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ON LAGRANGE INTERPOLATION WITH EQUIDISTANT NODES

GRAEME J. BYRNE, T.M. MILLS AND SIMON J. SMITH

A quantitative version of a classical result of S.N. Bernstein concerning the di-
vergence of Lagrange interpolation polynomials based on equidistant nodes is pre-
sented. The proof is motivated by the results of numerical computations.

l . INTRODUCTION

In 1918 Bernstein [2] published a result concerning the divergence of Lagrange
interpolation based on equidistant nodes. This result, which now has a prominent
place in the study of the appoximation of functions by interpolation polynomials, may
be described as follows. Throughout this paper let / (* ) = |x| (—1 < x < 1) and
Xk,n = - 1 + 2(fc- l ) / ( n - l ) (Jfe = 1,2,... ,n; n = 1 ,2 ,3 , . . . ) . Define the Lagrange
interpolation polynomial of degree n — 1 to be the unique polynomial Ln^i(f,x)
of degree n — 1 or less which satisfies the n conditions

£»-l(/,*Jb,n) = /(zjb,n) (4 = 1 ,2 , . . . ,n).

We can now state Bernstein's result.

THEOREM 1. (S.N.Bernstein) IfQ <\x\ < I, then the sequence {Ln_1{f,x):nz
1,2,3,...} diverges (and a fortiori does not converge to f(x)).

Bernstein's result shows that Lagrange interpolation polynomials which are based
on equidistant nodes may have very poor approximation properties.

Another source for the proof of Theorem 1 is Natanson ([4], pp.30-35) who reports
that D.L. Berman proved that {Zn_i(/,0) : n - 1,2,3,...} converges to /(0) = 0.
Clearly, since xi<n = —1 and zn|Tl = +1 for all n we have Z/n_i(/,+1) = /(+1)
and Ln_i(f, — 1) = /(—I). Thus the question of convergence of {Ln_i(f,x) : n =
1,2,3,...} is settled for all x € [-1,1].

One would expect from Theorem 1 that if 0 < |z| < 1 then Ln_i(f,x) and
f(x) would differ markedly. However, the graphs of f(x) and i 1 2 ( / , a;) in Figure
1 show that this is not so. Indeed in the centre of the interval [—1,1], the error
I Li2(f,x) — f(x) | appears to be quite small. These, and similar, computations
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-1 0 1

Figure 1. Graphs of f(x) = \x\ and Li2(f,x)

suggest that the rate of divergence of {Ln_i(/,a;) : n — 1,2,3,... } depends on a;. In
particular, the sequence should diverge rapidly near the ends of the interval and not so
rapidly near the centre of the interval. Thus the first aim of this paper is to prove a
quantitative version of Theorem 1 which reflects the pointwise behaviour suggested by
Figure 1. We note that similar ideas motivated the work of Runck [5, 6].

Bernstein's proof of Theorem 1 raises another problem. It is well known that there
are two formulae for expressing Lagrange interpolation polynomials, namely Lagrange's
formula and Newton's formula. (See, for example, Natanson ([4], Chapter I).) In study-
ing approximation properties of interpolation polynomials, almost always one uses La-
grange's formula in preference to Newton's formula. However, in proving Theorem 1,
Bernstein uses Newton's formula. This suggests the problem of proving Bernstein's re-
sult by using Lagrange's formula. This problem is important in understanding methods
for the systematic study of interpolation polynomials based on equidistant nodes. Thus
the second aim of this paper is to establish Bernstein's result using Lagrange's formula.
We will achieve both aims by proving the following quantitative version of Theorem 1
and using Lagrange's interpolation formula.

THEOREM 2 . If 0 < \x\ < 1 then

(1) limsupn
n—•oo

- 1 log \Ln^(f,x) - f(x) \= \[(1 + x)log(l + x) + (1 - s)log(l - *)].

2. PRELIMINARIES

Lagrange's formula for I n _ i ( / , i ) is

t = l
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where

Xk = **,n (A = 1,2,.. . ,n ) ,

(2) tk(x)=u(x)/(u'(xk)(x-xk)) (k = l,2,...,n),

u(x) -{x- zi)(x - x2) . . . (x - xn).

