𝑁 𝔩)

1
2 . (3.8)

As 𝔩(Rlog𝑁 𝔩) |Rlog𝑁 𝔩 | � 1 like in the proof idea of Heuristic 3.20, if |Rlog𝑁 𝔩 | � 1, then choosing
𝔩av �𝔩 (Rlog𝑁 𝔩 ) 1 to not be too big makes equation (3.8) small.

◦ If |Rlog𝑁 𝔩 | � 1, the first term in equation (3.8) still vanishes in the large-N limit if we pick 𝔩av � 𝑁1/2,
which we certainly will in this paper. As for the second term in equation (3.8), we recall that term
comes from blindly controlling the spatial gradients of Y𝑁 via its spatial Holder regularity. However,
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we also know that Y𝑁 , whenever it is nonzero and equal to Z𝑁, is explicit in terms of the particle
system by definition. Therefore, its spatial gradient on the length scale 𝑤𝔩(Rlog𝑁 𝔩) for |𝑤 | � 𝔩av,
if nonzero, is Y𝑁 itself times an explicit functional of the particle system whose support, it turns
out after explicit calculation, is contained outside the support of Rlog𝑁 𝔩 and of length at most
𝔩av𝔩(Rlog𝑁 𝔩) � 𝔩av and thus not too large. We emphasize that this disjoint-support condition we just
mentioned is a consequence of the shifting 𝔮 in Definition 2.2, which is actually the exact purpose of
that shift. Ultimately, the product between this functional and Rlog𝑁 𝔩 , which is lower order because
gradients of the explicit formula for Y𝑁 introduce factors of 𝑁−1/2, admits an inverse-length-scale
estimate and satisfies a similar fluctuation property as Rlog𝑁 𝔩 itself because of the disjoint support
condition, so we can apply for it a simpler version of this analysis.

◦ Again, we actually pick 𝔩av � 1 more precisely. For Rlog𝑁 𝔩 terms whose support lengths are asymp-
totically large but still below a certain N-dependent threshold, we take 𝔩av ≈ 𝔩(Rlog𝑁 𝔩). For Rlog𝑁 𝔩

whose supports have lengths above this threshold, we will be less strict with 𝔩av and take advantage
of the consequentially small |Rlog𝑁 𝔩 | in equation (3.8), letting it do the work.

We now discuss the problem of introducing a time average of Rlog𝑁 𝔩 after introducing a spatial average.

◦ Similar to the replacement by spatial average for Rlog𝑁 𝔩 terms from Heuristic 3.20, replacements by
time averages for Rlog𝑁 𝔩 terms therein contributes errors that are controlled by time-gradients of the
H𝑁 heat kernel and of Y𝑁 . The H𝑁 heat kernel is smooth in time and the latter has time regularity
of Holder- 1

4 , basically. Thus, similar to equation (3.8), we deduce that the error in said replacement
by time average on timescale 𝔱av is controlled by the following, in which the 𝔩av-based factor comes
from the fact that we have already spatially averaged Rlog𝑁 𝔩 on length scale 𝔩av � 1 and thus gained
an a priori estimate for Rlog𝑁 𝔩 /its scale-𝔩av spatial average because of its fluctuating behavior as in
equation (3.7):

𝔱av𝑁
1
2 𝔩
− 1

2
av |Rlog𝑁 𝔩 | + 𝑁

1
2 𝔩
− 1

2
av |Rlog𝑁 𝔩 |𝔱

1
4
av. (3.9)

Recall we want 𝔱av = 𝑁−1; the first term in equation (3.9) vanishes in the large-N limit. The second
term, however, clearly blows up. Instead, we take 𝔱av = 𝔱av,1 = 𝑁−2𝔩av and pretend 𝔩av = 𝑁 𝜀 for 𝜀 > 0
small but universal, which will ultimately be the case later in this paper. This choice of 𝔱av makes it
so both terms in equation (3.9) vanish in the large-N limit.

◦ We replaced the spatial average of Rlog𝑁 𝔩 with its time average on scale 𝔱av,1 = 𝑁−2𝔩av. Let us now
replace this time average with its own time average on a timescale 𝔱av,2 = 𝑁𝜌𝔱av,1, where 𝜌 > 0 is
small but universal. Similar to equation (3.9), we establish the following rough estimate for the error
in this time-average replacement, but with a key distinction we explain below:

𝔱av,2𝑁
1
2 𝑁−1𝔱

− 1
2

av,1𝔩
− 1

2
av |Rlog𝑁 𝔩 | + 𝑁

1
2 𝑁−1𝔱

− 1
2

av,1𝔩
− 1

2
av |Rlog𝑁 𝔩 |𝔱

1
4
av,2. (3.10)

Besides replacing timescales, the difference between equations (3.9) and (3.10) is 𝔱av,1-based factors.
These come from the fact that we have already time averaged the spatial average of Rlog𝑁 𝔩 on timescale
𝔱av,1, so we get an improved a priori estimate similar to equation (3.7). If we choose 𝔱av,2 � 𝑁−1,
the first term in equation (3.10) certainly vanishes in the large-N limit, as 𝔱av,1 � 𝑁−2. On the other
hand, a simple calculation implies that the second term in (3.10) vanishes in the large-N limit if we
choose 𝜌 = 𝜀/999, where we recall 𝜀 is defined via 𝔩av = 𝑁 𝜀 . Thus, we have successfully replaced the
time average on timescale 𝔱av,1 of the spatial average of Rlog𝑁 𝔩 with its time average on the timescale
𝔱av,2 � 𝔱av,1. As the double time average is basically an average on the larger timescale, in this step
we have basically replaced the timescale 𝔱av,1 by 𝔱av,2 � 𝔱av,1.

◦ We then iteratively boost the timescale by 𝑁𝜌 until we hit the maximal timescale. This strongly
resembles the renormalization procedure discussed after equation (3.7) and in Lemma 2 in [24] but
in the time direction and not the spatial direction. In particular, it is key that each replacement of
timescale increases a priori estimates for Rlog𝑁 𝔩 .
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3.2.4. Nonequilibrium calculations
The previous heuristics are justifiable if the model is at an invariant measure. In general, we will reduce
estimates to invariant measure calculations by virtue of the local equilibrium method in [28], namely
the one-block and two-blocks estimates, which basically suggest that statistics for our large-scale system
are very close to some invariant measure at mesoscopic scales. In particular, we employ the following
strategy that will later be made quantitatively precise.

◦ The local equilibrium method in [28] is based on entropy-Dirichlet form duality and therefore highly
robust under perturbations [52], unlike the approach of Chang–Yau [8] via the global invariant
measure/eigenvalue problem. It implies the Dirichlet form of the system is very small on mesoscopic
blocks. By the log-Sobolev inequality of [51], the same is true for relative entropy.

◦ By the relative entropy inequality, we may try to reduce calculations to those at invariant measures.
However, relative entropy estimates from the previous bullet point will not be good enough to
perform any direct comparison to invariant measures for the purposes of proving Heuristic 3.20;
this is because local equilibrium reduction by the entropy inequality on larger scales needs sharper
large-deviations bounds for terms we are trying to reduce to equilibrium. Thus, we see a competition
between deterioration in local equilibrium reduction in replacing Elog𝑁 𝔩 in Heuristic 3.20 by itself
on progressively larger scales, versus improving bounds for Elog𝑁 𝔩 on progressively larger scales. As
before, this competition sufficiently cancels.

We conclude with the following outline for the paper in view of this strategy discussion/this entire
section.

◦ In Section 4, we present the main technical ingredient of this paper, the nonstationary first-order
Boltzmann–Gibbs principle. This is a quantitative version of Heuristic 3.18. We state three ingredients
for its proof, the first two of which give a quantitative version of Heuristic 3.20 and the last of which is
the step used to prove Heuristic 3.18 assuming Heuristic 3.19, namely the inverse-length-scale bound
for Elog𝑁 𝔩 terms. We give only the relatively short proof of the last of these three ingredients in the
next section; we defer technically involved proofs of the first two ingredients to the last part of the
paper before the appendix.

◦ In Section 5, we state and prove a second weaker version of the Boltzmann–Gibbs principle that
controls gradients of the heat operator in Heuristic 3.18. This will be used in order to prove the space-
time regularity estimates defining the stopping time 𝔱st in Definition 3.1 are self-propagating. This is
the goal of Section 6, which we carry out by estimating space-time regularity of each term in the U𝑁

equation individually using a moment calculation exactly like in the proof of Proposition 3.2 in [19],
for example, except we will require one application of the aforementioned second/weaker Boltzmann–
Gibbs principle to control the gradient of the order 𝑁1/2 heat operator term in Corollary 2.6.

◦ In Section 7, we combine the estimates in Sections 4, 5 and 6 with a priori Q𝑁 estimates, which are
standard to prove, to show Proposition 3.11 and Proposition 3.12.

◦ For the sake of clarity, we shortly reintroduce Ecan and R notation from this subsection (as well as a
few additional and related constructions) more systematically.

4. Boltzmann–Gibbs principle I – statement

The main result of this section is the Boltzmann–Gibbs principle. This allows us to access corrections
to the 𝔮-term in Definition 2.2, or equivalently after spatial translation, the �̃� functional therein, beyond
its hydrodynamic limit.

Theorem 4.1. In what follows, let E be expectation with respect to the law of the h𝑁
𝑇 , · and 𝜂𝑇 , · processes

with stable initial data. There exists universal 𝛽BG > 0 independent of 𝜀RN > 0 so that with universal
implied constant,

E‖H𝑁
𝑇 ,𝑥 (𝑁

1/2�̄�Y𝑁 )‖1;T𝑁 � 𝑁−𝛽BG + 𝑁−
99
100 𝜀RN+10𝜀ap . (4.1)
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Remark 4.2. The Boltzmann–Gibbs principle, for example, in [6, 8], is usually stated in a much weaker
form, namely pointwise in space-time rather than in a uniform space-time norm as in Theorem 4.1. But
such an estimate is not well suited for norms.
Remark 4.3. The estimate (4.1) holds if we change �̄� by replacing 𝔮 in its definition (see Definition 2.2)
with any local functional supported to the left of 0, say 𝔶. By local, although we always use it in this
paper to mean uniformly bounded support, we can actually allow for the support of this ‘new’ functional
𝔶 that replaces 𝔮 to grow with N; the RHS of equation (4.1) for 𝔶 in place of 𝔮 would then have a factor
that grows as the 100-th power, for example, of the support length of 𝔶.

The Boltzmann–Gibbs principle for sufficiently well-behaved stationary models is generally accessi-
ble by one application of the one-block estimate of [28] and Sobolev inequalities, which hold generally
exclusively for stationary models; see Chapter 11 in [37]. Like in [8], however, for nonstationary par-
ticle systems we require a multiscale idea, and in this paper we will adopt the multiscale analysis in
[24, 43] that was actually originally implemented for stationary particle systems to prove a refinement
of the Boltzmann–Gibbs principle, though our implementation is different than that in [24] due to the
nonstationary nature of models considered herein. We set up such a multiscale analysis in the following
constructions, which effectively outline a procedure of local equilibrium on small mesoscopic blocks
and a renormalization scheme that bootstraps equilibrium on smaller mesoscopic blocks to equilibrium
on progressively larger mesoscopic blocks; see our discussion of Heuristic 3.20. First, we must introduce
key probability/invariant measures.
Definition 4.4. Consider any subset I ⊆ T𝑁 and any 𝜎 ∈ R. We define the canonical measure 𝜇can

𝜎,I to be
the uniform measure on the set of 𝜂 ∈ ΩI for which the 𝜂-average on I is equal to 𝜎. Define the grand-
canonical measure 𝜇𝜎,I as the product Bernoulli measure on ΩI whose one-dimensional marginals have
expectation equal to 𝜎. These two probability measures are each defined precisely below, and we will
also let 𝜇𝜎 = 𝜇𝜎,T𝑁 denote the grand-canonical ensemble of parameter 𝜎 on the entire set T𝑁:

𝜇can
𝜎,I

•
= Unif

(
𝜂 ∈ ΩI :

∑̃
𝑥∈I

𝜂𝑥 = 𝜎

)
and 𝜇𝜎,I

•
=

⊗
𝑥∈I

(
1 + 𝜎

2
1𝜂𝑥=1 +

1 − 𝜎

2
1𝜂𝑥=−1

)
. (4.2)

For clarity, we mention that the canonical ensemble of parameter 𝜎 on any subset I ⊆ T𝑁 is the
measure obtained upon taking any grand-canonical ensemble on I and conditioning on the support of
the canonical measure/hyperplane with 𝜂-average on I equal to 𝜎. Moreover, the projection/pushforward
of this canonical ensemble onto any subset I′ ⊆ I is a convex combination of canonical measures on I′;
the coefficient in such a convex combination that corresponds to the canonical measure with parameter
𝜎′ on I′ is the probability of this 𝜎′-hyperplane in ΩI′ under the 𝜎-canonical measure on I. Lastly, when
taking the expectation of any functional 𝔣 with respect to a grand-canonical measure, we make take this
grand-canonical measure on any neighborhood of the support of 𝔣, as marginals are jointly independent
under grand-canonical measures.
Definition 4.5. Below, we take 𝜀1, 𝜀RN,1 > 0 arbitrarily small but universal and thus uniformly bounded
from below.
◦ We establish two notations for the following empirical 𝜂-density at time 𝑆 � 0 in a neighborhood

of 𝑦 ∈ T𝑁 of length 𝑁 𝜀1 . We use the 𝜎-notation when we think of the following as a parameter for
canonical and grand-canonical ensembles/measures in Definition 4.4, and we use the latter A-notation
when we think of it as an ‘averaging operator’ functional on Ω:

𝜎𝜀1 ,𝑆,𝑦
•
= AX

𝜀1 ,𝑦 (𝜂𝑆)
•
=

∑̃
0�𝑤�𝑁 𝜀1

𝜂𝑆,𝑦−𝑤 . (4.3)

◦ Define the following conditional expectation of the �̄� functional viewed as a function of 𝜎𝜀1 ,𝑆,𝑦 or
𝜂𝑆, · for · ∈ 𝑦 − 	0, 𝑁 𝜀1
. This conditional expectation is expectation of �̄�𝑆,𝑦 with respect to the
canonical measure of parameter 𝜎𝜀1 ,𝑆,𝑦 defined immediately above. We additionally define another
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expectation operator of �̄�0,0 but now with respect to a grand-canonical measure corresponding to the
same 𝜂-density/profile 𝜎𝜀1 ,𝑆,𝑦 defined immediately above:

Ecan
𝜀1 (𝜏𝑦𝜂𝑆)

•
= E0

(
�̄�𝑆,𝑦

��AX
𝜀1 ,𝑦 (𝜂𝑆)

)
and Egc

𝜀1 (𝜏𝑦𝜂𝑆)
•
= E𝜎𝜀1 ,𝑆,𝑦

�̄�0,0. (4.4)

We emphasize that the support of �̄�𝑆,𝑦 is contained strictly in 𝑦 −	0, 𝑁 𝜀1
 for any 𝑆 � 0 and 𝑦 ∈ T𝑁,
which we emphasize is the support of AX

𝜀1 ,𝑦 (𝜂𝑆). More generally, given any functional 𝔣 : Ω → R
with support strictly contained in 𝑦 − 	0, 𝑁 𝜀1
, we let Ecan

𝜀1 (𝜏𝑦𝜂𝑆; 𝔣) be as above but replacing �̄�𝑆,𝑦
by 𝔣. We now define the difference between �̄� and its 𝑁 𝜀1 -local expectation:

S𝜀1 (𝜏𝑦𝜂𝑆)
•
= �̄�𝑆,𝑦 − Ecan

𝜀1 (𝜏𝑦𝜂𝑆). (4.5)

◦ Observe now that the previous constructions extend from our predetermined choice of 𝜀1 > 0 to any
𝜀1 � 0. With this, we conclude this construction with a renormalization/transfer-of-scales operator
for any 𝛿 � 0:

R𝛿 (𝜏𝑦𝜂𝑆)
•
= Ecan

𝛿 (𝜏𝑦𝜂𝑆) − Ecan
𝛿+𝜀RN,1

(𝜏𝑦𝜂𝑆). (4.6)

◦ We emphasize that the constructions in the above bullet points are functionals Ω → R evaluated at
(shifts of) 𝜂𝑆 . In particular, they make sense upon plugging in any 𝜂 instead of (shifts of) 𝜂𝑆 .

We explain the proof of Theorem 4.1; even though we did so in the previous section, for clarity we
present it with the above notation. The key is to replace �̄� in equation (4.1) by its Ecan-expectation on
the length scale 𝑁1/2+𝛽′ , in which 𝛽′ > 0 is universal. The motivation behind such replacement is the
following observation. The functional �̄� vanishes in E0 expectation, and because the global 𝜂 density
is roughly 0, the fluctuations E0�̄� − Ecan(𝜏𝑦𝜂𝑆) at length scale 𝔩 are at most order 𝔩−1/2 by central limit
theorem, for example. Taking 𝔩 = 𝑁1/2+𝛽′ does not allow scale-𝔩 expectation Ecan(𝜏𝑦𝜂𝑆) to beat the 𝑁1/2

factor on the LHS of equation (4.1). But E0�̄� = 0 requires only the correction E0�̃� in Definition 2.2. The
purpose of the additional linear correction, in a technical sense, is to actually cancel the leading order
behavior of the scale-𝔩 expectation of �̄� so that, according to Proposition 8 of [24], the fluctuations at
length scale 𝔩 are order at most 𝔩−1. Thus, our choice of 𝔩 beats 𝑁1/2 because of the extra exponent 𝛽′.
We note showing that the 𝜂-density is roughly 0 in the stationary case is easy; in the nonstationary case,
we need regularity of Y𝑁 .

Let us now explain how the replacement of �̄� in equation (4.1) by its Ecan-expectation on length
𝑁1/2+𝛽′ will be justified. As suggested by the constructions in Definition 4.5, we will first replace �̄�
with its Ecan-expectation at the length scale 𝑁 𝜀1 with 𝜀1 > 0 from Definition 4.5 sufficiently small
though universal. The error in this first replacement step is the heat operator acting on 𝑁1/2Y𝑁 times
the difference S𝜀1 (𝜏𝑦𝜂𝑆) from Definition 4.5, which is a fluctuating factor with small support with
size of order 𝑁 𝜀1 . We will then estimate this fluctuating factor using basically the methods of [49];
as noted in Section 3.2, this roughly amounts to averaging out in time these fluctuations, applying the
Kipnis-Varadhan inequality (see Appendix 1.6 in [37]) at stationarity, and then performing reduction to
stationarity by a ‘local equilibrium’ estimate via the entropy inequality.

We now replaced �̄� in equation (4.1) with its Ecan-expectation with respect to the small mesoscopic
length scale 𝑁 𝜀1 . The next step is to replace this Ecan-expectation with another Ecan-expectation but
on the slightly larger mesoscopic length scale 𝑁 𝜀1+𝜀RN,1 where 𝜀RN,1 in Definition 4.5 is arbitrarily
small but universal. As noted at the end of Section 3.2, we encounter additional obstructions when we
try to replace by Ecan-expectation on larger length scales. Indeed, the entropy inequality breaks down
when we try to reduce to equilibrium on larger subsets unless we have better a priori estimates for
Ecan on larger scales. This a priori control on Ecan-expectations is explained in the first paragraph after
Definition 4.5, and it is enough extra benefit from the initial replacement to then perform a replacement
by Ecan-expectation on a slightly larger length scale, so long as 𝜀RN,1 is sufficiently smaller than 𝜀1, so
the jump in length scales is not too large that the extra benefit in the previous scale-𝑁 𝜀1 replacement is
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not good enough. Ultimately, our analysis remains intact as we increase the length scale. We then iterate
until the desired length scale 𝑁1/2+𝛽′ .

We write three ingredients below for the proof of Theorem 4.1, each corresponding to one of the
three paragraphs above. The first is initial replacement of �̄� in equation (4.1) with its Ecan-expectation
on scale 𝑁 𝜀1 in the second paragraph above. The second is the multiscale ‘renormalization’ of length
scales from the third paragraph. The last is the inverse-length-scale bound on Ecan(𝜏𝑦𝜂𝑆).

Proposition 4.6. Take 𝜀1 = 1/14. There exists a universal constant 𝛽1 > 0, which is again uniformly
bounded from below, such that the following holds, in which the ‖‖1;T𝑁 norm is with respect to (𝑇, 𝑥)-
variables in the heat operator on the LHS:

E‖H𝑁
𝑇 ,𝑥 (𝑁

1/2S𝜀1 (𝜏𝑦𝜂𝑆)Y𝑁
𝑆,𝑦)‖1;T𝑁 � 𝑁−𝛽1 . (4.7)

Proposition 4.7. Suppose 𝜀RN,1 > 0 is sufficiently small but universal depending only on 𝜀1 > 0.
Define 𝔟+ ∈ Z�0 to be the last nonnegative integer 𝔟 so that 𝜀1 + 𝔟𝜀RN,1 � 1

2 + 𝜀RN, where 𝜀RN > 0
is the universal constant from Definition 3.1. There is a universal constant 𝛽2 > 0, which is therefore
uniformly bounded from below, such that the following expectation estimate holds, again in which the
‖‖1;T𝑁 norm is with respect to (𝑇, 𝑥)-variables in the heat operator on the LHS:

sup
𝔟=0,...,𝔟+−1

E‖H𝑁
𝑇 ,𝑥 (𝑁

1/2R𝜀1+𝔟𝜀RN,1 (𝜏𝑦𝜂𝑆)Y𝑁
𝑆,𝑦)‖1;T𝑁 � 𝑁−𝛽2 . (4.8)

We also have 𝔟+ �𝜀1 , 𝜀RN,1 , 𝜀RN 1, so the supremum on the LHS of equation (4.8) may be replaced by a sum.

Proposition 4.8. Suppose that 𝜀RN,1 � 999−999𝜀RN, where 𝜀RN > 0 is from Definition 3.1. We have the
following deterministic estimate, again in which the ‖‖1;T𝑁 norm is with respect to (𝑇, 𝑥)-variables in
the heat operator on the LHS:

‖H𝑁
𝑇 ,𝑥 (𝑁

1/2Ecan
𝜀1+𝔟+𝜀RN,1

(𝜏𝑦𝜂𝑆)Y𝑁
𝑆,𝑦)‖1;T𝑁 � 𝑁−

99
100 𝜀RN+10𝜀ap . (4.9)

Remark 4.9. Note that 𝜀1 + 𝔟+𝜀RN,1 � 1
2 + 𝜀RN, so we have a priori regularity estimates for Y𝑁

on the length scale 𝑁 𝜀1+𝔟+ 𝜀RN,1 defining the canonical measure expectation in equation (4.9); see
Definitions 3.1 and 3.5 for why this is true.

Proof of Theorem 4.1. We have the following tautological decomposition that uses linearity of the heat
operator to replace �̄� by its Ecan on length scale 𝑁 𝜀1+𝔟+𝜀RN,1 and then collects the error S:

H𝑁
𝑇 ,𝑥 (𝑁

1/2�̄�Y𝑁 ) = H𝑁
𝑇 ,𝑥 (𝑁

1/2Ecan
𝜀1+𝔟+𝜀RN,1

(𝜏𝑦𝜂𝑆)Y𝑁
𝑆,𝑦) +H𝑁

𝑇 ,𝑥 (𝑁
1/2S𝜀1+𝔟+𝜀RN,1 (𝜏𝑦𝜂𝑆)Y𝑁

𝑆,𝑦). (4.10)

We proceed with the following multiscale decomposition of the second term on the RHS of
equation (4.10) that rewrites the difference S of �̄� with Ecan on length scale 𝑁 𝜀1+𝔟+𝜀RN,1 in terms of
a telescoping sum of the successive differences of Ecan terms on progressively larger length scales;
again, the following is by definition and by linearity of the heat operator:

H𝑁
𝑇 ,𝑥 (𝑁

1/2S𝜀1+𝔟+𝜀RN,1 (𝜏𝑦𝜂𝑆)Y𝑁
𝑆,𝑦) = H𝑁

𝑇 ,𝑥 (𝑁
1/2S𝜀1 (𝜏𝑦𝜂𝑆)Y𝑁

𝑆,𝑦)

+
𝔟+−1∑
𝔟=0

H𝑁
𝑇 ,𝑥 (𝑁

1/2R𝜀1+𝔟𝜀RN,1 (𝜏𝑦𝜂𝑆)Y𝑁
𝑆,𝑦). (4.11)

We plug equation (4.11) into the second term on the RHS of equation (4.10). We then take ‖‖1;T𝑁 norms
of both sides of the resulting identity, employ the triangle inequality for ‖‖1;T𝑁, take expectations and
apply Proposition 4.6, Proposition 4.7, and Proposition 4.8. �

We defer the proofs of Proposition 4.6 and Proposition 4.7 to the last nonappendix sections because
of their complexity.
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4.1. Proof of Proposition 4.8

The only preliminary ingredient we need for the current argument is the following estimate for which
we employ crucially the a priori space-time regularity estimates in Y𝑁 . Its proof is relatively quick; it
is an idea used in [19] in the proof of the hydrodynamic limit estimate of Lemma 2.5 therein where
𝜂-variables are realized as h𝑁 gradients.

Lemma 4.10. Suppose the inequalities for 𝜀1 and 𝜀RN,1 and 𝜀RN and 𝜀ap in Definition 3.1 and
Proposition 4.8 hold. Then we have the following deterministic estimates:

‖|AX
𝜀1+𝔟+𝜀RN,1 ,𝑥

(𝜂𝑇 ) |
2 |Y𝑁

𝑇 ,𝑥 |‖1;T𝑁 � 𝑁 𝜀ap ‖|AX
𝜀1+𝔟+𝜀RN,1 ,𝑥

(𝜂𝑇 ) |
21(𝑇 � 𝔱st)‖1;T𝑁 � 𝑁−

1
2−

99
100 𝜀RN+10𝜀ap .

(4.12)

Proof. The first estimate in equation (4.12) is immediate by definition of Y𝑁 in Definition 3.5. Indeed,
it suffices to look just at times 𝑇 � 𝔱st because afterwards, we have Y𝑁 = 0. Similarly, until the stopping
time 𝔱st we have Y𝑁 = Z𝑁, where Z𝑁 is uniformly bounded by 𝑁 𝜀ap times uniformly bounded factors.
Thus, we are left with proving the second bound in equation (4.12). Note the following that relates the AX

term to h𝑁 , whose proof follows by 𝜂𝑇 ,𝑥 = 𝑁1/2(h𝑁
𝑇 ,𝑥 −h𝑁

𝑇 ,𝑥−1) and in which we set �̃�1 = 𝜀1 + 𝔟+𝜀RN,1:

AX
𝜀1 ,𝑥
(𝜂𝑇 ) =

∑̃
0�𝑤�𝑁 𝜀1

𝜂𝑇 ,𝑥−𝑤 = 𝑁
1
2 (1 + 𝑁 𝜀1)−1∇X

−𝑁 𝜀1−1 log Z𝑁
𝑇 ,𝑥 . (4.13)

We refer to the proof of Lemma 2.5 in [19] for a similar identity in which 𝑁 𝜀1 is instead a small
multiple of 𝑁1/2. We now employ elementary calculus for the logarithm to establish the following
estimate for the far RHS of equation (4.13). Roughly speaking, because the derivative of the logarithm
is bad at 0 and is otherwise uniformly smooth, the gradient on the far RHS of equation (4.13) may be
controlled by the same gradient but of Z𝑁, then times the space-time supremum of (Z𝑁 )−1. Extending
equation (4.13) this way,

|AX
𝜀1 ,𝑥
(𝜂𝑇 ) |

21(𝑇 � 𝔱st) � 𝑁 (1 + 𝑁 𝜀1)−2‖(Z𝑁 )−1‖2𝔱st;T𝑁 ‖|∇
X
−𝑁 𝜀1−1Z𝑁 ‖2𝔱st;T𝑁 . (4.14)

Observe that the space-time norms on the RHS of equation (4.14) are a space-time supremum until
the stopping time 𝔱st. Until this stopping time, we have a uniform upper bound for the first norm on
the RHS of equation (4.14) of 𝑁2𝜀ap by definition. Similarly, because we have assumed the inequality
𝑁 𝜀1 � 𝔩𝑁 by construction in Proposition 4.7, where �̃�1 = 𝜀1 + 𝔟+𝜀RN,1 is from Proposition 4.7 and
𝔩𝑁 ∈ Z�0 is from Definition 3.1, by definition of 𝔱st in Definition 3.1 we get a priori spatial regularity
estimates for Z𝑁, which imply the second norm on the RHS of equation (4.14) is bounded above by
𝑁2𝜀ap 𝑁−1(1 + 𝑁 𝜀1 ) (1 + ‖Z𝑁 ‖𝔱st;T𝑁 )

4, which may be thought of as 𝑁2𝜀ap times the square of the spatial
Holder regularity estimate of exponent 1

2 for Z𝑁. By Definition 3.1, we also know ‖Z𝑁 ‖𝔱st;T𝑁 � 𝑁 𝜀ap .
Thus, we get via (4.14) and this paragraph that

𝑁 𝜀ap |AX
𝜀1 ,𝑥
(𝜂𝑇 ) |

21(𝑇 � 𝔱st) � 𝑁9𝜀ap (1 + 𝑁 𝜀1)−1 � 𝑁−𝜀1−𝔟+𝜀RN,1+9𝜀ap . (4.15)

Recall from Proposition 4.7 that 𝔟+ is the final nonnegative integer 𝔟 with 𝜀1 + 𝔟+𝜀RN,1 � 1
2 + 𝜀RN. As

𝜀RN,1 � 999−999𝜀RN by our assumption, we obtain the lower bound 𝜀1 + 𝔟+𝜀RN,1 � 1
2 +

99
100 𝜀RN, for

example, because if not, then we could increase 𝔟+ by 1 while only adding 999−999𝜀RN, and this would
not boost 1

2 +
99
100 𝜀RN past 1

2 + 𝜀RN. Combining equation (4.15) with this lower bound for 𝜀1 + 𝔟+𝜀RN,1
finishes the proof of the lemma. �

We proceed with proof of Proposition 4.8. The first step we take is to replace the canonical measure
expectation Ecan in the heat operator on the LHS of equation (4.9) by a grand-canonical measure
expectation Egc evaluated at the same 𝜂-density 𝜎𝜀1 ,𝑆,𝑦 and the same functional �̄�, where we have again
employed the notation �̃�1 = 𝜀1 + 𝔟+𝜀RN,1 introduced in the proof of Lemma 4.10 just to ease notation.
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For this, we apply Proposition 8 in [24] with the choice of function 𝑓 = 𝔮0,0 and with the choice of
length scale therein to be ℓ = 𝑁 𝜀1 :

|Ecan
𝜀1
(𝜏𝑦𝜂𝑆) − Egc

𝜀1
(𝜏𝑦𝜂𝑆) | � 𝑁−𝜀1 � 𝑁−

1
2−

99
100 𝜀RN+10𝜀ap . (4.16)

The last/second inequality in equation (4.16) follows by the same observation that we made in the final
paragraph in the proof of Lemma 4.10. If we multiply the LHS by 𝑁1/2Y𝑁

𝑆,𝑦 and put this in the heat
operator, since |Y𝑁 | � 𝑁 𝜀ap , it is enough to show Proposition 4.8 but with Egc in place of Ecan, therefore
completing the desired first step/replacement. To control Egc, let us first recall from Definition 4.5 that
Egc is expectation of �̄�0,0 with respect to a grand-canonical ensemble of parameter 𝜎𝜀1 ,𝑆,𝑦 . We will
now Taylor expand this function of 𝜎𝜀1 ,𝑆,𝑦 up to second order around the value 𝜎 = 0 and obtain the
following estimate:

Egc
𝜀1
(𝜏𝑦𝜂𝑆) = E0�̄�0,0 +

(
𝜕𝜎E𝜎�̄�0,0

)
|𝜎=0𝜎𝜀1 ,𝑆,𝑦 + O(𝜎𝜀1 ,𝑆,𝑦)

2. (4.17)

The first term on the RHS of equation (4.17) is easily checked to be 0, as the linear term in �̄� has
expectation 0, and what is left is just �̃�0,0 minus its expectation with respect to E0. The key idea is that
the second term also vanishes because �̄�𝜕𝜎E𝜎𝜂 = �̄�𝜕𝜎𝜎 = �̄�, and �̄� is defined to equal 𝜕𝜎E𝜎�̃�0,0 |𝜎=0,
while the constant expectation of �̄�0,0 certainly vanishes after 𝜕𝜎 differentiation. Let us refer the
reader to Definition 2.2 for definitions of all functionals and factors just mentioned. Thus, by this
paragraph and equation (4.17), we are left with proving equation (4.9) upon replacing Ecan with Egc

and then replacing Egc with the big-Oh term on the RHS of equation (4.17). That estimate follows by
Lemma 4.10, as 𝜎𝜀1 ,𝑆,𝑦 = AX

𝜀1 ,𝑦
(𝜂𝑆) by definition. This completes the proof.

Remark 4.11. If we were to apply our method to environment dependence in reversible dynamics, it is
fairly standard [6, 8, 37] that we would need to prove Theorem 4.1 but with the spatial gradient of the
heat operator on the LHS of equation (4.1). Since gradients of H𝑁 introduce higher-degree short-time
singularities of H𝑁 , we need to resolve more singular factors during the proof of equation (4.1) with this
extra gradient. There are ultimately several possible ways to resolve such singularities. For the purposes
of computing scaling limits of fluctuations, however, for linear non-KPZ limits of interest in [8], for
example, the simplest would be to smooth the short-time behavior of H𝑁 by convolving against a time-1
heat kernel. This would remove the higher-order singularity while only changing this paper by revising
the fluctuation scaling limit of main interest to hold only after smoothing, thus with respect to a weaker
topology that is the topology used for fluctuation scaling limits in previous literature anyway; see [6,
8, 34, 37]. But in the current paper, the singular on-diagonal factors in H𝑁 actually pose no issue in
proving convergence in Theorem 1.8 in quite a strong sense. This is a concrete example of ‘analytic’
strength of our method, compatible with PDE ideas to solve SHE.

5. Boltzmann–Gibbs principle II

The point of this section is a second version of the nonstationary first-order Boltzmann–Gibbs principle.
To motivate it, we emphasize the proof of Theorem 4.1 requires important a priori space-time regularity
estimates on Z𝑁 that were engineered into the definition of Y𝑁 via the stopping time 𝔱st. We will need
to establish such a priori space-time regularity estimates in order for Y𝑁 to be a faithful proxy for Z𝑁.
It turns out that establishing the important time-regularity estimates is a rather straightforward set of
moment estimates for the Z𝑁 equation. However, for technical reasons, this is not true for establishing
the required spatial regularity defining 𝔱st. Indeed, a direct moment bound on spatial regularity of the
order 𝑁1/2 term in the stochastic equation from Corollary 2.6, without analyzing �̄� carefully, ends up
being much worse than the required spatial regularity estimate in 𝔱st. In order to resolve such issue,
we will need to estimate spatial gradients of the order 𝑁1/2 term in the stochastic equation from
Corollary 2.6 by taking advantage of the fluctuating behavior of the �̄� function as we did in the proof
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of Theorem 4.1. This leads to our second version of the Boltzmann–Gibbs principle in Theorem 5.3,
which we present after introducing some notation.

Definition 5.1. Consider any 𝜙 : T𝑁 → R. Define the following normalized maximal gradient on the
length scale 𝔩+ ∈ Z�0:

∇̃X
𝔩+

𝜙𝑥
•
= sup1� |𝔩 |�𝔩+ |𝔩 |

−1 |∇X
𝔩 𝜙𝑥 |. (5.1)

We extend the previous normalized maximal gradient to heat operators in the following fashion in which
Φ : R�0 × T𝑁 → R:

|∇̃X
𝔩+
|H𝑁 ,X

𝑇 ,𝑥 (Φ0, ·)
•
=

∑
𝑦∈T𝑁

|∇̃X
𝔩+

H𝑁
0,𝑇 ,𝑥,𝑦 | |Φ0,𝑦 |

|∇̃X
𝔩+
|H𝑁

𝑇 ,𝑥 (Φ)
•
=

∫ 𝑇

0

∑
𝑦∈T𝑁

|∇̃X
𝔩+

H𝑁
𝑆,𝑇 ,𝑥,𝑦 | |Φ𝑆,𝑦 |d𝑆. (5.2)

Remark 5.2. Intuitively, provided any function 𝜙 : T𝑁 → R that is ‘smooth’ on scale 𝔩+ ∈ Z�0, its
normalized maximal gradient on this length scale will be controlled, roughly speaking. The goal for
Theorem 5.3 will be to prove the homogenization estimate in Theorem 4.1, or actually a slightly weaker
version, holds not just uniform in space-time but at the level of normalized maximal gradients with
respect to the length scale 𝔩𝑁 in Definition 3.1 on which we want to get spatial regularity of the Gartner
transform. Let us also emphasize that the above extensions of the normalized maximal gradients to the
spatial and space-time heat operators are emphatically not the normalized maximal gradients of the heat
operators themselves when we view them as functions in their own right. This is because of the absolute
value inside the sum and integral in (5.2).

Theorem 5.3. There exists a universal constant 𝛽 > 0, necessarily uniformly bounded below, that is
independent of 𝜀RN > 0 from Definition 3.1 such that for the length scale 𝔩𝑁 in Definition 3.1, we have
the expectation estimate

E‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝑁

1/2�̄�Y𝑁 )‖1;T𝑁 � 𝑁−
3
4−𝛽 + 𝑁−

3
4−99𝜀RN . (5.3)

We clarify there are no absolute value bars around the normalized maximal gradient ‘operator’ on the
LHS of equation (5.3).

The proof of Theorem 5.3 is similar to that of Theorem 4.1 in architecture; it is a mix of probabilistic
homogenization estimates along with stochastic regularity estimates built into the Y𝑁 process in the
heat operator on the LHS of equation (5.3). However, before we discuss the proof, we briefly explain
its utility; this will be explored in detail in Section 6. Recall our motivation for Theorem 5.3 is to
show a priori spatial regularity in 𝔱st ‘propagates itself’ with high probability, thus 𝔱st = 1 with high
probability. Take any 𝔩 ∈ 	−𝔩𝑁 , 𝔩𝑁
 with 𝔩𝑁 in Definition 3.1/Theorem 5.3. Theorem 5.3 gives, with
high probability simultaneously in 𝔩,

‖∇X
𝔩 H𝑁

𝑇 ,𝑥 (𝑁
1/2�̄�Y𝑁 )‖1;T𝑁 � 𝑁−

3
4−𝛽 |𝔩 | + 𝑁−

3
4−99𝜀RN |𝔩 | � 𝑁−

3
4−𝛽+

1
4+

1
2 𝜀RN |𝔩 |

1
2 + 𝑁−

3
4−99𝜀RN+

1
4+

1
2 𝜀RN |𝔩 |

1
2 .

(5.4)

The last bound in the above display follows via bounding |𝔩 | � |𝔩𝑁 | = 𝑁1/2+𝜀RN . Because 𝛽 > 0 in
Theorem 5.3 is uniformly bounded below and independent of 𝜀RN while 𝜀RN is arbitrarily small but
universal, the far RHS of the previous display is at most 𝑁−1/2 |𝔩 |1/2, proving the a priori spatial regularity
of Y𝑁 at least propagates the same level of spatial regularity of the order 𝑁1/2 term in the stochastic
equation for U𝑁 ; we employ another argument in Section 7 via Lemma 3.7 to transfer this to Z𝑁.
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5.1. Proof of Theorem 5.3

Take any (𝑇, 𝑥) ∈ [0, 1] × T𝑁, and define 𝑇𝑁 = 𝑇 − 𝑁−1/2−999𝜀RN . The triangle inequality gives

‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝑁

1
2 �̄�𝑆,𝑦Y𝑁

𝑆,𝑦)‖1;T𝑁 � ‖∇̃
X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝑁

1
2 �̄�𝑆,𝑦Y𝑁

𝑆,𝑦1𝑆�𝑇𝑁 )‖1;T𝑁

+ ‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝑁

1
2 �̄�𝑆,𝑦Y𝑁

𝑆,𝑦1𝑆�𝑇𝑁 )‖1;T𝑁 . (5.5)

The second term on the RHS of equation (5.5) is estimated deterministically. The first will be estimated
basically via Theorem 4.1.

