EQUIVARIANT POLYNOMIAL AUTOMORPHISMS OF Θ-REPRESENTATIONS

ALEXANDRE KURTH

Abstract

We show that every equivariant polynomial automorphism of a Θ representation and of the reduction of an irreducible Θ-representation is a multiple of the identity.

1. Introduction. Given a representation V of an algebraic group G over \mathbb{C} we ask the question: What is $\operatorname{Aut}_{G}(V)$, the group of polynomial automorphisms that commute with the linear G-action. For many reducible representations nonlinear equivariant automorphisms exist: Consider for example the SL_{2}-module $R_{2} \oplus R_{4}$ where R_{j} denotes the binary forms of degree j. The map $(p, q) \longmapsto\left(p, q+p^{2}\right)$ is an SL_{2}-equivariant automorphism. For more information on SL_{2}-automorphisms of R_{j} see [13].

In order to determine $\operatorname{Aut}_{G}(V)$ for a simple G-module it suffices to assume G is semisimple. First replace G by the reductive group $G / \mathcal{R}(G)$ since the radical $\mathcal{R}(G)$ acts trivially on a simple module, and note that if there exists a one-dimensional subgroup of the center acting nontrivially, every automorphism commuting with this action therefore induces an automorphism on a projective space which is linear [6, II. Example 7.1.1].

In this work we investigate $\operatorname{Aut}_{G}(V)$ for the so-called Θ-representations $G \rightarrow \mathrm{GL}(V)$ which are defined as follows: Given a \mathbb{Z}_{m}-graduation on a simple Lie algebra $g=\oplus_{j \in \mathbb{Z}_{m}} g_{j}$ (with $\left[\mathfrak{g}_{i}, \mathfrak{g}_{j}\right] \subset \mathfrak{g}_{i+j}$) the induced \mathfrak{g}_{0}-operation on \mathfrak{g}_{1} defines a G-module structure on \mathfrak{g}_{1} (called Θ-representation) where G is a connected reductive group with Lie algebra g_{0} (see 3 for details). These representations which were classified by Kac ([8], [7]) have some properties of the adjoint representations. We call the representation of the commutator subgroup (G, G) on g_{1} the reduction of the Θ-representation. The main result of this work is:

THEOREM (3.3).
(a) The automorphism group of a Θ-representation $G \rightarrow \mathrm{GL}(V)$ of a semisimple group G is $\mathbb{C}^{*} \mathrm{id}_{V}$.
(b) The automorphism group of the reduction of an irreducible Θ-representation is also $\mathbb{C}^{*} \mathrm{id}_{V}$.

The question arises whether there is a simple module with nonlinear automorphisms. In [14] it is shown that the natural $\mathrm{SL}_{3} \times \mathrm{SL}_{5} \times \mathrm{SL}_{13}$-representation has an automorphism group of dimension 2 . This is the lowest dimensional module with an open orbit and nonlinear equivariant automorphisms.

[^0]Theorem 3.3 is proved case by case to some extent. We distinguish between several types of Θ-representations such as adjoint representations, or more generally the ones with finite $\operatorname{Nor}_{G}(H) / H$ (where H denotes a generic isotropy group). We separately look at the prehomogeneous Θ-representations, and finally the ones without any of the properties above. The biggest class of Θ-representations $\left(\bar{N}:=\operatorname{Nor}_{G}(H) / H\right.$ finite $)$ can be handled by a general statement (Lemma 3.1). All the remaining ones are checked case by case to have no nonlinear equivariant automorphisms (Sections 5 and 6). However, the embedding of a generic stabilizer H of the Θ-representation V and its fixed point space V^{H} is of great importance. It is given for many examples of Θ-representations. In fact, if $\operatorname{Aut}_{\bar{N}}\left(V^{H}\right)$ only consists of linear automorphisms, then so does $\operatorname{Aut}_{G}(V)$ (see proof of 2.3). For few of the Θ-representations ($6.1,6.2$) the method of restitution of multilinear invariants is used [10, Section 6].

The automorphism group of a G-module is related to a rationality question of the linearization problem: For a (finite) Galois field extension $k \subset K$ in characteristic 0 the non-abelian cohomology $\mathrm{H}^{1}\left(\operatorname{Gal}(K / k), \operatorname{Aut}_{G_{K}}\left(V_{K}\right)\right)$ is the set of isomorphism classes of G_{k}-actions on the space V_{k} (defined over k) becoming $G_{K^{-}}$-isomorphic to the $G_{K^{-}}$ module V_{K} by field extension [14, Appendix], [22, III. 1]. If Aut ${ }_{G_{K}}\left(V_{K}\right)=K^{*} \mathrm{id}_{V_{K}}$, then $\mathrm{H}^{1}\left(\operatorname{Gal}(K / k), \operatorname{Aut}_{G_{K}}\left(V_{K}\right)\right)=0$ which shows that every G_{k}-action on the affine space \mathbb{A}_{k}^{n} which is G_{K}-isomorphic to V_{K} is also linearizable over the subfield k.

AcKnowledgement. This work is part of the author's Ph.D. thesis [12]. I thank my supervisor Hanspeter Kraft for his support and help and Peter Littelmann for his helpful suggestions.
2. Remarks on G-modules with closed generic orbit. Let G be a reductive group and V a finite dimensional G-module. By a theorem of Matsushima the stabilizer G_{v}, $v \in V$ where $G v \subset V$ is a closed orbit, is a reductive group [17], [16, I.2.].

For a closed subgroup $H \subset G$ the subgroup $\operatorname{Nor}_{G}(H):=\left\{g \in G \mid g H^{-1}=H\right\}$ is called the normalizer of H and define $\bar{N}:=\operatorname{Nor}_{G}(H) / H$. It induces a linear \bar{N}-action on the fixed point space $V^{H}=\{v \in V \mid h v=v \forall h \in H\}$.

The set of conjugacy classes $\left(G_{v}\right)$ where $G v \subset V$ is a closed orbit, is partially ordered, that is $\left(G_{1}\right) \leq\left(G_{2}\right)$ if G_{1} is conjugate to a subgroup of G_{2}. There is a unique minimal isotropy class (H) of the above set, called the principal isotropy class [16]. Let $H \subset G$ now be a principal isotropy group, i.e., (H) is minimal. If G is semisimple and \bar{N} finite, then it follows from a theorem of Kraft-Petrie-Randall [11, Corollary 5.5] that $V^{H} / \bar{N} \cong \mathbb{C}^{r}$ for some $r \in \mathbb{N}$. By Chevalley's Theorem \bar{N} therefore acts on V^{H} as a finite reflection group (cf. for example [23, Theorem p. 76]).

DEFINITION. A set of hyperplanes $\left\{H_{i} \subset \mathbb{C}^{n}\right\}_{i \in I}$ is said to be in general position if $\bigcap_{i \in I} H_{i}=\{0\}$.

LEMMA 2.1. Let $\varphi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ be a polynomial automorphism. If φ stabilizes every element of a set of hyperplanes $H_{i}:=Z\left(l_{i}\right), i \in I$ in general position, then φ is diagonalizable; in particular φ is linear.

PROOF. Consider the induced (linear) automorphism on the regular functions of \mathbb{C}^{n} denoted by $\varphi^{*}: \mathbb{C}\left[\mathbb{C}^{n}\right] \rightarrow \mathbb{C}\left[\mathbb{C}^{n}\right]$. We have that $\varphi^{*}\left(l_{i}\right)(v)=l_{i}(\varphi(v))=0$ for any $v \in H_{i}$, consequently $\varphi^{*}\left(l_{i}\right) \in \mathbb{C} l_{i}$. Since the hyperplanes are in general position there is a basis l_{1}, \ldots, l_{n} of $\left(\mathbb{C}^{n}\right)^{*}$ (after renumbering). This means φ is diagonal with respect to the dual basis of l_{1}, \ldots, l_{n}.

