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Abstract

By a systematic search for Lie-Backlund symmetries, a class of linearisable reaction-
diffusion equations is obtained that has, as a canonical form, ut = u uxx + 2u .
One such nonlinear equation is

0, = dx[a(b - 0)~26x] - ma(b - 0)~26x -qexp(-mx).
This represents an extension of Fokas-Yortsos-Rosen equation (g = 0) to incor-
porate a reaction term. It is relevant to the modelling of unsaturated flow in a
soil with a volumetric extraction mechanism, such as a web of plant roots. Here,
a reciprocal transformation is used to solve a nonlinear boundary-value problem
for transient flow into a finite layer of a soil subject to a constant flux boundary
condition to compensate for such water extraction.

1. Introduction

Nonlinear reaction-diffusion equations of the type

dl6 = dx[D(0)dx-K(d)) + Q(x,t,d) (1.1)

arise in a number of physical applications such as chemical reaction modelling
and population dynamics [18, 2]. In the present context of the modelling of
water transport through unsaturated soils, 6 represents liquid concentration,
while a negative reaction term Q represents a rate of extraction. In the model
of [28] this extraction is due to a web of plant roots. The nonlinearity of the
diffusivity D{6) is an important factor in determining the concentration
profile [21].
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Under the Kirchhoff transformation

= f D(a)da (1.2)

where 80 is an appropriate constant, (1.1) adopts the alternative form

d,fi = A(n)nxx + Hv)iix + R(x,t,n) (1.3)

where R = DQ. The admittance of Lie-Backlund symmetries was used in
[9] as a basis to claim that the most general nonlinear equation of the type

dtli = Uji)iixx + R(li,iix) (1.4)

which is linearisable is

dt/i = Afixx + [AA"/A' - A'/2]/4 + *&nx , A V 0, (1.5)

where A = A(/x) has arbitrary dependence of n and a is an arbitrary con-
stant. In terms of a new dependent variable Ji = A(n) , (1.5) reduces
to

djl = -p2-pxx + ajl2-px, (1.6)

or, if we set 6 = JTX,

dfi = dx[d~26x] + aT26x . (1.7)

However, in a recent development, Freeman and Satsuma [10] showed that
the nonlinear equation

d,P = p2Pxx + 2P2 ( L 8 )
in linearisable via a reciprocal-type transformation. An explicit pulse solution
with compact support along with an exact solution descriptive of interaction
between pulses was thereby derived. The result in [10] appears to contradict
that of Fokas and Yortsos in [9] since the nonlinear equation (1.8) is not
included in the class (1.6) although the latter does include an important non-
linear convective term. If invariance under a broader class of Lie-Backlund
transformations than that in [9] is investigated, an associated wider class to
linearisable equations is derived [11, 31]. Moreover, it incorporates equation
(1.8) as a canonical reduction. The latter admits a third-order Lie-Backlund
symmetry with explicit dependence on the x-variable. This resolution lends
support to the Lie-Backlund approach to linearisation [1, 3, 5, 14].

In order for a nonlinear partial differential equation to be linearisable, it
must possess Lie-Backlund symmetries of arbitrarily high order. Any second-
order nonlinear evolution equation
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that possesses a Lie-Backlund symmetry of order n > 3 can be reduced by a
contact transformation, to one of the canonical forms [11, 31]:

(1.10)

For each of these, Galaktionov et al. [11] give a recursion operator that can
generate a chain of infinitesimal Lie-Backlund symmetries of arbitrarily high
order. Each of the above equations can be transformed to a linear equation
but to achieve this, in some cases, a potential variable must be introduced.

In our hydrological application, we have a sink term that depends on po-
sition x . Hence, we require the sub-class of equations (1.1), including those
with x-dependent sink term, that can be transformed to one of the above
canonical forms. The full equivalence classes, containing the above canon-
ical forms, have not been published explicitly, although it seems that they
may have been given in unpublished work by Svirshchevskii, cited by Galak-
tionov et al. [11]. By carrying out a Lie-Backlund symmetry analysis, we
explicitly characterise the full class of equations (1.1) that can be linearised.
Furthermore we exploit this class of equations to solve a practical nonlinear
boundary-value problem.