Lemma 5.4. We have the following estimate for the length scale 𝔩𝑁 in Definition 3.1:

‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝑁

1
2 �̄�𝑆,𝑦Y𝑁

𝑆,𝑦1𝑆�𝑇𝑁 )‖1;T𝑁 � 𝑁−
3
4−

999
2 𝜀RN+𝜀ap . (5.6)

Lemma 5.5. There exists a universal constant 𝛽 > 0 such that for 𝔩𝑁 in Definition 3.1, we have

E‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝑁

1
2 �̄�𝑆,𝑦Y𝑁

𝑆,𝑦1𝑆�𝑇𝑁 )‖1;T𝑁 � 𝑁−
3
4−𝛽 . (5.7)

Clearly, the triangle inequality (5.5) combined with Lemmas 5.4 and 5.5 implies Theorem 5.3
as 𝜀ap � 999−999𝜀RN. Lemma 5.4 will be a straightforward consequence of heat estimates in
Proposition A.3. Lemma 5.5 will be proved more delicately:

◦ We will replace �̄� on the LHS of equation (5.7) with Ecan
𝜀1+𝔟+𝜀RN,1

from Proposition 4.8. However, we
cannot directly cite Proposition 4.6 and Proposition 4.7 for this because of the normalized maximal
gradient on the LHS of equation (5.7) that is absent from Proposition 4.6 and Proposition 4.7. This
will require gymnastics with heat operators that we demonstrate when we give a precise proof.

◦ Having made the previous replacement, we observe the proof of Proposition 4.8 is done through
Lemma 4.10, which provides a deterministic estimate for Ecan

𝜀1+𝔟+𝜀RN,1
. Thus, we will have the gradient

of the heat operator acting on a small function; this is small by the heat estimates in Proposition A.3.

5.1.1. Proof of Lemma 5.4
Recall �̄� � 1 and |Y𝑁 | � 𝑁 𝜀ap by construction in Definitions 3.1 and 3.5. Therefore, we have the
following straightforward bound by controlling an integral/sum by replacing the integrand/summand
with its absolute value:

‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝑁

1
2 �̄�𝑆,𝑦Y𝑁

𝑆,𝑦1𝑆�𝑇𝑁 )‖1;T𝑁 � 𝑁
1
2+𝜀ap ‖|∇̃X

𝔩𝑁
|H𝑁

𝑇 ,𝑥 (1𝑆�𝑇𝑁 )‖1;T𝑁 . (5.8)

It suffices to note the ‖‖1;T𝑁 -norm on the RHS of equation (5.8) is bounded by 𝑁−1−1/4−999𝜀RN/2

since the heat operator is smooth on the macroscopic length scale N, providing the factor of 𝑁−1; see
equation (A.6) in Proposition A.3. We emphasize the short time integral in the heat operator coming
from the indicator function of the length 𝑁−1/2−999𝜀RN -interval given by 𝑆 � 𝑇𝑁 above.

5.1.2. Proof of Lemma 5.5
We will first employ the following triangle inequality, recalling notation from Proposition 4.8:

E‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝑁

1
2 �̄�𝑆,𝑦Y𝑁

𝑆,𝑦1𝑆�𝑇𝑁 )‖1;T𝑁

� E‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥

(
𝑁

1
2 (�̄�𝑆,𝑦 − Ecan

𝜀1+𝔟+𝜀RN,1
(𝜏𝑦𝜂𝑆))Y𝑁

𝑆,𝑦1𝑆�𝑇𝑁
)
‖1;T𝑁 (5.9)

+ E‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝑁

1
2 Ecan

𝜀1+𝔟+𝜀RN,1
(𝜏𝑦𝜂𝑆)Y𝑁

𝑆,𝑦1𝑆�𝑇𝑁 )‖1;T𝑁 . (5.10)
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Following the proof of Proposition 4.8, note the EcanY𝑁 term in equation (5.10) is at most
𝑁5𝜀ap 𝑁−1/2−99𝜀RN/100 deterministically. Thus, we get the following where we again use (A.6) in Propo-
sition A.3 to get the last bound below as we did in the proof of Lemma 5.4, while to get the first bound
we also drop the time-set indicator function in the heat operator after replacing everything in the heat
operator by its absolute value, including the heat kernel gradient, which is okay for the sake of an upper
bound:

‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝑁

1
2 Ecan

𝜀1+𝔟+𝜀RN,1
(𝜏𝑦𝜂𝑆)Y𝑁

𝑆,𝑦1𝑆�𝑇𝑁 )‖1;T𝑁 � 𝑁−
99

100 𝜀RN+5𝜀ap ‖|∇̃X
𝔩𝑁
|H𝑁

𝑇 ,𝑥 (1)‖1;T𝑁

� 𝑁−1− 99
100 𝜀RN+5𝜀ap .

Because 𝜀ap � 999−999𝜀RN, the above display shows the contribution of equation (5.10) is certainly
controlled by the RHS of the proposed estimate (5.7). Thus, it suffices to prove the same about equation
(5.9). To this end, we consider the following.
◦ For any 𝜙 : R�0 × T𝑁 → R, we have the following identity by Proposition A.3 in which t(𝑁 ) =

𝑇 − 𝑇𝑁 = 𝑁−1/2−999𝜀RN ; below, on the RHS, the outer spatial heat operator sums over 𝑤 ∈ T𝑁 and
the inner space-time heat operator integrates/sums over space-time variables (𝑆, 𝑦):

H𝑁
𝑇 ,𝑥 (𝜙𝑆,𝑦1𝑆�𝑇𝑁 ) = H𝑁 ,X

t(𝑁 ) ,𝑥

(
H𝑁
𝑇𝑁 ,𝑤 (𝜙𝑆,𝑦)

)
. (5.11)

Taking gradients/normalized maximal gradients, from the above identity we establish the following
estimate via the following reasoning. Let the normalized maximal gradient act on the outer spatial
heat operator on the RHS of the previous identity. We control such normalized maximal gradient of
the spatial heat operator by taking out the inner space-time heat operator it acts on while giving up
its ‖‖1;T𝑁 -norm and replacing spatial gradients of H𝑁 by their absolute values and sum over T𝑁:

‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝜙𝑆,𝑦1𝑆�𝑇𝑁 )‖1;T𝑁 � ‖|∇̃

X
𝔩𝑁
|H𝑁 ,X

t(𝑁 ) ,𝑥 (1)‖1;T𝑁 ‖H𝑁 (𝜙𝑆,𝑦)‖1;T𝑁 . (5.12)

◦ The first factor within the RHS of equation (5.12) above is the 1-norm on T𝑁 in the forwards spatial
variable of the spatial gradient of the H𝑁 heat kernel at time t(𝑁 ) , maximized over T𝑁 with respect
to the backwards spatial variable. Via equation (A.3) in Proposition A.3, this is at most uniformly
bounded factors times 𝑁−1t−1/2

(𝑁 )
� 𝑁−3/4+999𝜀RN/2. Therefore, we get from this and equation (5.12)

‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝜙𝑆,𝑦1𝑆�𝑇𝑁 )‖1;T𝑁 � 𝑁−

3
4+

999
2 𝜀RN ‖H𝑁 (𝜙𝑆,𝑦)‖1;T𝑁 . (5.13)

We use equation (5.13) for 𝜙 = 𝑁1/2(�̄�−Ecan
𝜀1+𝔟+𝜀RN,1

)Y𝑁 . Following the multiscale decomposition (4.11)
in the proof of Theorem 4.1, by Propositions 4.6 and 4.7, we get the following that we explain shortly;
below, 𝛽 > 0 is universal and independent of 𝜀RN:

E‖∇̃X
𝔩𝑁

H𝑁
𝑇 ,𝑥 (𝜙𝑆,𝑦1𝑆�𝑇𝑁 )‖1;T𝑁 � 𝑁−

3
4+

999
2 𝜀RN E‖H𝑁 (𝜙𝑆,𝑦)‖1;T𝑁 � 𝑁−

3
4−𝛽+

999
2 𝜀RN . (5.14)

The independence from 𝜀RN/universal feature of the exponent 𝛽 on the RHS of (5.14) follows by the
observation that to replace �̄� with Ecan

𝜀1+𝔟+𝜀RN,1
from the proof of Theorem 4.1 using Proposition 4.6

and Proposition 4.7, the estimates in Proposition 4.6 and Proposition 4.7 have upper bounds that are
universal negative powers of N independent of 𝜀RN. Taking 𝜀RN sufficiently small shows that equation
(5.9) is bounded above by the far RHS of equation (5.14), and thus controlled by the RHS of the proposed
estimate (5.7), upon possibly adjusting the value of 𝛽 by a universal positive factor. �

Remark 5.6. If we take a second-order spatial gradient in Theorem 5.3 instead of first-order gradient,
which would be relevant if we were to apply our method to derive Boltzmann–Gibbs principles to study
environment dependence in the reversible dynamics of the particle system, we would have to resolve a
higher-degree short-time singularity of the heat kernel. Unlike Remark 4.11, however, we cannot just
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smooth since Theorem 5.3 will be used later to control density fluctuations, which by definition leads
us to the LHS of equation (5.3) without smoothing. Instead, for non-KPZ fluctuations of interest in [8],
we estimate Sobolev regularity of the density fluctuation 𝑁∇X

1 h𝑁 by the proof of Theorem 2 in Chang–
Yau [8]. It amounts to estimating said regularity by a general energy estimate that becomes useful if
we have an ‘a priori’ Boltzmann–Gibbs principle. Regularity gives the Boltzmann–Gibbs principle via
our local method. Then we iterate via fixed-point methods, using this Boltzmann–Gibbs principle to
get regularity and so forth. Though this approach is inapplicable here since we study singular KPZ
fluctuations, we make this remark in case of potential interest and to emphasize how one may apply our
methods to generalize [8], for example, to nontrivial perturbations of environment-dependent exclusion
processes as in [33, 34] or open boundary models, as we noted in the introduction.

6. Regularity estimates

The purpose of this section is to establish a ‘self-propagating’ aspect of the a priori regularity estimates
defining 𝔱st and Y𝑁; see Definitions 3.1 and 3.5. The self-propagating feature of the time-regularity
estimate follows from a fairly straightforward set of moment estimates; see (3.14) in Proposition 3.2 in
[19]. The self-propagating feature of the spatial regularity estimates will require the second Boltzmann–
Gibbs principle in Theorem 5.3, and this will produce a weaker but sufficient result.

Proposition 6.1. Consider any arbitrarily small but universal constant 𝜗 > 0. Given any possibly
random time 𝔱r ∈ [0, 1], let us define the following pair of events, in which we recall the notation of
Definition 3.1:

ET
𝜗 (𝔱r;T𝑁 )

•
=

{
sup
s∈IT

s−1/4‖∇T
−sU𝑁 ‖𝔱r;T𝑁 � 𝑁𝜗 (1 + ‖U𝑁 ‖2𝔱r;T𝑁 )

}
(6.1)

EX
𝜗 (𝔱r;T𝑁 )

•
=

{
sup

1� |𝔩 |�𝔩𝑁
𝑁1/2 |𝔩 |−1/2‖∇X

𝔩 U𝑁 ‖𝔱r;T𝑁 � 𝑁𝜗 (1 + ‖U𝑁 ‖𝔱r;T𝑁 )
2

}
. (6.2)

There exists a universal constant 𝛽r > 0, which is thus uniformly bounded from below, such that for any
𝜅 > 0, we have

P
(
ET
𝜗 (𝔱r;T𝑁 )

)
�𝜗,𝜅 𝑁−𝜅 and P

(
EX
𝜗 (𝔱r;T𝑁 )

)
�𝜗 𝑁−𝛽r . (6.3)

6.1. ET
𝜗 (𝔱r;T𝑁 ) estimate

We first focus on getting the time-regularity estimate, namely that for the ET
𝜗 (𝔱r;T𝑁 ) probability.

Following the proof of time regularity estimates for the Gartner transform in Proposition 3.2 of [19],
we estimate time regularity of U𝑁 by its defining stochastic equation in Definition 3.5. Specifically, we
control time regularity of each term therein. We start with the following result that does this for all terms
except initial data and d𝜉𝑁 terms, which we treat separately.

Lemma 6.2. Take any |𝔨 | � 1. We have the following deterministic estimate in which 𝔣1, 𝔣2 : Ω→ R are
uniformly bounded:

sup
0<s�𝑁 −1

s−
1
4 ‖∇T

−sH𝑁
𝑇 ,𝑥 (𝑁

1
2 𝔣1Y𝑁 )‖𝔱r;T𝑁 + sup

0<s�𝑁 −1
𝑁−

1
2 s−

1
4 ‖∇T

−sH𝑁
𝑇 ,𝑥 (∇

!
−𝔨 (𝔣2U𝑁 ))‖𝔱r;T𝑁

� 1 + ‖U𝑁 ‖2𝔱r;T𝑁 . (6.4)

Proof. We will apply time-regularity estimates on the heat operator H𝑁 from Proposition A.3 to estimate
the first supremum on the LHS of equation (6.4). We additionally apply a mixed space-time regularity
estimate on H𝑁 in Proposition A.3 to estimate the second supremum on the LHS of equation (6.4).
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The former time regularity estimate gives the following in which the equality follows trivially, and the
last estimate follows by recalling that we are restricting to timescales s � 𝑁−1 and that |Y𝑁 | � 𝑁 𝜀ap by
construction:

‖∇T
−sH𝑁

𝑇 ,𝑥 (𝑁
1
2 𝔣1Y𝑁 )‖𝔱r;T𝑁 �𝜀ap 𝑁

1
2+𝜀ap ‖Y𝑁 ‖𝔱r;T𝑁 s = 𝑁

1
2+𝜀ap ‖Y𝑁 ‖𝔱r;T𝑁 s

3
4 s

1
4 � 𝑁−

1
4+2𝜀ap s

1
4 .

(6.5)

Similarly, the aforementioned mixed space-time regularity estimate for H𝑁 in Proposition A.3 gives

𝑁−
1
2 ‖∇T

−sH𝑁
𝑇 ,𝑥 (∇

!
−𝔨 (𝔣2U𝑁 ))‖𝔱r;T𝑁 �𝜀ap 𝑁−

1
2+𝜀ap ‖U𝑁 ‖𝔱r;T𝑁 s

1
4 . (6.6)

Combining the previous two estimates (6.5) and (6.6) while recalling 𝜀ap is arbitrarily small but still
universal would provide the proposed estimate (6.4) if we dropped the 1 term on the RHS of equation
(6.4), and the squared norms therein were replaced by nonsquared norms. But this would imply equation
(6.4) as written via the inequality 2|𝑎 | � 1 + 𝑎2, which holds for all 𝑎 ∈ R. �

We will proceed by estimating time regularity of the initial data term from the U𝑁 equation in
Definition 3.5. At this point in this subsection, in contrast to Lemma 6.2 our estimates will not be
deterministic. In particular, the proof of the following estimate is based on establishing uniform upper
bounds on moments of time gradients for each point in space-time. We will then glue the estimates
to establish high probability time-regularity estimate simultaneously over some very fine discretization
of space-time. We then conclude with a much simpler estimate to control submicroscopic short-time
regularity. This will allow us to bootstrap from a discrete set of times to a continuous set of times.

Lemma 6.3. Consider any 𝜗, 𝜅 > 0 arbitrarily small and large, respectively, but both universal. We
have

P
(
sup
s∈IT

s−1/4‖∇T
−sH

𝑁 ,X
𝑇 ,𝑥 (Z

𝑁
0, ·) ‖𝔱r;T𝑁 � 𝑁𝜗 (1 + ‖U𝑁 ‖2𝔱r;T𝑁 )

)
�𝜗,𝜅 𝑁−𝜅 . (6.7)

Proof. We proceed with steps briefly outlined prior to the statement of Lemma 6.3, namely a pointwise
moment estimate, a union bound estimate and the short-time regularity estimate, which we write in this
order.

◦ Observe by Proposition A.3, for example, the spatial operators H𝑁 ,X satisfy the classical semigroup
property for heat kernels and Markov processes. Thus, because we assume stable initial data for the
Gartner transform, we will follow the proof of (3.14) of Proposition 3.2 in [19] to get the following
for fixed s ∈ IT and 𝑇 � 0 and 𝑥 ∈ T𝑁 with arbitrary 𝑝 � 1 and 𝛾 > 0; below, the ‖‖𝜔;2𝑝-norm is
with respect to the randomness in the particle system:

‖∇T
−sH

𝑁 ,X
𝑇 ,𝑥 (Z

𝑁
0, ·) ‖𝜔;2𝑝 �𝑝,𝛾 s1/4−𝛾 � 𝑁2𝛾s1/4. (6.8)

Recall from the definition of stable initial data that we may take any 𝛾 > 0 in the previous estimate
(6.8). The last estimate in equation (6.8) follows as s ∈ IT implies s � 𝑁−2, and thus s−𝛾 �
𝑁2𝛾 . Applying the Chebyshev inequality, from equation (6.8) we establish the following probability
estimate where, provided any 𝜗, 𝜅 > 0, we take 𝛾 > 0 sufficiently small with 𝑝 � 1 sufficiently large
but both depending only on 𝜗, 𝜅 > 0 so that 2𝑝𝛾 − 2𝑝𝜗 � −2𝜅; we note that the following is uniform
in space-time:

P
(
|∇T
−sH

𝑁 ,X
𝑇 ,𝑥 (Z

𝑁
0, ·) | � 𝑁𝜗s

1
4

)
�𝑝,𝛾 𝑁−2𝑝𝜗𝑁2𝑝𝛾 � 𝑁−2𝜅 . (6.9)

We emphasize that the dependence on 𝛾 > 0 and 𝑝 � 1 in equation (6.9) is now dependence on
𝜗, 𝜅 > 0.
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◦ Consider a time-discretization IT,d = {𝔧𝑁−99}𝑁
99

𝔧=0 , and let Id = IT,d × T𝑁 be the space-time for this
time discretization. We now employ a union bound along with the previous probability estimate (6.9)
to get

P
(
sup
s∈IT

sup
(𝑇 ,𝑥) ∈Id

|∇T
−sH

𝑁 ,X
𝑇 ,𝑥 (Z

𝑁
0, ·) | � 𝑁𝜗s

1
4

)
�

∑
s∈IT
(𝑇 ,𝑥) ∈Id

P
(
|∇T
−sH

𝑁 ,X
𝑇 ,𝑥 (Z

𝑁
0, ·) | � 𝑁𝜗s

1
4

)
� 𝑁−2𝜅+101.

(6.10)

We emphasize that the final estimate on the far RHS of equation (6.10) follows from applying equation
(6.9) to each probability in the summation in the middle of equation (6.10) and then multiplying
by the size of the product set IT × Id; the size of IT from Definition 3.5 is uniformly bounded
by 𝜅𝜀ap 𝑁 𝜀ap because it is parameterized by one index set of size 𝑁 𝜀ap and another index set that
is in bijection with the set of exponents {−2 + 𝔧𝜀ap}𝔧�0 ∩ [−2, 1]. We also used the upper bound
|Id | = |IT,d | |T𝑁 | � 𝑁99𝑁 = 𝑁100.

◦ Let us now bootstrap from the discretization estimate (6.10) to the proposed estimate (6.7) over the
entire semidiscrete space-time [0, 𝔱r] × T𝑁. To this end, let us first observe that H𝑁 ,X(Z𝑁 ) is in the
kernel of the operator 𝜕𝑇 −ℒ𝑁 because it is a linear combination of heat kernels, each of which
vanish under this operator. Thus, given any 0 � 𝔱1 � 𝔱2, we have

sup
𝑥∈T𝑁

|H𝑁 ,X
𝔱2 ,𝑥
(Z𝑁

0,•) −H𝑁 ,X
𝔱1 ,𝑥
(Z𝑁

0,•) | �
∫ 𝔱2

𝔱1
sup
𝑥∈T𝑁

|ℒ𝑁 H𝑁 ,X
𝑟 ,𝑥 (Z𝑁

0,•) |d𝑟

� |𝔱2 − 𝔱1 | sup
𝔱1�𝑟�𝔱2

sup
𝑥∈T𝑁

|ℒ𝑁 H𝑁 ,X
𝑟 ,𝑥 (Z𝑁

0,•) |. (6.11)

Observe ℒ𝑁 : ℒ∞(T𝑁 ) → ℒ∞(T𝑁 ) has operator norm O(𝑁2); see Proposition 2.4. Combining
this with equation (6.11), and the observation in Proposition A.3 that the spatial heat operator
H𝑁 ,X : ℒ∞(T𝑁 ) →ℒ∞(T𝑁 ) has operator norm 1, provides

sup
𝑥∈T𝑁

|H𝑁 ,X
𝔱2 ,𝑥
(Z𝑁

0,•) −H𝑁 ,X
𝔱1 ,𝑥
(Z𝑁

0,•) | � 𝑁2 |𝔱2 − 𝔱1 | sup
𝔱1�𝑟�𝔱2
𝑥∈T𝑁

|H𝑁 ,X
𝑟 ,𝑥 (Z𝑁

0,•) | � 𝑁2 |𝔱2 − 𝔱1 |‖Z𝑁 ‖0;T𝑁 .

(6.12)

We will now establish the proposed estimate (6.7). First, we observe that, choosing 𝜅 � 300 arbitrarily
large but still universal, we may work on the complement of the event in the probability on the far LHS
of equation (6.10); anything outside this event happens with probability at most 𝑁−2𝜅+100 � 𝑁−3𝜅/2

times factors depending only on 𝜗, 𝜅. Given any t ∈ [0, 𝔱r], let td denote any element in IT,d which
minimizes |t − td |. Because the elements in IT,d are evenly spaced by 𝑁−99, we automatically have
|td − t| � 𝑁−99. We now transfer a time gradient at t onto one at td and collect the errors:

∇T
−sH

𝑁 ,X
t,𝑥 (Z

𝑁
0, ·) = ∇

T
−sH

𝑁 ,X
td ,𝑥 (Z

𝑁
0, ·) + (H

𝑁 ,X
t−s,𝑥 (Z

𝑁
0, ·) −H𝑁 ,X

td−s,𝑥 (Z
𝑁
0, ·)) + (H

𝑁 ,X
td ,𝑥 (Z

𝑁
0, ·) −H𝑁 ,X

t,𝑥 (Z
𝑁
0, ·)).

(6.13)

We observe (td, 𝑥) ∈ Id by construction. Because we work on the complement of the event
in the probability on the far LHS of equation (6.10), the first term on the RHS of equation (6.13),
after dividing by s1/4 and taking a supremum on Id, is at most 𝑁𝜗 . On the other hand, by
equation (6.12) for {𝔱1, 𝔱2} = {t − s, td − s} and {𝔱1, 𝔱2} = {t, td} we get the following upon recalling
s ∈ IT implies s−1/4 � 𝑁1/2. We explain the last estimate in the following display; it is deterministic
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because of our conditioning:

𝔰−1/4‖H𝑁 ,X
t−s,𝑥 (Z

𝑁
0, ·) −H𝑁 ,X

td−s,𝑥 (Z
𝑁
0, ·) ‖𝔱r;T𝑁 � 𝑁1/2𝑁2 |t − s − td + s|‖Z𝑁 ‖0;T𝑁 � 𝑁−96‖U𝑁 ‖𝔱r;T𝑁 .

(6.14)

The last estimate in equation (6.14) follows by recalling |t − s − td + s| = |t − td | � 𝑁−99 and by
realizing that U𝑁 at time 0 is equal to Z𝑁 at time 0 by construction in Definition 3.5, and this lets us
replace Z𝑁 with U𝑁 in the middle of equation (6.14); the final step then bounds ‖‖0;T𝑁 by ‖‖𝔱r;T𝑁.
We establish the same estimate upon replacing what is inside the norm on the far LHS of equation
(6.14) by the third/last term on the RHS of equation (6.13) via the same reasoning. Thus, on the
complement of the event in the probability on the far LHS of equation (6.10), the complement of the
event in the probability in equation (6.7) holds. As this complement event in equation (6.10) fails
with probability at most 𝑁−𝜅 times 𝜗, 𝜅-dependent factors, the same is true for the complement event
in equation (6.7) as well.

This completes the proof. �

We establish a similar time-regularity estimate for the d𝜉𝑁 -term in the U𝑁 equation from Definition
3.5. The strategy is the same, but because of the martingale theory that needs to be employed to efficiently
study this term, gymnastics are needed. We emphasize the quadratic nature of regularity estimates we
are currently proving comes naturally via the proof of the next result.
Lemma 6.4. Consider any 𝜗, 𝜅 ∈ R>0 arbitrarily small and large, respectively, but both universal. We
have

P
(
sup
s∈IT

s−1/4‖∇T
−sH𝑁

𝑇 ,𝑥 (U
𝑁 d𝜉𝑁 )‖𝔱r;T𝑁 � 𝑁𝜗 (1 + ‖U𝑁 ‖2𝔱r;T𝑁 )

)
�𝜗,𝜅 𝑁−𝜅 . (6.15)

Proof. We employ a slightly adapted version of the strategy as in the proof of Lemma 6.3. In particular,
the first step we will take, for 𝜅 > 0 in the lemma large, is proving the following pointwise estimate for
which s ∈ IT and (𝑇, 𝑥) ∈ [0, 1] ×T𝑁; we will defer the proof of the following estimate (6.16) until later
in this argument to avoid obscuring the strategy of this proof:

P
(
|∇T
−sH𝑁

𝑇 ,𝑥 (U
𝑁 d𝜉𝑁 ) | � 𝑁𝜗s

1
4 (1 + ‖U𝑁 ‖2𝑇 ;T𝑁 )

)
�𝜗,𝜅 𝑁−2𝜅 . (6.16)

We proceed with a union bound over (𝑇, 𝑥) ∈ Id with Id the discretization in the proof of Lemma 6.3;
we deduce from equation (6.16) the following whose proof follows that of equation (6.10), where the
last estimate in equation (6.17) below follows by choosing 𝜅 > 0 large:

P
(
sup
s∈IT

sup
(𝑇 ,𝑥) ∈Id

s−1/4 |∇T
−sH𝑁

𝑇 ,𝑥 (U
𝑁 d𝜉𝑁 ) |(1 + ‖U𝑁 ‖2𝑇 ;T𝑁 )

−1 � 𝑁𝜗

)
�𝜗,𝜅 𝑁−2𝜅+100 � 𝑁−3𝜅/2.

(6.17)

Following the proof of Lemma 6.3, we obtain time regularity of H𝑁 (U𝑁 d𝜉𝑁 ) for short order 𝑁−99

times to bootstrap estimates in equation (6.17) on Id to estimates over the entire semidiscrete space-time
[0, 𝔱r] × T𝑁. However, dissimilar to the proof for Lemma 6.3, the quantity H𝑁 (U𝑁 d𝜉𝑁 ) of interest is a
space-time heat operator, not a spatial heat operator. Therefore, the semidiscrete PDE that it satisfies is
the sameℒ𝑁 -heat equation satisfied by the H𝑁 heat kernel but with an additional martingale differential.
This makes the short-time estimates for H𝑁 (U𝑁 d𝜉𝑁 ) more complicated, so we adopt another approach.
Consider the U𝑁 equation in Definition 3.5. The short-time regularity for H𝑁 (U𝑁 d𝜉𝑁 ) is tautologically
controlled by the short-time regularity for all other terms in that U𝑁 equation. We have already addressed
short-time regularity for all of these terms in the U𝑁 equation, for example, in Lemma 6.2 and the proof
for Lemma 6.3, except for U𝑁 itself. Because U𝑁 evolves in a large part through jumps in the particle
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system, we will not establish any deterministic short-time regularity estimates like we did for the other
terms in the U𝑁 equation, but we instead get high probability short-time regularity. Precisely, we get
the following, for which we consider the space-time Id,𝔱r = (JT ∩ [0, 𝔱r]) × T𝑁, where JT ⊂ [0, 1]
has size |JT | � 𝑁200; we eventually take, for example, in equation (6.19), the set JT = {td − s} for
td ∈ IT,d = {𝔧𝑁−99}𝑁

99

𝔧=0 and s ∈ IT; see Definition 3.1:

P
(

sup
(td ,𝑥) ∈Id,𝔱r

sup
|𝔯 |�𝑁 −99

|∇T
−𝔯H𝑁

td ,𝑥 (U
𝑁 d𝜉𝑁 ) | � 𝑁−

1
2+𝜗 (1 + ‖U𝑁 ‖2𝔱r;T𝑁 )

)
�𝜗,𝜅 𝑁−2𝜅 . (6.18)

We again provide the proof of equation (6.18) at the end of this argument to avoid obstructing the point.
Let us restrict to the complement of the events inside the probabilities in equations (6.17) and (6.18).
Now, we will follow the proof of Lemma 6.3 starting with equation (6.13) and replacing H𝑁 ,X(Z𝑁 )
by H𝑁 (U𝑁 d𝜉𝑁 ). The first term on the RHS of the resulting equation is controlled by restricting to the
complement of the event in the probability in equation (6.17). To control the second and third terms on
the RHS of the resulting equation, we use the following obtained by restricting to the complement of
the event in the probability in equation (6.18); indeed, with notation as in equation (6.13), in equation
(6.19) below we assume |t − td | = |t − s − (td − s) | � 𝑁−100, so we may control the LHS of equation
(6.19) if we restrict to the complement of the event in equation (6.18) since the LHS of equation (6.19)
is a scale � 𝑁−99 time gradient of H𝑁 (U𝑁 d𝜉𝑁 ) evaluated at a point in the discretization Id,𝔱𝔯 with the
choice of JT explained right before equation (6.18):

s−1/4‖H𝑁
t−s (U𝑁 d𝜉𝑁 ) −H𝑁

td−s (U
𝑁 d𝜉𝑁 )‖𝔱r;T𝑁 � s−1/4𝑁−

1
2+𝜗 (1 + ‖U𝑁 ‖2𝔱r;T𝑁 ) � 𝑁𝜗 (1 + ‖U𝑁 ‖2𝔱r;T𝑁 ).

(6.19)

The final estimate in equation (6.19) follows by recalling s ∈ IT implies s � 𝑁−2, and thus s−1/4 � 𝑁1/2.
Thus, whenever the events from equations (6.17) and (6.18) themselves fail, we deduce that the event
in the probability in equation (6.15) fails as well. Because these events in equations (6.17) and (6.18)
succeed with probability O𝜅,𝜗 (𝑁

−3𝜅/2) each, like the end of the proof of Lemma 6.3, we deduce that the
probability that the event in equation (6.15) succeeds is at most O𝜅,𝜗 (𝑁

−3𝜅/2) �𝜅,𝜗 𝑁−𝜅 . This completes
the proof modulo the proofs of the probability estimates (6.16) and (6.18), which we provide below.
◦ We will first prove equation (6.16). To this end, let us first define 𝒩(U𝑁 ) = 1 + ‖U𝑁 ‖2𝑇 ;T𝑁 in order

to ease notation. We now employ the Chebyshev inequality with 𝑝 � 2 to be determined shortly to
establish the following upper bound for the LHS of equation (6.16):

P
(
|∇T
−sH𝑁

𝑇 ,𝑥 (U
𝑁 d𝜉𝑁 ) | � 𝑁𝜗s

1
4 (1 + ‖U𝑁 ‖2𝑇 ;T𝑁 )

)
� 𝑁−2𝑝𝜗s−𝑝/2E

(
𝒩(U𝑁 )−2𝑝 |∇T

−sH𝑁
𝑇 ,𝑥 (U

𝑁 d𝜉𝑁 ) |2𝑝
)
. (6.20)

To motivate the next step, observe that for regularity of space-time heat operators in Lemma 6.2, we
could pull out U𝑁 and Y𝑁 factors from the integral/heat operator upon inserting extra factors given by
their space-time supremum norms; this is ℒ1/ℒ∞ interpolation. However, to study the heat operator
in the expectation on the RHS of equation (6.20), we require martingale inequalities. In particular,
we need to take advantage of cancellations in U𝑁 d𝜉𝑁 that appear when integrating against the heat
kernel. This prevents us from applying the ℒ1/ℒ∞ interpolation. The alternative we take begins
with a level set decomposition/bound:

E
(
𝒩(U𝑁 )−2𝑝 |∇T

−sH𝑁
𝑇 ,𝑥 (U

𝑁 d𝜉𝑁 ) |2𝑝
)
�𝑝

∑∞

𝔩=1
𝔩−2𝑝E

(
|∇T
−sH𝑁

𝑇 ,𝑥 (U
𝑁 d𝜉𝑁 ) |2𝑝1𝒩 (U𝑁 ) ∈[𝔩,𝔩+1]

)
.

(6.21)

The estimate (6.21) follows by considering level sets of 𝒩(U𝑁 ); on the [𝔩, 𝔩 + 1] level set, we may
employ the deterministic bound 𝒩(U𝑁 )−1 � 𝔩−1. Next, we move a factor of 𝔩−𝑝 in the expectation
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and get the following, which we explain after:∑∞

𝔩=1
𝔩−2𝑝E

(
|∇T
−sH𝑁

𝑇 ,𝑥 (U
𝑁 d𝜉𝑁 ) |2𝑝1𝒩 (U𝑁 ) ∈[𝔩,𝔩+1]

)
=

∑∞

𝔩=1
𝔩−𝑝E

(
|∇T
−sH𝑁

𝑇 ,𝑥 (𝔩
−1/2U𝑁 d𝜉𝑁 ) |2𝑝1𝒩 (U𝑁 ) ∈[𝔩,𝔩+1]

)
�

(∑∞

𝔩=1
𝔩−𝑝

)
sup
𝔩�1

E
(
|∇T
−sH𝑁

𝑇 ,𝑥 (𝔩
−1/2U𝑁 d𝜉𝑁 ) |2𝑝1𝒩 (U𝑁 ) ∈[𝔩,𝔩+1]

)
� sup

𝔩�1
E
(
|∇T
−sH𝑁

𝑇 ,𝑥 (𝔩
−1/2U𝑁 d𝜉𝑁 ) |2𝑝1𝒩 (U𝑁 ) ∈[𝔩,𝔩+1]

)
. (6.22)

The first identity in the previous display follows by moving 𝔩−𝑝 into the expectation then into the
2𝑝-th power upon replacing it by 𝔩−1/2 and then moving this deterministic scalar through both the
linear time gradient and heat operator. The final estimate (6.22) follows from an elementary bound
on the summation in the line before. By definition of 𝒩(U𝑁 ), if 𝒩(U𝑁 ) ∈ [𝔩, 𝔩 + 1], the process
𝔩−1/2U𝑁 is uniformly bounded deterministically. Moreover, because U𝑁 is adapted to the underlying
filtration of the particle system, so is the deterministic multiple 𝔩−1/2U𝑁 . In particular, we may replace
𝔩−1/2U𝑁 in equation (6.22) with the adapted process (𝔩−1/2U𝑁 ∧ 100) ∨ (−100), drop the indicator
function in equation (6.22) and then follow the proof of time regularity (3.14) in [19]. For the last
step, we will need to apply the time-regularity estimates from Proposition A.3 for the H𝑁 heat kernel
instead of those in [19] along with the martingale inequality in Lemma A.4 that extends Lemma 3.1
in [19], which is proved only for the Gartner transform, to uniformly bounded adapted processes.
This ultimately gives, for 𝜚 > 0 arbitrarily small but universal, the following in which we stress that
𝔩−1/2U𝑁 is uniformly bounded and adapted on the LHS below:

sup
𝔩�1

E
(
|∇T
−sH𝑁

𝑇 ,𝑥 (𝔩
−1/2U𝑁 d𝜉𝑁 ) |2𝑝1𝒩 (U𝑁 ) ∈[𝔩,𝔩+1]

)
�𝑝, 𝜚 s𝑝/2−𝑝𝜚 � 𝑁2𝑝𝜚s𝑝/2. (6.23)

We recall that times s ∈ IT of interest satisfy s � 𝑁−2, which implies s−1 � 𝑁2 and thus provides
the final estimate in equation (6.23). We now combine equations (6.20), (6.21), (6.22) and (6.23) to
deduce

P
(
|∇T
−sH𝑁

𝑇 ,𝑥 (U
𝑁 d𝜉𝑁 ) | � 𝑁𝜗s

1
4 (1 + ‖U𝑁 ‖2𝑇 ;T𝑁 )

)
�𝑝, 𝜚 𝑁−2𝑝𝜗𝑁2𝑝𝜚s−𝑝/2s𝑝/2 = 𝑁−2𝑝𝜗+2𝑝𝜚 .

(6.24)

Now, provided any 𝜗, 𝜅 > 0, we choose 𝜚 > 0 sufficiently small and 𝑝 � 2 sufficiently large, but both
depending only on 𝜗, 𝜅, so that the exponent on the far RHS of equation (6.24) is less than or equal to
−𝜅. We emphasize that the dependence on p and 𝜚 in equation (6.24) becomes dependence on 𝜗, 𝜅.
This completes the proof of equation (6.16).

◦ We move to the proof of equation (6.18). To this end, it suffices to replace H𝑁 (U𝑁 d𝜉𝑁 ) therein
with each other term in the U𝑁 equation from Definition 3.5. Indeed, if we can prove that the short-
time regularity for every other term in the U𝑁 equation exceeds the lower bound in the event in the
probability in equation (6.18) with probability at most 𝑁−2𝜅 times 𝜗, 𝜅-dependent factors, then by
using the triangle inequality and a union bound, we can deduce the same for H𝑁 (U𝑁 d𝜉𝑁 ), which
is the proposed estimate (6.18), if we also adjust the implied constant by a factor of 100. This is the
fact that if 𝑎 = 𝑏 + 𝑐, then 𝑎 � 𝑑 implies 𝑏 � 𝑑/2 or, not exclusively, 𝑐 � 𝑑/2. To control short-time
regularity of every other term besides H𝑁 (U𝑁 d𝜉𝑁 ) on the RHS of the U𝑁 equation from Definition
3.5, we apply Lemma 6.2 and the third bullet point from the proof of Lemma 6.3. It remains to control
short-time regularity for U𝑁 itself. This is done in Lemma A.6, so we are done with proving equation
(6.18).

This completes the proof. �
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Corollary 6.5. Admit the setting of Proposition 6.1. We have P(ET
𝜗 (𝔱r;T𝑁 )) �𝜗,𝜅 𝑁−𝜅 .

Proof. Combine the U𝑁 equation in Definition 3.5 with Lemma 6.2, Lemma 6.3 and Lemma 6.4. �

6.2. EX
𝜗 (𝔱r;T𝑁 ) estimate

The proof of the EX
𝜗 (𝔱r;T𝑁 ) estimate in Proposition 6.1 will follow basically the same strategy but, as

we mentioned at the beginning of the section, we require additional input of Theorem 5.3 to control the
spatial gradient of the order 𝑁1/2 term in the U𝑁 equation. In view of similarities with the proof of the
ET
𝜗 (𝔱r;T𝑁 ) estimate, we start as follows.