REMARK 2.2. If V is a simple G-module, then by 2.1 every $\sigma \in \operatorname{Aut}_{G}(V)$ which stabilizes a hyperplane is a homothety. A general $\sigma \in \operatorname{Aut}_{G}(V)$ preserves every line $\mathbb{C}(g v)$ where v is a highest weight vector and $g \in G$, since $\mathbb{C} v$ is the fixed point space V^{U} of a maximal unipotent subgroup $U \subset G$. In fact, $u \sigma(\mathbb{C} v)=\sigma(u \mathbb{C} v)=\sigma(\mathbb{C} v)$ for all $u \in U$, so $\left.\sigma\right|_{\mathbb{C} v}=\lambda \mathrm{id}_{\mathbb{C} v}$ for some $\lambda \in \mathbb{C}^{*}$, and by equivariance $\left.\sigma\right|_{\mathbb{C} g \nu}=\lambda \mathrm{id}_{\mathbb{C} g \nu}$. For every $x \in V^{*}$ this implies that $\sigma^{*}(x)(g v)=x(\sigma(g v))=x(\lambda g v)$. However, $\sigma^{*}(x)$ may not be a multiple of x, for we cannot show $\sigma^{*}(x)(w)=x(\lambda w)$ for all $w \in V$. It would need the fact $\sigma^{*}(x)\left(g_{1} v+g_{2} v\right)=x\left(\sigma\left(g_{1} v+g_{2} v\right)\right)=x\left(\sigma\left(g_{1} v\right)+\sigma\left(g_{2} v\right)\right)$, but σ is not linear.

THEOREM 2.3. Let G be a semisimple group, V a simple G-module and $H \subset G a$ principal isotropy group. If the generic orbit is closed and $\bar{N}=\operatorname{Nor}_{G}(H) / H$ is finite then $\operatorname{Aut}_{G}(V)=\mathbb{C}^{*} \mathrm{id}_{V}$.

Proof. Let $H_{1}, \ldots, H_{t} \subset V^{H}$ be the hyperplanes associated to the generating reflections s_{1}, \ldots, s_{t} of \bar{N}. Suppose $V_{1}:=\bigcap_{i=1}^{t} H_{i} \neq\{0\} . V_{1} \subset V^{H}$ is \bar{N}-stable, and let V_{2} be an \bar{N}-stable complement in V^{H}. Take an $x \in\left(V^{H}\right)^{*}, x \neq 0$ which vanishes on V_{2}. It is easy to see that ${ }^{s} x\left(v_{j}\right)=x\left(v_{j}\right)$ for all $v_{j} \in V_{j}$ and $s \in \bar{N}, j=1,2$. Hence $x \in \mathbb{C}\left[V^{H}\right]^{\bar{N}}$ which is isomorphic to $\mathbb{C}[V]^{G}$ by a theorem of Luna-Richardson. This means there is a nontrivial G-fixed point in V^{*} which is impossible since V^{*} is simple. It follows that the hyperplanes H_{1}, \ldots, H_{t} are in general position. So by the Lemma 2.1 above $\left.\sigma\right|_{V^{H}}$ is linear.

We obtain the relation $\sigma \circ \lambda \mathrm{id}_{V}-\lambda \mathrm{id}_{V} \circ \sigma=0$ on $G V^{H}$, even on V since H is a generic stabilizer, i.e., $\overline{G V^{H}}=V$. So σ induces an automorphism on the projective space $\mathbb{P} V$ which has to be linear [6, II. Example 7.1.1]. Schur's Lemma finishes the proof.

The essential point in the proof is the general position of the hyperplanes H_{j}. A G module V without nontrivial G-fixed points also guarantees this property. So we state the following corollary:

Corollary 2.4. Let G be a semisimple group and V a G-module. Let the generic orbit be closed and \bar{N} finite (thus a finite reflection group). If the hyperplanes, associated to the generators of \bar{N} are in general position, then $\operatorname{Aut}_{G}(V)$ only consists of linear automorphisms. In particular, if $V^{G}=\{0\}$, then all automorphisms in $\operatorname{Aut}_{G}(V)$ are linear.

These statements show that the adjoint representation of a semisimple group G only admits linear automorphisms. In fact, the generic isotropy group is a maximal torus and the generic orbit is closed. The Weyl group $\bar{N}:=\operatorname{Nor}_{G}(T) / T$ acts on $(\operatorname{Lie} G)^{T}=\operatorname{Lie} T$ by reflections. The hyperplanes of the associated generators of \bar{N} have trivial intersection. The adjoint representation of G is simple if and only if Lie T is a simple \bar{N}-module and
this is equivalent to G being a simple group. So by Corollary 2.4 one obtains (cf. [1, 2.2 Proposition]):

Theorem 2.5. Let G be a semisimple group. Every G-equivariant automorphism of the adjoint representation is linear. In particular, such an automorphism is a multiple of the identity in case G is simple.
3. Introduction to Θ-representations. For many aspects adjoint representations are the 'nicest' representations. A class of nice representations which contains the adjoint representations, is the set of Θ-representations. They fulfill two important properties which also hold for the adjoint representations: coregularity (the algebra of invariant functions has algebraically independent homogeneous generators) and visibility (any fiber of the corresponding quotient map has the same dimension) [15].

Let (g, Θ) (or (g, m)) denote the \mathbb{Z}_{m}-graded Lie algebra

$$
\mathrm{g}=\bigoplus_{j \in \mathbb{Z}_{m}} \mathrm{~g}_{j}
$$

where $m \in\{1,2,3, \ldots\} \cup\{\infty\}$ and $\mathbb{Z}_{\infty}:=\mathbb{Z}$. Let Θ denote the corresponding linear automorphism

$$
\Theta(x)=\varepsilon^{j} x, \quad x \in \mathfrak{g}_{j}, \text { where } \varepsilon=e^{2 \pi i / m}, \text { if } m \neq \infty
$$

and

$$
\Theta_{t}(x)=t^{j} x, \quad x \in \mathfrak{g}_{j} \text {, where } t \in \mathbb{C}^{*}, \text { if } m=\infty .
$$

There is a one-to-one correspondence between the isomorphism classes of \mathbb{Z}_{m}-gradings on g and the classes of conjugate automorphisms of period m of g if $m \neq \infty$, respectively the one-dimensional tori in the automorphism group of g if $m=\infty$.

Let (\mathfrak{g}, Θ) now be a simple \mathbb{Z}_{m}-graded Lie algebra. The adjoint representation of \mathfrak{g} induces by restriction a g_{0}-module g_{1}; the adjoint group G_{0} of the Lie algebra g_{0} is a connected algebraic group, called Θ-group (cf. [24] and [8]).

Set $G:=G_{0}, V:=\mathrm{g}_{1}$ and let θ be the restriction of the adjoint representation Ad to G, i.e.,

$$
\theta:=\left.\mathrm{Ad}\right|_{G}: G \rightarrow \mathrm{GL}(V) .
$$

θ is called the Θ-representation of (g, Θ).
The semisimple elements in \mathfrak{g} are precisely the elements of closed orbits of the adjoint representation. This is still true for the Θ-representation θ of a reductive graded Lie algebra (\mathfrak{g}, Θ) : an element $x \in g_{1} \subset \mathfrak{g}$ is semisimple if and only if $G x$ is a closed orbit [24, Section 2.4. Proposition 3]. An abelian maximal subspace $c \subset V$ consisting of semisimple elements is called a Cartan subspace. Every closed orbit in V intersects any fixed Cartan subspace [24, Corollary p. 473].