The linearisation procedure in the present paper involves the use of re-
ciprocal transformations. The latter have been used in the recent past to
solve a number of physically important nonlinear boundary-value problems,
notably involving heat conduction and oil/water transport through soils [22-
26]. Their application to nonlinear integrable equations of soliton theory in
linking inverse scattering schemes and generating auto-Backlund transforma-
tions is recorded in [16, 27]. Here, a reciprocal transformation is used to
solve a nonlinear boundary-value problem which models the transport of wa-
ter through a bounded soil with surface infiltration and an interior extraction
mechanism.

2. A new class of linearisablea reaction-diffusion equations

The symmetry analysis of Fokas and Yortsos [9] may, in fact, be extended
to allow non-autonomous infinitesimal symmetries

fi* = n + sL{x, t, n, nx, n2, /i3) + O(s2) (2.1)
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where L has explicit dependence on x and t as well as on

j — 0, 1, 2, 3 . The requirement that the nonlinear equation

+ R(x,t,n) (2.2)

be invariant under the class of symmetries (2.1) leads to a set of determin-
ing equations for L. These comprise a system of linear partial differential
equations for L which have no solution unless A(/z) and R{x, t, fi) satisfy
certain consistency requirements. In the Appendix, these consistency condi-
tions are derived and solved. It is there shown that (2.2) admits a symmetry
of the type (2.1) if and only if it adopts the form

dtn = {an + fifnxx + {an + f}ff{t)/a2 + {ap + fi)f\t)/(af{t)) (2.3)

or, equivalently, with b -w = a^2{afi + p)~x, a — a2 ^ 0,

3tw = dx[a{b - w)-2wx) + {b- w)f\t)lf{t) + f{t), (2.4)

with / ( / ) an arbitrary differentiate function and a, b arbitrary constants.
In terms of new dependent and independent variables p, £, t introduced

according to

p - 2a{an + p)/f{t) = 2a/{b - w)f{t),

it is seen that (2.3) and (2.4) adopt precisely the canonical form

dxp = p2
Pii + 2p2. (2.5)

However, so far (2.4) lacks a nonlinear convective term which, in the context
of hydrology, represents the action of gravity, an important agent of transport
in the late stages of infiltration [21]. In order to incorporate a convective term,
we boost the above result by applying a transformation previously used in
the case of reaction-free diffusion, namely [4]

x — m~ [1 - e x p ( - m z ) ] , b - w = {b - 6) exp(mz) (2.6a,b)

where m ^ 0, so that (2.4) becomes

V 2 2 m z ' . (2.7)

In restricting L to be of the third order, we are guided by the work of Bluman and Kumei [1]
for the case R = 0 wherein no new results were obtained by proceeding to higher orders.
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The latter represents an extension of the integrable Fokas-Yortsos-Rosen non-
linear diffusion-convection equation [9, 29] to incorporate an additional re-
action term.

The nonlinear diffusivity of the form D{6) - a(b - 6)~2, appearing in
(2.7), leads to useful exact solutions in the theory of unsaturated flow [5, 15,
30]. The position of the singularity 6 - b is taken just above the saturated
water context 6S, so that D(6) increases strongly near 6 — 6S as commonly
observed in laboratory experiments [34].

Not only has the nonlinear convection term now been included in (2.7),
but the reaction term can now depend on position. This is a highly desirable
feature in, for instance, plant root extraction models. A nonlinear bound-
ary value problem relevant to such an application is solved via a reciprocal
transformation in the next section. It illustrates the application of recip-
rocal transformations to the linearisation of the present class of nonlinear
equations which admit Lie-Backlund symmetries.