Lemma 6.6. Take any |𝔨 | � 1 and |𝔩 | � 𝔩𝑁 , with 𝔩𝑁 in Definition 3.1. If 𝔣𝑖 are uniformly bounded, then

𝑁
1
2 |𝔩 |−

1
2 ‖∇X

𝔩 H𝑁
𝑇 ,𝑥 (𝔣1Y𝑁 )‖𝔱r;T𝑁 + |𝔩 |

− 1
2 ‖∇X

𝔩 H𝑁
𝑇 ,𝑥 (∇

!
−𝔨 (𝔣2U𝑁 ))‖𝔱r;T𝑁 � 1 + ‖U𝑁 ‖2𝔱r;T𝑁 . (6.25)

Proof. We follow the proof of Lemma 6.2 but instead of time-regularity estimates of the heat operator
H𝑁 in Proposition A.3, we instead apply spatial-regularity estimates therein. As H𝑁 is macroscopically
smooth, this gives the estimate but for 𝑁 |𝔩 |−1 in place of 𝑁1/2 |𝔩 |−1/2 in the first term on the LHS of
equation (6.25). But this is stronger as 𝑁 |𝔩 |−1 � 𝑁1/2 |𝔩 |−1/2 for |𝔩 | � 𝔩𝑁 � 𝑁 . �

Lemma 6.7. Consider any 𝜗, 𝜅 > 0 arbitrarily small and large, respectively, but both universal. We
have

P
(

sup
1� |𝔩 |�𝔩𝑁

𝑁1/2 |𝔩 |−1/2‖∇X
𝔩 H𝑁 ,X

𝑇 ,𝑥 (Z
𝑁
0, ·) ‖𝔱r;T𝑁 � 𝑁𝜗 (1 + ‖U𝑁 ‖2𝔱r;T𝑁 )

)
�𝜗,𝜅 𝑁−𝜅 . (6.26)

Proof. We follow the proof of Lemma 6.3. In particular, we prove a pointwise probability estimate
analogous to equation (6.9) and a union bound analogous to equation (6.10). We conclude with conti-
nuity/bootstrap analogous to the third bullet point in the proof of Lemma 6.3.
◦ Observe that the operator ℒ𝑁 commutes with any constant coefficient spatial gradient; this can be

easily verified. Because the spatial heat operator H𝑁 ,X is a matrix/operator exponential of a constant
multiple of ℒ𝑁 , spatial gradients commute with the spatial heat operator. With this and the proof
of (3.13) in [19], we establish the following for fixed 𝔩 ∈ 	−𝔩𝑁 , 𝔩𝑁
 and 𝑇 � 0 and 𝑥 ∈ T𝑁 with
arbitrary 𝑝 � 1 and 𝛾 > 0, in which we assume 𝔩 ≠ 0 as this case is trivial:

‖∇X
𝔩 H𝑁 ,X(Z𝑁

0, ·) ‖𝜔;2𝑝 = ‖H𝑁 ,X (∇X
𝔩 Z𝑁

0, ·) ‖𝜔;2𝑝 �𝑝,𝛾 𝑁−1/2+𝛾 |𝔩 |1/2−𝛾 � 𝑁𝛾𝑁−1/2 |𝔩 |1/2. (6.27)

The last inequality (6.27) follows from noting |𝔩 | ≠ 0 and it is an integer. When we follow the proof
of (3.13) in [19], we employ the heat kernel estimates in Proposition A.3 for H𝑁 ,X rather than heat
kernel estimates in [19]. The Chebyshev inequality then gives, for 𝑝 � 1, the following in which
given 𝜗, 𝜅 > 0, we choose 𝛾 > 0 sufficiently small and p sufficiently large, but both depending only
on 𝜗, 𝜅, such that −2𝑝𝜗 + 2𝑝𝛾 � −2𝜅:

P
(
|∇X

𝔩 H𝑁 ,X(Z𝑁
0, ·) | � 𝑁−1/2+𝜗 |𝔩 |1/2

)
�𝑝,𝛾 𝑁 𝑝−2𝑝𝜗 |𝔩 |−𝑝𝑁2𝑝𝛾𝑁−𝑝 |𝔩 |𝑝 � 𝑁−2𝜅 . (6.28)

Again, the dependence on 𝑝, 𝛾 ∈ R>0 in the previous estimate (6.28) is now dependence on 𝜗, 𝜅.
◦ Consider the same discretization Id from the proof of Lemma 6.3. A union bound in the same fashion

as that used to prove (6.10), when combined with (6.28), gives the following; recall |Id | � 𝑁100 as
seen in the proof of Lemma 6.7, and 𝔩𝑁 � 𝑁:

P
(

sup
1� |𝔩 |�𝔩𝑁

sup
(𝑇 ,𝑥) ∈Id

𝑁
1
2 |𝔩 |−

1
2 |∇X

𝔩 H𝑁 ,X(Z𝑁
0, ·) � 𝑁𝜗

)
�𝜗,𝜅 𝑁−2𝜅 |I| |	−𝔩𝑁 , 𝔩𝑁
| = 𝑁−2𝜅+101. (6.29)

In what follows, we will take 𝜅 sufficiently large so that 2𝜅 − 101 � 3𝜅/2.
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◦ We complete the proof via bootstrapping our estimate on Id to an estimate on the entire semidiscrete
space-time [0, 𝔱r] × T𝑁. To this end, given any t ∈ [0, 𝔱r], we again let td be any element in IT,d =
{𝔧𝑁−99}𝔧�0 ∩ [0, 1] that minimizes |t − td |. We now provide the following parallel to equation (6.13)
where 𝑥 ∈ T𝑁 is arbitrary:

∇X
𝔩 H𝑁 ,X

t,𝑥 (Z
𝑁
0, ·) = ∇

X
𝔩 H𝑁 ,X

td ,𝑥 (Z
𝑁
0, ·) + (H

𝑁 ,X
t,𝑥+𝔩 (Z

𝑁
0, ·) −H𝑁 ,X

td ,𝑥+𝔩 (Z
𝑁
0, ·)) + (H

𝑁 ,X
td ,𝑥 (Z

𝑁
0, ·) −H𝑁 ,X

t,𝑥 (Z
𝑁
0, ·)).

(6.30)

Following the third bullet point in the proof of Lemma 6.3, we have an estimate for the first term
on the RHS of equation (6.30) outside an event of probability at most 𝑁−3𝜅/2 times 𝜗, 𝜅-dependent
factors. We additionally have deterministic estimates for the second and third terms on the RHS of
equation (6.30) by short-time continuity; see equation (6.12). This gives the following analog of
equation (6.14):

𝑁1/2 |𝔩 |−1/2‖H𝑁 ,X
t,𝑥+𝔩 (Z

𝑁
0, ·) −H𝑁 ,X

td ,𝑥+𝔩 (Z
𝑁
0, ·) ‖𝔱r;T𝑁 � 𝑁5/2 |t − td |‖Z𝑁 ‖0;T𝑁 � 𝑁−96‖U𝑁 ‖𝔱r;T𝑁 .

(6.31)

The first estimate in equation (6.31) follows by |𝔩 | � 1 combined with equation (6.12). The second
estimate in equation (6.31) follows by |t − td | � 𝑁−99 and ‖Z𝑁 ‖0;T𝑁 � ‖U𝑁 ‖𝔱r;T𝑁 , both of which we
used in the third bullet point in the proof of Lemma 6.3.

We now apply the reasoning of the last paragraph in the third bullet point in the proof of Lemma 6.3 to
finish the proof. �

Lemma 6.8. Consider any 𝜗, 𝜅 > 0 arbitrarily small and large, respectively, but both universal. We
have

P
(

sup
1� |𝔩 |�𝔩𝑁

𝑁1/2 |𝔩 |−1/2‖∇X
𝔩 H𝑁

𝑇 ,𝑥 (U
𝑁 d𝜉𝑁 )‖𝔱r;T𝑁 � 𝑁𝜗 (1 + ‖U𝑁 ‖2𝔱r;T𝑁 )

)
�𝜗,𝜅 𝑁−𝜅 . (6.32)

Proof. We follow the proof of Lemma 6.4 upon replacing s− 1
4 factors by 𝑁

1
2 |𝔩 |−

1
2 and replacing

∇T
−sH𝑁 (U𝑁 d𝜉𝑁 ) terms by ∇X

𝔩 H𝑁 (U𝑁 d𝜉𝑁 ) terms. Precisely, we can first establish equation (6.16)
with these replacements upon using the same argument given in the proof of Lemma 6.4, except instead
of following the proof of (3.14) in [19] we follow the proof of (3.13) in [19]. Taking a union bound
over all length scales 1 � |𝔩 | � 𝔩𝑁 and all space-time points in the discretization Id then gives equation
(6.17) with the same replacements. The short-time estimate equation (6.18) without any replacements
lets us bootstrap from an estimate on Id to one over the entire set [0, 𝔱r] × T𝑁 in the same fashion as the
end of the proof of Lemma 6.4. �

Corollary 6.9. Admit the setting of Proposition 6.1. We have P(EX
𝜗 (𝔱r;T𝑁 )) �𝜗 𝑁−𝛽r .

Proof. Like in the proof of Corollary 6.5, first observe ∇XU𝑁 is controlled by ∇X of the terms on the
RHS of the U𝑁 equation in Definition 3.5. Such ∇X terms can be controlled by the proposed lower
bound in the event EX

𝜗 (𝔱r;T𝑁 ) with the appropriate probability by applying Lemmas 6.6, 6.7 and 6.8,
except for the order 𝑁1/2 term in the U𝑁 equation. For this term, we employ equation (5.4), which, by
Theorem 5.3, holds with the desired probability of at least 1 − O𝜗 (𝑁

−𝛽r ) for 𝛽r > 0 universal. �

6.3. Proof of Proposition 6.1

It suffices to combine Corollary 6.5 and Corollary 6.9.

https://doi.org/10.1017/fms.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.27


40 K. Yang

7. Proof of Proposition 3.11 and Proposition 3.12

7.1. Preliminary Q𝑁 estimates

Recall that Proposition 3.12 proposes a comparison between U𝑁 and Q𝑁 . For this, it will be important
to ensure Q𝑁 is ‘reasonable’; because our proof of Proposition 3.11, which amounts to establishing
estimates for U𝑁 and Z𝑁, will use the comparison between U𝑁 and Q𝑁 , we will actually need to ensure
that Q𝑁 is ‘reasonable’. Before we start with the details of this subsection, let us recall the notions of
high/overwhelming probability in Definition 3.9.The first estimate we present is an upper bound with
respect to ‖‖1;T𝑁 with overwhelming probability.

Lemma 7.1. Provided any 𝜗 > 0 uniformly bounded from below, we have ‖Q𝑁 ‖1;T𝑁 � 𝑁𝜗 with
overwhelming probability.

Proof. We start with the following inequality that we explain and justify afterwards. Roughly speaking,
the following inequality controls a supremum over the semidiscrete space-time [0, 1] × T𝑁 in terms
of one over the discretization Id = IT,d × T𝑁 with IT,d = {𝔧𝑁−99}0�𝔧�𝑁 99 and in terms of short-time
estimates for Q𝑁 . We emphasize the following estimate is deterministic:

‖Q𝑁 ‖1;T𝑁 � sup
(𝑇 ,𝑥) ∈Id

|Q𝑁
𝑇 ,𝑥 | + sup

(𝑇 ,𝑥) ∈Id
sup

s∈[0,𝑁 −99 ]

|∇T
s Q𝑁

𝑇 ,𝑥 |. (7.1)

The estimate (7.1) is proved using reasoning similar to that used in the third bullet point from the proof
of Lemma 6.3. Consider any t ∈ [0, 1], and let td ∈ IT,d be any element in IT,d that minimizes |t− td |. We
will write Q𝑁 evaluated at t as Q𝑁 evaluated at td plus the corresponding difference, the difference being
a time gradient on a timescale t− td evaluated at td ∈ Id. Therefore, we are left with estimating each term
on the RHS of equation (7.1). Observe that it suffices to estimate each by 2−1𝑁𝜗 with overwhelming
probability, as the intersection of two events, both of which hold with overwhelming probability, also
holds with overwhelming probability itself, which is a consequence of the union bound. Moreover,
according to Lemma A.6, the second term on the RHS of equation (7.1) is at most a small multiple of
the first term on the RHS of equation (7.1) with overwhelming probability. Thus, it suffices to bound
from above the first term on the RHS of equation (7.1) by 4−1𝑁𝜗 with overwhelming probability. For
this, we use moment bounds for Q𝑁 resembling those for the Gartner transform from Proposition 3.2
in [19].

Now recall from the proof of Lemma 3.14 that for any 𝑝 � 1, the 2𝑝-moment of Q𝑁 at any point
in [0, 1] × T𝑁 is bounded by a constant depending only on p. This follows via the observation that Q𝑁

satisfies the moment estimate (3.12) in [19] if we remove the subexponential weights therein, which
we made at the beginning of the proof of Lemma 3.14. Therefore, we have the following estimate by a
union bound, the Cheybshev inequality and this moment estimate for Q𝑁 :

P
(

sup
(𝑇 ,𝑥) ∈Id

|Q𝑁
𝑇 ,𝑥 | � 4−1𝑁𝜗

)
� |Id | sup

(𝑇 ,𝑥) ∈Id
P
(
|Q𝑁

𝑇 ,𝑥 | � 4−1𝑁𝜗
)
�𝑝 |Id |𝑁−2𝑝𝜗 � 𝑁−2𝑝𝜗+100.

(7.2)

The final estimate in equation (7.2) follows from the straightforward observation |Id | = |IT,d | |T𝑁 | �
𝑁100. We can choose 𝑝 � 1 arbitrarily large but depending only on the fixed 𝜗 > 0 so that the
complement of the event in the probability on the far LHS of equation (7.2) holds with overwhelming
probability. Therefore, we have proved the lemma if we replace ‖‖1;T𝑁 with the supremum over the
discrete space-time set Id, which completes the proof as noted after equation (7.1). �

The second ingredient we present for this subsection is a lower bound, or equivalently an upper bound
for the inverse of Q𝑁 with respect to the ‖‖1;T𝑁 norm. We clarify that the following estimate holds with
high probability, in contrast to the upper bound in Lemma 7.1 that holds with overwhelming probability.
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This is because the upcoming proof is slightly less quantitative. We also emphasize the importance of
stable initial data for the upcoming lower bound estimate.
Lemma 7.2. Provided any 𝜗 > 0 uniformly bounded from below, we have ‖(Q𝑁 )−1‖1;T𝑁 � 𝑁𝜗 with
high probability.

Proof. Observe that a space-time uniform upper bound of 𝑁𝜗 for the inverse of Q𝑁 is equivalent to a
space-time uniform lower bound of 𝑁−𝜗 for Q𝑁 itself. Additionally, we observe that the initial data of
Q𝑁 , which is the initial data of the Gartner transform Z𝑁, is uniformly bounded above and below on T𝑁
because it is the exponential of a function that is uniformly bounded above and below. Lemma 7.2 then
follows from a standard analysis based on combining these observations, the comparison principle for
the defining equation of Q𝑁 in Definition 3.8, and tightness estimates for the same defining equation,
at least with continuous initial data, that we alluded to in Proposition 3.13. Roughly speaking, because
Q𝑁 is initially uniformly bounded below, by the comparison principle for the Q𝑁 equation it suffices
to prove uniform lower bounds for constant initial data given by the infimum of the Q𝑁 initial data.
If the Q𝑁 equation only had a spatial heat operator, constant data would be preserved and the result
would follow. For some short but N-independent time 𝔱+ and for any N-independent 𝛾 > 0, perturbative
analysis would provide a high probability 𝔱+, 𝛾-dependent lower bound for Q𝑁 . Again, by using the
comparison principle, it suffices to provide a uniform lower bound for time 1− 𝔱+ for the solution to the
Q𝑁 equation with initial data given by the 𝔱+, 𝛾-dependent space-time infimum/lower bound. We then
iterate this scheme, namely by providing high probability lower bounds for constant data for sufficiently
short but N-independent times 𝔱+, requiring only a 𝔱+-dependent number of steps. We emphasize that
this iteration does not break down because each perturbative step in this strategy amounts to estimates
for the Q𝑁 with constant initial data. By linearity of the Q𝑁 equation, the value of this constant initial
data does not matter in terms of how much smaller, in a proportional/multiplicative sense, the solution
is after a short time 𝔱+; namely, our analysis of the Q𝑁 equation does not change in each step even if
the constant initial data is different between steps. This completes the proof. �

7.2. Proof of Proposition 3.12

The first step that we take is to write the difference D𝑁 = U𝑁 −Q𝑁 explicitly in terms of the difference
between the respective stochastic equations for U𝑁 in Definition 3.5 and Q𝑁 in Definition 3.8. Because
the heat operators are linear, and because the stochastic equations in Definitions 3.5 and 3.8 are both
linear in their respective solutions U𝑁 and Q𝑁 , it is straightforward to verify the following stochastic
equation for D𝑁 , in which the spatial heat operators/initial data terms in the U𝑁 and Q𝑁 equations
cancel, and in which we use notation in Definitions 3.5 and 3.8:

D𝑁
𝑇 ,𝑥 = H𝑁

𝑇 ,𝑥 (D
𝑁 d𝜉𝑁 ) −H𝑁

𝑇 ,𝑥 (𝑁
1
2 �̄�Y𝑁 ) −H𝑁

𝑇 ,𝑥 (𝔰D𝑁 ) + 𝑁−
1
2 H𝑁

𝑇 ,𝑥 (𝔟1;D𝑁 ) (7.3)

+ 𝑁−
1
2 H𝑁

𝑇 ,𝑥 (∇
!
★(𝔟2;D𝑁 )).

We emphasize that the order 𝑁1/2 term in the U𝑁 equation does not have a matching term in the Q𝑁

equation. According to the Boltzmann–Gibbs principle in Theorem 4.1, we expect the second term
from the RHS of equation (7.3) to vanish in the large-N limit. In this case, the D𝑁 term solves a linear
equation with zero initial data and vanishing small ‘forcing’, which suggests that D𝑁 vanishes uniformly
in the large-N limit. To actually prove this, we will obtain bounds for D𝑁 by employing the moment
strategy for proofs of tightness in [3, 19]. We note, however, Theorem 4.1 only provides an estimate with
respect to first moment, whereas the aforementioned SPDE analysis of [3, 19] rely on bounds for quite
high moments. This is technical, but it is also nontrivial to resolve. The first step we take to resolve it is
introducing the following stopping time and ‘cutoff’-type C𝑁 process.
Definition 7.3. Recall the universal constant 𝛽BG > 0 from Theorem 4.1; recall it is uniformly bounded
from below. Define
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𝔱BG
•
= inf

{
t ∈ [0, 1] : ‖H𝑁 (𝑁1/2�̄�Y𝑁 )‖t;T𝑁 � 𝑁−𝛽BG/999

}
∧ 1. (7.4)

We additionally define the stopped process Ỹ𝑁 = Y𝑁 1(𝑇 � 𝔱BG), and we also define C𝑁 to be the
solution to the following stochastic equation on R�0×T𝑁, whose solutions are unique by standard linear
theory:

C𝑁
𝑇 ,𝑥 = H𝑁

𝑇 ,𝑥 (C
𝑁 d𝜉𝑁 ) −H𝑁

𝑇 ,𝑥 (𝑁
1
2 �̄�Ỹ𝑁 ) −H𝑁

𝑇 ,𝑥 (𝔰C𝑁 ) + 𝑁−
1
2 H𝑁

𝑇 ,𝑥 (𝔟1;C𝑁 )

+ 𝑁−
1
2 H𝑁

𝑇 ,𝑥 (∇
!
★(𝔟2;C𝑁 )),

where ∇!
★ means what it does in Proposition 2.4.

The following first result in this subsection justifies analyzing C𝑁 as a ‘high probability proxy’ for
D𝑁 .

Lemma 7.4. With high probability, we have 𝔱BG = 1. Thus, with high probability, we have C𝑁 = D𝑁

on [0, 1] × T𝑁.

Proof. We emphasize that the second high probability claim in Lemma 7.4 follows from the first high
probability claim in Lemma 7.4 by the same reason Lemma 3.7 holds; the terms D𝑁 and C𝑁 solve the
same stochastic equation, whose solutions are unique, until the time 𝔱BG, which according to the first
claim is equal to 1 with high probability. To prove the first high probability claim in Lemma 7.4, note
𝔱BG ≠ 1 implies 𝔱BG < 1, as 𝔱BG � 1 deterministically. We now claim 𝔱BG < 1 implies

‖H𝑁 (𝑁1/2�̄�Y𝑁 )‖1;T𝑁 � ‖H𝑁 (𝑁1/2�̄�Y𝑁 )‖𝔱BG;T𝑁 � 𝑁−𝛽BG/999. (7.5)

The first inequality in equation (7.5) follows trivially because 𝔱BG � 1 deterministically. To justify the
second inequality in equation (7.5), we assume the opposite, so the final inequality in equation (7.5) is
reversed and strict. The heat operator is continuous in time with probability 1 as the product 𝑁1/2�̄�Y𝑁

is finite, even if not uniformly bounded in N; we emphasize we are not claiming quantitative regularity
of the heat operator that is controlled in the large-N limit by any means. If the last inequality in equation
(7.5) is reversed while strict, then for 𝔱BG < 1 we may find t ∈ (𝔱BG, 1] by continuity of the heat operator
such that

sup
𝔱BG�s�t

‖H𝑁 (𝑁1/2�̄�Y𝑁 )‖s;T𝑁 < 𝑁−𝛽BG/999. (7.6)

Because we have assumed the reverse of the last inequality in equation (7.5), this implies 𝔱BG must
actually be at least t because until time t, the H𝑁 (𝑁1/2�̄�Y𝑁 ) term is strictly less than 𝑁−𝛽BG/999, and
therefore by continuity in time of this H𝑁 (𝑁1/2�̄�Y𝑁 ) term, we may ‘wait’ a positive amount after t to
see H𝑁 (𝑁1/2�̄�Y𝑁 ) exceed 𝑁−𝛽BG/999. The condition 𝔱BG � t we have just established contradicts the
fact that t > 𝔱BG by construction. This provides the last inequality in equation (7.5).

We now recap that 𝔱BG ≠ 1 implies 𝔱BG < 1, which in turn implies the inequalities (7.5). Therefore,
to prove 𝔱BG = 1 occurs with high probability, we estimate the probability of observing the inequalities
in equation (7.5). This is at most O(𝑁−𝛽BG/99) by Theorem 4.1, which estimates the expectation of the
far LHS of equation (7.5), and the Markov inequality. �

We now introduce the following deterministic estimate that explains the utility of introducing 𝔱BG
and Ỹ𝑁 and �̃�𝑁 .

Lemma 7.5. We have the deterministic estimate ‖H𝑁 (𝑁1/2�̄�Ỹ𝑁 )‖1;T𝑁 � 𝑁−𝛽BG/999.

Proof. Because 𝔱BG � 1 deterministically, and because Ỹ𝑁 vanishes after time 𝔱BG by construction,
we may employ Proposition A.3 to deduce the following consequence of ℒ∞-contractive property and
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the semigroup property of spatial heat operators; see the proof of Lemma 5.5, namely equation (5.12)
therein, for a ‘gradient’ version of the following:

‖H𝑁
𝑇 ,𝑥 (𝑁

1/2�̄�Ỹ𝑁 )‖1;T𝑁 = ‖H𝑁 ,X
(𝑇 −𝔱BG)∨0,𝑥 (H

𝑁
tBG , · (𝑁

1/2�̄�Ỹ𝑁 ))‖1;T𝑁 � ‖H𝑁 (𝑁1/2�̄�Ỹ𝑁 )‖𝔱BG;T𝑁 .

(7.7)

It now suffices to observe the RHS of equation (7.7) is bounded above by 𝑁−𝛽BG/999, because this
proposed upper bound is true if we replace 𝔱BG with any t < 𝔱BG and, like in the proof of Lemma 7.4,
the heat operator H𝑁 is continuous in space-time. �

The last ingredient we require for the proof for Proposition 3.12 is a pointwise moment estimate for
C𝑁 which is proved with stochastic analytic means like those used in the proof of Proposition 3.2 in
[19] for the Gartner transform therein. Afterwards, we will ‘glue’ this pointwise estimate to a uniform
estimate on [0, 1] × T𝑁 via union bound and continuity.

Lemma 7.6. Consider any 𝑝 � 1. We have the estimate ‖C𝑁
𝑇 ,𝑥 ‖𝜔;2𝑝 �𝑝 𝑁−𝛽BG/999 uniformly on

[0, 1] × T𝑁.

Proof. We estimate the ‖‖2𝜔;2𝑝 squared norm for every term on the RHS of the C𝑁 equation from
Definition 7.3. We first employ Lemma 7.5 to establish the following estimate uniformly in 𝑝 � 1 and
in uniformly in space-time; let us clarify the first bound below uses an elementary/general ℒ𝑝 � ℒ∞

bound for random variables:

‖H𝑁
𝑇 ,𝑥 (𝑁

1/2�̄�Ỹ𝑁 )‖2𝜔;2𝑝 � ‖H
𝑁
𝑇 ,𝑥 (𝑁

1/2�̄�Ỹ𝑁 )‖2𝜔;∞ � 𝑁−2𝛽BG/999. (7.8)

For the remaining terms in the C𝑁 equation in Definition 7.3, we will follow the proof of (3.12) in
Proposition 3.2 in [19]. Similar to the proof of Lemma 3.14, all of the estimates used to prove (3.12)
in Proposition 3.2 in [19] hold for the corresponding terms in the C𝑁 equation from Definition 7.3
as we only need the heat kernel estimates in Proposition A.3 and, to control the C𝑁 d𝜉𝑁 term in the
C𝑁 equation, the martingale inequality in Lemma A.4 that generalizes Lemma 3.1 in [19] beyond the
Gartner transform. We ultimately deduce from equation (7.8) and this paragraph the following integral
bound for ‖‖2𝜔;2𝑝; recall that O𝑆,𝑇 = |𝑇 − 𝑆 |:

‖C𝑁
𝑇 ,𝑥 ‖

2
𝜔;2𝑝 �𝑝 𝑁−2𝛽BG/999 +

∫ 𝑇

0
sup
𝑦∈T𝑁

‖C𝑁
𝑆,𝑦 ‖

2
𝜔;2𝑝d𝑆 +

∫ 𝑇

0
O−1/2

𝑆,𝑇 sup
𝑦∈T𝑁

‖C𝑁
𝑆,𝑦 ‖

2
𝜔;2𝑝d𝑆. (7.9)

We emphasize the estimate (7.9) holds uniformly in space-time on the LHS. Thus, we may extend
equation (7.9) upon taking a supremum over T𝑁 on the LHS therein. At this point, we may employ the
Gronwall inequality to deduce, for times 𝑇 � 1:

sup
𝑥∈T𝑁

‖C𝑁
𝑇 ,𝑥 ‖

2
𝜔;2𝑝 �𝑝 𝑁−2𝛽BG/999Exp

(
sup

0�t�1

∫ t

0
d𝑆 + sup

0�t�1

∫ t

0
O−1/2

𝑆,t d𝑆

)
� 𝑁−2𝛽BG/999, (7.10)

with the last inequality above following by an elementary integral calculation inside the exponential in
the middle of equation (7.10). �

From Lemma 7.6, we get the following union bound estimate that controls C𝑁 over a very fine
discretization of space-time.

Corollary 7.7. Define Id = IT,d×T𝑁 , in which IT,d = {𝔧𝑁−99}𝑁
99

𝔧=0 . The following holds with overwhelm-
ing probability:

sup
(t,𝑥) ∈Id

|C𝑁
t,𝑥 | � 𝑁−𝛽BG/99999. (7.11)
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Proof. Provided any (t, 𝑥) ∈ Id, the Chebyshev inequality implies the probability estimate

P
(
|C𝑁

t,𝑥 | � 𝑁−𝛽BG/99999
)
� 𝑁2𝑝𝛽BG/99999‖C𝑁

t,𝑥 ‖
2𝑝
𝜔;2𝑝 �𝑝 𝑁−2𝑝𝛽BG/999+2𝑝𝛽BG/99999 � 𝑁−2𝑝𝛽BG/9999.

(7.12)

Therefore, a union bound implies that the probability the proposed estimate (7.11) fails is bounded by
𝜅𝑝𝑁−2𝑝𝛽BG/9999 times the number |Id | of points we take a union bound over, in which 𝜅𝑝 � 1 depends
only on 𝑝 � 1. As |Id | = |IT,d | |T𝑁 | � 𝑁100, we know the probability the proposed estimate in equation
(7.11) fails is bounded by 𝜅𝑝𝑁−2𝑝𝛽BG/9999+100. Taking 𝑝 � 1 arbitrarily large implies equation (7.11)
holds with overwhelming probability. �

Proof of Proposition 3.12. Throughout, observe that the intersection of any uniformly bounded number
of events that hold with high probability also holds with high probability, which can be easily shown
with the union bound for the complements of these events. With this, by Lemma 7.4, it suffices to
prove Proposition 3.12 but replacing D𝑁 by C𝑁 . Next, we employ the estimate (7.1), bootstrapping
an estimate from a discretization to the continuum, but for C𝑁 in place of Q𝑁 ; observe the proof of
equation (7.1) is blind to what Q𝑁 actually is:

‖C𝑁 ‖1;T𝑁 � sup
(𝑇 ,𝑥) ∈Id

|C𝑁
𝑇 ,𝑥 | + sup

(𝑇 ,𝑥) ∈Id
sup

s∈[0,𝑁 −99 ]

|∇T
s C𝑁

𝑇 ,𝑥 |. (7.13)

It suffices to estimate each term from the RHS of equation (7.13) by 𝑁−𝛽 times a universal constant
with high probability. For the first term on the RHS of equation (7.13), we employ Corollary 7.7. For
the second term, we employ Lemma A.6, which implies the second term on the RHS of equation (7.13)
is controlled by the first term on the RHS of equation (7.13). This finishes the proof of Proposition
3.12. �

7.3. Proof of Proposition 3.11

We use a continuity method that is frequently used in the study of PDE. Roughly speaking, we observe
that for stable initial data, regularity estimates defining the stopping time 𝔱st of current interest from
Definition 3.1 are satisfied at time 0, at least with high probability. We then condition on path-space
events in which U𝑁 admits sufficiently good upper bounds, which will be inherited by sufficiently good
upper and lower bounds for Q𝑁 and D𝑁 = U𝑁 −Q𝑁 . We also condition on path-space events in which
the space-time regularity of U𝑁 is sufficiently good provided upper and lower bounds; this will follow
from the probability estimates in Proposition 6.1. In particular, until time 𝔱st, we basically know the
space-time estimates defining 𝔱st with high probability except upon replacing Z𝑁 in there with U𝑁 .
However, Lemma 3.7 implies that since we look at time before 𝔱st, we do not actually have to make
such replacement. Now, if 𝔱st ≠ 1, in which case 𝔱st < 1, we may apply the short-time estimates in
Lemma A.6 to push the space-time estimates in 𝔱st for Z𝑁 past 𝔱st by a very small amount of time,
thus contradicting the definition of 𝔱st similar to our proof of Lemma 7.4. We clarify that the crux of
the strategy is the observation that we can turn slightly suboptimal estimates for Z𝑁 into slightly better
suboptimal estimates, which are closer to ‘the truth’. This is because we need the a priori suboptimal
estimates in 𝔱st only to analyze the �̄� term in the Z𝑁 and U𝑁 equations, and such term is vanishingly
small anyway with respect to space-time regularity norms in 𝔱st. Therefore, the space-time behavior of
the �̄� term in the Z𝑁 and U𝑁 equations is, with high probability, better than the space-time behavior
of Z𝑁 and U𝑁 that we assume through the stopping time 𝔱st, while the other terms in the Z𝑁 and U𝑁

equations admit ‘good’ space-time estimates by standard moment bounds as in [3, 19]. To make this
precise, we introduce another set of stopping times.

Definition 7.8. We define 𝜀ap,1 = 999−999𝜀ap ∧ 999−999𝛽, where 𝜀ap > 0 is from Definition 3.1 and
𝛽 > 0 is the universal constant in Proposition 3.12. We now define the following pair of stopping times,
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the first of which provides uniform upper and lower bounds for Q𝑁 , and where the second stopping
time below provides a uniform upper bound for D𝑁 :

𝔱st,1 = inf
{
t ∈ [0, 1] : ‖Q𝑁 ‖t;T𝑁 + ‖(Q𝑁 )−1‖t;T𝑁 � 𝑁 𝜀ap,1

}
∧ 1

𝔱st,2 = inf
{
t ∈ [0, 1] : ‖D𝑁 ‖t;T𝑁 � 𝑁−𝛽/2

}
∧ 1.

We proceed with the following time regularity stopping time, in which IT is the set of discrete mesoscopic
timescales that were defined in Definition 3.1; we use the same exponent 𝜀ap,1 below as we did for 𝔱st,1
and 𝔱st,2:

𝔱st,3 = inf
{
t ∈ [0, 1] : sup

s∈IT
s−1/4‖∇T

−sU𝑁 ‖t;T𝑁 � 𝑁 𝜀ap,1 (1 + ‖U𝑁 ‖2t;T𝑁 )

}
∧ 1. (7.14)

We additionally define the following spatial regularity stopping time, where 𝔩𝑁 is the maximal length
scale for spatial gradients that was used in the stopping time 𝔱st in Definition 3.1. We again use the
exponent 𝜀ap,1 below as we did for 𝔱st,1, 𝔱st,2 and 𝔱st,3:

𝔱st,4 = inf

{
t ∈ [0, 1] : sup

1� |𝔩 |�𝔩𝑁
𝑁1/2 |𝔩 |−1/2‖∇X

𝔩 U𝑁 ‖t;T𝑁 � 𝑁 𝜀ap,1 (1 + ‖U𝑁 ‖2t;T𝑁 )

}
∧ 1. (7.15)

We proceed with defining the following a priori short-time estimate random time for Z𝑁. We emphasize
that the following time is not a stopping time as it looks forward in the future and thus it is not adapted
to the filtration of the interacting particle system. However, this will not be important as our analysis in
this section is deterministic after we have established Lemma 7.9 below:

𝔱st,5 = inf

{
t ∈ [0, 1] : sup

s∈[0,𝑁 −99 ]

sup
0�t0�t

sup
𝑥∈T𝑁

‖Z𝑁 ‖−1
t0;T𝑁 |∇

T
s Z𝑁

t0 ,𝑥 | � 𝑁−1/2+𝜀ap,1

}
∧ 1. (7.16)

We conclude by defining 𝔱st,6 = 𝔱st,1 ∧ 𝔱st,2 ∧ 𝔱st,3 ∧ 𝔱st,4 ∧ 𝔱st,5.

Lemma 7.9. With high probability, we have 𝔱st,6 = 1.

Proof. As remarked at the beginning of the proof for Proposition 3.12, the intersection of a uniformly
bounded number of events that hold with high probability also holds with high probability. Therefore,
it suffices to prove that 𝔱st,𝔧 = 1 with high probability for any 𝔧 ∈ {1, . . . , 6}. For 𝔧 = 1, we first observe
that the ‖‖t;T𝑁 norm is monotone nondecreasing in t. Thus, because 𝔱st,1 � 1, if 𝔱st,1 ≠ 1, then 𝔱st,1 < 1,
so the lower bound defining 𝔱st,1 is actually realized for some t ∈ [0, 1), and thus the upper bounds in
Lemma 7.1 and Lemma 7.2 fail on this event. By the probability estimates in Lemmas 7.1 and 7.2, such
failure happens outside an event of high probability, so we have 𝔱st,1 = 1 with high probability. A similar
argument but when using Proposition 3.12 in place of Lemmas 7.1 and 7.2 shows 𝔱st,2 = 1 with high
probability as well. We proceed with showing 𝔱st,3 = 1 with probability. Consider Proposition 6.1 for
the choice of stopping time 𝔱r = 𝔱st,3. Let us assume that 𝔱st,3 ≠ 1, and thus like the previous argument
we have 𝔱st,3 < 1 for this event. Also, similar to the previous argument, note if 𝔱st,3 < 1, then the lower
bound defining 𝔱st,3 is realized at the time 𝔱st,3. In particular, through the time-regularity estimate in
Proposition 6.1 we know that this only happens outside an event that happens with high probability, and
thus 𝔱st,3 = 1 with high probability. The same argument but using the spatial regularity estimate from
Proposition 6.1 for 𝔱r = 𝔱st,4 implies that 𝔱st,4 = 1 with high probability as well. We are left with proving
𝔱st,5 = 1 with high probability. This follows immediately from Lemma A.6, so we are done. �

Proof of Proposition 3.11. We first observe the following union bound inequality, which tells us that
if 𝔱st < 1, then 𝔱st,6 < 1 or 𝔱st,6 = 1 and 𝔱st < 1, where 𝔱st,6 is the last stochastic time defined in
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Definition 7.8:

P(𝔱st < 1) � P
(
𝔱st,6 < 1

)
+ P

(
𝔱st,6 = 1, 𝔱st < 1

)
. (7.17)

We apply Lemma 7.9 and deduce the first probability on the RHS of equation (7.17) is at most 𝛾 + 𝜅𝛾o𝑁

for any 𝛾 > 0, where o𝑁 vanishes in the large-N limit uniformly in 𝛾 > 0. Thus, it suffices to deduce the
same estimate for the second term on the RHS of equation (7.17). Actually, we will prove the second
probability on the RHS of equation (7.17) is equal to 0. To this end, let us recall the definition of 𝔱st from
Definition 3.1 and, again using a union bound inequality, get the following upper bound for the second
term on the RHS of equation (7.17), which follows by conditioning on which of 𝔱ap and 𝔱T

RN and 𝔱X
RN in

Definition 3.1 is smallest and equal to 𝔱st:

P
(
𝔱st,6 = 1, 𝔱st = 𝔱ap < 1

)
+ P

(
𝔱st,6 = 1, 𝔱st = 𝔱T

RN < 1
)
+ P

(
𝔱st,6 = 1, 𝔱st = 𝔱X

RN < 1
)
. (7.18)

We are left with showing each term on the RHS the above is equal to 0; this would give the proof of
Proposition 3.11, again because equation (7.18) is an upper bound for the second term on the RHS of
equation (7.17). We will organize our computations for each probability in equation (7.18) in one of
three bullet points below. First, we assume N is sufficiently large so that 𝑁 𝜀ap,1 � 99999, for example.

◦ We treat the first term in equation (7.18). To this end, consider 0 < 𝔱𝑁 � 𝑁−100 so 𝔱ap + 𝔱𝑁 � 1.
Because 𝔱st,6 = 1 by assumption of the event we are working on, we know 𝔱st,5 = 1 as well. By
definition of 𝔱st,5 in Definition 7.8, we deduce the following short-time estimate, which relates the
value of Z𝑁 after time 𝔱ap and until time 𝔱ap + 𝔱𝑁 to its values at time 𝔱ap; the following first inequality
is proved by using the proof for equation (7.1), which we recall is blind to what Q𝑁 actually is, while
the second inequality estimating short-time behavior of Z𝑁 follows from the identity 𝔱st,5 = 1 we
have just noted:

‖Z𝑁 ‖𝔱ap+𝔱𝑁 ;T𝑁 � ‖Z𝑁 ‖𝔱ap;T𝑁 + sup
s∈[0,𝑁 −99 ]

‖∇T
s Z𝑁 ‖𝔱ap;T𝑁 � ‖Z𝑁 ‖𝔱ap;T𝑁 + 𝑁−

1
2+𝜀ap,1 ‖Z𝑁 ‖𝔱ap;T𝑁 .