The notion of the Weyl group of an adjoint representation can be carried over to the Θ-representations: Let $\operatorname{Nor}_{G}(\mathfrak{c}):=\{g \in G \mid \theta(g) \mathfrak{c}=\mathfrak{c}\}$ and $Z_{G}(\mathfrak{c}):=\{g \in G \mid \theta(g) x=$ $x \forall x \in \mathfrak{c}\}$, then $W:=\operatorname{Nor}_{G}(\mathfrak{c}) / Z_{G}(\mathfrak{c})$ is a finite reflection group ([24, Section 3.4.

Prop. 3, Section 6.1. Thm. 8]) called the Weyl group of the graded Lie algebra (g, Θ). The (geometric) quotient \mathfrak{c} / W of the induced W-module \mathfrak{c} is isomorphic to $V / / G$ [24, Section 4.4. Theorem 7], thus we obtain an isomorphism on the invariant polynomial functions $\mathbb{C}[V]^{G} \cong \mathbb{C}[\mathfrak{c}]^{W}$ which is induced by the restriction map. This implies $\operatorname{dim} \mathfrak{C}=$ $\operatorname{dim} V / / G$.

We determine $\operatorname{Aut}_{G}(V)$ for all irreducible Θ-representations (G, V) of simple graded Lie algebras (g, m). The latter were classified by $\mathrm{Kac}(c f .[8]$, [24], [7]). So from now on let \mathfrak{g} be simple. If $m=\infty$ then $\mathbb{C}[V]^{G}=\mathbb{C}($ and $\mathfrak{c}=0)$ since $\theta(G)$ contains $\mathbb{C}^{*} \mathrm{id}_{V}$ induced by the automorphisms $\Theta_{t}, t \in \mathbb{C}^{*}$. In fact, all derivations of g are inner, so $t \longmapsto \Theta_{t}$ corresponds to a one-dimensional torus in the adjoint group G_{0}. So in case $m=\infty$ every G-automorphism induces an automorphism on the projective space $\mathbb{P} V$ since it commutes with $\mathbb{C}^{*} \operatorname{id}_{V} \subset \theta(G)$, i.e., $\operatorname{Aut}_{G}(V)$ only contains linear elements [6, II. Example 7.1.1]. We therefore consider V as a (G, G)-module called the reduction of the Θ-representation. Note that Popov and Vinberg call it the reduced Θ-representation (cf. [19, 8.5]). In Table 4.4 where all (irreducible) Θ-representations will be listed, the reduction of the Θ-representation is taken for the Θ-type (g, ∞).

Interestingly, if the Θ-group G is semisimple, V is automatically a simple G-module ([24, Section 8.3. Proposition 18]). Among several methods to find $\mathrm{Aut}_{G}(V)$ Theorem 2.3 is the most important one. So we start looking more closely at Θ-representations with generically closed orbits.

LEMMA 3.1. Let (\mathfrak{g}, Θ) be a simple \mathbb{Z}_{m}-graded Lie algebra where the associated Θ representation (G, V) has generically closed orbits. Let G_{Θ} be a connected algebraic group with $\operatorname{Lie}\left(G_{\Theta}\right)=\mathrm{g}$ and $\mathfrak{c} \subset V$ denote a Cartan subspace, then:
(a) $H:=Z_{G}(\mathfrak{c})=Z_{G_{\Theta}}(\mathfrak{c}) \cap G$ is a generic isotropy group.
(b) $\mathfrak{c} \subseteq V^{H}$; moreover, $\mathfrak{c}=V^{H}$ (or equivalently $\operatorname{dim} V / / G=\operatorname{dim} V^{H}$) if and only if $\bar{N}:=\operatorname{Nor}_{G}(H) / H$ is a finite group.
(c) If G is semisimple and $\mathfrak{c}=V^{H}$, then $\operatorname{Aut}_{G}(V)=\mathbb{C}^{*} \mathrm{id}_{V}$.

Proof. (a) Since the generic orbit is closed, it consists of semisimple elements and intersects \mathfrak{c}. Let $x \in \mathfrak{c}$ be a generic element, then $Z_{G_{\Theta}}(x) \cap G$ is a generic isotropy group. Using [24, Section 3.2] we see that $H=Z_{G_{\Theta}}(c) \cap G=Z_{G_{\Theta}}(x) \cap G$ (recall that $Z_{G_{\Theta}}(c)$ is connected).
(b) Clearly $\mathfrak{c} \subseteq V^{H}$. If $\mathfrak{c}=V^{H}$, then it is easy to see that $\operatorname{Nor}_{G}(H)=\operatorname{Nor}_{G}\left(V^{H}\right):=\{g \in$ $\left.G \mid(\operatorname{Ad} g) v \in V^{H} \forall v \in V^{H}\right\}$. So $\bar{N}=\operatorname{Nor}_{G}(H) / H=W$ is finite. For the converse set $N:=\operatorname{Nor}_{G}(\mathfrak{c})$. Since $G \mathfrak{c} \subset V$ is dense $\operatorname{dim} V=\operatorname{dim}\left(G \times{ }^{N} \mathfrak{c}\right)=\operatorname{dim} G+\operatorname{dim} \mathfrak{c}-\operatorname{dim} \operatorname{Nor}_{G}(\mathfrak{c})$, and analogously $\operatorname{dim} V=\operatorname{dim} G+\operatorname{dim} V^{H}-\operatorname{dim} \operatorname{Nor}_{G}(H)$. Therefore $\operatorname{dim} \mathfrak{c}=\operatorname{dim} V^{H}$ since both, $W=N / H$ and $\operatorname{Nor}_{G}(H) / H$ are finite. Recall that $G \times^{N} \mathfrak{c}$ is the (geometric) quotient of $G \times \mathfrak{c}$ by the group N; it is acting by $n(g, x)=\left(g n^{-1}, n x\right)$ where $n \in N$ and $(g, x) \in G \times c$.
(c) now follows from (b) and Theorem 2.3.

REmARK 3.2. Popov and Vinberg state in $[19,8.5]$ that $V^{Z_{G}(\mathfrak{c})}=\mathfrak{c}$ for $m<\infty$. This is a mistake. In fact, consider for example the Θ-representation $\left(E_{6}^{(1)}, 2\right)\left(\mathrm{N}^{\circ} 29\right.$ in Table 4.4).

In 6.3 we show that $\operatorname{dim} \mathfrak{c}=\operatorname{dim} V / / G=2$ and $\operatorname{dim} V^{H}=16$ where H denotes a generic stabilizer.

The main result of this work is:
Theorem 3.3.
(a) The automorphism group of a Θ-representation $G \longrightarrow \mathrm{GL}(V)$ of a semisimple group G is $\mathbb{C}^{*} \mathrm{id}_{V}$.
(b) The automorphism group of the reduction of an irreducible Θ-representation is also $\mathbb{C}^{*} \mathrm{id}_{V}$.
Recall that every Θ-representation is irreducible in case G is semisimple [24, Section 8.3. Proposition 18]. If G is reductive (and not semisimple), then the automorphism group of a Θ-representation is $\mathbb{C}^{*} \mathrm{id}_{V}$, because the center of G acts as scalar transformations on V. In this case $\mathbb{C}[V]^{G}=\mathbb{C}$ and the Θ-representation is of type $(g, \infty)(c f$. [8, Proposition 3.1.I.] and [24, Section 8.3.]).