3. Exact solution of a nonlinear model for unsaturated flow
in a soil with volumetric extraction

The nonlinear equation

dfi = dz[D(d)6z] - K\6)6z -Q(t,z,6) (3.1)

has been proposed as a macroscopic, one-dimensional model for vertical un-
saturated flow in a soil with extraction by plant roots. In that context, 6 is
the volumetric water content (fraction of total soil volume occupied by wa-
ter), D is the soil/water diffusivity, K is the hydraulic conductivity and Q
is the volumetric extraction rate per unit total soil volume: z indicates depth
beneath the soil surface and t the time. K{6) is increasing and concave as
is D{6) provided 6 is large enough so that transport in the vapour phase
is negligible [21]. The extraction term Q is averaged over a horizontal soil
cross-section containing a number of plant roots. The z-dependence of Q
is retained, as the plant root density must diminish at some depth.

Lomen and Warrick [17] have solved linear water-extraction models with
D(6) and K'(6) constant. However, so far, solutions to boundary-value
problems involving the nonlinear equation (3.1) have only been obtained
numerically [19]. By contrast, here, we construct the analytic solution of a
boundary-value problem for a special nonlinear model namely

dfi = dz[D(d)dz] - K\d)6z + Q(z), (3.2)

with

D{6) = a(b - 6)~2, K(d) = ma(b-eyl, Q(z) = -qexp(-mz), (3.3)
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where a, b, m and q are constants available for approximation purposes.
It is noted that in (3.3), the extraction term depends only on depth. In fact,
in many situations, the dependence of Q on 6 and t is not predominant.
Thus, for example, it has been observed that some eucalypt species continue
to draw steadily from unsaturated soil even throughout a drought [33]. Here,
we make the simplifying assumption that the plants continue to extract water
at a constant rate, provided the water content exceeds some critical value 6n

near wilting point. The range of water content considered is 6n < 8 < 6S

where 6S is the water content at saturation. In the special model (3.2)-(3.3),
the plant root length scale m~ is identical to the sorptive length scale fs.
The latter may be regarded as a representative capillary rise [35].

- l/s= [SD(d)/[K(ds)-K(dn)]dd =
Je. m

on use of (3.3). In practice, the sorptive length is often in the range 20-80 cm
[34], within the same order of magnitude as plant root depths. Our assumed
equality of m~x and /s is restrictive but not unrealistic.

We assume that water is supplied at the surface z — 0 at a rate R units
of depth per unit time, to compensate for the water lost by extraction over
the entire layer of depth / . The constant-flux boundary condition is

ma{b-d)~x -a(b-d)~2dz=R atz = 0,t>0, (3.4)

where

R= f -
Jo

(3.5)

Further, it is assumed that the soil layer has an impermeable basement at
z = / . The corresponding zero-flux boundary condition is

ma(b-d)~l -a(b-6)~2dz = 0 atz = /,t>0. (3.6)

The initial condition corresponds to some prescribed water content profile

0 = 0o(z) aW = 0, 0 < z < / . (3.7)

New variables x and w are now introduced as in (2.6 a,b) whence (3.2)-
(3.3) yields

dtw = dx[a{b-w)~2wx]-q, (3.8)

while the boundary and initial conditions become

-a{b-w)~2wx = R atx = 0, (3.9)

' (3.10)

w(x,0)-b = {6Q(-m~l ln[l - mx],0) - b}/{\ - mx}. (3.1
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If we further set

• - £ <313»
then the boundary-value problem to be solved reduces to

d s P = P 2 P x x + 2 P 2 ' 0 < x < x l t s > 0 , (3.14)

px = R* atx = 0, 5 > 0 , (3.15)

px = 0 atx = jt,, s>0, (3.16)

p = pQ(x) at 5 = 0, 0 < x < x , , (3.17)

where

U* = - E = 2 x , , (3.18)

p (x) = . (3.19)
4 {B0(-m-l]n[l-mx],0)-b}

Alternatively, in terms of the variables

u = x-Xi, V = p-\ (3.20)

the boundary-value problem (3.14)—(3.17) becomes

atM = - x , , s>0, (3.21)

at M = 0 , s > 0 ,

at 5 = 0, - X , < M < 0 .