(7.19)

Recall from Lemma 3.7 that until time 𝔱st = 𝔱ap, we have the identification Z𝑁 = U𝑁 = Q𝑁 + D𝑁 ,
where we that recall U𝑁 is defined in Definition 3.5 and Q𝑁 is defined in Definition 3.8, and D𝑁 is
defined in Proposition 3.12. Since 𝔱st,6 = 1, we also have 𝔱st,1 = 1 and 𝔱st,2 = 1 by assumption, and
this allows us to extend equation (7.19) as follows:

‖Z𝑁 ‖𝔱ap+𝔱𝑁 ;T𝑁 � ‖Z𝑁 ‖𝔱ap;T𝑁 � ‖Q𝑁 ‖𝔱ap;T𝑁 + ‖D𝑁 ‖𝔱ap;T𝑁 � 𝑁 𝜀ap,1 . (7.20)

We recall 𝜀ap,1 � 999−999𝜀ap with 𝜀ap > 0 in Definition 3.1. We also recall N is large enough so that
even with the implied constants in equation (7.20), we deduce that the far LHS of equation (7.20) is
at most 𝑁2𝜀ap,1 � 𝑁 𝜀ap/2. Parallel to equation (7.19), we also get, by applying 𝑎−1 − (𝑎 + 𝑏)−1 � 𝑏𝑎−2

for 𝑎, 𝑏 � 0 and by recalling 𝔱st,5 = 1 that controls (Z𝑁 )−1∇TZ𝑁 for short times, that

‖(Z𝑁 )−1‖𝔱ap+𝔱𝑁 ;T𝑁 � ‖(Z𝑁 )−1‖𝔱ap;T𝑁 + sup
s∈[0,𝑁 −99 ]

‖ (Z𝑁 )−2∇T
s Z𝑁 ‖𝔱ap;T𝑁 � ‖(Z𝑁 )−1‖𝔱ap;T𝑁 ,

(7.21)

while parallel to equation (7.20), we extend equation (7.21) to the following estimate in which we
now invoke the lower bound for Q𝑁 that comes from the constraint 𝔱st,1 = 1 along with the upper
bound for D𝑁 that comes from our assumption 𝔱st,2 = 1:

‖(Z𝑁 )−1‖𝔱ap+𝔱𝑁 ;T𝑁 � ‖(Z𝑁 )−1‖𝔱ap;T𝑁 � ‖(Q𝑁 )−1‖𝔱ap;T𝑁 + ‖(Q𝑁 )−2D𝑁 ‖𝔱ap;T𝑁 � 𝑁 𝜀ap,1 .

(7.22)
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Indeed, the last estimate above follows from the assumption that 𝜀ap,1 � 999−999𝛽, and thus the
𝑁−𝜀ap,1 lower bound for Q𝑁 that we get from 𝔱st,1 = 1 is much larger than the 𝑁−𝛽/2 upper bound for
D𝑁 that we get from 𝔱st,2 = 1, at least in the large-N limit. We emphasize that 𝜀ap,1 � 999−999𝜀ap
by construction as well, and thus the far LHS of equation (7.22) is bounded above by 𝑁 𝜀ap/2 without
any implied constants or extra factors. Thus, equations (7.20) and (7.22) imply the lower bound in
the infimum defining 𝔱ap fails for all times 𝔱 ∈ [0, 1] before 𝔱ap + 𝔱𝑁 . This contradicts the definition of
𝔱ap if 𝔱ap < 1, as these lower bounds necessarily fail at and/or immediately after 𝔱ap < 1 by definition
of 𝔱ap. This shows the first probability in equation (7.18) is 0.

◦ We move to the second probability in equation (7.18), which amounts to estimating time gradients of
Z𝑁. In particular, take 0 < 𝔱𝑁 � 𝑁−100 so 𝔱T

RN + 𝔱𝑁 � 1 similar to the previous bullet point. Consider
any 0 � 𝔱 � 𝔱T

RN + 𝔱𝑁 . Define 0 � 𝔱0 � 𝔱T
RN to be the closest such time to 𝔱. Last, take any 𝔯 ∈ IT,

with IT in Definition 3.1. The time gradient of Z𝑁 evaluated at time 𝔱 with respect to timescale −𝔯 is
the time gradient of Z𝑁 with respect to the same timescale −𝔯 but evaluated at time 𝔱0 � 𝔱T

RN, if we
include two error terms that result from replacing the times at which we evaluate Z𝑁. To be precise,
this first error term is given by the difference of Z𝑁 at time 𝔱 + 𝔯 with Z𝑁 at time 𝔱0 + 𝔯, and the
second error term is given by the difference of Z𝑁 at time 𝔱 with Z𝑁 at time 𝔱0. We observe now
that the difference between any of these two pairs of times at which we compare the values of Z𝑁 is
bounded by 𝑁−100 because the distance of any time 𝔱 � 𝔱T

RN + 𝔱𝑁 to the set of times less than or equal
to 𝔱T

RN is at most 𝔱𝑁 � 𝑁−100. The conclusion of the last three sentences is the following, uniform
over allowable timescales 𝔯 ∈ IT and which is a time-gradient version of (7.19):

‖∇T
−𝔯Z𝑁 ‖𝔱T

RN+𝔱𝑁 ;T𝑁 � ‖∇
T
−𝔯Z𝑁 ‖𝔱T

RN;T𝑁 + 2 sup
s∈[0,𝑁 −99 ]

‖∇T
s Z𝑁 ‖𝔱T

RN;T𝑁 . (7.23)

Because we assume 𝔱T
RN = 𝔱st, the first term on the RHS of equation (7.23) stays the same if we

replace Z𝑁 by U𝑁 , consequence of the pathwise identification in Lemma 3.7. Because 𝔱st,6 = 1 by
assumption of the event in the second probability in equation (7.18) on which we are working, we
have the identity 𝔱st,3 = 1; see Definition 7.8. The identity 𝔱st,3 = 1 implies that the estimate in the
infimum defining 𝔱st,3 fails for 𝔱 = 1, which therefore controls the first term on the RHS of equation
(7.23) via an upper bound we specify shortly. On the other hand, because 𝔱st,6 = 1 by assumption,
we may similarly deduce that 𝔱st,5 = 1 holds automatically. By definition of 𝔱st,5, the identity 𝔱st,5 = 1
similarly implies that the estimate in the infimum defining 𝔱st,5 also fails if 𝔱 = 1. This bounds the
second term on the RHS of equation (7.23) by the short-time factor of 𝑁−1/2+𝜀ap,1 times the same
norm but for Z𝑁 instead of its scale-s time gradient. Ultimately, from this paragraph and equation
(7.23), we deduce the following for which we note 𝔱T

RN + 𝔱𝑁 � 1, so all norms may be pushed to time
1 as we are only concerned with upper bounds. Let us clarify the second bound below follows by
𝔯 ∈ IT, which implies 𝔯 � 𝑁−2 and 𝔯−1/4 � 𝑁1/2; also note U𝑁 = Z𝑁 until time 𝔱T

RN:

𝔯−
1
4 ‖∇T

−𝔯Z𝑁 ‖𝔱T
RN+𝔱𝑁 ;T𝑁 � ‖∇

T
−𝔯U𝑁 ‖𝔱T

RN;T𝑁 + 2 sup
s∈[0,𝑁 −99 ]

‖∇T
s Z𝑁 ‖𝔱T

RN;T𝑁 (7.24)

� 𝑁 𝜀ap,1 (1 + ‖U𝑁 ‖21;T𝑁 ) + 𝔯
− 1

4 𝑁−
1
2+𝜀ap,1 ‖Z𝑁 ‖𝔱T

RN;T𝑁 (7.25)

� 𝑁 𝜀ap,1 (1 + ‖U𝑁 ‖21;T𝑁 ) + 𝑁 𝜀ap,1 ‖U𝑁 ‖𝔱T
RN;T𝑁 . (7.26)

Because we now have 𝔱T
RN = 𝔱st on the event we currently work on, we may follow the second inequality

in equation (7.20) and estimate U𝑁 by Q𝑁 and D𝑁 . Similar to the end of equation (7.20), we remark
that 𝔱st,6 = 1 implies 𝔱st,1 = 1 and 𝔱st,2 = 1 automatically, which, again as in the end of equation (7.20),
implies upper bounds for each of Q𝑁 and D𝑁 = U𝑁 −Q𝑁 given by 𝑁 𝜀ap,1 each, for example, and thus
an upper bound for U𝑁 of the same order. In particular, via this paragraph and the estimate (7.26),
we deduce the following estimate in which we again recall 𝜀ap,1 � 999−999𝜀ap so that the middle term
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below is at most 𝑁 𝜀ap/2 even with the implied constants/factors in the first estimate below:

𝔯−
1
4 ‖∇T

−𝔯Z𝑁 ‖𝔱T
RN+𝔱𝑁 ;T𝑁 � 𝑁3𝜀ap,1 � 𝑁 𝜀ap/2. (7.27)

Because the last estimate in equation (7.27) is uniform over admissible time-gradient timescales
𝔯 ∈ IT, we observe that the estimate in the infimum defining 𝔱T

RN fails if 𝔱 = 𝔱T
RN + 𝔱𝑁 . Because the

LHS of said estimate in said infimum is monotone nondecreasing in 𝔱 � 0, we observe that it also
fails for all times 𝔱 � 𝔱T

RN + 𝔱𝑁 . Thus, by definition of 𝔱T
RN, we have 𝔱T

RN > 𝔱T
RN + 𝔱𝑁 as long as 𝔱T

RN < 1
so that we can actually find 𝔱𝑁 > 0 satisfying 𝔱T

RN + 𝔱𝑁 � 1. The previous inequality 𝔱T
RN > 𝔱T

RN + 𝔱𝑁
is a clear contradiction for 𝔱𝑁 > 0, so the second probability in equation (7.18) must be that of an
empty event and thus equal to zero.

◦ We move to the last probability in equation (7.18) for spatial gradients of Z𝑁. We follow a strategy
similar to the previous bullet point but replacing time gradients by spatial gradients. In particular, let
us first take 0 < 𝔱𝑁 � 𝑁−100 such that 𝔱X

RN + 𝔱𝑁 � 1. We may replace any spatial gradient of Z𝑁

evaluated at any time 𝔱 � 𝔱X
RN + 𝔱𝑁 with a spatial gradient of Z𝑁 but evaluated at a time 𝔱0 � 𝔱X

RN
satisfying |𝔱 − 𝔱0 | � 𝔱𝑁 � 𝑁−100, if we account for the resulting errors given by scale s � 𝑁−99 time
gradients of Z𝑁, which come by replacing Z𝑁 at times 𝔱 + s and 𝔱 with Z𝑁 at times 𝔱0 + s and 𝔱0,
respectively. Below, we have taken any arbitrary length scale 1 � |𝔩 | � 𝔩𝑁 with 𝔩𝑁 = 𝑁1/2+𝜀RN from
Definition 3.1:

‖∇X
𝔩 Z𝑁 ‖𝔱X

RN+𝔱𝑁 ;T𝑁 � ‖∇
X
𝔩 Z𝑁 ‖𝔱X

RN;T𝑁 + sup
s∈[0,𝑁 −99 ]

‖∇T
s Z𝑁 ‖𝔱X

RN;T𝑁 . (7.28)

Let us multiply both sides of equation (7.28) by 𝑁1/2 |𝔩 |−1/2. We argue as in the second bullet point.
Because we have assumed 𝔱X

RN = 𝔱st on the event we are currently trying to prove has zero probability,
the identification in Lemma 3.7 lets us replace Z𝑁 with U𝑁 in the first term on the RHS of (7.28).
Because we have assumed 𝔱st,6 = 1 on the current event as well, by Definition 7.8 we get 𝔱st,4 = 1
automatically. This identity then implies the inequality in the infimum defining 𝔱st,4 fails for 𝔱 = 1,
thereby providing an upper bound for the first term on the RHS of equation (7.28), which we specify
shortly. On the other hand, we again note that 𝔱st,6 = 1 implies that 𝔱st,5 = 1 automatically, and this
last identity provides an estimate for the second term on the RHS of equation (7.28). Again, we note
𝔱X
RN + 𝔱𝑁 � 1 by construction, so all norms may be pushed to time 1 since we are only concerned

with upper bounds. We deduce the following parallel to equation (7.26), for which we note |𝔩 |−1 � 1
trivially:

𝑁1/2 |𝔩 |−1/2‖∇X
𝔩 Z𝑁 ‖𝔱X

RN+𝔱𝑁 ;T𝑁 � ‖∇
X
𝔩 U𝑁 ‖𝔱X

RN;T𝑁 + sup
s∈[0,𝑁 −99 ]

‖∇T
s Z𝑁 ‖𝔱X

RN;T𝑁 (7.29)

� 𝑁 𝜀ap,1 (1 + ‖U𝑁 ‖21;T𝑁 ) + 𝑁1/2 |𝔩 |−1/2𝑁−
1
2+𝜀ap,1 ‖Z𝑁 ‖𝔱X

RN;T𝑁 (7.30)

� 𝑁 𝜀ap,1 (1 + ‖U𝑁 ‖21;T𝑁 ) + 𝑁 𝜀ap,1 ‖U𝑁 ‖𝔱X
RN;T𝑁 . (7.31)

We now proceed with the argument in the second bullet point above starting with the paragraph
immediately after equation (7.26). This provides an upper bound of 𝑁 𝜀ap/2 for the LHS of equation
(7.30) uniformly in 1 � |𝔩 | � 𝔩𝑁 , which, as we assumed 𝔱X

RN + 𝔱𝑁 � 1 with 𝔱𝑁 > 0 given that 𝔱X
RN < 1,

implies 𝔱X
RN > 𝔱X

RN + 𝔱𝑁 , and this is a clear contradiction because 𝔱𝑁 is strictly positive.

We have shown each probability in equation (7.18) is equal to zero. Combining this with equation
(7.17) and the paragraph following equation (7.17) we used to control the first probability on the RHS
of equation (7.17), this completes the proof of Proposition 3.11. �
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8. Boltzmann–Gibbs principle I – preliminary estimates

We record general estimates for proofs of both Propositions 4.6 and 4.7 as their proofs will be similar
in strategy. This includes a deterministic heat operator estimate that lets us replace space-time suprema
of space-time heat operators by an integral whose expectation we can directly take. We estimate said
expectation by a localization procedure for mesoscopic space-time averages of local functionals and
then use a ‘local equilibrium’ estimate via one-block and two-blocks of [28] and the log-Sobolev
inequality of [51], ultimately reducing all of our calculations to standard equilibrium estimates that
we will introduce. We conclude with a multiscale scheme to replace local functionals by space-time
averages via step-by-step replacements.

8.0.1. Heat operator estimate
Our first estimate is deterministic. First, some convenient notation.

Definition 8.1. For any possibly random function 𝜙 : R�0 × T𝑁 → R and any t � 0, define the space-
time integral/sum

It (𝜙) = It (𝜙s,𝑦) =
∫ t

0

∑̃
𝑦∈T𝑁

𝜙s,𝑦ds. (8.1)

Lemma 8.2. Consider any possibly random function 𝜙 : R�0 × T𝑁 → R. Provided any 𝛾 > 0, we have
the estimate

‖H𝑁 (𝜙Y𝑁 )‖3/21;T𝑁 �𝛾 𝑁𝛾I1(|𝜙|
3/2 |Y𝑁 |3/2) � 𝑁𝛾+3𝜀ap/2I1(|𝜙|

3/2). (8.2)

Proof. Take t ∈ [0, 1] and 𝑥 ∈ T𝑁. For any s � 0, we define s∼ = Os,t∨𝑁−2 with Os,t = |t− s|. We have

|H𝑁
t,𝑥 (𝜙Y𝑁 ) | = |H𝑁

t,𝑥 (s−1/3
∼ s1/3

∼ 𝜙Y𝑁 ) | �
(
H𝑁

t,𝑥 (s−1
∼ )

)1/3 (
H𝑁

t,𝑥 (s1/2
∼ |𝜙|

3/2 |Y𝑁 |3/2)
)2/3

. (8.3)

The second estimate in equation (8.3) follows from first recalling the space-time heat operator H𝑁 is
integrating against the heat kernel in space-time. Thus, the second estimate in equation (8.3) is the
immediate consequence of the Holder inequality, upon viewing integration as integrating against the
heat kernel in space-time, with Holder conjugate exponents 3 and 3/2. To build off of equation (8.3),
let us treat the first factor from the far RHS of equation (8.3). Note s−1

∼ is independent of the spatial
summation against the heat kernel, and because the heat kernel is a probability measure with respect
to the forwards spatial variable, the first factor on the RHS of equation (8.3) turns into the integral of
s−1
∼ on the integration domain [0, t] ⊆ [0, 1]. Although O−1

s,t is not integrable near t, because we have
regularized Os,t with s∼, the resulting integral is logarithmic in N and therefore at most 𝐶𝛾𝑁𝛾 where
𝛾 > 0 is arbitrary. This gives

(H𝑁
t,𝑥 (s−1

∼ ))
1/3(H𝑁

t,𝑥 (s1/2
∼ |𝜙|

3/2 |Y𝑁 |3/2))2/3 = (
∫ t

0
(|t − s|−1 ∧ 𝑁2)ds)1/3(H𝑁

t,𝑥 (s1/2
∼ |𝜙|

3/2 |Y𝑁 |3/2))2/3

(8.4)

�𝛾 𝑁𝛾 (H𝑁
t,𝑥 (s1/2

∼ |𝜙|
3/2 |Y𝑁 |3/2))2/3. (8.5)

Thus, it remains to bound the heat operator H𝑁 in equation (8.5) by I1. Recall this heat operator is
integration in space-time against the heat kernel. By Proposition A.3, the heat kernel is O(𝑁−1s−1/2

∼ ).
The s−1/2

∼ factor cancels the s1/2
∼ factor in the heat operator in equation (8.5). The 𝑁−1 factor in this heat

kernel estimate makes the sum over T𝑁 into an average over T𝑁 , because |T𝑁 | � 𝑁 , thus we are left
with It(·) instead of H𝑁

t,𝑥 (s
1/2
∼ ·). As |𝜙| |Y𝑁 | � 0, we may extend It(|𝜙|

3/2 |Y𝑁 |3/2) � I1(|𝜙|
3/2 |Y𝑁 |3/2),

thus yielding the RHS of the proposed estimate from equation (8.5). Because the RHS of the proposed
estimate is independent of the original space-time variables t and x, it bounds the far LHS of equation
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(8.3) uniformly in these variables. This yields the first estimate in equation (8.2). The second inequality
follows by |Y𝑁 | � 𝑁 𝜀ap ; see Definitions 3.1 and 3.5. �

8.0.2. Localization map
We eventually apply Lemma 8.2 with 𝜙 equal to the time average of a local functional of the particle
system. Although the functional in the time average is local, its time average itself is, in principle,
completely nonlocal, because even on mesoscopic timescales the values of 𝜂-variables far away from
the support of the integrated local functional may affect the 𝜂-variables inside the support of the
integrated local functional in finite time. This is just the fact that random walks can travel arbitrarily far
in finite time. However, the probability of noninteracting random walks traveling much farther than their
expected maximal displacement vanishes exponentially fast. We extend this to the 𝜂-variables, which
are random walks that interact via exclusion. Before we give the main estimate of this localization, we
introduce convenient notation for the rest of this paper.

Definition 8.3. Provided any 𝜂 ∈ Ω and any time t � 0 and any length scale 𝔩 ∈ Z�0, define a
configuration Loct,𝔩𝜂 ∈ Ω by the following ‘trivial extension’ of the projection of 𝜂 onto Bt,𝔩 =
	−𝔏t,𝔩 ,𝔏t,𝔩
, in which 𝔏t,𝔩 = 𝑁1+𝛾0 t1/2 + 𝑁3/2+𝛾0 t + 𝑁𝛾0 𝔩 where 𝛾0 > 0 is taken as a fixed universal
constant satisfying 𝛾0 � 999−999𝜀ap ∧ 999−999𝜀RN ∧ 999−999𝜀1 ∧ 999−999𝜀RN,1:

(Loct,𝔩𝜂)𝑥 = 1𝑥∈Bt,𝔩𝜂𝑥 + 1𝑥∉Bt,𝔩 . (8.6)

Remark 8.4. We briefly explain Bt,𝔩 . Take a simple symmetric random walk of order 𝑁2 speed plus a
random order 𝑁3/2 speed asymmetry. Suppose this random walk starts outside Bt,𝔩 and let it walk for
time t. The probability that this random walk hits the set 	−𝔩, 𝔩
 ⊆ Bt,𝔩 is bounded by the probability the
maximal process/displacement is at least 𝑁1+𝛾0 t1/2+𝑁3/2+𝛾0 t. Because of the extra 𝑁𝛾0 factor, this occurs
with exponentially small probability courtesy of sub-Gaussian martingale inequalities applied to the
simple symmetric random walk with large-deviations estimates for the Poisson number of asymmetric
drift/jumps. Thus, by union bound, the probability that any of a polynomial number of such random
walks hits 	−𝔩, 𝔩
 ⊆ Bt,𝔩 is also exponentially small in N, as the subexponential bound beats the
polynomial-in-N number of random walks asymptotically.

Roughly speaking, the primary technical goal of our analysis is to reduce estimates for local func-
tionals to the same estimates but after pretending the model is at an invariant measure. The philosophy
of local equilibrium from [28], which we make precise in Lemma 8.8 and Lemma 8.9, will only succeed
for local functionals of the particle system. Thus, we want to ignore 𝜂-values outside the block Bt,𝔩 from
Definition 8.3 while affecting space-time averages of whatever functionals whose analysis we want to
reduce to local equilibrium in an asymptotically negligible manner. This is the ultimate goal of Lemma
8.6 below, for example.

We proceed with additional notation for space-time averaging operators, which we will employ for
local functionals.

Definition 8.5. Provided any timescale 𝔱av � 0, any length scale 𝔩av ∈ Z�0, and any functional 𝔣 : Ω→ R,
let us define the following where 𝔩𝔣 is the smallest nonnegative integer for which 𝔣 and the shifts 𝜏𝔩𝔣 𝔣 and
𝜏−𝔩𝔣 𝔣 have mutually disjoint supports:

ℑT
𝔱av
ℑX
𝔩av
(𝔣𝑆,𝑦) = 𝔱−1

av

∫ 𝔱av

0

∑̃𝔩av

𝑤=1
𝜏−𝔩𝔣𝑤 𝔣𝑆+𝔯,𝑦d𝔯. (8.7)

We adopt the convention that ℑT
0 and ℑX

0 and ℑX
1 are identity maps (there is morally no difference

between ℑX
1 and the identity map except for a harmless spatial shift). We will drop any identity maps

from the notation.

Let 𝒟(R�0,Ω) be the space of sample particle system paths, on which the system induces a path-
space probability measure.
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Lemma 8.6. Consider a functional 𝔣 : Ω→ R whose support is contained in the block B𝔣 = 	−𝔩, 𝔩
 ⊆
T𝑁 with 𝔩 ∈ Z�0. Provided any 𝔱av ∈ [0, 1] and 𝔩av ∈ Z�0, we have the following for any 𝜅 > 0, where
we use notation defined after:

sup𝜂 |E
dyn
𝜂 ℑT

𝔱av
ℑX
𝔩av
(𝔣0,0) − Edyn

Locℑ
T
𝔱av
ℑX
𝔩av
(𝔣0,0) | �𝜅,𝛾0 𝑁−𝜅 ‖𝔣‖𝜔;∞. (8.8)

We first introduce the parameter 𝔩tot = 99𝔩 + 99𝔩𝔩av. Let us also recall the parameter 𝛾0 > 0 from
Definition 8.3. Moreover, the expectation Edyn

· denotes the expectation with respect to the path-space
measure on 𝒟(R�0,Ω) of the particle system with the initial configuration · ∈ Ω. We take · = 𝜂 and
· = Loc = Loc𝔱av ,𝔩tot (𝜂) in the previous estimate (8.8).

Proof. Note equation (8.8) compares expectations of the same space-time average of 𝔣 with respect to
the same dynamics but with initial configurations that only disagree outside B𝔱av ,𝔩tot , so two 𝜂-processes
with fixed initial configurations that are different outside B𝔱av ,𝔩tot ; see Definition 8.3. Therefore, the LHS
of equation (8.8) is bounded above by ‖𝔣‖𝜔;∞ times the probability these two 𝜂-processes, with initial
configurations 𝜂 and Loc𝔱av ,𝔩tot (𝜂), see different 𝜂-values in Btot at any time before or at 𝔱av, under some
coupling of the two processes. Indeed, the expectations on the LHS of equation (8.8) only differ on such
event, as the time average of ℑX

𝔩av
(𝔣) evaluated at 𝔱av only depends on 𝜂 in Btot until 𝔱av. Thus, it suffices

to bound the path-space probability that the two processes disagree inBtot = 	−𝔩tot, 𝔩tot
, which contains
the support of ℑX

𝔩av
(𝔣), at any time before or at 𝔱av by O𝜅,𝛾0 (𝑁

−𝜅 ).
It is left to couple the two 𝜂-processes with initial configurations 𝜂 and Loc𝔱av ,𝔩tot (𝜂). We will not

use the basic coupling for exclusion processes, but we instead modify it slightly to be explained shortly.
We refer to the process with initial configuration 𝜂 as Species 1, and that with initial configuration
Loc𝔱av ,𝔩tot (𝜂) as Species 2.

◦ Define a discrepancy between Species 1 and Species 2 as a point x where 𝜂𝑥 = 1 in one species and
𝜂𝑥 = −1 in the other.

◦ For any jump under a Poisson clock coming from the symmetric part of the generator, we realize such
a jump from one point in T𝑁 to another as swapping 𝜂-values at those points; see the symmetric part
L𝑁 ,S in equation (1.3) of the generator L𝑁 . We couple the symmetric parts of the dynamics in Species
1 and Species 2 by coupling these ‘spin-swap’ bond clocks; Species 1 and Species 2 always swap
𝜂-variables together under symmetric clocks. This coupling can never create new discrepancies, only
transport them. Also, individual discrepancies evolve as free and symmetric random walks; under this
coupling of symmetric dynamics, with speed 𝑁2/2 a discrepancy will move as a simple symmetric
random walk suppressed by nothing, including the exclusion condition in the particle system. This
free and symmetric feature of the discrepancy walks would not be true if we instead employed the basic
coupling for the symmetric dynamics, but it is directly verifiable for this bond coupling (according to
symmetric bond clocks, a discrepancy always jumps without being blocked with equal speeds to the
left and right, because Species 1 and 2 always swap 𝜂-variables together along the activated bond,
and this moves the discrepancy along said bond).

◦ To couple clocks of asymmetric dynamics, suppose there is a particle at x in Species 1. If x is vacant
in Species 2, there is no coupling at x. If x is occupied in Species 2 and the speed of an asymmetric
jump from x is equal among both species (in both directions), we couple the jumps (so particles jump
together in the same direction); this is the basic coupling. If the asymmetry speeds of jumps from
x are not equal among the two species in at least one direction, we do not couple the jumps and let
them move independently. This difference in asymmetry speeds comes from the 𝔡-asymmetry. Thus,
it can only happen if 𝔡𝑥 takes different values between the species. As 𝔡 has support length at most 2𝔩𝔡
(see Assumption 1.3), a difference between 𝔡𝑥-values in the two species can only happen in a O(𝔩𝔡)-
length neighborhood of an already present discrepancy between the two species. The basic coupling
between particles in the two species whose asymmetry speeds are equal cannot create discrepancies;
it only introduces a speed O(𝑁3/2) random drift/killing. The ‘noncoupling’ of the asymmetry jumps
of nonequal speeds, however, can create up to two discrepancies in a single clock ring. Because these
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discrepancies can be created potentially anywhere in a length-O(𝔩𝔡) neighborhood of a discrepancy,
this introduces a ‘branching’ mechanism with uniformly bounded number of offspring plus O(𝔩𝔡) � 1
drift at speed O(𝑁3/2) (actually, it is O(𝑁), but O(𝑁3/2) is enough).

◦ To summarize, the dynamics of a discrepancy according to the previous bullet points is a branching
symmetric simple random walk of speed O(𝑁2) with a random uniformly bounded drift/killing of
speed O(𝑁3/2). Thus, it is a (nontrivially correlated) collection of a symmetric simple random walks
of speed O(𝑁2) with an additional random drift/killing with speed O(𝑁3/2). Moreover, because the
number of total discrepancies/walks is bounded by the total number of initial discrepancies, which
is at most |T𝑁 | � 𝑁 , plus the number of total ringings in two species until time 1, which is Poisson
of speed O(𝑁10), by standard tail estimates for the Poisson distribution, we have O(𝑁100)-many
discrepancies/walks outside of an event with exponentially low probability in N. (The number of
discrepancies at any time is trivially at most |T𝑁 | � 𝑁 , but it is not necessarily true that the number
of discrepancy walks we must consider is at most |T𝑁 |, because a discrepancy can be killed to let
another be born via branching, which implies the number of ‘family members’/discrepancies we must
consider can be arbitrarily large.)

According to the previous bullet points, we are left to bound the probability that O(𝑁100)-many discrep-
ancy walks end up in the support of ℑX

𝔩av
(𝔣) before time 𝔱av, where the law of these discrepancy walks is

described in the second sentence in the final bullet point above. This means that one of these walks that
starts outside B𝔱av ,𝔩tot travels into Btot. Per Remark 8.4, this probability is exponentially small in 𝑁𝛾0 and
thus at most O𝜅,𝛾0 (𝑁

−𝜅 ), so we are done. �

8.0.3. Local equilibrium
In the current section, we take advantage of the estimate in Lemma 8.6 on the localization map therein.
The first step that we will take is the following expectation estimate of the I1-term from Lemma 8.2, in
which we will take 𝜙 to be the space-time average from Definition 8.5 for a generic choice of functional
𝔣. First, we introduce useful notation.

Definition 8.7. Consider any initial probability measure 𝜇0,𝑁 on Ω. Provided any t � 0, we define
𝜇t,𝑁 to be the probability measure on Ω obtained upon evolving 𝜇0,𝑁 under the forward Kolmogorov
equation associated to the interacting particle system for time t. Let us define 𝔓t to be the Radon–
Nikodym derivative of 𝜇t,𝑁 with respect to the grand-canonical measure 𝜇0. We also define �̄�1 as the
average of 𝔓t over space-time shifts, for which we define the action 𝜏𝑦𝔓t (𝜂) = 𝔓t (𝜏𝑦𝜂) for any 𝑦 ∈ T𝑁:

�̄�1 =
∫ 1

0

∑̃
𝑦∈T𝑁

𝜏−𝑦𝔓tdt. (8.9)

In the construction above, we can certainly replace the action of 𝜏−𝑦 by 𝜏𝑦 without changing �̄�1. In
general, we can replace 𝜏−𝑦 with any bijection on T𝑁 evaluated at 𝑦 ∈ T𝑁 ; this follows immediately by
changing variables in the summation.

Lemma 8.8. Consider any 0 � 𝔱av � 1 and any 𝔩av ∈ Z�0. Consider any functional 𝔣 : Ω → R whose
support is contained in the blockB𝔣 = 	−𝔩, 𝔩
 ⊆ T𝑁 . We again define 𝔩tot = 99𝔩+99𝔩𝔩av as in Lemma 8.6.
For any 𝜅 > 0, we have the following in which we recall the Edyn expectations and Loc = Loc𝔱av ,𝔩tot (𝜂)
in Lemma 8.6, and �̄�1 in Definition 8.7:

EI1 (|ℑ
T
𝔱av
ℑX
𝔩av
(𝔣𝑆,𝑦) |

3/2) �𝜅 E0�̄�1

(
Edyn

Loc |ℑ
T
𝔱av
ℑX
𝔩av
(𝔣0,0) |

3/2
)
+ 𝑁−𝜅 ‖𝔣‖𝜔;∞. (8.10)

Proof. Let us start by computing the expectation on the far LHS of equation (8.10). Because I1 is a
deterministic and linear operator, we can move the expectation past the I1 operator; observe that what
the expectation now hits is a functional of the path-space 𝒟(R�0,Ω), namely of the 𝜂-process, starting
at time S until time 𝑆 + 𝔱av This is the same as sampling the time-S configuration and using it as the
time-zero/initial configuration for the process after ‘resetting’ time S to be time 0. Therefore, we rewrite
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the expectation of this space-time average as the path-space expectation with a fixed initial configuration
that is then sampled/taken expectation over with respect to the law of the particle system at time 𝑆 � 0.
Precisely, we deduce the following with explanation given after; we note the following explanation
additionally requires only recentering 𝔣𝑆,𝑦 and spatially shifting 𝜂𝑆 accordingly:

EI1(|ℑ
T
𝔱av
ℑX
𝔩av
(𝔣𝑆,𝑦) |

3/2) = I1

(
EEdyn

𝜏𝑦 𝜂𝑆 |ℑ
T
𝔱av
ℑX
𝔩av
(𝔣0,0) |

3/2
)
. (8.11)

To establish equation (8.11), when we rewrite the expectation of the path-space functional ℑTℑX(𝔣𝑆,𝑦)
as an expectation with respect to the path-space measure after time 𝑆 � 0, with initial configuration then
taken expectation over with respect to the law of the particle at time 𝑆 � 0, we emphasize that the inner
Edyn expectation should have an initial configuration 𝜂𝑆 instead of 𝜏𝑦𝜂𝑆 , and 𝔣0,0 on the RHS should be
𝔣0,𝑦 ; although it is now evaluated at time 0 and initial configuration 𝜂𝑆 due to our time-S shift, it is still
centered at 𝑦 ∈ T𝑁 and not at 0 ∈ T𝑁. However, the path-space expectation Edyn is invariant under any
spatial shift, because the particle system dynamic law is invariant under spatial shifts, so we may shift
the initial configuration via 𝜏𝑦 and study instead the space-time average of 𝔣0,0 rather than 𝔣0,𝑦 . We now
implement the averaging procedure from the one-block step of [28]. This starts by observing that the
inner Edyn is a function of only 𝜏𝑦𝜂𝑆 , and the function itself at which we evaluate 𝜏𝑦𝜂𝑆 is a dynamic
path-space expectation, which is itself independent of 𝑦 ∈ T𝑁 and 𝑆 � 0. Now, rewrite the RHS of
equation (8.11) as follows by noting the expectation of 𝜏𝑦𝜂𝑆 is that of 𝜏𝑦𝜂 times the Radon–Nikodym
derivative 𝔓𝑆 for the law of the particle system at time S with respect to the grand-canonical product
measure 𝜇0, where 𝜂 is distributed according to said grand-canonical measure:

I1

(
EEdyn

𝜏𝑦 𝜂𝑆 |ℑ
T
𝔱av
ℑX
𝔩av
(𝔣0,0) |

3/2
)
= I1

(
E0𝔓𝑆Edyn

𝜏𝑦 𝜂 |ℑ
T
𝔱av
ℑX
𝔩av
(𝔣0,0) |

3/2
)
. (8.12)

For the RHS of equation (8.12), inside the outermost expectation we change variables 𝜂 ↦→ 𝜏−𝑦𝜂,
and thus 𝜏𝑦𝜂 ↦→ 𝜂, per point 𝑦 ∈ T𝑁. The grand-canonical ensemble is invariant under these spatial
shifts. This places the 𝜏𝑦 operator on the Radon–Nikodym derivative 𝔓𝑆 and leaves the resulting Edyn

independent of the integration space-time variables in I1. With the Fubini theorem, this gives

I1

(
E0𝔓𝑆Edyn

𝜏𝑦 𝜂 |ℑ
T
𝔱av
ℑX
𝔩av
(𝔣0,0) |

3/2
)
= I1

(
E0 (𝜏−𝑦𝔓𝑆)Edyn

𝜂 |ℑ
T
𝔱av
ℑX
𝔩av
(𝔣0,0) |

3/2
)

(8.13)

= E0

(
I1(𝜏−𝑦𝔓𝑆) · Edyn

𝜂 |ℑ
T
𝔱av
ℑX
𝔩av
(𝔣0,0) |

3/2
)
. (8.14)

Note �̄�1 = I1(𝜏−𝑦𝔓𝑆); see Definition 8.7. Combining previous identities (8.11), (8.12) and (8.14) with
this observation gives:

EI1(|ℑ
T
𝔱av
ℑX
𝔩av
(𝔣𝑆,𝑦) |

3/2) = E0�̄�1Edyn
𝜂 |ℑ

T
𝔱av
ℑX
𝔩av
(𝔣0,0) |

3/2. (8.15)

We are left with replacing the 𝜂-variable in Edyn from the far RHS of equation (8.15) with the localization
map Loc𝔱av ,𝔩tot in Definition 8.3. For this we employ Lemma 8.6, which provides the additional 𝑁−𝜅 ‖𝔣‖𝜔;∞
term in equation (8.10). �

We will now take advantage of Lemma 8.8 by essentially removing the �̄�1 density from the RHS
of equation (8.10), upon collecting additional error terms. The mechanism for this replacement is the
relative entropy inequality, the log Sobolev inequality of [51], and an entropy production estimate, all
of which are standard and whose uses will be specified and explained below. We state the following
estimate in a general framework as both Propositions 4.6 and 4.7 require different modifications to the
RHS of equation (8.10) before applying Lemma 8.9 below.

Lemma 8.9. Take any uniformly bounded functional 𝔥 : Ω→ R whose support is contained in a subset
denoted by B. Provided any 𝜅 � 0 satisfying 𝜅 � 1 + ‖𝔥‖−1

𝜔;∞ � ‖𝔥‖
−1
𝜔;∞, we have the following (recall
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the canonical measures from Definition 4.4):

E0�̄�1 |𝔥| � 𝜅−1𝑁−2 |B|3 + sup𝜎∈RE𝜇can
𝜎,B |𝔥|. (8.16)

Proof. First, observe we may replace �̄�1 on the LHS of equation (8.16) with its projection/conditional
expectation on B, as the functional 𝔥 depends only on 𝜂-variables in B. We will let ΠB�̄�1 denote this
projection. Moreover, we may condition on the 𝜂-density on B. If 𝔭𝜎 is the probability of the support
of 𝜇can

𝜎,B under the ΠB�̄�1 measure, we get the following where Σ𝜎 ⊆ ΩB is the support of 𝜇can
𝜎,B and

in which the sum over all 𝜎 ∈ R on the RHS of equation (8.17) below is finite because only finitely
many hyperplanes Σ𝜎 ⊆ ΩB in the finite set ΩB are nonempty; note the sum over 𝜎 ∈ R of the disjoint
hyperplanes {1Σ𝜎 }𝜎∈R is equal to 1:

E0�̄�1 |𝔥| = E0ΠB�̄�1 |𝔥| =
∑

𝜎∈R
𝔭𝜎E0

((
𝔭−1
𝜎 ΠB�̄�11Σ𝜎

)
|𝔥|

)
. (8.17)

We forget any 𝜎 ∈ R for which 𝔭𝜎 = 0 on the far RHS of equation (8.17), as these terms do not show
up when we condition on all possible 𝜎-values. We now observe that the 𝜎-indexed expectation on the
far RHS of equation (8.17) is expectation of |𝔥| times the Radon–Nikodym derivative of ΠB�̄�11Σ𝜎d𝜇0
with respect to the canonical measure d𝜇can

𝜎,B. So, we may use the relative entropy inequality, which
may be found in Appendix 1.8 of [37], with a constant 𝜅 > 0, in which 𝔇𝜎

KL(·) denotes relative entropy
with respect to 𝜇can

𝜎,B onto B, which also may be found/defined in Appendix 1.8 of [37]; for the second
term on the RHS of equation (8.18) below, we estimate a sum over 𝜎 ∈ R against probabilities 𝔭𝜎 in
terms of a supremum over 𝜎 ∈ R:∑

𝜎∈R

𝔭𝜎E0

((
𝔭−1
𝜎 ΠB�̄�11Σ𝜎

)
|𝔥|

)
� 𝜅−1

∑
𝜎∈R

𝔭𝜎𝔇
𝜎
KL (𝔭

−1
𝜎 ΠB�̄�11Σ𝜎 ) + 𝜅−1 sup

𝜎∈R
log E𝜇can

𝜎,BExp(𝜅 |𝔥|).

(8.18)

We now study the RHS of equation (8.18). Below, the first bullet point basically follows the standard
probability calculations in the proof of Lemma 3.3 in [8], starting after (3.20) therein, and the usual
one-block step in [28]. The second bullet point is calculus.