REMARK 3.4. Unfortunately, Theorem 3.3 is not valid for reductions of reducible Θ-representations. The $G:=\mathrm{SL}_{m} \times \mathrm{SP}_{2 n} \times T_{1}$-module $V:=\left(\mathbb{C}^{m}\right)^{*} \oplus\left(\mathbb{C}^{m} \otimes \mathbb{C}^{2 n}\right)$ defined by

$$
(g, s, t) \cdot(x, v \otimes w):=\left(t^{2 m n} \cdot\left(g^{t}\right)^{-1} x, t^{-m}(g v \otimes s w)\right)
$$

is the reduction of the reducible Θ-representation $\left(C_{m+n+1}, \infty\right)$. Its automorphism group $\operatorname{Aut}_{G}(V)$ is 3 -dimensional if $2\left(\frac{2 n-1}{m}+1\right) \in \mathbb{Z}$ whereas the group of linear G-automorphisms is 2 -dimensional. The proof is different from the methods for proving 3.3. Moreover, it is quite lengthy, it uses the Littlewood-Richardson Theorem. I refer to my Ph.D. thesis [12, 7.8].

For convenience we give the complete list of the irreducible Θ-representations, resp. of the reductions of them. All data not computed in this work, is taken from [8, Table II, III], corrections in [3]. For a complete table with the degrees of the homogeneous generating invariants see [15]. In case $m=\infty$ the group G in Table 4.4 always denotes the corresponding reduction of the Θ-group described as above. Without confusion they will also be called Θ-groups. Thus G is always a semisimple group.

The following notations are used in Table 4.4: For G acting on a vector space V we denote by $S^{i} G$ ($\wedge^{i} G$, respectively) the G-module of the i-th symmetric (exterior, respectively) power of V. The highest irreducible component of $S^{i} G$ is denoted by $S_{0}^{i} G$ and analogously for $\wedge_{0}^{i} G$. The column labeled by \mathfrak{h} contains the Lie algebra type of a generic stabilizer unless $\mathfrak{h}=0$, where the finite isotropy group is given after dividing with the kernel of the representation. \mathfrak{X}_{k} denotes the group of even permutations of k elements. The explicit decomposition of the finite generic stabilizers as semidirect products is omitted. $A, B, C, D, E, F_{4}, G_{2}$ denote the simple Lie algebras indexed by their rank. \mathfrak{t}_{k} is the Lie algebra of a k-dimensional torus and \mathfrak{u}_{j} is a j-dimensional nilpotent Lie algebra.

The rubric 'method' describes how $\operatorname{Aut}_{G}(V)=\mathbb{C}^{*} \mathrm{id}_{V}$ is verified: The expression 'prehom.' means that the corresponding module is prehomogeneous, i.e., it has a dense
orbit. They are handled in Proposition 5.1. The 'adjoint' representations have been settled in 2.5. 'Finite \bar{N} ' says that $\operatorname{Nor}_{G}(H) / H$ is finite, so we can make use of 3.1 , respectively of Theorem 2.3 in case of a reduced Θ-representation with one-dimensional quotient. In some cases the tables of Élashvili [4], [5] are used to check $\operatorname{dim} V / / G=\operatorname{dim} V^{H}$ (which is equivalent to the finiteness of $\bar{N}=\operatorname{Nor}_{G}(H) / H$), but mostly we refer to later computations. The abbreviation 'restitution' stands for the restitution of multilinear covariants [10, Section 6] which is explicitly verified for $\mathrm{SO}_{n} \otimes \mathrm{SP}_{2 m}$ in 6.1.

REMARK 3.5. If the generic isotropy group H is reductive, then G / H is affine, and therefore the generic orbit is closed [9, II.4.3. Satz 6]. All Θ-representations with $\operatorname{dim} V / / G>0$ have generically closed orbits except $\mathrm{N}^{\circ} 4 \mathrm{~b}$ in Table 4.4.
4. Equivariant automorphisms of Θ-representations with finite \bar{N}. In this section we give details of Θ-representations $G \rightarrow \mathrm{GL}(V)$ with $\operatorname{dim} V^{H}=\operatorname{dim} V / / G$ or equivalently with finite \bar{N} in order to apply Lemma 3.1. This shows that every G automorphism is a homothety. The finiteness of \bar{N} for some Θ-representations was shown by Élashvili [4], [5] as pointed out in Table 4.4. So, for the examples not referred to the literature we briefly indicate the representation space V, the embedding of a generic stabilizer $H \subset G$ as well as the fixed point space V^{H}. The corresponding Θ-group is always denoted by G and its Lie algebra by g . For the verification of a stabilizer $H=G_{v}, v \in V$ to be generic, we sometimes use the equivalent condition that $\left\{u \in V^{H} \mid G_{u}=H\right\}$ is dense in V^{H} and $V=($ Lie $G) . v+V^{H}$ (see [19, Theorem 7.3]). The equality $\operatorname{dim} G+\operatorname{dim} V^{H}-\operatorname{dim} \operatorname{Nor}_{G}(H)=\operatorname{dim} V$ (i.e., $\overline{G V^{H}}=V$) also implies that $\left\{g \in G \mid g v=v \forall v \in V^{H}\right\}$ is a generic isotropy group.
4.1. $\mathrm{SL}_{n} \otimes \mathrm{SL}_{n}$. The representation space is the set of $n \times n$-matrices M_{n}, and $H=$ $G_{E_{n}}=\left\{(A, A) \in G \mid A \in \mathrm{SL}_{n}\right\}$. So $\mathrm{M}_{n}^{H}=\mathbb{C} E_{n}$.
4.2. $\mathrm{SL}_{n} \otimes \mathrm{SO}_{m}, 3 \leq n=m$ and $1 \leq n<m$. Let V denote the space of $n \times m$-matrices $\mathrm{M}_{n \times m}$. Let $M_{0}:=\left(E_{n} \mid 0\right) \in V$, then $H=G_{M_{0}}=\left\{\left.\left(A,\binom{A}{B}\right) \right\rvert\, A \in \mathrm{SO}_{n}, B \in \mathrm{SO}_{m-n}\right\}$ and $V^{H}=\mathbb{C} M_{0}$.
4.3. $S_{0}^{2} \mathrm{SO}_{n}, n>4$. This representation is the SO_{n}-conjugation on $V=\operatorname{Sym}_{n} / \mathbb{C} E_{n}$ where Sym_{n} denotes the symmetric $n \times n$-matrices. Let $A:=\operatorname{diag}(1,2, \ldots, n)$ then $H=G_{A}=\{S=\operatorname{diag}(\pm 1, \ldots, \pm 1) \mid \operatorname{det} S=1\} \cong\left(\mathbb{Z}_{2}\right)^{n-1}$. One obtains $\operatorname{dim} V^{H}=n-1=$ $\operatorname{dim} V / / G$.
4.4. $\mathrm{SO}_{n} \otimes \mathrm{SO}_{m}, n \geq m>2$. The composition $V=\mathrm{M}_{n \times m} \xrightarrow{\pi_{\mathrm{SO}_{n}}} S^{2} \mathbb{C}^{m} \xrightarrow{\pi_{\mathrm{SO}_{m}}} \mathbb{C}^{m}$ is the $G=\mathrm{SO}_{n} \times \mathrm{SO}_{m}$-quotient where π_{L} denotes the quotient by the group L. The matrix $A_{0}:=\left(\frac{A}{0}\right) \in V$ is an element of the generic orbit where A is defined as in 4.3. Then $H=G_{A_{0}}=\left\{\left.\left(\binom{S}{T}, S\right) \right\rvert\, S=\operatorname{diag}(\pm 1, \ldots, \pm 1) \in \mathrm{SO}_{m}, T \in \mathrm{SO}_{n-m}\right\}$ and $V^{H}=$ $\left\{\left.\left(\frac{D}{0}\right) \right\rvert\, D \in \mathrm{M}_{m}\right.$ is diagonal $\}$.