Introduction of the reciprocal transformation4

ds, T = S. (3.22)

yields

Alternatively, a procedure analogous to that of Storm [32] may be employed.
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SO t h a t

y= [\du= f p'\x2,x)dx2. (3.23)
JO Jx,

Reciprocally, (3.22) yields

du = V~l d y - ( ^ - ^?) ds = pdy + [py + 2pu]dx,

whence,
du

& = T h{py+ 2pu) dy

so that
ry

u— p{yT> s)dy2 = x - x.. (3.24)
Jo

Under 31,

so that
fy

J PTdy = py + 2pu-(py + 2pu)\y=Q = py + 2pu,

and, on use of the reciprocal relation (3.24), we obtain Burgers' equation

«T = uyy + 2KM,, . (3.25)

The upper boundary condition becomes

u = -x{ at y = / p (x2,s)dx2. (3.26)

But,

whence, on use of (3.14),

d f° - l
Of / P (x2,s)dx2 = 0,

x\
so that

f° - i f° - i
p {x2, s) dx2 = p0 {x) dx.

JXl Jx{

Thus, the boundary condition (3.26) becomes
u = -xi at y = yo= / p0 (x)dx. (3.27)

Jx.
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The lower boundary condition becomes, on use of (3.23) and (3.24),

M = 0 atj> = 0. (3.28)

Finally, the reciprocal relation (3.23) provides the initial condition «|T=0

implicitly via

y = P0(x)dx. (3.29)
Jxi

On application of the Hopf-Cole transformation [8, 13]

u = 4>y/4>, (3.30)

We obtain the linear boundary-value problem

= 0 aty=yQ, (3.32)

<f,y = 0 at y = 0 (3.33)

together with initial condition (3.29). In certain cases the latter can be in-
verted to give

u(y, 0) = uo(y).

For example, given uniform initial water content

6 = 60 = constant at t = 0

(3.19) gives
2a (1 -mx)

so that, on use of (3.10) and (3.29),

uo(y) - m"1 exp(-m/) [l - exp ( ( / ! ^ J ] • (3.34)

In terms of (f>, the initial condition (3.34) gives

<t> = <t>0{y) = exp / uo(a) da (3.35)
•fy,

where it is noted that u = </)/</) is independent of the choice of the reference
value yx.

The linear boundary-value problem (3.30)-(3.32) with initial data (3.35)
admits a standard Fourier series solution [7]. Once <f>(y, T) has been ob-
tained, u(y, T) is given by the relation (3.30) and the solution p(x, s) of
the intermediate boundary-value problem (3.14)—(3.17) is given parametri-
cally by

P=Qy-(y>s)> (3-36)

x = xl+u(y,s). (3.37)
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The solution 6(z, t) of the original nonlinear boundary-value problem is
likewise given parametrically by

0 = * + y (1 - m[x, + u(y, q2t/4a)])/uy(y, q2t/4a), (3.38)

z= -m~l\n(l-m[xl+u(y,q2t/4a)]). (3.39)

4. Steady-state solution for unsaturated flow with extraction

If the water supplied at the boundary of the finite soil column exactly
compensates for the water extraction, then the total water content will re-
main constant and a steady state will be approached asymptotically at large
times. Unlike the transient water distribution, the steady state can be derived
explicitly. Thus, the steady-state version of the nonlinear model (3.2)-(3.4)
yields

ma(b - 0)"1 - a(b - B)~167 - ^-e~mz = R-^-. (4.1)
i z m m v i

In view of the balanced water supply qxx — R^, both boundary conditions
are satisfied by (4.1). In terms of the variables (2.6 a,b),

a ( b - w ) ~ 2 w = 4 - e - m z ( e - m / - I ) (4.2)

whence, on integration, we obtain the steady-state water content profile via

where

^
 < 4 ' 4 )

The latter parameter fi is related to the total water content invariant / via

Fz lam /•'-exP(-"l /) dr
1= (b-6)dz = — I - , =-^ 5—. (4.5)

k Q Jo r1 -lRmr/q + lpm2lq
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Appendix
The Search for Lie-Backlund Symmetries

We assume that
+ R(x,t,ii) (Al)

has a symmetry of the form (2.1). Thus, for any solution n{x, t) of (Al),
H*{x, t) must satisfy