◦ We first analyze the first term on the RHS of equation (8.18). By the log Sobolev inequality with
diffusive constant O(|B|2) in Theorem A of [51], we bound the 𝔇𝜎

KL term by O(|B|2) times the
Dirichlet form of 𝔭−1

𝜎 ΠB�̄�11Σ𝜎 . The resulting convex combination over 𝜎 of these Dirichlet forms
is, by standard probability, the Dirichlet form of ΠB�̄�1 with respect to the grand-canonical measure
𝜇0 projected on B. By standard entropy production as in Lemma 4.1 in [19], without the need for
boundary considerations, and Proposition 4.3 in [19], this is then controlled by 𝑁−2 |B|. This gives an
upper bound for the first term on the RHS of equation (8.18) given by the first term on the RHS of
the proposed estimate (8.16).

◦ Because 𝜅 � ‖𝔥‖−1
𝜔;∞ by assumption, the argument 𝜅 |𝔥| in the exponential in equation (8.18) is

uniformly bounded. Since the exponential function is uniformly Lipschitz on uniformly bounded sets,
for �̃� > 0 universal and independent of 𝜅,

log E𝜇can
𝜎,BExp(𝜅 |𝔥|) � log E𝜇can

𝜎,B (Exp(0) + �̃�𝜅 |𝔥|) = log E𝜇can
𝜎,B (1 + �̃�𝜅 |𝔥|) � �̃�𝜅 |𝔥|. (8.19)

Dividing by 𝜅 estimates the second term on the RHS of equation (8.18) by the second term in the
proposed estimate (8.16).

This completes the proof. �

8.0.4. Equilibrium estimates
We now record estimates on stationary particle systems that will be crucial to study expectations of
space-time averages provided our reduction to local equilibrium in Lemma 8.9. The first is a spatial
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average estimate, which exploits spatially fluctuating behavior of local functionals at the stationary
measure. This will be used as a large-deviations-type estimate in future applications.

Lemma 8.10. Suppose {𝔣𝔧}𝔧�0 are uniformly bounded, and their respective supports are contained inside
{B𝔧}𝔧�0. Suppose {B𝔧}𝔧�0 are mutually disjoint and that 𝔣𝔧 vanishes in expectation with respect to any
canonical measure on its support for every 𝔧. We have the following for any 𝛾, 𝜅 > 0, where probability
and expectation below are both with respect to any canonical measure on B1 ∪ . . . ∪ B𝔍, and E𝔍 is the
event where the average of 𝔣1, . . . , 𝔣𝔍 exceeds 𝑁𝛾 |𝔍|−1/2 max𝔧=1,...,𝔍 ‖𝔣𝔧‖𝜔;∞ in absolute value:

P
(
E𝔍

)
�𝛾,𝜅 𝑁−𝜅 . (8.20)

Proof. We note 𝔣𝔧 are conditionally mean zero. Indeed, their supports are mutually disjoint, and each is
mean zero with respect to every canonical measure; for any canonical measure on a set in T𝑁, condi-
tioning on one subset induces a convex combination of canonical measures on any other nonintersecting
subset. Standard concentration inequalities like the Azuma martingale inequality, therefore give that the
average of 𝔣1, . . . , 𝔣𝔍 is sub-Gaussian with zero mean and variance of order |𝔍|−1 max𝔧=1,...,𝔍 ‖𝔣𝔧‖2𝜔;∞,
from which the proposed estimate follows by pretending that this average of 𝔣1, . . . , 𝔣𝔍 functionals is
Gaussian with zero mean and variance |𝔍|−1 max𝔧=1,...,𝔍 ‖𝔣𝔧‖2𝜔;∞ along with standard Gaussian moment
generating function control. This yields an exponentially small (in 𝑁𝛾) estimate for P(E𝔍), which is
exponentially small in 𝑁𝛾 and thus O𝛾,𝜅 (𝑁

−𝜅 ) for any 𝜅 > 0. �

We proceed with equilibrium estimates for space-time averages instead of just spatial averages. The
primary advantage for this is the ability to take advantage of the ‘more ergodic’ time averaging of
statistics of the particle system; recall the time scaling is 𝑁2 whereas the spatial scaling is N. However,
the following estimates only hold in a second moment at best, a priori, and thus quite far from the large
deviations scale of Lemma 8.10; see Proposition 7 and Corollary 1 in [24] for more details.

Lemma 8.11. Suppose that 𝔣 is a uniformly bounded functional, and its support is contained in B ⊆ T𝑁.
We additionally assume that the expectation of 𝔣 with respect to any canonical measure on B is equal
to zero. Provided any timescale 𝔱av � 0 and any length scale 𝔩av ∈ Z�0 and any 𝜅 > 0, we have the
following estimate that we clarify/explain afterwards and for which we recall the notation of Definition
8.3, Definition 8.5, and Lemma 8.6:

sup
𝜎∈R

(
E𝜎Edyn

Loc |ℑ
T
𝔱av
ℑX
𝔩av
(𝔣0,0) |

2
)1/2

�𝜅 𝑁−1𝔱−1/2
av 𝔩−1/2

av |B|‖𝔣0,0‖𝜔;∞ + 𝑁−𝜅 . (8.21)

We have used the abbreviation Loc = Loc𝔱av ,𝔩tot𝜂, where 𝔩tot = 99|B| + 99|B|𝔩av is much larger than the
support ofℑX

𝔩av
(𝔣0,0). Observe Loc is only a function of 𝜂-variables on the neighborhoodB𝔱av ,𝔩tot ; therefore,

so is the inner expectation. The outer expectation on the LHS of equation (8.21) is the expectation over
these 𝜂-variables in B𝔱av ,𝔩tot , sampled from canonical ensemble on B𝔱av ,𝔩tot of 𝜂-density equal to 𝜎. In
particular, inside the supremum on the LHS of equation (8.21) is the expectation of the square of the
space-time average of 𝔣0,0, where the initial configuration for the space-time average/particle system has
𝜂-variables inB𝔱av ,𝔩tot sampled via the canonical ensemble of parameter 𝜎 onB𝔱av ,𝔩tot and has 𝜂-variables
outside B𝔱av ,𝔩tot deterministically equal to 1.

Proof. Suppose that instead of the Ω-valued process/particle system considered in this paper that the
particle system in question in Lemma 8.11 is actually valued in ΩB2 with B2 = B𝔱av ,𝔩tot . In particular,
suppose the particle system/particle random walks are B𝔱av ,𝔩tot -periodic, in which case the particle/𝜂
configuration (on B𝔱av ,𝔩tot ) in equation (8.21) is distributed according to canonical measure on B𝔱av ,𝔩tot .
Observe this B𝔱av ,𝔩tot -periodic system has canonical measures as invariant measures; this follows by
the same reason that the T𝑁 -periodic system has canonical measures on T𝑁 as invariant measures.
Therefore, the Kipnis–Varadhan inequality in Appendix 1.6 of [37] implies that, uniformly in 𝜎, the
double expectation on the LHS of equation (8.21) is bounded above by O(𝔱−1

av ) times a squared Sobolev
norm of the spatial averageℑX

𝔩av
(𝔣0,0). From Proposition 6 in [24], said squared Sobolev norm ofℑX

𝔩av
(𝔣0,0)
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is O(𝑁−2𝔩−1
av ‖𝔣‖

2
𝜔;∞|B|

2), where |B| is the support length of 𝔣. Thus, we have established the proposed
estimate (8.21) if we can replace theΩ-valued/‘original’ particle system with theB𝔱av ,𝔩tot -periodic system,
thereby forgetting 𝜂 outside B𝔱av ,𝔩tot .

We now make the aforementioned replacement and estimate the resulting error, which will provide
the 𝑁−𝜅 -term on the RHS of equation (8.21). We will use a coupling argument similar to the proof of
Lemma 8.6. In what follows, we refer to the Ω-valued/‘original’ particle system as Species 1, and we
refer to the B𝔱av ,𝔩tot -periodic system appearing below as Species 2.
◦ As in the proof of Lemma 8.6, the symmetric dynamic in Species 1 may be thought of as attaching

Poisson clocks to bonds in T𝑁 connecting nearest neighbors, where the ringing of the Poisson clock
associated to a given bond corresponds to swapping 𝜂-variables at the points attached to that bond.
For Species 2, let us also construct the symmetric dynamic as attaching Poisson clocks to bonds in
B𝔱av ,𝔩tot that connect points that are distance 1 apart with respect to the geodesic/torus distance on
B𝔱av ,𝔩tot ; this includes the maximum and minimum of B𝔱av ,𝔩tot , for example. For those bonds that appear
in both Species 1 and Species 2, we will use the same bond clocks, so that shared/common bonds
always swap 𝜂-spins together. For bonds which are shared between Species 1 and Species 2, we use
the modified basic coupling for the respective asymmetric dynamics from the proof of Lemma 8.6
(to account for the 𝔡-asymmetry). All other bonds are then chosen arbitrarily/independently.

◦ Observe that the error in the LHS of equation (8.21) after replacing the Ω-valued/‘original’ system
with the B𝔱av ,𝔩tot -periodic system is O(‖𝔣‖2𝜔;∞) � 1 times the probability Species 1 and Species 2,
under the coupling in the previous bullet point, have discrepancy inside the support of ℑX

𝔩av
(𝔣0,0),

similar to the proof of Lemma 8.6. Below, we identify a discrepancy in B𝔱av ,𝔩tot with its entire ancestry,
similar to the final bullet point in the proof of Lemma 8.6 when we considered a branching random
walk as a collection of correlated random walks. In particular, even if the discrepancy was born from
a branching, we identify it as a random walk that followed its ancestors until said branching, after
which it becomes its own branching random walk.

◦ Suppose that we observe a discrepancy in the support of ℑX
𝔩av
(𝔣0,0), and therefore in B𝔱av ,𝔩tot . This

discrepancy must have been born at a point where the clocks are not all coupled between Species
1 and Species 2 (like in the proof of Lemma 8.6, coupled clocks cannot create discrepancies). By
construction, such points are initially within O(𝔩𝔡) of the boundary of B𝔱av ,𝔩tot . This discrepancy must
have propagated into the support of ℑX

𝔩av
(𝔣0,0) by length-1 jumps from O(𝔩𝔡) of said boundary. Third,

while said discrepancy in B𝔱av ,𝔩tot travels to the support of ℑX
𝔩av
(𝔣0,0), when it gets O(𝔩𝔡) away from

the boundary of B𝔱av ,𝔩tot , it then travels according to the branching random walk that we described in
the last bullet point in the proof of Lemma 8.6 because the different boundary conditions in the two
species become irrelevant when we are in B𝔱av ,𝔩tot and beyond O(𝔩𝔡) of its boundary. Therefore, we see
said branching random walk travel at least the distance from within O(𝔩𝔡) of the boundary of B𝔱av ,𝔩tot

to the support of ℑX
𝔩av
(𝔣0,0), if we see a discrepancy in the support of ℑX

𝔩av
(𝔣0,0) at all. (It may be the

case that one of these discrepancy random walks returns to within O(𝔩𝔡) of the boundary of B𝔱av ,𝔩tot ,
where it does not travel like the aforementioned branching random walk, but in this case, as it travels
into the support of ℑX

𝔩av
(𝔣0,0) we just wait for it to get beyond O(𝔩𝔡) of said boundary again.) Thus,

the probability that we see any discrepancy in the support of ℑX
𝔩av
(𝔣0,0) is controlled by random walk

probabilities and a large deviations bound for the number of discrepancy walks as in the last bullet
point in the proof of Lemma 8.6.

This completes the proof. �

8.0.5. Spatial replacement
We introduce a set of replacement estimates that allow us to introduce space-time averaging for a
functional that is multiplied by Y𝑁 and the heat kernel while estimating the error in doing so.
Definition 8.12. Consider any functional 𝔣 : Ω → R and any pair of length scales 𝔩, 𝔩 ′ ∈ Z�0. Define
a transfer-of-length-scale operator 𝔇X

𝔩,𝔩′ (𝔣) = ℑX
𝔩 (𝔣) − ℑ

X
𝔩′ (𝔣), where the ℑX operator, with identity time

average ℑT operator, is from Definition 8.5.
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Lemma 8.13. Consider any 𝔣 : Ω→ R whose support has length at most 𝔩𝔣 along with any length scale
|𝔩 |𝔩𝔣 � 𝔩𝑁 with 𝔩𝑁 from Definition 3.1. For any t � 0, we have the following in which we let 𝔩 = |𝔩 |𝔩𝔣 in
the statement and proof of this result:

E‖H𝑁 (𝔇X
0,𝔩 (ℑ

T
t (𝔣𝑆,𝑦))Y𝑁

𝑆,𝑦)‖1;T𝑁 � 𝑁−
1
2+𝜀RN+𝜀ap ‖𝔣‖𝜔;∞ + 𝑁−

1
2+5𝜀ap 𝔩1/2E‖H𝑁 (|ℑT

t (𝔣𝑆,𝑦) |)‖1;T𝑁 .

(8.22)

Remark 8.14. The assumption |𝔩 |𝔩𝔣 � 𝔩𝑁 will be important because we need spatial regularity of Y𝑁

on length scale |𝔩 |𝔩𝔣, and we only guarantee this if |𝔩 |𝔩𝔣 � 𝔩𝑁 by the constructions in Definition 3.1
and Definition 3.5. We will actually soften moderately the assumption |𝔩 |𝔩𝔣 � 𝔩𝑁 in a later ‘adapted’
application of Lemma 8.13, namely in the proof of Lemma 11.1, with explanation. The first term on
the RHS of equation (8.22) would not change if 𝔩 = |𝔩 |𝔩𝔣 ≈ 𝔩𝑁 𝑁𝛾 for 𝛾 > 0 small; only the second one
slightly would.

Proof. The 𝔇X-term on the LHS of equation (8.22) may be realized as an average of spatial gradients
of 𝔣 on length scales that are at most |𝔩 |. Indeed, the ℑX(𝔣)-term defining the 𝔇X-term on the LHS of
equation (8.22) is an average of spatial translations of 𝔣 with length scale at most |𝔩 |, and the difference of
each spatial translation with 𝔣 is a spatial gradient of 𝔣 of the same length scale. Thus, it suffices to prove
equation (8.22) but replacing 𝔇X

0,𝔩 on the LHS of equation (8.22) by ∇X
𝔩′ for any |𝔩 ′ | � 𝔩 = |𝔩 |𝔩𝔣. Letting 𝔩 ′

be such a length scale, we start with the following discrete-type Leibniz rule; it may be checked directly:

‖H𝑁 (∇X
𝔩′ℑ

T
t (𝔣𝑆,𝑦)Y𝑁

𝑆,𝑦)‖1;T𝑁 = ‖H𝑁 (∇X
𝔩′ (ℑ

T
t (𝔣𝑆,𝑦)Y𝑁

𝑆,𝑦−𝔩′ )) −H𝑁 (ℑT
t (𝔣𝑆,𝑦)∇

X
𝔩′Y

𝑁
𝑆,𝑦−𝔩′ ) ‖1;T𝑁 (8.23)

� ‖H𝑁 (∇X
𝔩′ (ℑ

T
t (𝔣𝑆,𝑦)Y𝑁

𝑆,𝑦−𝔩′ ))‖1;T𝑁 + ‖H𝑁 (ℑT
t (𝔣𝑆,𝑦)∇

X
𝔩′Y

𝑁
𝑆,𝑦−𝔩′ ) ‖1;T𝑁 .

(8.24)

The second line follows by the triangle inequality for ‖‖1;T𝑁 and linearity of expectation. Note the
additional spatial shift in Y𝑁 follows from the discrete nature of the spatial gradients; if we considered
instead an ‘infinitesimal’ length scale, this shift would disappear as 𝔩 ′ → 0 and we would recover the
usual Leibniz rule. We will now estimate each of the terms in equation (8.24). For the first term, we
may employ the heat operator gradient estimate in Proposition A.3 along with the estimate |Y𝑁 | � 𝑁 𝜀ap

that follows via Definitions 3.1 and 3.5; this estimates the first term in (8.24) by moving ∇X onto the
macroscopically smooth H𝑁 :

‖H𝑁 (∇X
𝔩′ (ℑ

T
t (𝔣𝑆,𝑦)Y𝑁

𝑆,𝑦−𝔩′ ))‖1;T𝑁 � ‖Y𝑁 ‖1;T𝑁 ‖𝔣‖𝜔;∞𝑁−1 |𝔩 ′ | � 𝑁−
1
2+𝜀RN+𝜀ap ‖𝔣‖𝜔;∞, (8.25)

since any time average is uniformly bounded by its input |ℑT(𝔣) | � ‖𝔣‖𝜔;∞, since |Y𝑁 | � 𝑁 𝜀ap and
since |𝔩 ′ | � |𝔩 | � |𝔩𝑁 | = 𝑁1/2+𝜀RN ; see Definitions 3.1 and 3.5. Thus, we are left to estimate the second
term in equation (8.24). Observe Y𝑁 = 0 or Y𝑁 = Z𝑁. The former case is trivial, and the second case
implies Z𝑁 has a priori spatial regularity on length scale 𝔩 ′ since |𝔩 ′ | � |𝔩 | � 𝔩𝑁 ; see Definitions 3.1
and 3.5. This spatial regularity controls the gradient in the second term in equation (8.24) uniformly in
space-time, so

‖H𝑁 (ℑT
t (𝔣𝑆,𝑦)∇

X
𝔩′Y

𝑁
𝑆,𝑦−𝔩′ ) ‖1;T𝑁 � ‖∇

X
𝔩′Y

𝑁 ‖1;T𝑁 ‖H𝑁 (|ℑT
t (𝔣𝑆,𝑦) |)‖1;T𝑁

� 𝑁−
1
2+5𝜀ap |𝔩 ′ |

1
2 ‖H𝑁 (|ℑT

t (𝔣𝑆,𝑦) |)‖1;T𝑁 .

As |𝔩 ′ | � 𝔩, we ultimately deduce that the second term in equation (8.24) is bounded by the second term
in equation (8.22), so we are done. �
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8.0.6. Multiscale time replacement
The last preliminary estimates we introduce will serve important for replacing functionals and their
spatial averages with their respective time averages. We emphasize that such replacement by mesoscopic
time average is difficult because of the poor time regularity of the Y𝑁 process against which we
multiply the functionals/spatial averages that we want to replace with their respective time averages.
This ultimately leads us to a multiscale replacement, which, per standard multiscale analysis, forces
us to simultaneously take advantage of progressively improving estimates for space-time averages on
progressively larger timescales; see equation (8.21) and its dependence in the timescale 𝔱av therein. First,
some convenient notation.
Definition 8.15. Consider any 𝔣 : Ω→ R and any pair of timescales 𝔱, 𝔱′ � 0. We define the transfer-of-
timescale operator 𝔇T

𝔱,𝔱′ (𝔣) = ℑT
𝔱 (𝔣) −ℑ

T
𝔱′ (𝔣), where ℑT is defined in Definition 8.5 by taking the identity

spatial average/𝔩av = 0 therein.
The first step we take is the introduction of a time average with respect to some timescale, which we

take as the microscopic timescale 𝑁−2 in the following preliminary estimate. We emphasize that the fol-
lowing estimate is established by an integration-by-parts-type calculation; in order to estimate the inte-
grated time gradient of a functional, we will move such time gradient onto the other factors/integrands.
We then estimate these time gradients along with another pair of ultimately negligible ‘short-time’
boundary terms/integrals. We note that the proof of the following is a time-version of Lemma 8.13,
though it is somewhat more involved because time gradients of Y𝑁 may cross the time at which Y𝑁

goes from being equal to Z𝑁 to when it is zero.
Lemma 8.16. Consider any functional 𝔣 : Ω→ R and the timescales 𝔱−∞ = 0 and 𝔱0 = 𝑁−2. Provided
any 𝛾 > 0, we have

E‖H𝑁 (𝔇T
𝔱−∞ ,𝔱0
(𝔣𝑆,𝑦)Y𝑁

𝑆,𝑦)‖1;T𝑁 �𝛾 𝑁−2+𝛾+𝜀ap ‖𝔣‖𝜔;∞ + 𝑁−1/2+3𝜀ap E‖H𝑁 (|𝔣𝑆,𝑦 |) ‖1;T𝑁 . (8.26)

Proof. Observe the 𝔇-operator on the LHS of equation (8.26) is a difference between a scale 𝑁−2 time
average and 𝔣 itself, then multiplied by Y𝑁 and integrated against the heat kernel defining H𝑁 . Thus, it
is an average of time gradients of 𝔣 with respect to timescales that are between 𝔱−∞ = 0 and 𝔱0 = 𝑁−2.
We then estimate time-gradients with respect to these timescales uniformly over said timescales. In
particular, it suffices to get, for any 𝛾 > 0:

sups∈[0,𝑁 −2 ]E‖H𝑁 (∇T
s 𝔣𝑆,𝑦Y𝑁

𝑆,𝑦)‖1;T𝑁 �𝛾 𝑁−2+𝛾+𝜀ap ‖𝔣‖𝜔;∞ + 𝑁−1/2+3𝜀ap E‖H𝑁 (|𝔣𝑆,𝑦 |) ‖1;T𝑁 . (8.27)

We now write the following Leibniz-rule-type identity, which is a time version of equation (8.24);
because we are taking time-gradients with respect to positive timescales, instead of differentiating on
infinitesimal timescales, the following identity includes additional time shifts that would disappear if we
took the timescale s to zero. We emphasize, however, that the following identity may be easily checked
just by expanding time-gradients on the RHS of the first line below and cancelling terms:

‖H𝑁 (∇T
s 𝔣𝑆,𝑦Y𝑁

𝑆,𝑦)‖1;T𝑁 = ‖H𝑁
(
∇T

s (𝔣𝑆,𝑦Y𝑁
𝑆−s,𝑦)

)
−H𝑁

(
𝔣𝑆,𝑦∇

T
s Y𝑁

𝑆−s,𝑦

)
‖1;T𝑁 (8.28)

� ‖H𝑁
(
∇T

s (𝔣𝑆,𝑦Y𝑁
𝑆−s,𝑦)

)
‖1;T𝑁 + ‖H𝑁

(
𝔣𝑆,𝑦∇

T
−sY𝑁

𝑆,𝑦

)
‖1;T𝑁 . (8.29)

The second line (8.29) follows by the triangle inequality along with tautologically rewriting the Y𝑁

gradient. Let us now estimate each term in equation (8.29) uniformly in the allowed timescales s.
For the first term in equation (8.29), we use Proposition A.3 and a priori upper bounds for Y𝑁 from
Definitions 3.1 and 3.5 to get the following deterministic estimate for any 𝛾 > 0, which moves ∇T onto
the macroscopically smooth (in time) heat operator H𝑁 :

‖H𝑁
(
∇T

s (𝔣𝑆,𝑦Y𝑁
𝑆−s,𝑦)

)
‖1;T𝑁 �𝛾 𝑁𝛾s‖𝔣Y𝑁 ‖1;T𝑁 � 𝑁−2+𝛾+𝜀ap ‖𝔣‖𝜔;∞. (8.30)
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Observe that the far RHS of equation (8.30) is the first term on the RHS of equation (8.26), so we are
left to show the second term in equation (8.29) is controlled by the RHS of equation (8.26). To this end,
by construction in Definitions 3.1 and 3.5, we have, for I = 𝔱st + [0, s], that

‖H𝑁
(
𝔣𝑆,𝑦∇

T
−sY𝑁

𝑆,𝑦

)
‖1;T𝑁 � ‖H𝑁

(
𝔣𝑆,𝑦 (∇

T
−sY𝑁

𝑆,𝑦)1𝑆∉I
)
‖1;T𝑁 + ‖H𝑁

(
𝔣𝑆,𝑦 (∇

T
−sY𝑁

𝑆,𝑦1𝑆∈I)
)
‖1;T𝑁

(8.31)

� ‖𝔣‖𝜔;∞‖(∇
T
−sY𝑁

𝑆,𝑦)1𝑆∉I‖1;T𝑁 + ‖H𝑁
(
𝔣𝑆,𝑦 (∇

T
−sY𝑁

𝑆,𝑦)1𝑆∈I
)
‖1;T𝑁 (8.32)

� ‖𝔣‖𝜔;∞‖∇
T
−sZ𝑁 ‖𝔱st;T𝑁 + ‖H𝑁

(
𝔣𝑆,𝑦 (∇

T
−sY𝑁

𝑆,𝑦)1𝑆∈I
)
‖1;T𝑁 , (8.33)

where the last inequality follows by the observation s � 0 implies ∇T
−sY𝑁 = ∇T

−sZ𝑁 before time 𝔱st,
and after time 𝔱st + s, we have ∇T

−sY𝑁 = 0 (see Definition 3.5). We now take expectations in (8.33).
For the first term, note ‖𝔣‖𝜔;∞-factor is constant. By Lemma A.6, with overwhelming probability, we
have ‖∇T

−sZ𝑁 ‖𝔱st;T𝑁 �𝛾 𝑁−1/2+𝛾 ‖Z𝑁 ‖𝔱st;T𝑁 with 𝛾 > 0 arbitrary but fixed and for any 0 � s � 𝑁−2.
On the complement of this event, by construction of 𝔱st in Definition 3.1, we know deterministically
that ‖∇T

−sZ𝑁 ‖𝔱st;T𝑁 � 𝑁 𝜀ap . Thus, again since ‖Z𝑁 ‖𝔱st;T𝑁 � 𝑁 𝜀ap by Definition 3.1, for the first term in
equation (8.33),

E‖𝔣‖𝜔;∞‖∇
T
−sZ𝑁 ‖𝔱st;T𝑁 �𝛾 𝑁−1/2+𝛾 ‖𝔣‖𝜔;∞E‖Z𝑁 ‖𝔱st;T𝑁 + 𝑁−100+𝜀ap ‖𝔣‖𝜔;∞ � 𝑁−1/2+𝛾+𝜀ap ‖𝔣‖𝜔;∞,

(8.34)

so it remains to estimate the expectation of the second term in equation (8.33). For this, we recall that
|Y𝑁 | � 𝑁 𝜀ap by construction in Definitions 3.1 and 3.5. So by equation (A.5) for I = 𝔱st = [0, s], the
second term in equation (8.33) is controlled by 𝑁 𝜀ap ‖𝔣‖𝜔;∞ times the length |I| = s � 𝑁−2 since H𝑁

integrates, in time over I, the spatial contractions H𝑁 ,X:

‖H𝑁
(
𝔣𝑆,𝑦 (∇

T
−sY𝑁

𝑆,𝑦)1𝑆∈I
)
‖1;T𝑁 � |I|‖𝔣‖𝜔;∞‖Y𝑁 ‖1;T𝑁 � 𝑁−2+𝜀ap ‖𝔣‖𝜔;∞. (8.35)

Combining the previous two displays with equation (8.33) along with equations (8.29) and (8.30) gives
equation (8.27), so we are done. �

The second step we take is the following multiscale estimate of this discussion. Its proof is basically
that of Lemma 8.16.

Lemma 8.17. Consider the set IT,1 of timescales in Definition 3.1; set 𝔱𝔧 = 𝑁−2+𝔧𝜀ap ∈ IT,1 for indices
𝔧 � 0. Provided any pair of adjacent timescales 𝔱𝔧 and 𝔱𝔧+1 satisfying 𝔱𝔧, 𝔱𝔧+1 � 𝑁−1, we have the following
estimate provided any 𝛾 > 0:

E‖H𝑁 (𝔇T
𝔱𝔧 ,𝔱𝔧+1
(𝔣𝑆,𝑦)Y𝑁

𝑆,𝑦)‖1;T𝑁 �𝛾 𝑁−1+𝛾+𝜀ap ‖𝔣‖𝜔;∞ + 𝑁3𝜀ap𝔱1/4
𝔧+1 E‖H𝑁 (|ℑT

𝔱𝔧
(𝔣𝑆,𝑦) |)‖1;T𝑁 . (8.36)

Provided any 𝔍 ∈ Z�1 with 𝔱𝔍 � 𝑁−1, we additionally have the following the estimate again for any
𝛾 > 0:

E‖H𝑁 (𝔇T
𝔱0 ,𝔱𝔍
(𝔣𝑆,𝑦)Y𝑁

𝑆,𝑦)‖1;T𝑁 �𝛾 𝑁−1+𝛾+𝜀ap |𝔍|‖𝔣‖𝜔;∞ + |𝔍| sup
0�𝔧<𝔍

𝑁3𝜀ap𝔱1/4
𝔧+1 E‖H𝑁 (|ℑT

𝔱𝔧
(𝔣𝑆,𝑦) |)‖1;T𝑁 .

(8.37)

Proof. The second estimate (8.37) is an immediate consequence of equation (8.36) courtesy of the
following observations.
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◦ Observe 𝔇T
𝔱0 ,𝔱𝔍

is a telescoping sum of |𝔍|-many 𝔇T
𝔱𝔧 ,𝔱𝔧+1

terms.
◦ Plugging the aforementioned telescoping sum into the LHS of equation (8.37), we apply the triangle

inequality for ‖‖1;T𝑁 and linearity of expectation, which implies the LHS of equation (8.37) is at most
|𝔍| times the supremum of the RHS of equation (8.36) over 0 � 𝔧 < 𝔍.

We will now prove equation (8.36). This starts by the following computation of the 𝔇T difference
operator on the LHS of equation (8.36). The next identity follows from observing that because 𝔱𝔧+𝟞 is
a positive integer multiple of 𝔱𝔧 by assumption/choice of 𝜀ap in Definition 3.1, we may write the time
average on the timescale 𝔱𝔧+1 as the average of 𝔱𝔧+1𝔱−1

𝔧 many time averages on the timescale 𝔱𝔧, each of
these time averages carrying a time shift given by an integer multiple of 𝔱𝔧. This resembles the fact that
an average of 10 terms can be written as an average of 5 ‘other’ terms, where each of the 5 ‘other’ terms
is an average of pairs of the 10 terms with neighboring indices, for example. Ultimately, we use this
representation to rewrite𝔇T as an average of time-gradients of the time average on the smaller timescale
𝔱𝔧; the second step requires putting the first term in the middle of equation (8.38) into the average:

𝔇T
𝔱𝔧 ,𝔱𝔧+1
(𝔣𝑆,𝑦) = ℑT

𝔱𝔧
(𝔣𝑆,𝑦) −

∑̃
0�𝔨�𝔱𝔧+1𝔱−1

𝔧 −1
ℑT
𝔱𝔧
(𝔣𝑆+𝔨𝔱𝔧 ,𝑦) = −

∑̃
0�𝔨�𝔱𝔧+1𝔱−1

𝔧 −1
∇T
𝔨𝔱𝔧
ℑT
𝔱𝔧
(𝔣𝑆,𝑦). (8.38)

By the triangle inequality, to establish equation (8.36), it suffices to prove the estimate∑̃
0�𝔨�𝔱𝔧+1𝔱−1

𝔧 −1

E‖H𝑁 (∇T
𝔨𝔱𝔧
ℑT
𝔱𝔧
(𝔣𝑆,𝑦)Y𝑁

𝑆,𝑦)‖1;T𝑁 �𝛾 𝑁−1+𝛾+𝜀ap ‖𝔣‖𝜔;∞ + 𝑁3𝜀ap𝔱1/4
𝔧+1 E‖H𝑁 (|ℑT

𝔱𝔧
(𝔣𝑆,𝑦) |)‖1;T𝑁 .

(8.39)

We may certainly replace the averaged sum on the LHS of equation (8.39) with a supremum over
the same index set and prove the resulting estimate. Consider any 𝔨 in the index set on the LHS of
equation (8.39). Similar to equation (8.29), we write the time gradient on the LHS of equation (8.39) as
∇TℑT(𝔣)Y𝑁 = ∇T (ℑT(𝔣)Y𝑁 ) − ℑT(𝔣)∇TY𝑁 with an additional time shift in Y𝑁 that ultimately turns
into reversing the timescale for the time gradient of Y𝑁 . Again, similar to equation (8.29), this and the
triangle inequality give the estimate

‖H𝑁 (∇T
𝔨𝔱𝔧
ℑT
𝔱𝔧
(𝔣𝑆,𝑦)Y𝑁

𝑆,𝑦)‖1;T𝑁 � ‖H𝑁 (∇T
𝔨𝔱𝔧
(ℑT

𝔱𝔧
(𝔣𝑆,𝑦)Y𝑁

𝑆−𝔨𝔱𝔧 ,𝑦
))‖1;T𝑁 + ‖H𝑁 (ℑT

𝔱𝔧
(𝔣𝑆,𝑦)∇

T
−𝔨𝔱𝔧

Y𝑁
𝑆,𝑦)‖1;T𝑁 .

(8.40)

We are now left with estimating each term on the RHS of equation (8.40). To this end, we will follow
the calculation (8.30) from the proof of Lemma 8.16 and apply Proposition A.3 but with s in equation
(8.30) replaced by 𝔨𝔱𝔧. Because 𝔨 � 𝔱𝔧+1𝔱−1

𝔧 −1, we may deduce the timescale inequality 𝔨𝔱𝔧 � 𝔱𝔧+1 � 𝑁−1.
Ultimately, we establish the following deterministic estimate provided any 𝛾 > 0:

‖H𝑁
(
∇T
𝔨𝔱𝔧
(ℑT

𝔱𝔧
(𝔣𝑆,𝑦)Y𝑁

𝑆,𝑦)
)
‖1;T𝑁 �𝛾 𝑁𝛾𝔨𝔱𝔧‖𝔣Y𝑁 ‖1;T𝑁 � 𝑁𝛾𝔱𝔧+1‖𝔣Y𝑁 ‖1;T𝑁 � 𝑁−1+𝛾+𝜀ap ‖𝔣‖𝜔;∞.

(8.41)

We emphasize the final inequality in equation (8.41), similar to equation (8.30), requires the a priori
bound |Y𝑁 | � 𝑁 𝜀ap that follows via definition of Y𝑁 in Definition 3.5 and of 𝔱st in Definition 3.1.
We now move to the second term on the RHS of equation (8.40). For this, we follow the estimate for
the second term in equation (8.29) given in the proof of equation (8.26). In particular, we start with
the calculation giving equation (8.33) but with s therein and in the set I replaced by 𝔨𝔱𝔧 and proceed
verbatim. The only difference is that instead of using Lemma A.6 to estimate ∇TY𝑁 before time 𝔱st, we
instead use the a priori spatial regularity estimate defining 𝔱st for Y𝑁 ; see Definitions 3.1 and 3.5. Also,
the final display in the proof of Lemma 8.16 should have its far RHS replaced with 𝑁−1+𝜀ap , because in
this case |I| = 𝔨𝔱𝔧 � 𝔱𝔧+1 � 𝑁−1 (while before we used |I| � 𝑁−2), but this does not change the validity
of the lemma. �
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9. Boltzmann–Gibbs principle I – proof of proposition 4.6

This section consists of many technical gymnastics and applications of the preliminary ingredients
in Section 8. To clarify the discussion, we will present the main ingredients needed for the proof of
Proposition 4.6 with explanations about their respective statements and proofs. We then combine these
ingredients to deduce Proposition 4.6 and afterwards provide the proofs for each.

9.0.1. Spatial average
The first step we take is replacement of the fluctuation S𝜀1 (𝜏𝑦𝜂𝑆) inside the heat operator on the LHS
of equation (4.7) by spatial average on length scale 𝑁1/6. The choice of this length scale is motivated
as follows. We first want to choose the length scale long enough so that we may exploit cancellations in
spatial averages; see Lemmas 8.10 and 8.11. However, the larger the length scale we pick, the larger the
error in such a replacement. It turns out 𝑁1/6 is an appropriate compromise.

In the following Lemma 9.1, the importance of the fraction 6/25 is an upper bound for the length scale
exponent 1/6 plus the 𝜀1 exponent 1/14. The following bound roughly follows by a summation-by-parts
argument; it controls the difference between the S-term and its spatial average, after multiplying by Y𝑁

and H𝑁 and integrating in space-time, by regularity of Y𝑁 and H𝑁 . The only other input for Lemma 9.1
is an explicit formula for the spatial gradients of Y𝑁 in terms of the particle system to estimate its spatial
regularity explicitly; Lemma 8.13 is not enough. Recall the transfer-of-spatial scales in Definition 8.12.

Lemma 9.1. Define the length scale 𝔩1 = 𝑁1/6. We have the following estimate in which 𝔢 : Ω → R is
described afterwards:

‖H𝑁
𝑇 ,𝑥 (𝑁

1/2𝔇X
0,𝔩1 (S𝜀1 (𝜏𝑦𝜂𝑆))Y𝑁

𝑆,𝑦) −H𝑁
𝑇 ,𝑥 (𝑁

6/25𝔢𝑆,𝑦Y𝑁
𝑆,𝑦)‖1;T𝑁 � 𝑁−

1
2+

6
25+𝜀ap � 𝑁−

6
25+𝜀ap . (9.1)

◦ We have ‖𝔢‖𝜔;∞ � 1. The support B𝔢 of 𝔢 is contained in the ball of radius 𝑁6/25 centered at 0 ∈ T𝑁.
◦ For any parameter 𝜎 ∈ R, the functional 𝔢 vanishes in expectation with respect to the canonical

measure 𝜇can
𝜎,B𝔢

on its support.

Remark 9.2. As we noted before, the exponent 6/25 on the LHS of equation (9.1) comes as an upper
bound for 1/6 + 1/14, which are the exponents in the length scale 𝔩1 and the support length of S. In
particular, the transfer-of-length-scales operator from the LHS of equation (9.1) is the difference of S
and spatial translates with disjoint supports, and thus has support length 𝑁1/6𝑁1/14 � 𝑁6/25.

We conclude the first step by introducing a cutoff on the spatial average of S𝜀1 on length scale 𝑁1/6.
First, we will introduce notation for the cutoff of the spatial average that we motivate shortly and that will
be used throughout the rest of this subsection. Its utility is providing a priori upper bounds that will be
useful for applications of reduction to local equilibrium in Lemma 8.9. Indeed, observe that in Lemma
8.9, allowed choices for the constant 𝜅 therein depend on a priori upper bounds on functionals that we
want to use Lemma 8.9 for. With better a priori deterministic bounds, we can pick a larger/better value
of 𝜅. For motivation, assuming 𝔣 vanishes in expectation with respect to any canonical ensemble on its
support, averages of its spatial translates with disjoint support satisfies a central limit theorem (CLT)
type estimate in Lemma 8.10. The cutoff defining ℑ̄X below vanishes by default when ℑX exceeds this
CLT-type upper bound, which according to Lemma 8.10 occurs with exponentially small probability in
N. Thus, we deduce that with respect to any canonical ensemble on the support of the average ℑX, the
cutoff ℑ̄X does nothing outside of an event of exponentially small probability. For general measures, we
reduce locally to canonical measures via Lemma 8.9.

Definition 9.3. Provided any functional 𝔣 : Ω → R and length scale 𝔩av ∈ Z�0, we define, recalling
Definition 8.5,

ℑ̄X
𝔩av
(𝔣) = ℑX

𝔩av
(𝔣)1(|ℑX

𝔩av
(𝔣) | � 𝑁 𝜀ap 𝔩−1/2

av ‖𝔣‖𝜔;∞). (9.2)
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Lemma 9.4. Define ℑ̃X
𝔩 = ℑX

𝔩 − ℑ̄
X
𝔩 for any 𝔩 ∈ Z. We have the following for which we recall 𝔩1 = 𝑁1/6

in Lemma 9.1:

E‖H𝑁
(
𝑁1/2 |ℑ̃X

𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) |Y𝑁

𝑆,𝑦

)
‖1;T𝑁 � 𝑁−

2
3+2𝜀ap . (9.3)

9.0.2. Time average
We now replace the cutoff spatial average ℑ̄X introduced in the previous Lemma 9.4 by a time average on
a mesoscopic timescale that is roughly of order 𝑁−1. We say ‘roughly’ since we need to pick a timescale
for time averaging that lives in the set IT from Definition 3.1 in order to use Lemma 8.16 and Lemma
8.17, as we only have time-regularity bounds on Y𝑁 , which will be important for the aforementioned
time-average replacement, on the timescales in IT. For the statement of the following result, we first
recall the transfer-of-timescale operator in Definition 8.15. For the proof of the following result, we
employ Lemma 8.16 and Lemma 8.17 along with the a priori estimates for the cutoff ℑ̄X, as Lemma
8.16 and Lemma 8.17 yield the error in the proposed time-average replacement below, while this error
is controlled by estimates for ℑ̄X. We also provide an analog of Lemma 9.5 below but with 𝑁1/2ℑ̄X

replaced by 𝑁6/25𝔢 and whose proof is almost that of Lemma 9.5 but with a few cosmetic changes. In
particular, we will only provide the necessary adjustments when addressing 𝑁6/25𝔢.