Theorem 2 assumes that 0 < \x\ < 1. We shall assume henceforth that x is a
fixed number in the interval (—1,0) as similar arguments can be developed for (0,1).
For each integer n ^ 2, define j — j(n) and 0 = 6{n) by

(3) X = XJ + 20/{n - 1), 0 < 0 < 1.

We now define (a)k by

(«)o = 1
( a ) i = o ( o + l ) . . . ( a + i - l ) (* = 1,2,3, . . . ) .

We will denote the gamma function by F(.) The proof of Theorem 2 will require the
following result.

LEMMA . For - 1 < x < 0 and n = 2m + 1,

(4)
2 sin (Trfl)r(j + 6)T(2m + 2-J-8)

7rm(2m)!

For — 1 < x < 0 and n = 2m,

(5)
»n M) r ( j + g)r(2m + 1 - j - 0)

- (2

PROOF: We establish (4), since the proof of (5) is very similar. From (2), (3) we
can deduce that, for fc = m + 2,m + 3 , . . . ,2m + 1,

sin (irJ) T(j + g)r(2m + 2 - j - 6) (-1)* f 2m
— (2m]! (k-j-9
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2m+l
Now consider £) xk^k{x)- Since xk = {k — m — l) /m it follows that

k=m+2

2m+l

E l f \

k=m+2

.j+i sin7r0 T(j + 0)r(2m + 2 — j — 0) l̂ --v t i f̂cfc — m — 1 f 2m
IT m\2my.

Upon changing the index of summation from k to r = 2m + 1 — k we obtain
2m+l

t=m+2

•sin7rgr(j+g)r(2m + 2 - i - g ) 1 ^ 1 ro-r /2m
~ l ^ 7T m(2m)! ^ [ ' 2m + \ - j - r - 0\ r

- ( V s i n n0 r ( J " + 0)T(2m + 2-3-0)
~( ' n m(2m)!

Since

r=m+l
the lemma will be established if we can show that

>m + l - j - r - 6 \ r J ^ I \rn-lj £-<g(2m + l + k)(m + 2)k '

Now, reversing the order of summation in the left-hand side of (6) gives
Tn^x t 1 \t* /• f* v jn~~ 1 * ^ \ k / o \

E V — •'•/ I Zm\ \ m + l V~^ I"-*-/ / ^m \
'• I ) == (~ -̂/ / : a I I

(7) r = ° *=0

m - l , , N J b

We next use the identities
1 1 (m + 2 - j - 0)k

m + 2 + k-j -9 ~ m + 2 - j - 6 (m + 3 - j - 8)k'

and (m + 1 + Jb)! =
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together with the observation that

(1 -m)k = 0, k = m,m + 1,... ,

to rewrite (7) as

m - l

(8)
f^o2m + l - j - r - 6 \ r

2mm \ ~ (m + 2-j-fl)fc(l-m)t(l)fc

- l) ^ (m + 3 - j - 6)k{m + 2)k k\ 'm + 2 - j - 6 \m

If we introduce the notation pFq ( ' ' p \z ] for the generalised hypergeometri
\ Pi,P2 ••• ,Pq | /

function
aua2

/ ^ (/?i)^2)t...(/3,)t fc!

then (8) can be written more concisely as

(9)

m-l

E-* 2m + 1 - 7 - 7 - - 6\ r
2m>

m + 2- j -i

m + 2- j -6, 1 - m, 1
m + 3 - j - 0, m + 2 0-

In order to replace the (finite) alternating series on the right-hand side of (9) by a
series of positive terms, we will employ the result (see p.104 of [3])

a'b'C T(e)r(/)r(«)_ _ _ _ _ _ , e-a, f-a, s

where s = e + f — a — b— c, and s ^ 0. Upon applying (10) with o = m + 2— j — 9,b =

1 — m,c = l,e — m + 3 — j — 6 and / = rn + 2 (so 5 = 2m + 1), (9) becomes

2m

+1 f 2m\ ( l,j + 0, 2m +1
1 \ m - 1 / 3 2 \ "i + 2, 2m + 22m

This proves (6), and so the lemma is established. D
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3. P R O O F OF THEOREM 2

To prove Theorem 2 we assume —1 < x < 0, and suppose initially that n = 2m + 1 .