N°	G	Θ-type	\mathfrak{h}	$\operatorname{dim} V / / G$	method
	$\mathrm{SL}_{n} \otimes \mathrm{SL}_{m}$	$\left(A_{n+m-1}, \infty\right)$			
1a	$n>m \geq 1$		$\mathfrak{s l} \underline{n-m}+\mathfrak{j l} \mathfrak{l}_{m}+\mathfrak{l}_{m(n-m)}$	0	prehom. 5.1
1b	$n=m \geq 1$		$\mathfrak{m} n_{n}$	1	finite $\bar{N}, 4.1$
	$\mathrm{SL}_{n} \otimes \mathrm{SO}_{m}$	$\begin{aligned} & \left(B_{n+m}, \infty\right)^{1} \\ & \left(D_{n+m}, \infty\right)^{1} \end{aligned}$			
2a	$n>m \geq 3$		$\mathfrak{\mathfrak { l }} \mathrm{n}_{n-m}+\mathfrak{j o}_{m}+\mathfrak{u}_{m(n-m)}$	0	prehom. 5.1
2b	$n=m \geq 3$		$\mathfrak{S o}_{m}$	1	finite $\bar{N}, 4.2$
2c	$1 \leq n<m$		$\mathfrak{3} \mathfrak{0}_{n}+\mathfrak{j o}_{m-n}$	1	finite $\bar{N}, 4.2$
3a	$\begin{aligned} & \mathrm{SL}_{n} \otimes \mathrm{SP}_{2 m} \\ & n>2 m \geq 4 \end{aligned}$	$\left(C_{n+m}, \infty\right)$	$\mathfrak{\xi} \mathfrak{l}_{n-2 m}+\mathfrak{j} \mathfrak{p}_{2 m}+\mathfrak{H}_{2 m(n-2 m)}$	0	prehom. 5.1
3b	$1 \leq n<2 m, n$ odd		$\mathfrak{s p} \mathfrak{p}_{n-1}+\mathfrak{\mathfrak { p }} 2_{2 m-n-1}+\mathfrak{u}_{2 m-1}$	0	prehom. 5.1
3c	$2 \leq n \leq 2 m, n$ even		$\mathfrak{s p} \mathfrak{l}_{n}+\mathfrak{s p} \mathfrak{p}_{2 m-n}$	1	restitution, 6.2
	$\mathrm{SO}_{n} \otimes \mathrm{SP}_{2 m}$	$\left(A_{k}^{(2)}, 4\right)$			
4a	$n>2 m \geq 4$		$\mathrm{t}_{m}+\mathrm{Sb}_{n-2 m}$	m	restitution, 6.1
4b	$2<n<2 m, n$ odd	k odd	$\mathrm{t}_{\frac{n-1}{2}}+\mathfrak{j} \mathfrak{p}_{2 m-n-1}+\mathfrak{H}_{2 m-n}$	$\frac{n-1}{2}$	restitution, 6.1
4c	$2<n \leq 2 m, n$ even	k even	$\mathrm{t}_{\frac{n}{2}}{ }^{2}+3 \mathrm{p}_{2 m-n}$	$\frac{n}{2}$	restitution, 6.1
5	$\mathrm{SO}_{n} \otimes \mathrm{SO}_{m}$	$\begin{aligned} & \left(B_{k}^{(1)}, 2\right)^{2} \\ & \left(D_{k}^{(1,2)}, 2\right)^{2} \end{aligned}$			
	$n \geq m>2$		$\mathfrak{5 0} \mathfrak{o n}_{n-m}$	m	finite $\bar{N}, 4.4$
6	$\begin{array}{r} \mathrm{SP}_{2 n} \otimes \mathrm{SP}_{2 m} \\ n \geq m>1 \end{array}$	$\left(C_{n}^{(1)}, 2\right)$	$m \mathfrak{S} \mathfrak{L}_{2}+\mathfrak{j} \mathfrak{p}_{2 n-2 m}$	m	finite $\bar{N}, 4.5$
7	$\mathrm{AdSL}_{n}, n>2$	$\left(A_{n}^{(1)}, 1\right)$	t_{n-1}	$n-1$	adjoint
	$\wedge^{2} \mathrm{SL}_{n}$	$\left(D_{n}, \infty\right)$			
8a	n odd ≥ 3		$\mathfrak{s p}{ }_{n-1}+\mathfrak{u}_{n-1}$	0	prehom. 5.1
8b	n even ≥ 4		$\mathfrak{\mathfrak { p }}{ }_{n}$	1	finite \bar{N}, [4]
9	$S^{2} \mathrm{SL}_{n}, n \geq 3$	$\left(C_{n}, \infty\right)$	$\mathfrak{S 0}_{n}$	1	finite \bar{N}, [4]
	$\wedge^{2} \mathrm{SO}_{n}$				
10a	$n>3$ odd	$\left(B_{n}^{(1)}, 1\right)$	$\mathrm{t}_{\frac{n-1}{2}}$	$\frac{n-1}{2}$	adjoint
10b	$n>5$ even	$\left(D_{n}^{(1)}, 1\right)$	$t_{\frac{n}{2}}$	$\frac{n}{2}$	adjoint
11	$S^{2} \mathrm{SP}_{2 n}, n>1$	$\left(C_{n}^{(1)}, 1\right)$	t_{n}	n	adjoint
	$S_{0}^{2} \mathrm{SO}_{n}$	$\left(A_{n}^{(2)}, 4\right)$			
12a	$n>4$ odd		$\left(\mathbb{Z}_{2}\right)^{n-1}$	$n-1$	finite $\bar{N}, 4.3$
12b	$n>4$ even		$\left(\mathbb{Z}_{2}\right)^{n-2}$	$n-1$	finite $\bar{N}, 4.3$
13	$\wedge{ }_{0}^{2} \mathrm{SP}_{2 n}, n>2$	$\left(A_{2 n+1}^{(2)}, 2\right)$	$n A_{1}$	$n-1$	finite \bar{N}, [4]
14	$S^{3} \mathrm{SL}_{2}$	$\left(G_{2}, \infty\right)$	\mathbb{Z}_{3}	1	6.1
15	$S^{4} \mathrm{SL}_{2}$	$\left(A_{2}^{(2)}, 4\right)$	$\left(\mathbb{Z}_{2}\right)^{2}$	2	finite $\bar{N}, 4.6$
16	$S^{3} \mathrm{SL}_{3}$	$\left(D_{4}^{(3)}, 3\right)$	$\left(\mathbb{Z}_{3}\right)^{2}$	2	finite $\bar{N}, 4.7$
17	$\wedge^{3} \mathrm{SL}_{6}$	$\left(E_{6}, \infty\right)$	$A_{2}+A_{2}$	1	6.7
18	$\wedge^{3} \mathrm{SL}_{7}$	$\left(E_{7}, \infty\right)$	G_{2}	1	finite \bar{N}, [4]
19	$\wedge^{3} \mathrm{SL}_{8}$	$\left(E_{8}, \infty\right)$	A_{2}	1	finite \bar{N}, [4]
20	$\wedge^{3} \mathrm{SL}_{9}$	$\left(E_{8}^{(1)}, 3\right)$	$\left(\mathbb{Z}_{3}\right)^{4}$	4	finite $\bar{N}, 4.8$