Lemma 9.5. Consider 𝔧1 ∈ Z�0 such that 𝔱𝔧1 ∈ IT,1 is the largest time in IT,1 satisfying 𝔱𝔧1 � 𝑁−10/9

and consider 𝔧2 ∈ Z�0 so that 𝔱𝔧2 ∈ IT,1 is the largest time in IT,1 satisfying 𝔱𝔧2 � 𝑁−1. We have lower
bounds 𝔱𝔧1 � 𝑁−10/9−𝜀ap and 𝔱𝔧2 � 𝑁−1−𝜀ap because 𝔱𝔧 increases by a factor of 𝑁 𝜀ap in 𝔧. We additionally
have the following pair of expectation estimates:

E‖H𝑁 (𝑁1/2𝔇T
0,𝔱𝔧1
(ℑ̄X

𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)))Y𝑁

𝑆,𝑦)‖1;T𝑁 + E‖H𝑁 (𝑁6/25𝔇T
0,𝔱𝔧2
(𝔢𝑆,𝑦)Y𝑁

𝑆,𝑦)‖1;T𝑁 � 𝑁−
1

99999+10𝜀ap .

(9.4)

9.0.3. Final estimates
We now take advantage of replacing functionals inside the heat operator by the respective time averages
on the mesoscopic timescales 𝔱𝔧𝑖 from Lemma 9.5. This starts with the following estimate whose proof
is effectively given in the proof of Lemma 9.5 in terms of technical details, in particular by equilibrium
considerations in Lemma 8.11 and then a reduction to equilibrium by Lemma 8.9. These are overviewed
in the ‘Strategy’ subsection of Section 3. We similarly establish an analog for the time average of 𝑁6/25𝔢
on the timescale 𝔱𝔧2 instead of 𝔱𝔧1 . Again, the proof is basically given in that of Lemma 9.5.

Lemma 9.6. Consider the timescales 𝔱𝔧𝑖 ∈ IT,1 from Lemma 9.5. We have the estimate

E‖H𝑁
(
𝑁1/2ℑT

𝔱𝔧1
ℑ̄X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆))Y𝑁

𝑆,𝑦

)
‖1;T𝑁 + E‖H𝑁

(
𝑁6/25ℑT

𝔱𝔧2
(𝔢𝑆,𝑦)Y𝑁

𝑆,𝑦

)
‖1;T𝑁 � 𝑁−

1
99999+10𝜀ap .

(9.5)

We may now deduce Proposition 4.6 upon step-by-step replacements and the triangle inequality for
‖‖1;T𝑁 and E. In each of the replacements below, we inherit the notation of the lemma cited therein.

◦ By Lemma 9.1, we may replace 𝑁1/2S𝜀1 by 𝑁1/2ℑX
𝔩1
(S𝜀1) + 𝑁6/25𝔢 while controlling the error in

doing so.
◦ By Lemma 9.4, we may further replace 𝑁1/2ℑX

𝔩1
(S𝜀1) + 𝑁6/25𝔢 by 𝑁1/2ℑ̄X

𝔩1
(S𝜀1) + 𝑁6/25𝔢.

◦ By Lemma 9.5, we may then replace 𝑁1/2ℑ̄X
𝔩1
(S𝜀1) + 𝑁6/25𝔢 by 𝑁1/2ℑT

𝔱𝔧1
ℑ̄X
𝔩1
(S𝜀1) + 𝑁6/25ℑT

𝔱𝔧2
(𝔢).

It now suffices to apply Lemma 9.6 and the triangle inequality.

Proof of Lemma 9.1. We will make explicit the functional 𝔢 in this proof. The first step that we take is
to observe the 𝔇X-term on the LHS of equation (9.1) is the average of spatial-gradients of S𝜀1 with
respect to length scales between 𝑁 𝜀1 and 𝔩1𝑁 𝜀1 , as the 𝔇X-term is the difference between S𝜀1 itself and
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the average of all its spatial-translates 𝜏−𝑁 𝜀1 𝔨S𝜀1 for all 𝔨 = 1 to 𝔨 = 𝔩1. We then employ a discrete-type
Leibniz rule similar to that used to establish equation (8.24). Ultimately, this gives

H𝑁
𝑇 ,𝑥 (𝑁

1/2𝔇X
0,𝔩1 (S𝜀1 (𝜏𝑦𝜂𝑆))Y𝑁

𝑆,𝑦) = −
∑̃𝔩1

𝔨=1
H𝑁
𝑇 ,𝑥 (𝑁

1/2∇X
−𝑁 𝜀1 𝔨S𝜀1 (𝜏𝑦𝜂𝑆)Y𝑁

𝑆,𝑦) (9.6)

by definition, and for S𝑆,𝑦 = S𝜀1 (𝜏𝑦𝜂𝑆), per 𝔨 on the RHS of equation (9.6), we get, parallel to equation
(8.24),

H𝑁 (𝑁
1
2∇X
−𝑁 𝜀1 𝔨S𝑆,𝑦Y𝑁

𝑆,𝑦) = H𝑁
(
𝑁

1
2∇X
−𝑁 𝜀1 𝔨 (S𝑆,𝑦Y𝑁

𝑆,𝑦+𝑁 𝜀1 𝔨)
)
−H𝑁

(
𝑁

1
2 S𝑆,𝑦∇

X
−𝑁 𝜀1 𝔨Y

𝑁
𝑆,𝑦+𝑁 𝜀1 𝔨

)
.

(9.7)

We eventually employ a spatial heat operator estimate in Proposition A.3 to analyze the first term on
the RHS of equation (9.7) uniformly in 𝔨-variables on the RHS of equation (9.6). First, we continue by
expanding the second term on the RHS of equation (9.7). To this end, we recall that either Y𝑁 = 0 or
Y𝑁 = Z𝑁. We consider the latter case as the former case is trivial. By definition of the Gartner transform
Z𝑁 in terms of the 𝜂-variables, Taylor expansion implies the scale-𝔨 spatial gradient of Y𝑁 = Z𝑁 is
equal to

−∇X
−𝑁 𝜀1 𝔨Y

𝑁
𝑆,𝑦+𝑁 𝜀1 𝔨 = ∇

X
𝑁 𝜀1 𝔨Y

𝑁
𝑆,𝑦 = ∇X

𝑁 𝜀1 𝔨Z
𝑁
𝑆,𝑦 =

(∑∞

𝔧=1

(−1)𝔧

𝔧!
𝑁−

𝔧
2+𝔧𝜀1 |𝔨 |𝔧

(∑̃𝑁 𝜀1 𝔨

𝔩=1
𝜂𝑆,𝑦+𝔩

) 𝔧)
Z𝑁
𝑆,𝑦 .

(9.8)

The infinite series in front of Z𝑁 in equation (9.8) is O(𝑁−1/2+𝜀1 |𝔨 |). Indeed, this infinite series converges
absolutely provided 𝑁 𝜀1 |𝔨 | � 𝑁𝛼 with 𝛼 < 1/2, which is the case here for 𝜀1 = 1/14 and |𝔨 | � 𝔩1 = 𝑁1/6

for 𝛼 = 6/25. Let 𝔢𝔨 be the product of this infinite series factor in equation (9.8) with 𝑁1/2S𝜀1 (𝜏𝑦𝜂𝑆).
We emphasize the following features of 𝔢𝔨 .

◦ We have |𝔢𝔨 | � 𝑁 𝜀1 |𝔨 | � 𝑁6/25 since, as we explained before, the infinite series in equation (9.8) is
O(𝑁−1/2+𝜀1 |𝔨 |) and 𝑁1/2 |S𝜀1 | � 𝑁1/2 since �̄� is uniformly bounded; see Definition 2.2.

◦ The product 𝔢𝔨 has support contained in a neighborhood of radius 𝑁6/25 centered at 0 ∈ T𝑁. Indeed,
the 𝑁1/2S𝜀1 factor has support contained in a radius 𝑁 𝜀1 neighborhood of 0 with 𝜀1 = 14−1, and the
infinite series in equation (9.8) has support contained in 	0, 𝑁 𝜀1𝔨
 ⊆ 	0, 𝑁6/25
; this can be seen by
looking at which 𝜂-variables appear in the far RHS of equation (9.8).

◦ The product 𝔢𝔨 vanishes in expectation with respect to any canonical measure on it support. Indeed,
this is the case for the S𝜀1 factor as can be seen in Definition 4.5, while the support of S𝜀1 is contained
strictly to the left of 0 ∈ T𝑁 and thus disjoint from the support of the infinite series in equation
(9.8). Here, we crucially use the property that the projection of any canonical measure over one set
onto any subset is a convex combination of canonical measures on the subset, which can be seen
by observing that the canonical measure is always the uniform measure on its support. In particular,
when we take the expectation of 𝔢𝔨 with respect to any canonical measure on its support, we may first
take an expectation of the S𝜀1 factor with respect to the projection of this canonical measure to the
support of S𝜀1 , which equals a convex combination of canonical measures over the support of S𝜀1 ,
and deduce that the expectation of 𝔢𝔨 with respect to any canonical measure on its support vanishes.

◦ Let 𝔢 = −𝑁−6/25∑̃
𝔨=1,...,𝔩1𝔢𝔨 . The sign is not so important.

The support of 𝔢 satisfies the conditions of 𝔢𝔨 supports from the second bullet point above.
Moreover, 𝔢 vanishes in expectation with respect to any canonical measure on its support because each
𝔢𝔨 that it averages together satisfies this condition, and projection of any canonical measure on the
support of 𝔢 projects to a convex combination of canonical measures on the support of each 𝔢𝔨 . Lastly,
we have |𝔢| � 𝑁−6/25 sup𝔨 |𝔢𝔨 | � 1; see the first bullet point in the above list. Using everything
after equation (9.6), we obtain the following in which the 𝑁6/25 factor on the LHS compensates
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introducing a factor of 𝑁−6/25 for 𝔢:

H𝑁
𝑇 ,𝑥 (𝑁

1
2𝔇X

0,𝔩1 (S𝜀1 (𝜏𝑦𝜂𝑆))Y𝑁
𝑆,𝑦) −H𝑁

𝑇 ,𝑥 (𝑁
6
25𝔢𝑆,𝑦Y𝑁

𝑆,𝑦)

= −
∑̃𝔩1

𝔨=1
H𝑁
𝑇 ,𝑥

(
𝑁

1
2∇X
−𝑁 𝜀1 𝔨 (S𝜀1 (𝜏𝑦𝜂𝑆)Y𝑁

𝑆,𝑦+𝑁 𝜀1 𝔨)
)
. (9.9)

It remains to take the ‖‖1;T𝑁 of both sides of equation (9.9) and estimate the resulting RHS. By the
triangle inequality, it suffices to control the ‖‖1;T𝑁 of each 𝔨-indexed term on the RHS of equation (9.9)
uniformly in the index 𝔨. For this, we apply the spatial gradient estimate in Proposition A.3, which
transfers the spatial gradient onto the heat kernel in H𝑁 and then integrates the resulting time-integrable
singularity. Ultimately, we get the following estimate uniformly in 𝔨-indices on the RHS of equation
(9.9) with universal implied constant:

‖H𝑁
𝑇 ,𝑥

(
𝑁1/2∇X

−𝑁 𝜀1 𝔨 (S𝜀1 (𝜏𝑦𝜂𝑆)Y𝑁
𝑆,𝑦+𝑁 𝜀1 𝔨)

)
‖1;T𝑁 � 𝑁1/2𝑁−1𝑁 𝜀1 |𝔨 |‖Y𝑁 ‖1;T𝑁 � 𝑁−

1
2+

6
25+𝜀ap .

(9.10)

The final inequality in equation (9.10) follows by power counting and 𝑁 𝜀1 |𝔨 | � 𝑁6/25 and the a priori
bound |Y𝑁 | � 𝑁 𝜀ap . �

Proof of Lemma 9.4. Consider 𝛾 = 999−999𝜀ap. Via Lemma 8.2 for 𝜙𝑆,𝑦 = |ℑ̃X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) | and this

choice of 𝛾, we deduce

LHS((9.3)) �𝛾 𝑁
2
3 𝛾+𝜀ap E

(
I1(𝑁

3/4 |ℑ̃X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) |

3
2 )

) 2
3
� 𝑁

2
3 𝛾+

1
2+𝜀ap (EI1 (|ℑ̃

X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆) |

3
2 ))

2
3 ,

(9.11)

where the last inequality follows from applying the Holder inequality with respect to the E-expectation
for the Holder inequality exponent 3/2. We now apply Lemma 8.8 to ‘transfer’ the space-time averaging
on the RHS of (9.11) to the law of the particle system; in this application of Lemma 8.8, we make the
following choices for inputs/parameters:
◦ Pick 𝔱av, 𝔩av = 0 and 𝔣𝑆,𝑦 = ℑ̃X

𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) = O(1) with support in 	−O(𝔩1𝑁 𝜀1), O(𝔩1𝑁 𝜀1 )
 and

𝜀1 = 1
14 .

In this case, the Edyn
Loc expectation on the RHS of equation (8.10) does nothing since 𝔱av = 0, so the path-

space dependence of the space-time average from the RHS of equation (9.11) is only through its initial
condition Loc(𝜂) that is equal to 𝜂 itself as far as 𝔣 is concerned because the Loc map only cuts off 𝜂
outside the support of 𝔣 by construction in Definition 8.3/Lemma 8.8. Thus, as 𝔣 is uniformly bounded,
we deduce the following estimate from Lemma 8.8 with the aforementioned specialization:

EI1(|ℑ̃
X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) |

3/2) � E0�̄�1 |ℑ̃
X
𝔩1
(S𝜀1 (𝜂)) |

3/2 + 𝑁−100. (9.12)

Let us now estimate the first term within the RHS of equation (9.12). We will do this through Lemma
8.9 for 𝔥 = |ℑ̃X

𝔩1
(S𝜀1 (�̄�)) |

3/2, whose support is contained in a block with length of order 𝑁 𝜀1 𝔩1 �

𝑁1/14+1/6 � 𝑁6/25. We also choose 𝜅 = 1 in this application of Lemma 8.9, so we deduce the following
in which B denotes the support of our choice of 𝔥 = |ℑ̃X

𝔩1
(S𝜀1 (�̄�)) |

3/2:

E0�̄�1 |ℑ̃
X
𝔩1
(S𝜀1 (𝜂)) |

3/2 � 𝑁−2+ 18
25 + sup𝜎∈RE𝜇can

𝜎,B |ℑ̃X
𝔩1
(S𝜀1 (𝜂)) |

3/2. (9.13)

Observe the term inside the expectation on the far RHS is equal to zero on the event where the indicator
function defining ℑ̃X is not zero. Thus, because �̄� and its functionals are uniformly bounded, the
expectation on the far RHS of equation (9.13) is at most uniformly bounded factors times the probability
that the indicator function in Definition 9.3 fails. We estimate this using Lemma 8.10 with the choice of

https://doi.org/10.1017/fms.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.27


Forum of Mathematics, Sigma 65

functions 𝔣𝔧 = 𝜏−𝔧𝑁 𝜀1 S𝜀1 (𝜂) for 𝔧 � 1 and 𝛾 = 𝜀ap, whose supports are mutually disjoint since S𝜀1 has
support length 𝑁 𝜀1 by construction in Definition 4.5, and for 𝔍 = 𝔩1. Thus, we have

sup𝜎∈RE𝜇can
𝜎,B |ℑ̃X

𝔩1
(S𝜀1 (𝜂)) |

3/2 � sup𝜎∈RE𝜇can
𝜎,B1(|ℑX

𝔩1
(S𝜀1 (𝜂)) | � 𝑁 𝜀ap 𝔩−1/2

1 ) � 𝑁−100. (9.14)

We now combine equations (9.11), (9.12), (9.13) and (9.14) along with elementary power counting in
N to deduce the claim. �

Proof of Lemma 9.5. We establish the proposed estimate for the first term on the LHS of equation (9.4),
so we formally set 𝔢 = 0 for now. Observe 𝔧1 �𝜀ap 1 for 𝔧1 in the statement of Lemma 9.5, as 𝔱𝔧 increases
by a factor of 𝑁 𝜀ap with each step in the index 𝔧. Also, we emphasize the important assumption 𝔱𝔧1 � 𝑁−1.
Lastly, we note that via the triangle inequality, it suffices to control the LHS of equation (9.4) both with
the replacement 𝔱𝔧1 by 𝔱0 = 𝑁−2 and with the replacement 0 in the LHS of equation (9.4) by 𝔱0 = 𝑁−2,
namely

E‖H𝑁
(
𝑁1/2𝔇T

0,𝔱𝔧1
(ℑ̄X

𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)))Y𝑁

𝑆,𝑦

)
‖1;T𝑁 � E‖H𝑁

(
𝑁1/2𝔇T

0,𝑁 −2 (ℑ̄
X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)))Y𝑁

𝑆,𝑦

)
‖1;T𝑁

(9.15)

+ E‖H𝑁
(
𝑁1/2𝔇T

𝑁 −2 ,𝔱𝔧1
(ℑ̄X

𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)))Y𝑁

𝑆,𝑦

)
‖1;T𝑁 .

Use Lemma 8.16 and (8.37) in Lemma 8.17 with 𝔣𝑆,𝑦 = 𝑁1/2ℑ̄X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) and 𝛾 = 𝜀ap and, for

Lemma 8.17, 𝔍 = 𝔧1. Lemma 8.16 estimates the first term on the RHS of equation (9.15) at the cost of
O(RHS((9.4))) since our choice of 𝔣 admits an a priori cutoff:

E‖H𝑁 (𝑁
1
2𝔇T

0,𝑁 −2 (ℑ̄
X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)))Y𝑁

𝑆,𝑦)‖1;T𝑁 � 𝑁−2+𝛾+𝜀ap ‖𝔣‖𝜔;∞ + 𝑁−
1
2+3𝜀ap E‖H𝑁 (|𝔣𝑆,𝑦 |) ‖1;T𝑁

� 𝑁3𝜀ap ‖ℑ̄X
𝔩1
(S𝜀1 (𝜂))‖𝜔;∞ � 𝑁4𝜀ap 𝔩

− 1
2

1 = 𝑁−
1
12+4𝜀ap .

(9.16)

We note equation (8.37) in Lemma 8.17 controls the second term on the RHS of equation (9.15) with
𝔍 = 𝔧1 � 1 and 𝔣 = 𝑁1/2ℑ̄X

𝔩1
(S𝜀1 (𝜂)) and 𝛾 = 𝜀ap. As this choice of 𝔣 satisfies |𝔣 | � 𝑁1/2, this shows the

second term on the RHS of equation (9.15) is

�𝜀ap 𝑁−1+2𝜀ap ‖𝑁1/2ℑ̄X
𝔩1
(S𝜀1 (𝜂)) |‖𝜔;∞ + sup

0�𝔧<𝔧1
𝑁3𝜀ap𝔱1/4

𝔧+1 E‖H𝑁 (𝑁1/2 |ℑT
𝔱𝔧
ℑ̄X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) |)‖1;T𝑁

(9.17)
� 𝑁−

1
2+2𝜀ap + sup

0�𝔧<𝔧1
𝑁3𝜀ap𝔱1/4

𝔧+1 E‖H𝑁 (𝑁1/2 |ℑT
𝔱𝔧
ℑ̄X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) |)‖1;T𝑁 . (9.18)

We apply Lemma 8.2 with 𝜙𝑆,𝑦 = 𝑁1/2ℑT
𝔱𝔧
ℑ̄X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)); for 𝔧 � 𝔧1, this gives

𝑁3𝜀ap𝔱
1
4
𝔧+1E‖H𝑁

(
𝑁

1
2 |ℑT

𝔱𝔧
ℑ̄X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) |

)
‖1;T𝑁 �

(
𝑁8𝜀ap𝔱

3
8
𝔧+1EI1 (𝑁

3
4 |ℑT

𝔱𝔧
ℑ̄X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) |

3
2 )

) 2
3

.

(9.19)

It suffices to estimate the RHS of equation (9.19) uniformly in 𝔧 satisfying 𝔱𝔧 � 𝑁−1. To this end, we
employ Lemma 8.8 to estimate the expectation of this individual integral by the expectation of a single
functional against the space-time averaged law of the particle system. This provides the following for
which we forget, for now, the 2/3-power on the RHS of equation (9.19), in which Loc = Loc𝔱𝔧 ,𝔩tot of
Definition 8.3/Lemma 8.8 is taken with 𝛾0 = 𝜀ap and 𝔣𝑆,𝑦 = ℑ̄X

𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) and 𝔩av = 1, as our choice

of 𝔣 already accounts for the spatial averaging, and 𝔩 = 𝑁 𝜀1 𝔩1 � 𝑁6/25 equal to the support length of our
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choice of functional 𝔣𝑆,𝑦 = ℑ̄X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)):

𝑁8𝜀ap𝔱
3
8
𝔧+1EI1(𝑁

3
4 |ℑT

𝔱𝔧
ℑ̄X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) |

3
2 ) � 𝑁

3
4+8𝜀ap𝔱

3
8
𝔧+1E0�̄�1Edyn

Loc |ℑ
T
𝔱𝔧
ℑ̄X
𝔩1
(S𝜀1) |

3
2 + 𝑁−100. (9.20)

Plugging in the second term on the RHS of equation (9.20) into the RHS of equation (9.19), its
contribution is controlled by the RHS of the proposed estimate (9.4), so it suffices to estimate the first
term on the RHS of equation (9.20). For this purpose, we will employ Lemma 8.9 with the following
choices for inputs 𝜅 and 𝔥; for the choices below, we recall 𝔩1 = 𝑁1/6 from Lemma 9.1.

◦ We will choose the constant 𝜅 in the statement of Lemma 8.9 to be 𝜅 = 𝑁−3𝜀ap/2𝔩3/41 = 𝑁1/8−3𝜀ap/2.
◦ Now, choose 𝔥 in Lemma 8.9 to be the Edyn functional. Observe first that these two bullet points are

‘compatible’ for applying Lemma 8.9 because the Edyn functional is uniformly bounded by the time
average it is taking expectation of. This time average is controlled uniformly by the ‖‖𝜔;∞-norm of
the quantity it is averaging, which in this case is the ℑ̄X functional. But this ℑ̄X functional is at most
𝑁−1/12+𝜀ap ; see Definition 9.3. Taking the −3/2-power of this bound gives 𝜅.

◦ Observe the support of the 𝔥 = Edyn functional is equal to the support of Loc from our application of
Lemma 8.8 that yielded equation (9.20), as the Edyn functional takes Loc as its initial configuration
for the path-space expectation. The support of Loc is given in Definition 8.3/Lemma 8.8, which we
emphasize is taken with 𝛾0 = 𝜀ap and 𝔱 = 𝔱𝔧 and 𝔩 � 𝑁 𝜀1 𝔩1 for 𝜀1 = 1/14 and 𝔩1 = 𝑁1/6; indeed,
according to Lemma 8.8 we take the parameter |𝔩𝔩av | for the Loc support equal to O(1) times the
support length of S that we are space-time averaging on the RHS of equation (9.20), which is of order
𝑁 𝜀1 , times the length scale of this spatial averaging, which is order 𝔩1; we also add O(𝑁 𝜀1), which is
basically the support length of S𝜀1 (𝜂), but this is lower order.

Lemma 8.9 with the aforementioned choices lets us control the first term on the RHS of equation (9.20)
by two terms, one depending on the support B of 𝔥 and another being the supremum of canonical
measure expectations. This first support-term, after multiplying by the prefactors before the expectation
on the RHS of equation (9.20), is ultimately negligible courtesy of the following calculation:

𝑁
3
4+8𝜀ap𝔱

3
8
𝔧+1𝜅−1𝑁−2 |B|3 � 𝑁

3
4+8𝜀ap𝔱

3
8
𝔧+1𝜅−1𝑁−2 (𝑁1+𝜀ap𝔱1/2

𝔧 + 𝑁3/2+𝜀ap𝔱𝔧 + 𝑁 𝜀ap 𝑁 𝜀1 𝔩1)
3 � 𝑁−

1
999+10𝜀ap .

(9.21)

The last inequality in equation (9.21) follows by 𝔩1 = 𝑁1/6 and 𝜀1 = 1/14 and, from Definition 3.1, that
𝔱𝔧 � 𝑁−1 and 𝔱𝔧+1 � 𝑁 𝜀ap𝔱𝔧. By plugging this in the RHS of equation (9.19) and taking its 2/3-power,
we deduce that its contribution is controlled by the RHS of the proposed estimate (9.4). We are now
left to estimate the supremum of canonical measure expectations on the RHS of the estimate we obtain
when employing Lemma 8.9 with the previous list of choices for inputs. For clarity, let us record below
the supremum we are left to estimate, insert into the RHS of equation (9.19) and deduce is controlled by
the RHS of the proposed estimate (9.4), in which E𝜎 denotes expectation with respect to the canonical
measure of parameter 𝜎 on the support of Edyn/of Loc:

Φ
•
= sup𝜎∈R𝑁

3
4+8𝜀ap𝔱

3
8
𝔧+1E𝜎Edyn

Loc |ℑ
T
𝔱𝔧
ℑ̄X
𝔩1
(S𝜀1) |

3
2 . (9.22)

We take the same Loc as we did for our applications of Lemma 8.9 in the previous quantity Φ. To
estimate Φ, we proceed with the following two-step estimate, which is basically applying Lemma 8.11,
but first removing the cutoff for the spatial average on the RHS of equation (9.22) that is absent in
Lemma 8.11. Intuitively, this cutoff does nothing with very high probability by Lemma 8.10.

◦ We first replace ℑ̄X by ℑX. The cost in doing so is recorded in the following estimate:

E𝜎Edyn
Loc |ℑ

T
𝔱𝔧
ℑ̄X
𝔩1
(S𝜀1) |

3
2 � E𝜎Edyn

Loc |ℑ
T
𝔱𝔧
ℑX
𝔩1
(S𝜀1) |

3
2 + E𝜎Edyn

Loc |ℑ
T
𝔱𝔧
(ℑX

𝔩1
(S𝜀1) − ℑ̄

X
𝔩1
(S𝜀1)) |

3
2 . (9.23)
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We will estimate the second term within the RHS of equation (9.23). By thinking of the ℑT time
average as an expectation, we will first move the 3/2-power and absolute value past the ℑT average
via the Holder inequality to get

E𝜎Edyn
Loc |ℑ

T
𝔱𝔧
(ℑX

𝔩1
(S𝜀1) − ℑ̄

X
𝔩1
(S𝜀1)) |

3
2 � E𝜎Edyn

Locℑ
T
𝔱𝔧
(|ℑX

𝔩1
(S𝜀1) − ℑ̄

X
𝔩1
(S𝜀1) |

3
2 ). (9.24)

Following the proof of Lemma 8.11, we first replace Edyn in equation (9.24) with an expectation with
respect to the path-space measure corresponding to the particle system but with periodic boundary
conditions on the support of Loc if we allow error of at most order 𝑁−100, as �̄� is uniformly bounded.
We now move both expectations, after this replacement, on the RHS of equation (9.24) past the ℑT

time average by the Fubini theorem. Also, from the proof of Lemma 8.11, for this smaller periodic
system on the support of Loc, the 𝜎-canonical measure defining the expectation E𝜎 on the RHS of
equation (9.24) is an invariant measure. Therefore, it suffices to estimate the expectation of what is
inside the ℑT average on the RHS of equation (9.24) when we sample the 𝜂-variables in the support
of Loc by the 𝜎-canonical measure. As the support of ℑX − ℑ̄X is contained in that of Loc, and
since projections of canonical measures onto smaller subsets are convex combinations of canonical
measures, it suffices to estimate expectation of |ℑX − ℑ̄X | with respect to any canonical measure. By
the large-deviations estimate in Lemma 8.10, as |ℑX − ℑ̄X | is uniformly bounded, this expectation is
at most the probability O(𝑁−100) that the indicator function defining ℑ̄X fails. Ultimately, from this
paragraph and the bound 𝔱𝔧+1 � 1, we get the following, which then, after plugging into the RHS of
equation (9.19) and taking its 2/3-power, has contribution controlled by the RHS of the proposed
equation (9.4):

𝑁
3
4+8𝜀ap𝔱

3
8
𝔧+1E𝜎Edyn

Locℑ
T
𝔱𝔧
(|ℑX

𝔩1
(S𝜀1) − ℑ̄

X
𝔩1
(S𝜀1) |

3
2 ) � 𝑁

3
4+8𝜀ap 𝑁−100 � 𝑁−99. (9.25)

◦ We now estimate the first term on the RHS of equation (9.23). We first employ the Holder inequality
to boost the 3/2 exponent to 2, so

𝑁
3
4+8𝜀ap𝔱

3
8
𝔧+1E𝜎Edyn

Loc |ℑ
T
𝔱𝔧
ℑX
𝔩1
(S𝜀1) |

3
2 �

(
𝑁1+ 32

3 𝜀ap𝔱
1
2
𝔧+1E𝜎Edyn

Loc |ℑ
T
𝔱𝔧
ℑX
𝔩1
(S𝜀1) |

2
) 3

4

. (9.26)

We now use Lemma 8.11 to the RHS of equation (9.26) where 𝔣 in Lemma 8.11 is taken to be S𝜀1 (�̄�)
here, which satisfies the assumptions needed of 𝔣 in Lemma 8.11 as noted in Definition 4.5. We clarify
we also take 𝔱av = 𝔱𝔧 and 𝔩av = 𝔩1 = 𝑁1/6. This ultimately provides the following estimate for which we
recall 𝔱𝔧+1 = 𝑁 𝜀ap𝔱𝔧 and 𝔱𝔧 � 𝑁−2 and the support of S has length order 𝑁 𝜀1 with 𝜀1 = 1/14, the first
two of which follow by construction in Definition 3.1 and the last in Definition 4.5/Proposition 4.6:

𝑁1+ 32
3 𝜀ap𝔱

1
2
𝔧+1E𝜎Edyn

Loc |ℑ
T
𝔱𝔧
ℑX
𝔩1
(S𝜀1) |

2 � 𝑁1+ 35
3 𝜀ap𝔱

1
2
𝔧 𝑁−2𝔱−1

𝔧 𝔩−1
1 𝑁

2
14 + 𝑁−100 � 𝑁−

1
999+

35
3 𝜀ap . (9.27)

Plugging the above upper bound (9.27) in the RHS of equation (9.19) and taking its 2/3-power proves
the contribution of the first term in the Φ-decomposition (9.23) is controlled by the RHS of the
proposed estimate (9.4).

The previous two bullet points estimate Φ in equation (9.22), so that its contribution, after plugging it
into the RHS of equation (9.19) and taking its 2/3-power, is appropriately controlled, so we are done.

It now suffices to estimate the second term on the LHS of equation (9.4). To this end, it suffices to
follow the argument we have given to estimate the first term on the LHS of equation (9.4) but with the
following technical adjustments; we also explain intuitively why it works.

◦ In applying Lemma 8.16 and equation (8.37) in Lemma 8.17, we instead choose 𝔣 = 𝑁6/25𝔢 from the
second term on the LHS of equation (9.4).
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◦ When applying Lemma 8.2 and Lemma 8.8, we instead integrate/apply the heat operator against our
choice 𝔣 = 𝑁6/25𝔢 from the previous bullet point and choose Loc = Loc𝔱𝔧 ,𝔩tot with 𝔩tot � 𝑁6/25, because
the support of 𝔢 has a length of order 𝑁6/25, which follows by construction in Lemma 9.1, and there
is no added length scale gain for 𝔣 = 𝑁6/25𝔢 from spatial averaging.

◦ When applying Lemma 8.9, we instead choose 𝜅 = 1 and 𝔥 equal to Edyn of the time average of 𝔢,
which we recall has support with length of order 𝑁6/25. These choices of 𝜅 and 𝔥 are ‘compatible’ as
𝔢 is uniformly bounded according to Lemma 9.1.

◦ The strategy we used to bound the first term on the LHS of equation (9.4) but with these modifications
successfully controls the second term on the LHS of equation (9.4) for the following reason. We have
a smaller power of N for this second term; this means our estimates should be 𝑁−1/2+6/25 = 𝑁−13/50

better than those for the first term on the LHS of equation (9.4). However, we also lose the spatial
averaging, which introduces factors basically of order 𝑁−1/12, so our estimates are actually only
𝑁−13/50+1/12 � 𝑁−53/300 better. Moreover, the support of the spatial average ℑX for the first term on
the LHS of equation (9.4) has basically the same length as the support of 𝔢. Lastly, when applying
Lemma 8.11, the length of the support of the functional we space-time average has now increased
from order 𝑁 𝜀1 = 𝑁1/14 to 𝑁6/25. As the estimate in Lemma 8.11 depends linearly on the support, our
estimates are actually 𝑁−53/300+6/25−1/14 � 𝑁−8/900 better. In particular, we get sharper estimates for
the second term on the LHS of equation (9.4) when we modify the analysis for the first term therein
via the previous three bullet points.

This completes the proof, as we have estimated both terms on the LHS of the proposed estimate (9.4)
by the RHS of equation (9.4). �

Proof of Lemma 9.6. We again forget the second term on the LHS of equation (9.5) for now and focus
on the first term therein. The first step we take is to introduce additional spatial averaging for the
space-time average on the LHS of equation (9.5). Unlike Lemma 9.1, however, we will not required
an explicit formula for gradients of the Y𝑁 process and instead employ the replacement estimate in
Lemma 8.13. We will pick 𝔩 = 𝑁1/6 in our forthcoming application of Lemma 8.13. We also pick
𝔣𝑆,𝑦 = 𝑁1/2ℑ̄X

𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) on the LHS of equation (9.5). Note the choice of 𝔣 depends only on 𝜂-

variables in a block of length 𝑁 𝜀1 𝔩1, with 𝜀1 = 1/14 and 𝔩1 = 𝑁1/6; see Definitions 4.5 and 9.3. We
ultimately deduce the first term on the LHS of equation (9.5) is bounded above by O(1) times

E‖H𝑁 (𝑁
1
2 ℑT

𝔱𝔧1
ℑX
𝑁 1/6 ℑ̄

X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆))Y𝑁

𝑆,𝑦)‖1;T𝑁

+ 𝑁5𝜀ap 𝔩
1
2 E‖H𝑁 (|ℑT

𝔱𝔧1
ℑ̄X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) |)‖1;T𝑁 + 𝑁−

1
12+𝜀RN+2𝜀ap . (9.28)

The factor 𝔩 in (9.28) via Lemma 8.13 is equal to the length scale for spatial averaging 𝔩1 = 𝑁1/6 times
the length of the support of 𝔣𝑆,𝑦 = 𝑁1/2ℑ̄X

𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) (which is O(𝑁 𝜀1 𝔩1) � 𝑁6/25). Since |𝔩 | � 𝑁1/2,

Lemma 8.13 applies. We now explain equation (9.28).

◦ Lemma 8.13 for 𝔩 = 𝑁
1
6 and 𝔣𝑆,𝑦 = 𝑁

1
2 ℑ̄X

𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) implies the difference between the first term

on the LHS of equation (9.5) and the first term in equation (9.28) is controlled by the RHS of equation
(8.22) with these choices. It suffices to note that these two terms on the RHS of equation (8.22)
are controlled by the third and second terms in equation (9.28), respectively, as |ℑ̄X

𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) | �

𝑁 𝜀ap |𝔩1 |−
1
2 = 𝑁−

1
12+𝜀ap .

The last term in equation (9.28) is clearly controlled by the RHS of the proposed estimate (9.28).
It remains to control the first two terms in equation (9.28), for which we employ the following two
bullet points based on the proof of Lemma 9.5.

◦ To analyze the second term in equation (9.28), we directly follow the proof of Lemma 9.5 starting from
equation (9.19) but dropping the prefactor 𝑁3𝜀ap𝔱1/4 and choosing 𝔧 = 𝔧1 from Lemma 9.5/Lemma
9.6. In particular, we will make the same choices in our applications of results in Section 8 and
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we ultimately deduce the second term in equation (9.28) is controlled by the RHS of the proposed
estimate (9.5). Intuitively we succeed because although we lose a factor of 𝔱1/4, in the calculations
starting at equation (9.19) in the proof of Lemma 9.5 we only use the bound 𝔱𝔧+1 � 𝑁−1, and we only
lose a factor of 𝑁−1/4. On the other hand, the prefactor is no longer 𝑁1/2 but rather 𝔩1/2. Recalling
𝔩 � 𝑁1/6𝑁 𝜀1 𝔩1 � 𝑁1/6𝑁6/25 = 𝑁61/150, we also gain a factor 𝑁−1/2+61/300 = 𝑁−89/300 that beats out
the 𝑁1/4 factor that we obtained in dropping 𝔱1/4 from earlier in this bullet point.

◦ We now analyze the first term in equation (9.28). In this case, we will also follow the proof for Lemma
9.5 starting with equation (9.19), although now we must address the additional ℑX operator in the
first term in equation (9.28). We start with Lemma 8.2 for 𝜙 equal to the ℑTℑXℑ̄X term in the first
term in equation (9.28) to get the following parallel of equation (9.19):

E‖H𝑁 (𝑁
1
2 ℑT

𝔱𝔧1
ℑX
𝑁 1/6 ℑ̄

X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆))Y𝑁

𝑆,𝑦)‖1;T𝑁 � (𝑁
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4+2𝜀ap EI1 (|ℑ
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𝔱𝔧1
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𝑁 1/6 ℑ̄

X
𝔩1
(S𝜀1 (𝜏𝑦𝜂𝑆)) |

3
2 ))

2
3 .

(9.29)

We now apply Lemma 8.8 to obtain the following parallel of equation (9.20) in the proof of Lemma
9.5; we make the same choices for inputs for Lemma 8.8, except our choice for 𝔩av is now equal to
𝑁1/6 instead of 0. We basically establish equation (9.20) but with the additional ℑX operator, which
is present in equation (9.29), and without any 𝔱𝔧+1-dependent prefactor, which is present in equation
(9.20), and for which the Loc term below is now defined with 𝔩tot being that from the proof of Lemma
9.5 but times 𝑁1/6 since 𝔩tot takes into account the spatial-average length scale 𝔩av = 𝑁1/6 coming
from ℑX

𝑁 1/6 in equation (9.29) (see Lemma 8.8 for Loc and 𝔩tot):

𝑁
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4+2𝜀ap E0�̄�1Edyn
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𝔱𝔧1
ℑX
𝑁 1/6 ℑ̄

X
𝔩1
(S𝜀1) |

3
2 + 𝑁−100.