We note that

/(*) = |*| = -x,
m 2m+l

B-U/i x) — / j \ xk)<-k\,x) T / v *klk\x)-

i=l Jt=m+2

Since (p(t) = < is a polynomial, we have

2m+l

Hence we have the following representation of the error:

(11) £»-i(/,*)-/(*) = 2
*=m+2

and therefore we must estimate the right-hand side of (4).
We begin by obtaining bounds for the term in the square brackets on the right-hand

side of (4). We have

(12)

2F
1

F (
2m + 1 2 1 V m + 2 0-

The hypergeometric series can be summed using the well-known result (see, for
example, p.99 of [3])

r(c)r(c-a-6)

which is valid if c is not a negative integer or zero, and if c — a — b > 0. Applying (13)
to (12) gives

^ (2m + 1 + k){m + 2)k 2m + 1 r(m + 2 - j - 0)T(m + 1)

m + 1
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and so

l / 2 m \ l / 2 m \ . / 2m \ ^ (j +0)k

2{m)>2\m)-{Tn + 1 - J - °\m-l) ^Q{2m+ 1 + k){m + 2)k

(14) l /2m\ m + 1 / 2m \
2 V m / 2m + 1 \m - l)

= _ i _ _ / 2 r n \
2(2m + 1) \ m/*

From (4) and (14) it then follows that

sin vO T(j + 0)r(2m + 2 - j - 0)

(15)

2m+l

Jb=m+2

sin -K0 T(j + 0)T(2m + 2 - j - 6)

form

2m(r(m+l))2

We next work with the right-hand inequality of (15), which can be rewritten in the

m
log

2m+l

*=m+2

— logr(j +0)+ — logr(2m + 2 - j -
m T/i

-2logr(m + l ) + o ( ^ V
m V m J as m -> oo.

Now, as m —* oo then j —» oo and m — j —+ oo, and so we can employ the
asymptotic expansion of log T(x) (see pp.252-3 of [7])

logr( ) = ( * - o )^gx-x+ -log(27r) + 0 ( - ) , as x —> oo,

to obtain

(16)

1
m

log
2 m + l

TTl

2m
log(m

2m + | - j -
m

2m + 2 - j -

m m
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From the definition (3) of j = j(n), it follows that

lim — =l+x.
m—»oo m

Thus, on letting m —* oo in (16), we obtain

2m+\

(17) lim sup — log E
k=m+2

(1 + x) log (1 + a) + (1 - x) log (1 - as).

Finally, we consider the left-hand inequality of (15). Choose cj and c2 so that
0 < ci < C2 < 1. Then, by Berman ([1], Lemma 1), for each x there exists an
increasing sequence {rm}m=i °f positive integers so that if we write

e
O < 0 1

where j = j{n) and 6 — 9{n), then the inequalities

C! <,8 < C2

hold for all m. Because (sin7r0)/7r has a positive lower bound for ci ^ 0 ^ c2, (15)
yields

— log E •
*=rm+2

, as m —* oo.

As before, the right-hand side of this inequality approaches (1 + z)log(l + x) +
(1 — x)log(l — x) as TO —> oo, and so we deduce that

2m+l
(18) lim sup— log E

k=m+2

Thus (11), (17), (18) imply that

(1 + x)log(l +*) + (1 - as)log(1 - x).

(19)

limsup n"1 log|XB_,(/,a!) - f(x)\ = h i + x)log(l +x) + (1 - *)log(l - x)).

To complete the proof, suppose that n = 2m. From (5) it follows that
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and then similar arguments to those employed above show that

(20) limsup n - 1 log \Ln.x(f, x) - f(x)\ ^\[(1+ x) log (1 + x) + (1 - x)log (1 - x)].
n=2m—*oo ~

(1) then follows from (19) and (20).
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