TABLE I

[^1]| N° | G | Θ-type | \mathfrak{h} | $\operatorname{dim} V / / G$ | method |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 21 | $\wedge^{4} \mathrm{SL}_{8}$ | $\left(E_{7}^{(1)}, 2\right)$ | $\left(\mathbb{Z}_{2}\right)^{6}$ | 7 | finite $\bar{N}, 4.9$ |
| 22 | $\mathrm{SL}_{2} \otimes S^{3} \mathrm{SL}_{2}$ | $\left(G_{2}^{(1)}, 2\right)$ | $\left(\mathbb{Z}_{2}\right)^{2}$ | 2 | finite $\bar{N}, 4.11$ |
| 23 | $\mathrm{SL}_{2} \otimes S^{2} \mathrm{SL}_{3}$ | $\left(F_{4}, \infty\right)$ | \mathfrak{U}_{4} | 1 | 6.2 |
| 24 | $\mathrm{SL}_{2} \otimes S^{2} \mathrm{SL}_{4}$ | $\left(E_{6}^{(2)}, 4\right)$ | $\left(\mathbb{Z}_{4}\right)^{2}$ | 2 | finite $\bar{N}, 4.12$ |
| 25 | $\mathrm{SL}_{2} \otimes \wedge^{2} \mathrm{SL}_{5}$ | $\left(E_{6}, \infty\right)$ | $A_{1}+\mathfrak{H}_{4}$ | 0 | prehom. [5] |
| 26 | $\mathrm{SL}_{2} \otimes \wedge^{2} \mathrm{SL}_{6}$ | $\left(E_{7}, \infty\right)$ | $3 A_{1}$ | 1 | 6.4 |
| 27 | $\mathrm{SL}_{2} \otimes \wedge^{2} \mathrm{SL}_{7}$ | $\left(E_{8}, \infty\right)$ | $A_{1}+\mathfrak{u}_{6}$ | 0 | prehom. [5] |
| 28 | $\mathrm{SL}_{2} \otimes \wedge^{2} \mathrm{SL}_{8}$ | $\left(E_{8}^{(1)}, 4\right)$ | $4 A_{1}$ | 2 | 6.4 |
| 29 | $\mathrm{SL}_{2} \otimes \wedge^{3} \mathrm{SL}_{6}$ | $\left(E_{6}^{(1)}, 2\right)$ | t_{2} | 4 | 6.3 |
| 30 | $\mathrm{SL}_{2} \otimes \wedge_{0}^{3} \mathrm{SP}_{6}$ | $\left(F_{4}^{(1)}, 2\right)$ | $\left(\mathbb{Z}_{2}\right)^{3}$ | 4 | 6.3 |
| 31 | $\mathrm{SL}_{2} \otimes \mathrm{Spin}_{7}$ | ($\left.E_{6}^{(2)}, 4\right)$ | $A_{2}+\mathrm{t}_{1}$ | 1 | 6.7 |
| 32 | $\mathrm{SL}_{2} \otimes \mathrm{Spin}_{10}$ | $\left(E_{7}, \infty\right)$ | $G_{2}+A_{1}$ | 1 | 6.7 |
| 33 | $\mathrm{SL}_{2} \otimes \mathrm{Spin}_{12}$ | $\left(E_{7}^{(1)}, 2\right)$ | $3 A_{1}$ | 4 | 6.7 |
| 34 | $\mathrm{SL}_{2} \otimes E_{6}$ | $\left(E_{8}, \infty\right)$ | D_{4} | 1 | 6.7 |
| 35 | $\mathrm{SL}_{2} \otimes E_{7}$ | $\left(E_{8}^{(1)}, 2\right)$ | D_{4} | 4 | 6.7 |
| 36 | $\mathrm{SL}_{2} \otimes \mathrm{SL}_{3} \otimes \mathrm{SL}_{3}$ | $\left(E_{6}, \infty\right)$ | t_{2} | 1 | 6.3 |
| 37 | $\mathrm{SL}_{2} \otimes \mathrm{SL}_{3} \otimes \mathrm{SL}_{4}$ | $\left(E_{7}, \infty\right)$ | A_{1} | 1 | finite $\bar{N}, 4.14$ |
| 38 | $\mathrm{SL}_{2} \otimes \mathrm{SL}_{3} \otimes \mathrm{SL}_{5}$ | $\left(E_{8}, \infty\right)$ | $A_{1}+\mathfrak{H}_{2}$ | 0 | prehom. [14, 3.] |
| 39 | $\mathrm{SL}_{2} \otimes \mathrm{SL}_{3} \otimes \mathrm{SL}_{6}$ | $\left(E_{8}^{(1)}, 6\right)$ | $A_{2}+A_{1}$ | 1 | finite $\bar{N}, 4.15$ |
| 40 | $\mathrm{SL}_{2} \otimes \mathrm{SL}_{4} \otimes \mathrm{SL}_{4}$ | $\left(E_{7}^{(1)}, 4\right)$ | t_{3} | 2 | 6.3 |
| 41 | $\mathrm{SL}_{3} \otimes S^{2} \mathrm{SL}_{3}$ | $\left(F_{4}^{(1)}, 3\right)$ | $\left(\mathbb{Z}_{3}\right)^{2}$ | 2 | finite $\bar{N}, 4.13$ |
| 42 | $\mathrm{SL}_{3} \otimes \wedge^{2} \mathrm{SL}_{5}$ | $\left(E_{7}, \infty\right)$ | A_{1} | 1 | finite \bar{N}, [5] |
| 43 | $\mathrm{SL}_{3} \otimes \wedge^{2} \mathrm{SL}_{6}$ | $\left(E_{7}^{(1)}, 3\right)$ | t_{1} | 3 | 6.5 |
| 44 | $\mathrm{SL}_{3} \otimes \mathrm{Spin}_{10}$ | $\left(E_{8}, \infty\right)$ | $A_{1}+A_{1}$ | 1 | finite \bar{N}, [5] |
| 45 | $\mathrm{SL}_{3} \otimes E_{6}$ | ($\left.E_{8}^{(1)}, 3\right)$ | A_{2} | 3 | 6.7 |
| 46 | $\mathrm{SL}_{3} \otimes \mathrm{SL}_{3} \otimes \mathrm{SL}_{3}$ | $\left(E_{6}^{(1)}, 3\right)$ | $\left(\mathbb{Z}_{3}\right)^{2}$ | 3 | 6.4 |
| 47 | $\mathrm{SL}_{4} \otimes \wedge^{2} \mathrm{SL}_{5}$ | $\left(E_{8}, \infty\right)$ | \mathfrak{U}_{5} | 1 | finite $\bar{N}, 4.16$ |
| 48 | $\mathrm{SL}_{4} \otimes \mathrm{Spin}_{10}$ | ($\left.E_{8}^{(1)}, 4\right)$ | $\left(\mathbb{Z}_{2}\right)^{4}$ | 4 | 6.6 |
| 49 | $\mathrm{SL}_{5} \otimes \wedge^{2} \mathrm{SL}_{5}$ | $\left(E_{8}^{(1)}, 5\right)$ | $\left(\mathbb{Z}_{5}\right)^{2}$ | 2 | finite $\bar{N}, 4.17$ |
| 50 | Spin_{7} | $\left(F_{4}, \infty\right)$ | G_{2} | 1 | finite \bar{N}, [4] |
| 51 | Spin_{9} | $\left(F_{4}^{(1)}, 2\right)$ | B_{3} | 1 | finite \bar{N}, [4] |
| 52 | Spin_{10} | $\left(E_{6}, \infty\right)$ | $B_{3}+\mathfrak{H}_{8}$ | 0 | prehom. [4] |
| 53 | Spin_{12} | $\left(E_{7}, \infty\right)$ | A_{5} | 1 | 6.7 |
| 54 | Spin_{14} | $\left(E_{8}, \infty\right)$ | $G_{2}+G_{2}$ | 1 | finite \bar{N}, [4] |
| 55 | Spin_{16} | $\left(E_{8}^{(1)}, 2\right)$ | $\left(\mathbb{Z}_{2}\right)^{8}$ | 8 | finite $\bar{N}, 4.10$ |
| 56 | $\wedge_{0}^{3} \mathrm{SP}_{6}$ | $\left(F_{4}, \infty\right)$ | A_{2} | 1 | 6.7 |
| 57 | $\wedge{ }_{0}^{4} \mathrm{SP}_{8}$ | $\left(E_{6}^{(2)}, 2\right)$ | $\left(\mathbb{Z}_{2}\right)^{6}$ | 6 | finite $\bar{N}, 4.9$ |