^ (Jj ,t,ti*) + O(s2) (A2)

where

^F(x, t,fi,^,^2,..., nn) := — + £ ^ . + 1 — (A3)
y=o o

and

whenever n is a solution of the evolution equation dtn — K(fi) under con-
sideration, in this case (Al).
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On substitution of (Al) into (A2), we obtain the set of determining re-
lations for the symmetry generator L(x, / , fi, //,, fi2, fi3). The determin-
ing relations for L are contained in a single equation which may, at first,
be viewed as a polynomial equation in n4 . The expected highest-order n5

terms (order 2 for the governing equation plus order 3 for the symmetry)
already cancel, by virtue of a general result of Olver [19]. A balance of the
fil terms now yields

d2L
, t,/i,/tlt/i2)ti3 (A5)

for functions P, Q to be determined.
Newly derived information on L, such as (A5) may be successively fed

back into the determining relations. We have used the computer algebra
package REDUCE to accomplish this [11]. A balance of the remaining first
degree fi4 terms in (A2) now gives

2 (A6)

while balance of fi^ terms implies

P = B(x,t,n,nl)/i2 + C(x,t,/i,M1) (A7)

for some functions B and C. A balance of /z3^2 terms implies that

B = ^{n)Al'2A{t)nx + G{x,t,n) (A8)

for some function G. Now, a balance of fi3/j.
2 terms yields

-2A'V)A + [A'(^)]2 = 0 (A9)

whence
A(/z) = (apt + pf (A10)

where a , fi are constants. Up to this point, our results agree with those
of Bluman and Kumei [1] for the reaction-free case R = 0. However, we
must proceed further to derive consistency relations for the reaction term
R{x,t,n).

For simplictiy, we assume A(^) = fi2, since this can always be achieved
from (A 10) by a linear change of variable. A balance of remaining n3 terms
in (A2) implies that

G = h(x,t)fi2 (All)

and
D lA> 2 dh 2 , A 1 0 ,

R = -3^fi + jAdx-fi ( A 1 2 )
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for some function h . A balance of fi2 terms implies that C in (A7) is linear
in fi{, so that

C = J(x,t,n)pl+K{x,t,fi), (A13)

where balance of the remaining fi2 terms shows that

J = 2^-fi2 + N(x,t), (A14)

K- --—h - — - — 3 — — h 2 - — (A15}

for some function N. On balance of fix , we now find

h = W{t)x+Y{t) (A16)

for functions W, Y to be determined. By equating the coefficients of fixfi
2

terms to zero, we deduce

N= x — W --W' x2 + al(t)x + fi^t) (A17)

for some functions a, and /?,. It is now seen that the fixfi terms are already
balanced in (A2). This indicates that the determining equations may have a
nontrivial solution.

A balance of fi{ terms next reveals that a, and a2 must be constants
and that W{t) satisfies an equation

lw'{t) = M w + y, (A18)

it. A balance of fi2x terms shows that y = 0, w
(A18) implies that
where y is constant. A balance of /i2x terms shows that y = 0, whence

W = co[A(t)]2/\ (A19)

with (o an arbitrary constant. Moreover, a balance of ft2 terms gives

Y = -2axA(t)213 f A~2/\x)dT (A20)
J i.

where A is an arbitrary constant.
It turns out that the remaining determining relations are already satisfied.

Hence, there exists a third-order symmetry of the nonlinear equation

dtn = n2nxx + R{x,t,n) (A21)

provided
R = f{t)n2+nf\t)lf{t) (A22)
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where f(t) — ^coA~l^(t). For example, for the Freeman-Satsuma equation
which corresponds to / = 2 in (A22), we may choose co = 3 and A = 1.
Then one symmetry operator is the prolongation of Ld/dfi with

L = fi3fi
3 = n2[$n2fix + 3xfi2] + 6fi2fil + 6x/i2. (A23)

It is noted that, on a linear change of variables, (A20) generalises to the
nonlinear equation (2.3), namely

dtn = (afi + P)2HXX + (an + P)2f{t)/a2 + (afi + 0)f'(t)/(af(t)). (A24)
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