(9.30)

The second term on the RHS of equation (9.30) is controlled by the RHS of the proposed estimate
(9.5) after taking 2/3-powers upon plugging its contribution into the RHS of equation (9.29). We now
apply Lemma 8.9 with the same choices as we made in the proof of Lemma 9.5, which are explicitly
declared prior to equation (9.21), but 𝔩av = 𝑁1/6. This bounds the first term on the RHS of equation
(9.30) by the sum of a support term plus a supremum of canonical measure expectations of the Edyn

term on the RHS of equation (9.30). The first support term is estimated in the exact same fashion
as equation (9.21), except we do not have the helpful 𝔱𝔧+1-dependent factor, namely its 3/8-power.
However, this factor is actually not needed to prove the upper bound on the far RHS of equation (9.30).
Also, the support of Edyn is changed as 𝔩tot has changed as noted before equation (9.30), so our version
of equation (9.21) must be adjusted via replacing 𝑁 𝜀1 𝔩1 therein by 𝔩av𝑁 𝜀1 𝔩1 = 𝑁1/6𝑁 𝜀1 𝔩1, though
the upper bound in equation (9.21) still holds after this adjustment. Ultimately, the contribution of
the support term/first term on the RHS of equation (8.16) for our choices of inputs in Lemma 8.9 is
controlled by the RHS of the proposed estimate (9.5) after plugging into equation (9.29) and taking
2/3-powers. We are left to bound canonical measure expectations; by Lemma 8.9 these are an analog
of equation (9.22):

Φ
•
= sup𝜎∈R𝑁

3
4+2𝜀ap E𝜎Edyn

Loc |ℑ
T
𝔱𝔧1
ℑX
𝑁 1/6 ℑ̄

X
𝔩1
(S𝜀1) |

3
2 . (9.31)

By following the first bullet point after equation (9.22), we can first remove the bar over ℑ̄X in equation
(9.31). Now, we observe that the double ℑX average on length scales 𝑁1/6 and 𝔩1 is actually a single
ℑX average on the product of the length scales 𝑁1/6𝔩1. Thus,

Φ � sup𝜎∈R𝑁
3
4+

3
2 𝜀ap E𝜎Edyn

Loc |ℑ
T
𝔱𝔧1
ℑX
𝑁 1/6𝔩1

(S𝜀1) |
3
2 + 𝑁−100 •

= Φ′ + 𝑁−100. (9.32)

At this point, we will now directly follow the second bullet point containing the estimate (9.26)
but now with a spatial-average length scale equal to 𝑁1/6𝔩1. Intuitively, in the estimate (9.27), we
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lose the 𝔱𝔧+1-dependent factor, namely its square root, thus we gain the bad factor of 𝑁5/9 because
𝔱𝔧1 � 𝑁−10/9−𝜀ap by Lemma 9.5. On the other hand, the additional 𝑁1/6 factor for the length scale
gives us an additional 𝑁−1/6 factor in equation (9.27) because that estimate is ‘inversely’ linear in the
length scale:

E𝜎Edyn
Loc |ℑ

T
𝔱𝔧1
ℑX
𝑁 1/6𝔩1

(S𝜀1) |
3
2 �

(
𝑁−2+6𝜀ap𝔱−1

𝔧1
𝑁−

1
6 𝔩−1

1 𝑁
2

14 + 𝑁−100
)3/4

� 𝑁−
3
4−

1
999+8𝜀ap . (9.33)

The last estimate in equation (9.33) follows by power-counting; recall 𝔩1 = 𝑁1/6 in Lemma 9.1 and
the 𝔱𝔧1 -lower bound prior to equation (9.33).

We have estimated the first two terms in equation (9.28) by the above two bullet points, completing the
proposed estimate for the first term on the LHS of equation (9.5). It remains to estimate the second
term on the LHS of equation (9.5). For this, we will follow the analysis in the proof of Lemma 9.5 for
the second term on the LHS of equation (9.4). In particular, we lose an additional factor 𝔱1/4, which at
best provides a factor of 𝑁−1/4 because 𝔱 � 𝑁−1 for this lemma. Let us now observe in the final bullet
point in the proof of Lemma 9.5, until the application of Lemma 8.11 mentioned therein, the benefit
we gain, over the explicitly written upper bounds in the proof of Lemma 9.5, from having the smaller
𝑁6/25 prefactor, as opposed to 𝑁1/2, is a factor of 𝑁−13/50. This certainly beats out the 𝑁1/4 we have
gained from forgetting 𝔱1/4. As for the application of Lemma 8.11 mentioned in the final bullet point
in the proof of Lemma 9.5, observe that we only use the bound 𝔱−1/2 � 𝑁−1, whereas for the current
lemma we have 𝔱−1/2 � 𝑁−1/2+𝜀ap . Therefore, the 𝑁1/4 we must include from forgetting 𝔱1/4 that we
noted before is compensated for by the additional 𝑁−1/2+𝜀ap factor we gain from the improved bound
𝔱−1/2 � 𝑁−1 → 𝔱−1/2 � 𝑁−1/2+𝜀ap . We conclude that the analysis for 𝑁6/25𝔢 near the end of the proof of
Lemma 9.5 estimates the second term on the LHS of the proposed bound (9.5) by the RHS of equation
(9.5). We have now estimated both terms on the LHS of the proposed estimate (9.5), so we are done. �

10. Boltzmann–Gibbs principle I – proof of proposition 4.7, case I

The organization of this section is similar to that of Section 9. We will present the main ingredients
that we need in the proof of Proposition 4.7 in what we will define shortly as Case I and then deduce
Case I from these ingredients. We then provide the proof of each of these ingredients that, similar to
Section 9, consist of a replacement by spatial average, a large-deviations-type cutoff for this spatial
average, replacement by time average via multiscale analysis and a ‘final estimate’ for the time average.
We decompose the proof of Proposition 4.7 into two cases, the first of which of interest here is the
case where the index 𝔟 ∈ Z�0 in the supremum on the LHS of equation (4.8) is chosen so that
𝜀1 + 𝔟𝜀RN,1 � 1/4. In this case, our strategy follows basically that for the proof of Proposition 4.6, but
it is technically easier since the R𝛿 term we study in Proposition 4.7 admits a priori estimates:
Lemma 10.1. Consider 𝛿 � 0 with 𝛿 + 𝜀RN,1 � 1

2 + 𝜀RN. We have the following estimate for which we
recall the notation (4.6) and in which Rcut is explained afterwards:

|R𝛿 (𝜏𝑦𝜂𝑆)Y𝑁
𝑆,𝑦 − Rcut

𝛿 (𝜏𝑦𝜂𝑆)Y𝑁
𝑆,𝑦 | � 𝑁−100. (10.1)

We define Rcut
𝛿 (𝜏𝑦𝜂𝑆) = 𝜏𝑦Rcut

𝛿 (𝜂𝑆), where Rcut
𝛿 (𝜂) has support contained in that of R𝛿 (𝜂) in (4.6).

Moreover:
◦ We have the deterministic bound |Rcut

𝛿 (𝜂) | � 𝑁10𝜀ap 𝑁−𝛿 , where 10 is just a large constant to be
treated loosely.

◦ The term Rcut
𝛿 (𝜂) vanishes in expectation with respect to any canonical measure on its support; see

Definition 4.4.
It will be convenient for us to introduce the following notation that distinguishes the current Case

I, namely restricting to 𝔟 � 𝔟mid in the supremum on the LHS of equation (4.8). We also introduce
notation for the Rcut functionals relevant to Proposition 4.7.
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Definition 10.2. Let us define 𝔟mid ∈ Z�0 as the largest nonnegative integer for which 𝜀1 + 𝔟mid𝜀RN,1 �
1/4. In particular, observe that 𝔟mid � 𝔟+, where 𝔟+ is defined in Proposition 4.7. We additionally define
R𝔟
𝑆,𝑦 = Rcut

𝜀1+𝔟𝜀RN,1
(𝜏𝑦𝜂𝑆) that satisfies:

◦ The support length of R𝔟 is order 𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 as it has the same support as R𝜀1+𝔟𝜀RN,1 in equation
(4.6).

◦ The functional R𝔟 satisfies the deterministic estimate |R𝔟 | � 𝑁10𝜀ap 𝑁−𝜀1−𝔟𝜀RN,1 by construction; see
Lemma 10.1.

◦ Lastly, to ease notation, we will define and sometimes use 𝑁𝛽+𝜀RN,1 𝔩𝛽,𝔟 = 𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 , where
𝛽 = 999−99.

We clarify the length scale 𝔩𝛽,𝔟 as basically the length of the support of R𝔟−1, and thus basically of R𝔟 up
to ultimately negligible factors of 𝑁 𝜀RN,1 , but a factor of 𝑁−𝛽 smaller. Actually, it will not be important
to be so careful about 𝑁 𝜀ap and 𝑁 𝜀RN,1 factors, as 𝛽 is much larger than 𝜀ap and 𝜀RN,1 of Definition 3.1,
so 𝑁−𝛽 factors will beat all relevant powers of 𝑁 𝜀ap and 𝑁 𝜀RN,1 .

Outside a priori estimates for R𝔟-terms in Lemma 10.1 and Definition 10.2 that we did not have
for the S-terms in the proof of Proposition 4.6, we emphasize the proof of Proposition 4.7 basically
follows that of Proposition 4.6 except for a few technical differences whose impact on the proof can
be readily checked. In particular, many estimates have the same flavor with only minor differences in
power-counting that ultimately amount to elementary arithmetic.

10.0.1. Spatial average
The following result replaces R𝔟 by spatial averages on length scales 𝔩𝛽,𝔟 and provides an analog of
Lemma 9.1 but for R𝔟 instead of S. We first emphasize a difference between the following result and
Lemma 9.1. In Lemma 9.1, replacing S with a spatial average forces us to analyze explicitly the leading-
order error term 𝑁6/25𝔢. For the following result, we instead employ the a priori estimate for R𝔟 in
Lemma 10.1 to avoid this issue. In particular, Lemma 8.13 is enough.

Lemma 10.3. Define the length scale 𝔩𝛽,𝔟 = 𝑁 𝜀1+𝔟𝜀RN,1−𝛽 , where 𝛽 = 999−99. We have the following
uniformly in 𝔟 � 𝔟mid for which we recall the notation for differences of spatial averages on different
length scales in Definition 8.12:

E‖H𝑁 (𝑁1/2𝔇X
0,𝔩𝛽,𝔟 (R

𝔟
𝑆,𝑦)Y

𝑁
𝑆,𝑦)‖1;T𝑁 � 𝑁−

1
2 𝛽+15𝜀ap+𝜀RN,1 . (10.2)

Lemma 10.3 lets us replace R𝔟 with its spatial average on length scale 𝔩𝛽,𝔟, which for clarity we
recall is basically the support length of R𝔟−1 times 𝑁−𝛽 for 𝛽 = 999−999. Analogous to Lemma 9.4,
we now replace this spatial average by a cutoff that holds at a large deviations scale with respect to
any canonical measure and therefore for general measures after space-time averaging courtesy of the
local equilibrium reduction in Lemma 8.9. We first provide a technical comment – the local equilibrium
reduction in Lemma 8.9 deteriorates as the support of the functional, in this case the length-𝔩𝛽,𝔟 average
of R𝔟, increases, thus as 𝔟 increases. However, it also improves as 𝔟 increases because, according to
Lemma 10.1, a priori estimates for R𝔟 also improve as 𝔟 increases; this is ultimately enough to counter
the aforementioned deterioration. We apply this observation throughout this section. Otherwise, the
proof of the following ‘cutoff replacement’ follows the general strategy for that of Lemma 9.4.

Lemma 10.4. Recall the operator ℑ̃X = ℑX − ℑ̄X from Lemma 9.4. We have the following estimate
uniformly in 𝔟 � 𝔟mid, in which we recall the length scale 𝔩𝛽,𝔟 and 𝛽 = 999−99 that were both used in
the statement of Lemma 10.3:

E‖H𝑁
(
𝑁

1
2 |ℑ̃X

𝔩𝛽,𝔟
(R𝔟

𝑆,𝑦) |Y
𝑁
𝑆,𝑦

)
‖1;T𝑁 � 𝑁−

1
2+15𝜀ap+2𝛽 � 𝑁−

1
3 . (10.3)
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10.0.2. Time average
Following Lemma 9.5, we will now replace the cutoff spatial average of R𝔟 introduced in Lemma
10.4 by a time average on appropriate mesoscopic timescale. However, we instead replace by time
average with respect to 𝔟-dependent timescale that is shorter than the roughly 𝑁−1 timescale used in
the proof of Proposition 4.6. This last difference is technical, as we will see when we estimate time
averages of R𝔟 on this 𝔟-dependent timescale. Before we state the following result, we first recall the
transfer-of-timescale operator in Definition 8.15. Let us also make another technical comment – the
Kipnis–Varadhan inequality for the equilibrium estimates in Lemma 8.11 deteriorates as the support of
the functional R𝔟 we are time averaging in Lemma 8.11 increases, in this case as the index 𝔟 increases.
We will counter such deterioration with the improving a priori bound on R𝔟 in Lemma 10.1. These
competing factors basically cancel, so the proof of Lemma 9.5 holds almost verbatim.

Lemma 10.5. Provided 𝔟 � 𝔟mid, consider 𝔧+ ∈ Z�0 such that 𝔱𝔧+ ∈ IT,1 is the largest time in IT,1
satisfying 𝔱𝔧+ � 𝑁−1+𝛽𝔩−1

𝛽,𝔟, where 𝔩𝛽,𝔟 and 𝛽 are both defined in Lemma 10.3. As 𝔩𝛽,𝔟 � 𝑁 𝜀1−𝛽 with
𝜀1 = 1

14 � 999𝛽, we have 𝔱𝔧+ � 𝑁−1 and

sup
𝔟�𝔟mid

E‖H𝑁
(
𝑁1/2𝔇T

0,𝔱𝔧+
(ℑ̄X

𝔩𝛽,𝔟
(R𝔟

𝑆,𝑦))Y
𝑁
𝑆,𝑦

)
‖1;T𝑁 � 𝑁−

1
99999 𝛽+100𝜀ap . (10.4)

10.0.3. Final estimates
We now estimate the time average of R𝔟 uniformly in 𝔟 � 𝔟mid on the timescale 𝔱𝔧+ ‘reached’ with
multiscale replacement in Lemma 10.5. This amounts to the analog below for Lemma 9.6. We apply
the same remarks about the simultaneous deterioration and improvement of the estimates implied by
Lemma 8.11 and Lemma 10.1 as the index 𝔟 increases. Otherwise, the proof of the following estimate
is basically that of Lemma 9.6.

Lemma 10.6. Consider any 𝔟 � 𝔟mid and the corresponding timescale 𝔱𝔧+ from Lemma 10.5. Uniformly
in 𝔟 � 𝔟mid, we have

E‖H𝑁
(
𝑁1/2ℑT

𝔱𝔧+
ℑ̄X
𝔩𝛽,𝔟
(R𝔟

𝑆,𝑦)Y
𝑁
𝑆,𝑦

)
‖1;T𝑁 � 𝑁−

1
99999 𝛽+100𝜀ap . (10.5)

Let us now prove Proposition 4.7 in Case I, where the index 𝔟 ∈ Z�0 in the supremum on the LHS
of equation (4.8) satisfies 𝔟 � 𝔟mid. We make the following replacements to the LHS of equation (4.8)
and cite results in this section that control errors in such replacements.

◦ Lemma 10.1 lets us replace R𝜀1+𝔟𝜀RN,1 on the LHS of equation (4.8) with R𝔟 with clearly controllable
error. Indeed, Lemma 10.1 is applicable for 𝔟 � 𝔟mid as by definition of 𝔟mid in Definition 10.2, we
have 𝜀1 + 𝔟𝜀RN,1 � 1/4 � 1/2 + 𝜀RN if 𝔟 � 𝔟mid.

◦ We now replace R𝔟 by ℑX
𝔩𝛽,𝔟
(R𝔟) with 𝔩𝛽,𝔟 in Lemma 10.3. Lemma 10.3 controls the error by a

universal negative power of N as 𝛽 = 999−99 is much larger than 𝜀ap, 𝜀RN,1.
◦ We now replace ℑX

𝔩𝛽,𝔟
(R𝔟) by ℑ̄X

𝔩𝛽,𝔟
(R𝔟). The error is controlled by a universal negative power of N by

Lemma 10.4.
◦ Replace ℑ̄X

𝔩𝛽,𝔟
(R𝔟) by ℑT

𝔱𝔧+
ℑ̄X
𝔩𝛽,𝔟
(R𝔟) with 𝔱𝔧+ in Lemma 10.5. The error, by Lemma 10.5, is a universal

negative power of N.
◦ We now apply Lemma 10.6 to estimate the resulting heat operator acting on 𝑁1/2ℑT

𝔱𝔧+
ℑ̄X
𝔩𝛽,𝔟
(R𝔟)Y𝑁 .

Combining the previous bullet points with the triangle inequality for ‖‖1;T𝑁 and E completes the proof.

Proof of Lemma 10.1. We first extend the Ecan-expectations in Definition 4.5 to any functional 𝔣 instead
of just �̄�. Let us observe the following quantity vanishes under expectation with respect to any canonical
ensemble on its support. We clarify/emphasize the second term below is an expectation of the functional
𝔣0,0 = 𝔣 with respect to the canonical measure on 𝑦−	1, 𝑁 𝛿+𝜀RN,1
 with parameter equal to the 𝜂-density
𝜎𝛿+𝜀RN,1 ,𝑆,𝑦 on this set at time S; see Definition 4.5. We also clarify that we require 𝔣 to be supported in
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a uniformly bounded neighborhood to the left of 0 ∈ T𝑁 like �̄�, and thus contained in 𝑦−	1, 𝑁 𝛿+𝜀RN,1
.
This implies the support of equation (10.6) is contained in that of R𝛿 (𝜏𝑦𝜂) of equation (4.6).

𝔣𝑆,𝑦 − Ecan
𝛿+𝜀RN,1

(𝜏𝑦𝜂𝑆; 𝔣). (10.6)

Vanishing of equation (10.6) by canonical measure expectation follows by tower property of conditional
expectation and that the projection of any canonical measure on any larger set onto any smaller subset is
a convex combination of canonical measures; see the proof of Lemma 2 in [24]. We eventually take Rcut

to be a quantity of the form (10.6) in which 𝔣 admits the deterministic upper bound required for Rcut. To
this end, we first recall R in equation (4.6). Again, by the projection property for canonical measures,
now combined with the tower property for expectation, we get the following with notation explained
afterwards:

R𝛿 (𝜏𝑦𝜂𝑆) = Ecan
𝛿 (𝜏𝑦𝜂𝑆) − Ecan

𝛿+𝜀RN,1
(𝜏𝑦𝜂𝑆; Ecan

𝛿,𝜎 (𝛿) (�̄�)). (10.7)

◦ Let 𝜎(𝛿) be a random 𝜂-density on 𝑦 + I𝛿 = 𝑦 + 	−𝑁 𝛿+𝜀RN,1 ,−1
. Its law is given by that of the
𝜂-density on 𝑦 + I𝛿 according to the measure defining the expectation Ecan

𝛿+𝜀RN,1
(𝜏𝑦𝜂𝑆). (Note 𝑦 + I𝛿

is the subset that the canonical measure in Ecan
𝛿 (𝜏𝑦𝜂𝑆) is defined on.)

◦ Define 𝔣1 = Ecan
𝛿,𝜎 (𝛿)

(�̄�) to be the canonical measure expectation of �̄� with respect to the 𝜎(𝛿)-
canonical measure on 𝑦 + I𝛿 .

◦ Observe that 𝔣1 is a functional of the particle system, and it depends only on the random variable/𝜂-
density 𝜎(𝛿) from the first bullet point. In particular, the second term/iterated E-expectation is an
expectation of 𝔣1, where the randomness in the inside expectation is now through the random 𝜂-
density 𝜎(𝛿) that is sampled with respect to the canonical measure defining the outer expectation on
the RHS of equation (10.7). So, we get equation (10.7) by first conditioning �̄� in the Ecan

𝛿+𝜀RN,1
(𝜏𝑦𝜂𝑆)-

expectation in (4.6) on 𝜎(𝛿); again, we emphasize canonical measures project to canonical measures,
so taking said expectation conditioning on 𝜎(𝛿) leads to canonical measure expectation of �̄� with
parameter 𝜎(𝛿) on its defining set 𝑦+ I𝛿 . This is what equation (10.7) says. We clarify that Ecan

𝛿 (𝜏𝑦𝜂𝑆)
and Ecan

𝛿,𝜎 (𝛿)
(�̄�) are the same function, but the former is evaluated at 𝜎𝛿,𝑆,𝑦 , that is, the scale-𝑁 𝛿

density of the actual particle system at time S and point y, and the latter is evaluated at the random
𝜎(𝛿) sampled via Ecan

𝛿+𝜀RN,1
(𝜏𝑦𝜂𝑆) as explained.

We now make the following observation, which implies that it suffices to provide a priori estimates for
I
𝛿 expectations.

◦ Suppose |Ecan
𝛿 (𝜏𝑦𝜂𝑆) | + |Ecan

𝛿,𝜎 (𝛿)
(�̄�) | � 𝑁10𝜀ap 𝑁−𝛿 . This is not necessarily true; we will show it is

sufficiently close to true.
◦ The previous bullet point would finish the proof, since equation (10.7) provides a representation of

R𝛿 (𝜂) as equation (10.6) for 𝔣 = Ecan
𝛿,𝜎 (𝛿)

(�̄�), which would certainly satisfy be O(𝑁10𝜀ap 𝑁−𝛿) if the
previous bullet point were true.

In view of the previous bullet points, it suffices to make the following replacements in equation (10.7),
provided that Y𝑁 ≠ 0, for which we first establish convenient notation C𝛼 (𝑎) = 𝑎1(|𝑎 | � 𝛼) for a
cutoff operator/map where 𝑎 ∈ R is any real number; note that the replacements below do not change
the support of any term in equation (10.7):

Ecan
𝛿 (𝜏𝑦𝜂𝑆) → C𝑁 10𝜀ap 𝑁 −𝛿 (E

can
𝛿 (𝜏𝑦𝜂𝑆)) and Ecan

𝛿,𝜎 (𝛿) (�̄�) → C𝑁 10𝜀ap 𝑁 −𝛿 (E
can
𝛿,𝜎 (𝛿) (�̄�)). (10.8)

Indeed, whenever Y𝑁 = 0, then the proposed estimate in Lemma 10.1 is trivial. Moreover, defining Rcut

to be the RHS of equation (10.7) but with the replacements in equation (10.8), the previous two bullet
points would imply that Rcut satisfies the proposed pair of properties claimed in the lemma. We now
show the replacements (10.8) to the RHS of equation (10.7), whenever Y𝑁 ≠ 0, only provide error that,
after multiplication by Y𝑁 , is controlled by the RHS of the proposed estimate.
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◦ The first replacement in equation (10.8) gives no error whenever Y𝑁 ≠ 0. Indeed, Lemma 4.10 still
holds with 𝜀1 + 𝔟+𝜀RN,1 therein replaced with 𝛿 here, because all we require for Lemma 4.10 is a
priori spatial regularity of Y𝑁 on the length scale 𝑁 𝛿 � 𝔩𝑁 if 𝛿 + 𝜀RN,1 � 1

2 + 𝜀RN, which holds by
assumption here; see Definition 3.1 for 𝔩𝑁 . Thus, we may assume the canonical measure parameter
𝜎𝛿+𝜀RN,1 ,𝑆,𝑦 defining Ecan

𝛿 (𝜏𝑦𝜂𝑆) in equation (10.7) is at most 𝑁5𝜀ap 𝑁−𝛿/2, from which we show the
first replacement in equation (10.8) does nothing by following the proof of Proposition 4.8.

◦ We move to the second replacement in equation (10.8) applied to equation (10.7). Similar to the
previous bullet point, for the outer expectation in the second term on the RHS of equation (10.7),
we know that its canonical measure parameter satisfies 𝜎𝛿+2𝜀RN,1 ,𝑆,𝑦 � 𝑁4𝜀ap 𝑁−𝛿/2; combining the
previous bullet point with this most recent observation gives

R𝛿 (𝜏𝑦𝜂𝑆)Y𝑁
𝑆,𝑦 = 1(|𝜎𝛿+𝜀RN,1 ,𝑆,𝑦 | � 𝑁5𝜀ap 𝑁−𝛿/2)Ecan

𝛿 (𝜏𝑦𝜂𝑆)Y𝑁
𝑆,𝑦 (10.9)

− 1(|𝜎𝛿+2𝜀RN,1 ,𝑆,𝑦 | � 𝑁4𝜀ap 𝑁−𝛿/2)Ecan
𝛿+𝜀RN,1

(𝜏𝑦𝜂𝑆; Ecan
𝛿,𝜎 (𝛿) (�̄�))Y

𝑁
𝑆,𝑦 . (10.10)

We clarify we have 𝜎𝛿+2𝜀RN,1 ,𝑆,𝑦 � 𝑁4𝜀ap 𝑁−𝛿/2 instead of 𝜎𝛿+2𝜀RN,1 ,𝑆,𝑦 � 𝑁5𝜀ap 𝑁−𝛿/2 because the
extra 𝑁 𝜀ap produced in the proof of Proposition 4.8 and Lemma 4.10 comes from applying the bound
|Y𝑁 | � 𝑁 𝜀ap in the proof of Lemma 4.10 that we do not yet need because we are not bounding Y𝑁

to get the previous display.
◦ A digression. Fix 𝜎𝛿+2𝜀RN,1 ,𝑆,𝑦 , and consider the canonical measure on its support with this pa-

rameter, namely the measure defining Ecan
𝛿+𝜀RN,1

(𝜏𝑦𝜂𝑆). If we instead consider the corresponding
grand-canonical measure, then 𝜎(𝛿) would be an average of |I𝛿 | = 𝑁 𝛿+𝜀RN,1 -many independent
Bernoulli random variables with expectation 𝜎𝛿+2𝜀RN,1 ,𝑆,𝑦 . Concentration inequalities would then
imply |𝜎(𝛿) − 𝜎𝛿+2𝜀RN,1 ,𝑆,𝑦 | � 𝑁 𝜀ap 𝜎𝛿+2𝜀RN,1 ,𝑆,𝑦 happens with exponentially small probability in
N. This can be seen by viewing 𝜎(𝛿) as a random walk indexed by I𝛿 with drift 𝜎𝛿+2𝜀RN,1 ,𝑆,𝑦 . The
only difference in this discussion if we look at the canonical ensemble instead of grand-canonical
ensemble is that 𝜎(𝛿) is the length-|I𝛿 |-increment of a random walk bridge with drift 𝜎𝛿+2𝜀RN,1 ,𝑆,𝑦 ,
for which subexponential concentration inequalities are also readily available.

◦ Given that 𝜎𝛿+2𝜀RN,1 ,𝑆,𝑦 � 𝑁4𝜀ap 𝑁−𝛿/2, we note that the 𝜎(𝛿) density on the smaller subset I𝛿 , inside
the previous display, is bounded by 𝑁5𝜀ap 𝑁−𝛿/2 with overwhelming probability; see Definition 3.9.
Indeed, by thinking of 𝜎(𝛿) as an I𝛿-indexed increment of a random walk bridge with drift 𝑁4𝜀ap ,
standard sub-Gaussian concentration inequalities for random walk bridges shows that 𝜎(𝛿) deviates
from its normalized drift 𝑁4𝜀ap 𝑁−𝛿/2 plus its Brownian-type fluctuation 𝑁−𝛿/2 by a factor of 𝑁 𝜀ap

with exponentially small probability in N, and therefore with overwhelming probability.
◦ We now have the following where E = {|𝜎(𝛿) | � 𝑁5𝜀ap 𝑁−𝛿/2} with complement E𝐶 ; we explain

these calculations after:

Ecan
𝛿+𝜀RN,1

(𝜏𝑦𝜂𝑆; Ecan
𝛿,𝜎 (𝛿) (�̄�))

= Ecan
𝛿+𝜀RN,1

(𝜏𝑦𝜂𝑆; 1EEcan
𝛿,𝜎 (𝛿) (�̄�)) + Ecan

𝛿+𝜀RN,1
(𝜏𝑦𝜂𝑆; 1E𝐶 Ecan

𝛿,𝜎 (𝛿) (�̄�)) (10.11)

= Ecan
𝛿+𝜀RN,1

(𝜏𝑦𝜂𝑆; 1EC𝑁 10𝜀ap 𝑁 −𝛿 (E
can
𝛿,𝜎 (𝛿) (�̄�))) + Ecan

𝛿+𝜀RN,1
(𝜏𝑦𝜂𝑆; 1E𝐶 Ecan

𝛿,𝜎 (𝛿) (�̄�)) (10.12)

= Ecan
𝛿+𝜀RN,1

(𝜏𝑦𝜂𝑆; C𝑁 10𝜀ap 𝑁 −𝛿 (E
can
𝛿,𝜎 (𝛿) (�̄�))) + Ecan

𝛿+𝜀RN,1
(𝜏𝑦𝜂𝑆; O(1E𝐶 )). (10.13)

The first line (10.11) is trivial: 1 = 1E + 1E𝐶 . The second line (10.12) follows by the argument in the
first bullet point in the current list. The third line (10.13) follows again by writing 1E = 1 − 1E𝐶 . If
we plug the second term in equation (10.13) into equation (10.10), by the previous bullet point and
that |�̄� | � 1, we get O(𝑁−200), which is controlled by the RHS of the proposed estimate.
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◦ As noted in the current bullet point list prior to equations (10.9) and (10.10), we can now drop the
indicator functions (10.9) and (10.10), so the error in making the replacements (10.8) in (10.7) is also
appropriately controlled by the RHS of the proposed estimate.

Defining Rcut to be the RHS of equation (10.7) but with replacements (10.8) for the RHS of equation
(10.7), the previous bullet points provide the proposed estimate for Y𝑁 ≠ 0, whereas the estimate is
trivial if Y𝑁 = 0. Moreover, as noted prior to equation (10.8), the Rcut functional satisfies all the required
properties in the statement of the lemma, so we are done. �

Proof of Lemma 10.3. We apply Lemma 8.13 with the choices 𝔱 = 0 and 𝔣 = 𝑁1/2R𝔟 and 𝔩 = 𝔩𝛽,𝔟.
Along with a few other gymnastics and conditions that need to be checked, which we explain shortly, this
ultimately provides the following estimate; we first clarify that the prefactor 𝑁5𝜀ap 𝔩1/2𝛽,𝔟𝑁

1
2 𝜀1+

1
2 𝔟𝜀RN,1+

1
2 𝜀RN,1

for the second term on the RHS of equation (10.14) comes from noting 𝔩 in Lemma 8.13 is the product
of 𝔩 = 𝔩𝛽,𝔟 and the support length of 𝔣 = 𝑁1/2R𝔟, which is given in Definition 10.2:

E‖H𝑁 (𝑁1/2𝔇X
0,𝔩𝛽,𝔟 (R

𝔟
𝑆,𝑦)Y

𝑁
𝑆,𝑦)‖1;T𝑁 � 𝑁 𝜀RN+𝜀ap ‖R𝔟‖𝜔;∞ + 𝑁5𝜀ap 𝔩1/2𝛽,𝔟𝑁

1
2 𝜀1+

1
2 𝔟𝜀RN,1+

1
2 𝜀RN,1 ‖R𝔟‖𝜔;∞.

(10.14)

Lemma 8.13 with the previous choices yields equation (10.14) with no changes to the first term but
with ‖R𝔟‖𝜔;∞ in the second term on the RHS of equation (10.14) replaced by E‖H𝑁 (|R𝔟 |) ‖1;T𝑁 . But
E‖H𝑁 (|R𝔟 |) ‖1;T𝑁 � ‖R𝔟‖𝜔;∞. Lastly, Lemma 8.13 with our choices of 𝔣 and 𝔩 may only be applied
if the support length of 𝔣 = 𝑁1/2R𝔟 times 𝔩 = 𝔩𝛽,𝔟 is at most 𝔩𝑁 = 𝑁1/2+𝜀RN from Definition 3.1. This
follows since 𝔩𝛽,𝔟 is at most 𝑁−𝛽 times the support length of R𝔟, while the constraint 𝔟 � 𝔟mid guarantees
the square of the support length of R𝔟 is at most 𝑁1/2+2𝜀RN,1 � 𝔩𝑁 by construction in Definition 10.2;
for the last bound concerning 𝔩𝑁 , we recall 𝔩𝑁 in Definition 3.1 and note that by Definition 10.2, we
clearly have the inequality 100𝜀RN,1 � 𝜀RN. It now suffices to plug in 𝔩𝛽,𝔟 and R𝔟 bounds in Definition
10.2; note |R𝔟 | � 𝑁−𝜀1+10𝜀ap = 𝑁−1/14+10𝜀ap , and 𝛽 � 999𝜀RN + 999𝜀RN,1. �

Proof of Lemma 10.4. We will follow the proof of Lemma 9.4. In particular, it suffices to copy and
paste that argument except we formally replace S𝜀1 with R𝔟

𝑆,𝑦 and 𝔩1 with 𝔩𝛽,𝔟. This has the following
effects on that argument and its proofs.

◦ The bounds (9.11) and (9.12) still hold as written after the aforementioned replacements. The estimate
(9.13) also ‘almost’ holds because the application of Lemma 8.9 used to obtain it, even after the
aforementioned replacement, is still valid since R𝔟 is still uniformly bounded. However, the first term
on the RHS of equation (9.13) must be adjusted as the support length of the ‘new’ functional R𝔟

is no longer order 𝑁6/25, whose cube is present in the first term on the RHS of equation (9.13).
Recalling from Definition 10.2 that for 𝔟 � 𝔟mid the support length of R𝔟 is of order at most
𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 � 𝑁1/3, after the replacement S→ R𝔟 the first term on the RHS of equation (9.13)
has its 𝑁18/25 factor replaced by N, which controls the cube of the support length of R𝔟.

◦ The estimate (9.14) still holds after the replacement of 𝔩1 by 𝔩𝛽,𝔟 and of S by R𝔟, as |R𝔟 | � 1 and R𝔟 also
vanishes in expectation with respect to any canonical measure on its support. In particular, Lemma
8.10 holds with 𝔣𝔧 equal to spatial shifts of R𝔟 with mutually disjoint supports and with 𝔍 = 𝔩𝛽,𝔟.

We deduce the claim from directly following the proof of Lemma 9.4, at least upon checking that the
replacement of 𝑁18/25 with N on the RHS of equation (9.13) still makes the contribution of the first
term on the RHS of equation (9.13), after plugging into equations (9.11) and (9.12), controlled by the
RHS of the proposed estimate (10.3). This follows by elementary power-counting, so we are done. �

Proof of Lemma 10.5. We follow the proof of Lemma 9.5. Observe 𝔱𝔧+ � 𝑁−1. Indeed, 𝔩𝛽,𝔟 is 𝑁−𝛽 times
the support length of R𝔟−1, and the support length of R𝔟−1 is � 𝑁−10𝜀RN,1 𝑁 𝜀1 . As 𝜀RN,1 and 𝛽 are much
smaller than 𝜀1 = 1/14 from the statement of Proposition 4.6, the factor of 𝑁−𝜀1 beats powers of 𝑁𝛽

and 𝑁 𝜀RN,1 , and by inspecting the definition in the statement of Lemma 10.5, we deduce the proposed

https://doi.org/10.1017/fms.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.27


76 K. Yang

timescale upper bound. Also, throughout the following proof, we replace 𝔩1 whenever we appeal to the
proof of Lemma 9.5 by 𝔩𝛽,𝔟 from Definition 10.2.

We directly follow the argument in the proof of Lemma 9.5 preceding equation (9.19) but now with
cutoff spatial averages of R𝔟 rather than S. Because |R𝔟 | � 1 and |ℑ̄X

𝔩𝛽,𝔟
(R𝔟) | � 𝑁−𝛼 for 𝛼 � 1, we

obtain equation (9.16) but with 𝔣 = R𝔟 instead of 𝔣 = S and with 𝛼 > 0 universal instead of 1/12 on
the far RHS of equation (9.16). Thus, it ultimately suffices to control from above the following quantity
that is analogous to equation (9.19) uniformly in the indices 𝔧 < 𝔧+ of interest:

𝑁3𝜀ap𝔱
1
4
𝔧+1E‖H𝑁

(
𝑁

1
2 |ℑT

𝔱𝔧
ℑ̄X
𝔩𝛽,𝔟
(R𝔟

𝑆,𝑦) |
)
‖1;T𝑁 �

(
𝑁8𝜀ap𝔱

3
8
𝔧+1EI1(𝑁

3
4 |ℑT

𝔱𝔧
ℑ̄X
𝔩𝛽,𝔟
(R𝔟

𝑆,𝑦) |
3
2 )

) 2
3

. (10.15)

The estimate in equation (10.15) follows from applying Lemma 8.2 as equation (9.19) did but now with
S replaced by R𝔟 and 𝔩1 by 𝔩𝛽,𝔟. Following the paragraph after equation (9.19) and prior to equation
(9.20), because of the first paragraph in this proof it suffices to estimate the RHS of equation (10.15) for
all 𝑁−2 � 𝔱𝔧 � 𝑁−1, which by construction in Definition 3.1 means 𝔱𝔧+1 � 𝑁−1+𝜀ap . To this end, observe
equation (9.20) holds with the replacement S → R𝔟 except Loc therein is now with respect to length
scale 𝔩tot from Definition 8.3/Lemma 8.8, which is also taken with 𝛾0 = 𝜀ap, with the choice 𝔩 equal to the
support length of ℑ̄X

𝔩𝛽,𝔟
(R𝔟), which is 𝔩𝛽,𝔟 times the support length of R𝔟 written in Definition 10.2, and

with 𝔩av = 1 because the spatial-averaging scale 𝔩𝛽,𝔟 is already built into 𝔩. The effect of this distinction
in 𝔩tot will be given shortly. For clarity, let us record this estimate below, which we reference shortly:

𝑁8𝜀ap𝔱
3
8
𝔧+1EI1(𝑁

3
4 |ℑT

𝔱𝔧
ℑ̄X
𝔩𝛽,𝔟
(R𝔟

𝑆,𝑦) |
3
2 ) � 𝑁

3
4+8𝜀ap𝔱

3
8
𝔧+1E0�̄�1Edyn

Loc |ℑ
T
𝔱𝔧
ℑ̄X
𝔩𝛽,𝔟
(R𝔟

0,0) |
3
2 + 𝑁−100. (10.16)

Similar to the second term on the RHS of equation (9.20), the second term on the RHS of equation
(10.16) has contribution ultimately controlled by the RHS of the proposed estimate. To study the first
term on the RHS of equation (10.16), we use Lemma 8.9 as with the first term on the RHS of equation
(9.20) from the proof of Lemma 9.5. We will make the same choices for inputs/ingredients for Lemma
8.9 as we made to analyze the first term on the RHS of equation (9.20), except with the following
adjustment that takes into consideration the different a priori estimates we have on the cutoff spatial
average ℑ̄X

𝔩𝛽,𝔟
(R𝔟) as opposed to S𝜀1 .

◦ First, let us clarify we choose 𝔥 to be the Edyn-term on the RHS of equation (10.16), so with R𝔟 and
not S.

◦ We choose 𝜅 = 𝑁−3𝜀ap/2𝔩3/4𝛽,𝔟𝑁−15𝜀ap+3𝜀1/2+3𝔟𝜀RN,1/2 for the 𝜅 constant in the statement of Lemma 8.9.
As 𝜅 |ℑ̄X

𝔩𝛽,𝔟
(R𝔟) | � 1, this choice of 𝜅 is compatible with our choice of 𝔥, so our application of Lemma

8.9 with these choices is legal.

Similar to the proof of Lemma 9.5 and bounds on the first term on the RHS of equation (9.20), Lemma
8.9 bounds the first term on the RHS of equation (10.16) in terms of two quantities. The first of these
two terms is the far LHS of equation (9.21), which is ultimately negligible even with replacing 𝑁 𝜀1 𝔩1 in
equation (9.21) with our new choice of 𝔩tot adapted to the support length of R𝔟 and the spatial-average
length scale 𝔩𝛽,𝔟. Recall from Lemma 8.8 that 𝔩tot is bounded by the spatial-average length scale 𝔩𝛽,𝔟
times the support length 𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 , in Definition 10.2, of R𝔟. With the new choice for 𝜅 made in
the bullet point list above, we deduce that the first upper-bound term for the first term on the RHS of
equation (10.16)/far LHS of equation (9.21) but, after replacing 𝑁 𝜀1 𝔩1 with 𝔩tot, is ultimately controlled
by the RHS of the proposed estimate (10.4). This can be verified with an elementary power-counting
after plugging into the middle of equation (9.21) our choice of 𝜅 in the bullet points above and replacing
𝑁 𝜀1 𝔩1 in equation (9.21) by our new 𝔩tot. In particular, if |B| denotes the support length of Edyn, we have
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the following estimate that is analogous to equation (9.21):

𝑁
3
4+8𝜀ap𝔱

3
8
𝔧+1𝜅−1𝑁−2 |B|3 � 𝑁

3
4+8𝜀ap𝔱

3
8
𝔧+1𝜅−1𝑁−2

(
𝑁1+𝜀ap𝔱

1
2
𝔧 + 𝑁

3
2+𝜀ap𝔱𝔧 + 𝑁 𝜀ap 𝔩𝛽,𝔟𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1

)3
.