TABLE I (continued)

N°	G	Θ-type	\mathfrak{h}	$\operatorname{dim} V / / G$	method
58	$\operatorname{Ad} G_{2}$	$\left(G_{2}^{(1)}, 1\right)$	t_{2}	2	adjoint
59	G_{2}	$\left(D_{4}^{(3)}, 3\right)$	A_{2}	1	finite $\bar{N},[4]$
60	$\operatorname{Ad} F_{4}$	$\left(F_{4}^{(1)}, 1\right)$	t_{4}	4	adjoint
61	F_{4}	$\left(E_{6}^{(2)}, 2\right)$	D_{4}	2	finite $\bar{N},[4]$
62	$\operatorname{Ad} E_{6}$	$\left(E_{6}^{(1)}, 1\right)$	t_{6}	6	adjoint
63	E_{6}	$\left(E_{7}, \infty\right)$	F_{4}	1	finite $\bar{N},[4]$
64	$\operatorname{Ad} E_{7}$	$\left(E_{7}^{(1)}, 1\right)$	t_{7}	7	adjoint
65	E_{7}	$\left(E_{8}, \infty\right)$	E_{6}	1	6.7
66	$\operatorname{Ad} E_{8}$	$\left(E_{8}^{(1)}, 1\right)$	t_{8}	8	adjoint

TABLE I (continued)
4.5. $\mathrm{SP}_{2 n} \otimes \mathrm{SP}_{2 m}, n \geq m>1$. The representation space V is $\mathrm{M}_{2 n \times 2 m}$. For $\mu \in \mathbb{C}$ define $D_{\mu}=\binom{-\mu}{\mu}$ and let $J:=\operatorname{diag}\left(D_{1}, \ldots, D_{1}\right)$ be a skew symmetric form of even rank $2 k$. Then the symplectic group and Lie algebra are defined by

$$
\mathrm{SP}_{2 k}:=\left\{S \in \mathrm{GL}_{2 k} \mid S J S^{t}=J\right\} \text { and } \mathfrak{\mathfrak { p }} \mathfrak{p}_{2 k}:=\left\{s \in \mathrm{M}_{2 k} \mid s J+J s^{t}=0\right\}
$$

The stabilizer $\mathfrak{h}:=\mathfrak{g}_{A_{0}}$ of $A_{0}:=\left(\frac{A}{0}\right) \in V$ where $A:=\operatorname{diag}\left(D_{1}, \ldots, D_{m}\right)$ is a generic stabilizer:

$$
\begin{aligned}
\mathfrak{h} & =\left\{\left.\left(\left(\begin{array}{l|l}
\operatorname{diag}\left(s_{1}, \ldots, s_{m}\right) & 0 \\
\hline 0 & s^{\prime}
\end{array}\right), \operatorname{diag}\left(-s_{1}^{t}, \ldots,-s_{m}^{t}\right)\right) \right\rvert\, s_{i} \in \mathfrak{\mathfrak { H } _ { 2 } , s ^ { \prime } \in \mathfrak { \mathfrak { p } } 2 _ { 2 n - 2 m } \}}\right. \\
& \cong m \mathfrak{\mathfrak { l }} \mathbf{l}_{2}+\mathfrak{\mathfrak { p }} \mathfrak{p}_{2 n-2 m}
\end{aligned}
$$

Then $V^{\mathfrak{h}}=\left\{\left.\left(\frac{\operatorname{diag}\left(D_{\lambda_{1}}, \ldots, D_{\lambda_{m}}\right)}{0}\right) \right\rvert\, \lambda_{1}, \ldots, \lambda_{m} \in \mathbb{C}\right\}$ and so $\operatorname{dim} V^{\mathfrak{G}}=\operatorname{dim} V / / G$.
4.6. $S^{4} \mathrm{SL}_{2}$. The representation space is $R_{4}:=\mathbb{C}[x, y]_{4}$. The binary dihedral group $H=G_{x^{4}+y^{4}}=\left\langle\binom{ i}{-i},\binom{1}{-1}\right\rangle$ is a generic isotropy group and $\operatorname{dim} R_{4}^{H}=\operatorname{dim} R_{4} / / G$.
4.7. $S^{3} \mathrm{SL}_{3}$. Take the the ternary cubics $V:=\mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]_{3}$ with the induced natural $G=\mathrm{SL}_{3}$-representation. Then

$$
H=G_{x_{1}^{3}+x_{2}^{3}+x_{3}^{3}}=\left\{\left(\begin{array}{ccc}
\zeta_{1} & & \\
& \zeta_{2} & \\
& & \zeta_{3}
\end{array}\right),\left(\begin{array}{cc}
& \zeta_{1} \\
& \\
& \zeta_{2} \\
\zeta_{3} &
\end{array}\right),\left(\begin{array}{cc}
& \\
\zeta_{2} & \\
& \\
& \\
& \zeta_{3}
\end{array}\right) \left\lvert\, \begin{array}{c}
\zeta_{1} \zeta_{2} \zeta_{3}=1 \\
\zeta_{i}^{3}=1, i=1,2,3
\end{array}\right.\right\}
$$

is a generic isotropy group. It follows that $V^{H}=\mathbb{C}\left(x_{1}^{3}+x_{2}^{3}+x_{3}^{3}\right) \oplus \mathbb{C} x_{1} x_{2} x_{3}$ and therefore $\operatorname{dim} V^{H}=\operatorname{dim} V / / G$.
4.8. $\wedge^{3} \mathrm{SL}_{9}$. Let e_{1}, \ldots, e_{9} be a basis of \mathbb{C}^{9} and (ijk) denote the skew symmetric tensor $e_{i} \wedge e_{j} \wedge e_{k} \in V:=\wedge^{3} \mathbb{C}^{9}$. Let us define

$$
\begin{array}{ll}
p_{1}:=(123)+(456)+(789), & p_{2}:=(147)+(258)+(369), \\
p_{3}:=(159)+(267)+(348), & p_{4}:=(168)+(249)+(357) .
\end{array}
$$

The element $p:=\lambda_{1} p_{1}+\lambda_{2} p_{2}+\lambda_{3} p_{3}+\lambda_{4} p_{4}$ with $\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4} \in \mathbb{C}$ pairwise distinct, is an element of a generic orbit [25]. The stabilizer $H=G_{p}$ consists of the matrices $\left(\begin{array}{lll}A_{1} & & \\ & A_{2} & \\ & & A_{3}\end{array}\right),\left(\begin{array}{cc}A_{1} & \\ A_{1} & \\ & A_{2}\end{array}\right),\left(\begin{array}{cc}A_{2} & \\ & \\ A_{1} & \\ & A_{3}\end{array}\right) \in G$ where the $A_{j} \in \mathrm{SL}_{3}$ allow the following shapes:

$$
\begin{gathered}
\text { either } A_{j}=\left(\begin{array}{cccc}
\xi_{j 1} & & \\
& \xi_{j 2} & \\
& & \xi_{j 3}
\end{array}\right),\left(\begin{array}{lll}
& & \xi_{j 3} \\
\xi_{j 1} & & \\
& \xi_{j 2}
\end{array}\right), \text { or }\left(\begin{array}{cc}
\xi_{j 2} & \\
\xi_{j 1} & \\
\xi_{j 3}
\end{array}\right) \quad \text { for all } j=1,2,3 \\
\\
\qquad \begin{array}{|c|c|c|}
\left(\xi_{11}, \xi_{12}, \xi_{13}\right) & \left(\xi_{21}, \xi_{22}, \xi_{23}\right) & \left(\xi_{31}, \xi_{32}, \xi_{33}\right) \\
\hline\left(1, \zeta, \zeta^{2}\right) & \left(1, \zeta, \zeta^{2}\right) & \left(1, \zeta, \zeta^{2}\right) \\
\left(\zeta, \zeta^{2}, 1\right) & \left(\zeta, \zeta^{2}, 1\right) & \left(\zeta, \zeta^{2}, 1\right) \\
\left(\zeta, 1, \zeta^{2}\right) & \left(\zeta^{2}, \zeta, 1\right) & \left(1, \zeta^{2}, \zeta\right) \\
\hline
\end{array}
\end{gathered}
$$