(10.17)

Recalling 𝜀1 + 𝔟𝜀RN,1 � 1/4 and 𝔩𝛽,𝔟 � 𝑁1/4+𝛽 if 𝔟 � 𝔟mid by construction in Definition 10.2, the
contribution of the RHS of equation (10.17), after plugging into equation (10.16) and taking its 2/3-
power in (10.15), is controlled by the RHS of the proposed estimate (10.4) as we also have 𝔱𝔧 � 𝑁−1

and 𝔱𝔧+1 � 𝑁−1+𝜀ap , the first noted in the first paragraph of this proof and the latter by Definition 3.1.
We move to the second upper-bound term for the first term on the RHS of equation (10.16) that

results from our application of Lemma 8.9. This is the Φ-term in equation (9.22) except S → R𝔟 and
𝔩1 → 𝔩𝛽,𝔟. In particular, everything until/before equation (9.27) and after equation (9.22) holds with the
replacements S→ R𝔟 and 𝔩1 → 𝔩𝛽,𝔟; indeed, R𝔟 is uniformly bounded and vanishes in expectation with
respect to any canonical measure on its support, so Lemma 8.10 applies to R𝔟 and averages of its spatial
translates. However, the estimate (9.27) must be modified to account for the new/longer support length
of R𝔟 as well as the spatial-average length scale in the ℑ̄X-term on the RHS of equation (10.16) and
the improved a priori deterministic estimates on R𝔟. In particular, by Lemma 8.11 but with the choice
of 𝔣 = R𝔟, we have the following estimate similar to how equation (9.27) was derived; we justify the
following estimate afterwards:

𝑁1+ 32
3 𝜀ap𝔱

1
2
𝔧+1E𝜎Edyn

Loc |ℑ
T
𝔱𝔧
ℑX
𝔩𝛽,𝔟
(R𝔟

0,0) |
2 � 𝑁1+ 35

3 𝜀ap𝔱
1
2
𝔧 𝑁−2𝔱−1

𝔧 𝔩−1
𝛽,𝔟𝑁2𝜀1+2𝔟𝜀RN,1+2𝜀RN,1 ‖R𝔟

0,0‖
2
𝜔;∞ + 𝑁−100.

(10.18)

In contrast to equation (9.27), the 𝑁2/14-factor therein is replaced by the square of the support length of
R𝔟 that is order 𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 as written in Definition 10.2. Moreover, the spatial-average length scale
𝔩1 in equation (9.27) is replaced by the length scale 𝔩𝛽,𝔟. Lastly, we included the ‖‖𝜔;∞-factor in Lemma
8.11 in our estimate (10.18), which we did not do in equation (9.27). Recalling now the ‖R𝔟‖𝜔;∞-estimate
in Definition 10.2 and 𝔱𝔧 � 𝑁−2 and 𝔩𝛽,𝔟 � 𝑁 𝜀1−𝛽 with 𝜀1 = 1/14 much larger than 𝜀ap and 𝜀RN,1 and
𝛽, an elementary power-counting calculation shows the RHS of equation (10.18) is O(𝑁−𝛼) for 𝛼 > 0
universal. Therefore, as with the end of the proof of Lemma 9.5 after equation (9.27), we are done. �

Proof of Lemma 10.6. Unlike the proof of Lemma 9.6, we will not need to introduce additional spatial
averaging, so the proof of the current Lemma 10.6 is much simpler. We start via the following version
of equation (10.15), which is just equation (10.15) but without prefactors and for the maximal timescale
𝔱𝔧+ and with an additional Y𝑁 -factor; we explain its quick proof/derivation afterwards:

E‖H𝑁
(
𝑁

1
2 ℑT

𝔱𝔧+
ℑ̄X
𝔩𝛽,𝔟
(R𝔟

𝑆,𝑦)Y
𝑁
𝑆,𝑦

)
‖1;T𝑁 �

(
𝑁8𝜀ap EI1(𝑁

3
4 |ℑT

𝔱𝔧+
ℑ̄X
𝔩𝛽,𝔟
(R𝔟

𝑆,𝑦) |
3
2 )

) 2
3
. (10.19)

Indeed, to prove equation (10.19), we recall |Y𝑁 | � 𝑁 𝜀ap to forget Y𝑁 on the LHS and apply Lemma
8.2 in the same way as we did to get equation (10.15) and deduce equation (10.19). For the RHS of
equation (10.19), we have the following by Lemma 8.8 in the same way as we derived equation (10.16),
in which the Loc term is, like in equation (10.16), also chosen in Definition 8.3/Lemma 8.8 with 𝔩tot
defined by 𝔩av = 1 and 𝔩 equal to 𝔩𝛽,𝔟 times the support length of R𝔟, which we recall is explicitly written
in Definition 10.2:

𝑁8𝜀ap EI1(𝑁
3
4 |ℑT

𝔱𝔧+
ℑ̄X
𝔩𝛽,𝔟
(R𝔟

𝑆,𝑦) |
3
2 ) � 𝑁

3
4+8𝜀ap E0�̄�1Edyn

Loc |ℑ
T
𝔱𝔧+
ℑ̄X
𝔩𝛽,𝔟
(R𝔟

0,0) |
3
2 + 𝑁−100. (10.20)

Contribution of the second term on the RHS of equation (10.20), after plugging it in the RHS of
equation (10.19) and taking 2/3-powers, is bounded by the RHS of the proposed estimate (10.5). We
now estimate the first term on the RHS of equation (10.20) via Lemma 8.9. In particular, let us apply
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Lemma 8.9 in the same way as we did in the proof of Lemma 10.5, namely with the same choices of 𝔥
and 𝜅 therein. This estimates the first term on the RHS of equation (10.20) by two terms, just as in the
proof of Lemma 10.5. The first of these, namely the first term on the RHS of equation (8.16), depends
on the support of Edyn. It is ultimately controlled via the following, where B is the support of Edyn for
which 𝔩tot is explained prior to equation (10.20); we explain the estimates below after:

𝑁
3
4+8𝜀ap 𝜅−1𝑁−2 |B|3 � 𝑁

3
4+8𝜀ap 𝜅−1𝑁−2

(
𝑁1+𝜀ap𝔱

1
2
𝔧+
+ 𝑁

3
2+𝜀ap𝔱𝔧+ + 𝑁 𝜀ap 𝔩tot

)3
� 𝑁−

1
999+100𝜀ap . (10.21)

Let us recall the support length |B| of Edyn is given in the statement of Lemma 8.8, and this gives the first
estimate in equation (10.21). The second estimate in equation (10.21) follows by recalling choices below
we made for terms in equation (10.21) and elementary power-counting. In the bullet points below, we
refer back to Definition 10.2 and Lemma 10.3 and the proof of Lemma 10.5 for notation/constructions.

◦ Recall from the statement of Lemma 10.5 that the timescale in equation (10.21) satisfies the upper
bound 𝔱𝔧+ � 𝑁−1+𝛽𝔩−1

𝛽,𝔟.
◦ Recall from bullet points after equation (10.16) that 𝜅 � 𝔩3/4𝛽,𝔟𝑁3𝜀1/2+3𝔟𝜀RN,1/2𝑁10𝜀ap+20𝛽 � 𝔩9/4𝛽,𝔟.
◦ Third, note 𝔩𝛽,𝔟 � 𝑁 𝜀1−𝛽 with 𝜀1 = 1/14 much bigger than 𝛽 for all 𝔟 � 0, which follows by

construction in Definition 10.2.
◦ We clarify that 𝔩tot is controlled by the product of the R𝔟-support length 𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 and the

spatial-averaging length scale 𝔩𝛽,𝔟, both of these from Definition 10.2, as we explained prior to
equation (10.20). Thus, 𝔩tot � 𝑁10𝛽𝔩𝛽,𝔟 � 𝑁1/4+𝜀RN,1+10𝛽 .

The estimate (10.21) controls the first term in the bound for the first term on the RHS of equation (10.20)
that arises from an application of Lemma 8.9. Let us now estimate the second term in said bound/the
RHS of equation (8.16). Following the paragraph prior to equation (10.18), this second term is a large
negative power of N plus the following with estimates below to be justified/explained afterwards:

𝑁1+ 32
3 𝜀ap E𝜎Edyn

Loc |ℑ
T
𝔱𝔧+
ℑX
𝔩𝛽,𝔟
(R𝔟

0,0) |
2 � 𝑁1+ 32

3 𝜀ap 𝑁−2𝔱−1
𝔧+
𝔩−1
𝛽,𝔟𝑁2𝜀1+2𝔟𝜀RN,1+2𝜀RN,1 ‖R𝔟

0,0‖
2
𝜔;∞ + 𝑁−100.

(10.22)

We now make the following observations for factors in the first term on the RHS of equation (10.22).

◦ Note 𝔱𝔧+ � 𝑁−1+𝛽−2𝜀ap 𝔩−1
𝛽,𝔟, as 𝔱𝔧 increases by a factor of 𝑁 𝜀ap in the index and 𝔱𝔧+ is the last 𝔱𝔧 to satisfy

𝔱𝔧+ � 𝑁−1+𝛽𝔩−1
𝛽,𝔟.

◦ Note 𝑁2𝜀1+2𝔟𝜀RN,1+2𝜀RN,1 ‖R𝔟
0,0‖

2
𝜔;∞ � 𝑁2𝜀RN,1 ; see Definition 10.2. This is the utility of bounds for R𝔟

that improve in 𝔟. Also, we have 𝔩𝛽,𝔟 � 𝑁−𝛽𝑁 𝜀1 for 𝜀1 = 1/14; again see Definition 10.2.

With this pair of observations, like the proof of Lemma 9.6, we deduce the contribution of the first term
on the RHS of equation (10.22) is controlled by the RHS of the proposed bound (10.5). Combining this
with equation (10.21) to estimate (10.19) completes the proof. �

11. Boltzmann–Gibbs principle I – proof of Proposition 4.7, Case II

The strategy we take in this section is remarkably similar to the strategy of the previous section. In
particular, we will employ Lemma 10.1 to replace R𝜀1+𝔟𝜀RN,1 (𝜏𝑦𝜂𝑆) by Rcut

𝜀1+𝔟𝜀RN,1
(𝜏𝑦𝜂𝑆) on the LHS of

equation (4.8) for all 𝔟 ∈ 	𝔟mid + 1, 𝔟 − 1
. Recall 𝔟mid is the index cutoff that distinguishes Case I and
Case II of Proposition 4.7; see Definition 10.2. Afterwards:

◦ First, we define R𝔟
𝑆,𝑦 = Rcut

𝜀1+𝔟𝜀RN,1
(𝜏𝑦𝜂𝑆) throughout this section, as in the previous section, to ease

notation.
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◦ Second, we replace R𝔟 with a spatial average like with the previous section. However, we will average
it here on spatial-scale 𝔩𝛽 = 𝑁𝛽 , not the length scale 𝔩𝛽,𝔟 that matches, up to the factor of 𝑁−𝛽 , the
length of the support of R𝔟. We cannot average it on the length scale 𝔩𝛽,𝔟 in this section, as controlling
the resulting spatial gradients would require spatial regularity estimates for Y𝑁 on length scales that
are well beyond those which we have a priori Y𝑁 estimates for. However, as the support of R𝔟 is
larger in Case II, the a priori estimates for R𝔟 in Lemma 10.1 are better than they generally were in
Case I; this helps. Actually, for this reason we ultimately will not need to replace this spatial average
of R𝔟 with a cutoff as in Lemma 10.4.

◦ Third, we replace the spatial average of R𝔟 with its time average/the space-time average of R𝔟 with
respect to a timescale that is roughly equal to 𝔱𝔧+ = 𝑁−1−𝛽/2 and in particular independent of 𝔟,
although this last feature will not be important. Again, we say ‘roughly’ because we will need to use
a timescale contained in IT,1 for the technical reason that we only have a priori regularity estimates
for Y𝑁 on these timescales. After this replacement we will estimate this last space-time average of
R𝔟 to complete the proof of Case II of Proposition 4.7, and thus the proof of Proposition 4.7 when
combined with the last section.

◦ The previous three steps, in terms of the technical estimates, are done with the same general tools
introduced in Section 8.

To ease the following reading we recall the following facts from after Definition 10.2 about R𝔟 that
follow via Lemma 10.1.

◦ The support of R𝔟 has length of order 𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 , and we have ‖R𝔟‖𝜔;∞ � 𝑁10𝜀ap 𝑁−𝜀1−𝔟𝜀RN,1

by construction.
◦ Lastly, as in Definition 10.2, we will define and sometimes use 𝑁𝛽+𝜀RN,1 𝔩𝛽,𝔟 = 𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 , where

𝛽 = 999−99.

Similar to the previous two sections, we provide each of the previous ingredients listed above and use
them to establish Case II of Proposition 4.7. We then provide the proof for each of the ingredients
to complete this section. Only the proof of spatial-average replacement in Lemma 11.1 requires an
additional idea, while other proofs will effectively be copied.

11.0.1. Spatial average
We start with the aforementioned replacement of R𝔟 with its spatial average on length scale 𝑁𝛽 . The
proof of the following result is highly similar to that of Lemma 10.3, so we refer to that argument with
necessary adjustments, including one important detail, when we present the proof of Lemma 11.1 below.

Lemma 11.1. We define the length scale 𝔩𝛽 = 𝑁𝛽 for 𝛽 = 999−99. Uniformly in 𝔟 ∈ 	𝔟mid + 1, 𝔟+ − 1
,
we have the following estimate for which we recall the transfer-of-spatial-scale operator from Definition
8.12:

E‖H𝑁
(
𝑁

1
2𝔇X

0,𝔩𝛽 (R
𝔟
𝑆,𝑦)Y

𝑁
𝑆,𝑦

)
‖1;T𝑁 � 𝑁−

1
9999+𝜀RN+2𝜀RN,1+12𝜀ap+2𝛽 . (11.1)

11.0.2. Time Average
The following is replacement-by-time average in the third bullet point. For its proof, we basically copy
that of Lemma 10.5 with technical modifications. Recall IT,1 from Definition 3.1.

Lemma 11.2. Let 𝔧+ ∈ Z�0 be the largest index for which 𝔱𝔧+ � 𝑁−1−𝛽/2 is the largest time in IT,1
satisfying this bound; here 𝛽 = 999−99. For 𝔟 ∈ 	𝔟mid + 1, 𝔟+ − 1
, we have the following; recall the
transfer-of-timescale-operator in Definition 8.15:

E‖H𝑁
(
𝑁

1
2𝔇T

0,𝔱𝔧+
(ℑX

𝔩𝛽
(R𝔟

𝑆,𝑦))Y
𝑁
𝑆,𝑦

)
‖1;T𝑁 � 𝑁−

1
99999 𝛽+100𝜀ap . (11.2)

https://doi.org/10.1017/fms.2023.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.27


80 K. Yang

11.0.3. Final estimates
Our last ingredient before we deduce Case II of Proposition 4.7 is the following estimate on the space-
time average ℑT

𝔱𝔧+
ℑX
𝔩𝛽

R𝔟 for 𝔩𝛽 in Lemma 11.1 and for 𝔱𝔧+ in Lemma 11.2. The following final ingredient
serves as an analog of Lemma 9.6 and Lemma 10.6. Indeed, similar to those two results, most of the
work is done for the lemma immediately before.

Lemma 11.3. Take the timescale 𝔱𝔧+ from Lemma 11.2. Uniformly in 𝔟 ∈ 	𝔟mid + 1, 𝔟+ − 1
, we have
the following estimate:

E‖H𝑁
(
𝑁

1
2 ℑT

𝔱𝔧+
ℑX
𝔩𝛽
(R𝔟

𝑆,𝑦)Y
𝑁
𝑆,𝑦

)
‖1;T𝑁 � 𝑁−

1
99999 𝛽+100𝜀ap . (11.3)

Case II of Proposition 4.7, namely Proposition 4.7 but restricting to 𝔟 ∈ 	𝔟mid + 1, 𝔟+ − 1
, follows
from Lemmas 11.1, 11.2, and 11.3 combined with the same replacement reasoning that we used in the
proof of Case I of Proposition 4.7 at the end of the previous section. Together with the previous section,
this concludes the proof of Proposition 4.7 entirely.

Proof of Lemma 11.1. Let us follow the proof of Lemma 10.3, though our application of Lemma 8.13
will be somewhat illegal but remedied as we soon explain. Formally, let us apply Lemma 8.13 with
𝔣 = 𝑁1/2R𝔟 and 𝔱 = 0 as in the proof of Lemma 10.3, but now with 𝔩 = 𝔩𝛽 = 𝑁𝛽 , where 𝛽 = 999−99. We
claim that this provides the following inequality that we justify afterwards:

E‖H𝑁 (𝑁1/2𝔇X
0,𝔩𝛽 (R

𝔟
𝑆,𝑦)Y

𝑁
𝑆,𝑦)‖1;T𝑁 � 𝑁 𝜀RN+𝜀ap ‖R𝔟‖𝜔;∞ + 𝑁5𝜀ap 𝔩𝛽𝑁

1
2 𝜀1+

1
2 𝔟𝜀RN,1+

1
2 𝜀RN,1 ‖R𝔟‖𝜔;∞.

(11.4)

If we could apply Lemma 8.13 with the aforementioned choices, then equation (11.4) would follow just
as equation (10.14) did, except the extra square root of 𝔩𝛽 would not be necessary in the second term
on the RHS of equation (11.4). However, for 𝔟 < 𝔟+ it is not necessarily true that the support length
of R𝔟 times 𝔩 = 𝔩𝛽 is bounded above by 𝔩𝑁 in Definition 3.1; if 𝔟 = 𝔟+ − 1, then the support length of
R𝔟 is O(𝑁 𝜀1+𝔟+𝜀RN,1 ) as we noted in the bullet point list prior to Lemma 11.1. It is certainly possible
that the support length of R𝔟 is very close to or basically equal to 𝔩𝑁 = 𝑁1/2+𝜀RN by construction in the
statement of Proposition 4.7, so after multiplying by 𝔩 = 𝔩𝛽 = 𝑁𝛽 the resulting product may exceed 𝔩𝑁 .
This is remedied by the following observations.

◦ The only reason why we require the 𝔩 � 𝔩𝑁 constraint in the proof of Lemma 8.13 is so that we have
a priori spatial regularity estimates for Y𝑁 on the length scale 𝔩, which is defined in the statement of
Lemma 8.13, by construction in Definition 3.5.

◦ However, even if 𝔩 = 𝔩𝛽𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 exceeds 𝔩𝑁 , it only does by a factor of order 𝔩𝛽 = 𝑁𝛽 for 𝔟 < 𝔟+.
Indeed, 𝔩−1

𝛽 𝔩 is always bounded by 𝔩𝑁 = 𝑁1/2+𝜀RN in Definition 3.1 for all 𝔟 < 𝔟+ by construction of
𝔟+ in the statement of Proposition 4.7. Rewriting spatial gradients of Y𝑁 on length scales of order
𝔩𝛽𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 as order-𝔩𝛽-many spatial gradients on the length scale 𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 , we may
control the spatial regularity of Y𝑁 on length scales of order 𝔩𝛽𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 by 𝔩𝛽 = 𝑁𝛽 times
spatial regularity estimates for Y𝑁 on length scale 𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 .

◦ The above length-𝔩𝛽𝑁 𝜀1+𝔟𝜀RN,1+𝜀RN,1 spatial regularity bound on Y𝑁 is 𝔩1/2𝛽 worse than what the proof
of Lemma 8.13 needs it to be since the proof of Lemma 8.13 uses Holder regularity with exponent
basically 1/2 for Y𝑁 , and our bound is linear in 𝔩𝛽 rather than square root. Because the spatial
regularity of Y𝑁 only is relevant for the second term on the RHS of (8.22)/(11.4), this is why we get
equation (11.4) with 𝔩𝛽 in the second term on the RHS and not its square root as Lemma 8.13 says;
see Remark 8.14.

By equation (11.4), like the proof of Lemma 10.3, it suffices to use 𝑁
1
2 (𝜀1+𝔟𝜀RN,1+𝜀RN,1) |R𝔟 | �

𝑁10𝜀ap 𝑁−
1
2 (𝜀1−𝔟𝜀RN,1+𝜀RN,1) � 𝑁−1/4+10𝜀ap+𝜀RN,1/2for 𝔟 > 𝔟mid and 𝛽 = 999−99. �
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Proof of Lemma 11.2. We directly follow the proof of Lemma 10.5 verbatim, but we replace 𝔩𝛽,𝔟 therein
by 𝔩𝛽 = 𝑁𝛽 . For the sake of precision/clarity, the estimates (10.15) and (10.16) both hold with the
previous length-scale replacement and for 𝔟-indices of interest in the current lemma, as do equations
(10.17) and (10.18). Moreover, it is easy to check that in the latter two of these bounds, the upper bounds
with the aforementioned length-scale replacement, after plugging into equations (10.15) and (10.16) and
taking 2/3-powers, are controlled by the RHS of the proposed estimate (11.2). Indeed, given 𝔟 > 𝔟mid,
we have 𝜅 = 𝑁−3𝜀ap/2𝑁−3𝛽/4‖R𝔟‖3/2𝜔;∞ � 𝑁−3𝜀ap/2−3𝛽/4+3/8, which is enough to control equation (10.17);
see Definition 10.2. For equation (10.18), all that we need to estimate the RHS of equation (10.18) is
𝔩𝛽,𝔟 � 𝑁𝛽 since 𝔱𝔧 � 𝑁−2; by construction, we still have 𝔩𝛽 = 𝑁𝛽 , so replacing 𝔩𝛽,𝔟 by 𝔩𝛽 is not an
issue. �

Proof of Lemma 11.3. We directly follow the proof of Lemma 10.6 verbatim except we replace 𝔩𝛽,𝔟
therein with 𝔩𝛽 = 𝑁𝛽 and we replace 𝔱𝔧+ therein with 𝔱𝔧+ defined in the statement of Lemma 11.2/Lemma
11.3. Similar to the proof of Lemma 11.2, it is enough to verify that the estimates (10.19), (10.20), (10.21)
and (10.22) from the proof for Lemma 10.6 that we are following still hold with the aforementioned
length-scale and timescale replacements. For equations (10.19) and (10.20), this is because Lemma 8.2
and Lemma 8.8 do not care about the space-time scales in terms of applicability. For equations (10.21)
and (10.22), this is a consequence of power-counting in N. For equation (10.21), it is enough to note
𝜅 � 𝑁−3𝜀ap−3𝛽/4+ 3

8 after our replacement 𝔩𝛽,𝔟 → 𝔩𝛽 as noted in the proof of Lemma 11.2. We clarify
weakening 𝔱𝔧+ from the proof of Lemma 10.6 to 𝔱𝔧+ in the current lemma, which only weakens equation
(10.22) by a factor of 𝑁𝛽/2, gets dominated by 𝔩−1

𝛽 � 𝑁−𝛽 obtained by replacing 𝔩𝛽,𝔟 by 𝔩𝛽 in (10.22). �

A. Auxiliary estimates

A.1. Heat estimates

We start with the following, from which heat kernel estimates ultimately follow.
Lemma A.1. Let us define H𝑁 ,Z to be the full-line heat kernel on Z satisfying the following conditions.
◦ DefineΔ !!

Z
= 𝑁2ΔZ and∇!

Z,−1 = 𝑁∇Z,−1, withΔZ the Laplacian onZ and∇Z,−1 the negative-direction
gradient on Z.

◦ Provided 0 � 𝑆 � 𝑇 and 𝑥, 𝑦 ∈ Z, we have H𝑁 ,Z
𝑆,𝑆,𝑥,𝑦 = 1𝑥=𝑦 and 𝜕𝑇 H𝑁 ,Z

𝑆,𝑇 ,𝑥,𝑦 = 2−1Δ !!
Z

H𝑁 ,Z
𝑆,𝑇 ,𝑥,𝑦 +

�̄�∇!
Z,−1H𝑁 ,Z

𝑆,𝑇 ,𝑥,𝑦 .

We have the following identity relating H𝑁 and H𝑁 ,Z and the following Chapman–Kolmogorov equation,
in which 𝑆 � 𝑅 � 𝑇 and 𝑥, 𝑦 ∈ T𝑁 = 	0, 𝑁 − 1
:

H𝑁
𝑆,𝑇 ,𝑥,𝑦 =

∑
𝔨∈Z

H𝑁 ,Z
𝑆,𝑇 ,𝑥,𝑦+𝔨 |T𝑁 |

and H𝑁
𝑆,𝑇 ,𝑥,𝑦 =

∑
𝑤 ∈T𝑁

H𝑁
𝑅,𝑇 ,𝑥,𝑤H𝑁

𝑆,𝑅,𝑤,𝑦 . (A.1)

Proof. To show the first identity in equation (A.1), note both sides are equal to 1𝑥=𝑦 if 𝑆 = 𝑇 . Indeed,
if 𝑥, 𝑦 ∈ T𝑁, then 𝑥 = 𝑦 + 𝔨 |T𝑁 | can only happen for 𝔨 = 0. Next, we note that both sides vanish under
𝜕𝑇 −ℒ𝑁 for 𝑇 > 𝑆, where ℒ𝑁 acts on x. By uniqueness of solutions to linear ordinary differential
equations (ODEs), the first identity holds. To show the second identity, note both sides equal H𝑁

𝑆,𝑅,𝑥,𝑦

at 𝑇 = 𝑅. Then, note both sides vanish under 𝜕𝑇 −ℒ𝑁 for 𝑇 > 𝑅, where ℒ𝑁 acts on x. So, the second
identity holds, again, by uniqueness. �

Definition A.2. Provided 𝔩, 𝔩 ′ ∈ Z and any function 𝜙 : T𝑁 → R, we define the composition ∇X
𝔩,𝔩′𝜑 =

∇X
𝔩 (∇

X
𝔩′ 𝜙).

The following result collects pointwise (and summed) estimates for the H𝑁 heat kernel, which can
be interpreted as those for a Gaussian heat kernel (or its periodic version) at times of order 𝑁2. Proving
them amounts to the following steps. First, to prove the pointwise and spatial regularity estimates listed
below, it suffices to assume �̄� = 0. Indeed, the H𝑁 heat kernel is the density for a symmetric simple
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random walk plus constant speed drift. It is therefore the convolution of a Poisson density function (for
the law of the position of the drift) with the H𝑁 kernel for �̄� = 0. Convolution with the Poisson density
function is contractive in all pointwise and spatial regularity norms used below, so reduction to �̄� = 0
follows. To prove bounds in the case of �̄� = 0, it suffices to use the first identity in equation (A.1) with
bounds in Proposition A.1 and Corollary A.2 of [19], which have subexponential decay in space, and
their higher-order analogs, which are proven by the same method. To prove the time-regularity bounds
below, it suffices to note that time gradients of H𝑁 are time integrals of its spatial gradients because
of the PDE that H𝑁 satisfies. Then, we can use spatial regularity estimates that we just explained.
(In particular, even for mixed space-time gradients, we are always left with estimating iterated spatial
gradients of H𝑁 .)

Proposition A.3. We first take 0 � 𝑆 � 𝑇 � 1. Provided any 𝔩, 𝔩 ′ ∈ Z and any 0 � 𝜈 � 1, we have the
following estimates, in which spatial gradients act on 𝑥 ∈ T𝑁; recall O𝑆,𝑇 = |𝑇 − 𝑆 |:

0 � H𝑁
𝑆,𝑇 ,𝑥,𝑦 and

𝑁𝜈O
1
2 𝜈

𝑆,𝑇 H𝑁
𝑆,𝑇 ,𝑥,𝑦 + 𝑁2𝜈O𝜈

𝑆,𝑇 |𝔩 |
−𝜈 |∇X

𝔩 H𝑁
𝑆,𝑇 ,𝑥,𝑦 | + 𝑁3𝜈O

3
2 𝜈

𝑆,𝑇 |𝔩𝔩
′ |−𝜈 |∇X

𝔩,𝔩′H
𝑁
𝑆,𝑇 ,𝑥,𝑦 | � 1. (A.2)

We have the following summation estimates under the same assumptions made/with the same parameters
prior to equation (A.2):∑
𝑦∈T𝑁

H𝑁
𝑆,𝑇 ,𝑥,𝑦 + 𝑁𝜈O

1
2 𝜈

𝑆,𝑇 |𝔩 |
−𝜈

∑
𝑦∈T𝑁

|∇X
𝔩 H𝑁

𝑆,𝑇 ,𝑥,𝑦 | + 𝑁2𝜈O𝜈
𝑆,𝑇 |𝔩𝔩

′ |−𝜈
∑
𝑦∈T𝑁

|∇X
𝔩,𝔩′H

𝑁
𝑆,𝑇 ,𝑥,𝑦 | � 1. (A.3)

Additionally consider any timescale t � 0. We have the following in which the time-gradient acts on
𝑇 � 0:

𝑁𝜈O
3
2 𝜈

𝑆,𝑇 |t|
−𝜈 |∇T

t H𝑁
𝑆,𝑇 ,𝑥,𝑦 | + 𝑁2𝜈O2𝜈

𝑆,𝑇 |t|
−𝜈 |𝔩 |−𝜈 |∇T

t ∇
X
𝔩 H𝑁

𝑆,𝑇 ,𝑥,𝑦 | +O𝜈
𝑆,𝑇 |t|

−𝜈
∑
𝑦∈T𝑁

|∇T
t H𝑁

𝑆,𝑇 ,𝑥,𝑦 | � 1.

(A.4)

We now list heat operator estimates. For any 𝜙 : R�0 × T𝑁 → R and I ⊆ R�0, we have space-time
contraction estimates:

‖𝜙0,•‖
−1
0;T𝑁 ‖H

𝑁 ,X(𝜙0,•)‖1;T𝑁 + (|I| ∧ 1)−1‖𝜙‖−1
1;T𝑁 ‖H

𝑁 (𝜙𝑆,𝑦1𝑆∈I)‖1;T𝑁 � 1. (A.5)

Let us now recall notation of Definition 5.1. Provided any 𝔯 � 0, we have the spatial-gradient estimates

‖𝜙‖−1
1;T𝑁 ‖|∇̃

X
𝔩 |H

𝑁 (𝜙)‖1;T𝑁 + 𝔯
− 1

2 ‖𝜙‖−1
1;T𝑁 ‖|∇̃

X
𝔩 |H

𝑁 (𝜙𝑆,𝑦1𝑆�𝑇 −𝔯)‖1;T𝑁 + |𝔩 |
−1‖𝜙‖−1

1;T𝑁 ‖H
𝑁 (∇X

𝔩 𝜙)‖1;T𝑁

� 1. (A.6)

We have the following time-regularity heat operator estimates if t � 𝑁−2; below we take 𝛾 > 0 arbitrary:

𝑁−𝛾 |t|−1‖𝜙‖−1
1;T𝑁 ‖∇

T
t H𝑁 (𝜙)‖1;T𝑁 + 𝑁−𝛾 |t|−1‖𝜙‖−1

1;T𝑁 ‖H
𝑁 (∇T

t 𝜙)‖1;T𝑁 �𝛾 1. (A.7)

The estimates in equation (A.7) also hold for t ∈ R in general. Lastly, for any possibly random t0 � 0,
we have the following two identities, the first by the Chapman–Kolmogorov equation in equation (A.1)
and the second by combining the first with the spatial contraction in equation (A.5):

H𝑁
𝑇 ,𝑥 (𝜙𝑆,𝑦1𝑆� (t0∧𝑇 ) ) = H𝑁 ,X

𝑇 −(t0∧𝑇 ) ,𝑥
(H𝑁

t0∧𝑇 ,𝑤 (𝜙)) and ‖H𝑁 (𝜙𝑆,𝑦1𝑆� (t0∧𝑇 ) )‖1;T𝑁 � ‖H𝑁 (𝜙)‖t0;T𝑁 .

(A.8)
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A.2. Martingale estimates

We provide a generalization of the martingale inequality from Lemma 3.1 in [19]. The issue with Lemma
3.1 in [19] is that it only holds for the Gartner transform, as its explicit formula was important in the
proof. On the other hand, the proof of Lemma 3.1 in [19] uses this explicit formula only to estimate the
short-time behavior of the Gartner transform. Thus, because short-time behavior does not depend on
explicit formulas, we have the following generalization to other processes such as U𝑁 from Definition
3.5, which is important to analyze the U𝑁 d𝜉𝑁 term in the U𝑁 equation in Definition 3.5. However, the
following generalization of Lemma 3.1 of [19] is similar in proof and statement, so we refer to Lemma
3.1 in [19].

Lemma A.4. Consider any 𝜙 : R�0×T𝑁 → R and the following local quadratic function of 𝜙 provided
fixed times 0 � 𝔱1 � 𝔱2; in the following, we additionally define �𝑡�𝑁 as the largest element in 𝑁−2

Z�0
that is less than t:

𝜙𝔱1 ,𝔱2
𝑅,𝑥,𝑤

•
= sup𝔯′ ∈ [𝔱1 ,𝔱2): �𝔯′ �𝑁= �𝑅�𝑁 sup |𝔧 |�1 |𝜙𝔯′,𝑥,𝑤+𝔧𝜙𝔯′,𝑥,𝑤 |. (A.9)

Take X𝑁 on R�0 ×T𝑁 satisfying the following for V𝑖 : R�0 ×T𝑁 ×Ω→ R, and 𝔩 ∈ Z fixed; recall ℒ𝑁

in Proposition 2.4:

dX𝑁
𝑇 ,𝑥 = ℒ𝑁 X𝑁

𝑇 ,𝑥d𝑇 + V3;𝑇 ,𝑥d𝑇 + X𝑁
𝑇 ,𝑥d𝜉𝑁𝑇 ,𝑥 + V1;𝑇 ,𝑥X𝑁

𝑇 ,𝑥d𝑇 + ∇X
𝔩 (V2;𝑇 ,𝑥X𝑁

𝑇 ,𝑥)d𝑇. (A.10)

Suppose |V𝑖 | � 𝑁3/2 uniformly over R�0 × T𝑁 × ΩT𝑁 . For any deterministic 𝑝 � 1 and 0 � 𝔱1 � 𝔱2
and 𝜙 : R�0 × T𝑁 → R,

‖

∫ 𝔱2

𝔱1

∑
𝑤 ∈T𝑁

𝜙𝑅,𝑥,𝑤X𝑁
𝑅,𝑤d𝜉𝑁𝑅,𝑤 ‖

2
𝜔;2𝑝 �𝑝

∫ 𝔱2

𝔱1
𝑁

(
sup
𝑤 ∈T𝑁

‖X𝑁
�𝑅�𝑁 ,𝑤 ‖

2
𝜔;2𝑝

) ∑
𝑤 ∈T𝑁

𝜙𝔱1 ,𝔱2
𝑅,𝑥,𝑤d𝑅. (A.11)

Lastly, equation (A.11) holds for X𝑁 = U𝑁 in Definition 3.5 and X𝑁 = Q𝑁 in Definition 3.8 and
X𝑁 = C𝑁 in Definition 7.3.

Before we discuss the proof, we introduce a brief digression. Consider the fundamental solution J
with variables in R2

�0 × T
2
𝑁 and J𝑆,𝑆,𝑥,𝑦 = 1𝑥=𝑦 to the following deterministic parabolic equation on

R�0 × T𝑁 whose utility we explain afterwards:

𝜕𝑇 J𝑆,𝑇 ,𝑥,𝑦 = ℒ𝑁 ,JJ𝑆,𝑇 ,𝑥,𝑦 = ℒ𝑁 J𝑆,𝑇 ,𝑥,𝑦 + 99𝑁3/2
∑
|𝔧 |� |𝔩 |

J𝑆,𝑇 ,𝑥+𝔧,𝑦 + 99𝑁3/2. (A.12)

If we ‘forget’ the X𝑁 d𝜉𝑁 term in the X𝑁 equation in Lemma A.4, the resulting equation is stochastic
only via the V functions. Also, the resulting linear equation has fundamental solution controlled by J,
as the coefficients in said equation are bounded by 𝑁3/2. This motivates the following PDE estimate
that follows by standard estimates for ℒ𝑁 and the Gronwall inequality.

Lemma A.5. We have J � 0 and, defining Js
𝑥,𝑦 = sup0�t�𝑁 −2 Js,s+t,𝑥,𝑦 , we have the deterministic

estimate

sup
s�0

sup
𝑥∈T𝑁

∑
𝑦∈T𝑁

Js
𝑥,𝑦 � 1. (A.13)

Proof of Lemma A.4. The estimate (A.11) is basically that of Lemma 3.1 in [19], except we take spatial
suprema of moments on the RHS. In particular, in view of the paragraph preceding Lemma A.4 it
suffices to show, for �𝑡�𝑁 defined in Lemma A.4,

sup
𝑥∈T𝑁

‖X𝑁
𝑡,𝑥 ‖

2
𝜔;2𝑝 �𝑝 sup

𝑥∈T𝑁

‖X𝑁
�𝑡 �𝑁 ,𝑥 ‖

2
𝜔;2𝑝 . (A.14)
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We note X𝑁
𝑡 can be controlled by J �𝑡 �𝑁 ,𝑡 spatially integrated against X𝑁

�𝑡 �𝑁
times an exponential of

a Poisson clock counter that was introduced in the proof of Lemma 3.1 of [19]. We then follow the
proof of Lemma 3.1 of [19] upon estimating the spatial integral of J against ‖X𝑁

�𝑡 �𝑁
‖2𝜔;2𝑝 by the spatial

supremum of the latter X𝑁 -moment, Lemma A.5 and exponential estimates for the Poisson distribution
in the proof of Lemma 3.1 of [19]. �

A.3. Short-time estimates

We provide a general short-time bound, not with respect to moments like the short-time estimates used
in Lemma A.4 but space-time supremum norms. Lemma A.6 follows by deterministic control on ℒ𝑁 ,V
below and noting that jumps in X𝑁 , which are order 𝑁−1/2X𝑁 , have polynomial-in-N speed that cannot
ring too much in very short times.

Lemma A.6. Consider any process X𝑁 onR�0×T𝑁 satisfying the following stochastic equation, where
V𝑖 are functionals on R�0×T𝑁 ×ΩT𝑁 , and the operator ℒ𝑁 ,V is defined via the second equation below
for 𝔩 ∈ Z:

dX𝑁
𝑇 ,𝑥 = ℒ𝑁 ,VX𝑁

𝑇 ,𝑥d𝑇 + X𝑁
𝑇 ,𝑥d𝜉𝑁𝑇 ,𝑥 = ℒ𝑁 X𝑁

𝑇 ,𝑥 + X𝑁
𝑇 ,𝑥d𝜉𝑁𝑇 ,𝑥 + V1;𝑇 ,𝑥X𝑁

𝑇 ,𝑥d𝑇 + ∇X
𝔩 (V2;𝑇 ,𝑥X𝑁

𝑇 ,𝑥)d𝑇.

(A.15)

Suppose V1 and V2 satisfy the estimates |V1 | + |V2 | � 𝑁
3
2 uniformly in all variables, and suppose

|𝔩 | � 1. If X𝑁 � 0, we have the following estimate with overwhelming probability (see Definition 3.9)
in which 𝜀ap,1 > 0 is a small universal constant:

sup
|s |�𝑁 −2

sup
0�t�1

sup
𝑥∈T𝑁

‖X𝑁 ‖−1
t;T𝑁 |∇

T
s X𝑁

t,𝑥 | � 𝑁−1/2+𝜀ap,1 . (A.16)
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