The table on the right hand side lists three generators for the group isomorphic to $\left(\mathbb{Z}_{3}\right)^{3}$ of the entries of A_{1}, A_{2}, A_{3} where $\zeta=e^{2 \pi i / 3}$ is a third root of unity. In fact, the entries of A_{1} are described by $\left(\mathbb{Z}_{3}\right)^{2}$ and for any choice for A_{1} there are 3 possibilities for A_{2} and A_{3} is uniquely determined by A_{1}, A_{2}. After dividing by the kernel $\left(\cong \mathbb{Z}_{3}\right)$ we see that $H \cong\left(\mathbb{Z}_{3}\right)^{4}$. So one obtains that $V^{H}=\mathbb{C} p_{1} \oplus \mathbb{C} p_{2} \oplus \mathbb{C} p_{3} \oplus \mathbb{C} p_{4}$, and $\operatorname{dim} V^{H}=\operatorname{dim} V / / G$.
4.9. $\wedge^{4} \mathrm{SL}_{8}$ and $\wedge_{0}^{4} \mathrm{SP}_{8}$. This is analogous to the computations in 4.8. Let (ijkl) denote the skew symmetric tensor $e_{i} \wedge e_{j} \wedge e_{k} \wedge e_{l}$ where e_{1}, \ldots, e_{8} is a basis of \mathbb{C}^{8}. We define

$$
\begin{array}{lll}
p_{1}:=(1234)+(5678), & p_{2}:=(1278)+(3456), & p_{3}:=(1368)+(2457), \\
p_{4}:=(1467)+(2358), & & \\
p_{5}:=(1256)+(3478), & p_{6}:=(1357)+(2468), & p_{7}:=(1458)+(2367) .
\end{array}
$$

The generic isotropy group is equal to $H:=G_{p}$ where $p:=\sum_{r=1}^{7} r p_{r}$. It consists of the elements $\left(\begin{array}{c}A_{1} \\ \\ A_{2}\end{array}\right),\binom{A_{1}}{A_{2}} \in G$ where $A_{1}, A_{2} \in \mathrm{SL}_{4}$ have one of the four forms:

$$
A_{j}=\left(\begin{array}{cccc}
\alpha_{j 1} & & & \\
& \alpha_{j 2} & & \\
& & \alpha_{j 3} & \\
& & & \alpha_{j 4}
\end{array}\right),\left(\begin{array}{ccc}
\alpha_{j 1} & \alpha_{j 2} & \\
\alpha_{j 1} & & \\
& & \\
& & \alpha_{j 3}
\end{array}\right),\left(\begin{array}{lll}
& & \alpha_{j 3} \\
& & \\
& & \\
\alpha_{j 1} & & \\
& \alpha_{j 2} & \\
& & \\
& & \\
& \alpha_{j 3} & \\
& & \\
\alpha_{j 1} & &
\end{array}\right)
$$

$\left(\alpha_{11}, \alpha_{12}, \alpha_{13}, \alpha_{14}\right)$	$\left(\alpha_{21}, \alpha_{22}, \alpha_{23}, \alpha_{24}\right)$
$(-1,-1,1,1)$	$(-1,-1,1,1)$
$(-1,-1,1,1)$	$(1,1,-1,-1)$
$(-1,1,1,-1)$	$(1,-1,-1,1)$
(i, i, i, i)	(i, i, i, i)

The description of the table is similar to 4.8. After dividing with the kernel $H \cong\left(\mathbb{Z}_{2}\right)^{6}$. Then $V^{H}=\oplus_{r=1}^{7} \mathbb{C} p_{r}$ and $\operatorname{dim} V^{H}=\operatorname{dim} V / / G$.

These computations are also useful for $\wedge_{0}^{4} \mathrm{SP}_{8}$: Consider the $G=\mathrm{SP}_{8}$-module decomposition $\wedge^{4} \mathbb{C}^{8}=\wedge_{0}^{4} \mathbb{C}^{8} \oplus W \oplus \mathbb{C}_{0}$ where $W \cong \wedge_{0}^{2} \mathbb{C}^{8}$ and $\mathbb{C}_{0}=\mathbb{C}\left(p_{5}+p_{6}+p_{7}\right)$ is the trivial
G-module in $\wedge^{4} \mathbb{C}^{8}$ (see [2, VI 5.3]). Moreover, it holds $\mathbb{C} p_{1} \oplus \mathbb{C} p_{2} \oplus \mathbb{C} p_{3} \oplus \mathbb{C} p_{4} \subset \wedge_{0}^{4} \mathbb{C}^{8}$ and $\mathbb{C}\left(p_{5}-p_{6}\right) \oplus \mathbb{C}\left(p_{6}-p_{7}\right) \subset \wedge_{0}^{4} \mathbb{C}^{8}\left[2\right.$, VI 5.3]. So define $p:=\sum_{r=1}^{4} r p_{r}+5\left(p_{5}-\right.$ $\left.p_{6}\right)+6\left(p_{6}-p_{7}\right) \in \wedge_{0}^{4} \mathbb{C}^{8}$ and from above we get that $H:=G_{p} \cong\left(\mathbb{Z}_{2}\right)^{6}$. These considerations yield that $\left(\wedge_{0}^{4} \mathbb{C}^{8}\right)^{H}=\oplus_{r=1}^{4} \mathbb{C} p_{r} \oplus \mathbb{C}\left(p_{5}-p_{6}\right) \oplus \mathbb{C}\left(p_{6}-p_{7}\right)$, and therefore $\operatorname{dim}\left(\wedge_{0}^{4} \mathbb{C}^{8}\right)^{H}=\operatorname{dim} \wedge_{0}^{4} \mathbb{C}^{8} / / G$.
4.10. Spin_{16}. The generic isotropy group $H \cong\left(\mathbb{Z}_{2}\right)^{8}$ is embedded as follows [21, Table 2]: $H=\left(\mathbb{Z}_{2}\right)^{6} \times\left(\mathbb{Z}_{2}\right)^{2} \subset \mathrm{SP}_{8} /\{ \pm \mathrm{id}\} \times \mathrm{SO}_{3} \subset G=\mathrm{SO}_{16}$ where $\left(\mathbb{Z}_{2}\right)^{6}$ is embedded in SP_{8} as above in 4.9. The latter inclusion is induced by $\left(\mathrm{SP}_{8} \otimes \mathrm{SL}_{2}\right) /\{ \pm \mathrm{id}\} \subset G$, which is given by $\left(A,\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right) \mapsto\left(\begin{array}{cc}a A & b A \\ c A & d A\end{array}\right) \in G$. If SP_{8} is given with respect to the skewsymmetric form $J=\left(\begin{array}{c}E_{4}\end{array}\right)$, then G is defined by $\left\{S \in \mathrm{SL}_{16} \mid S^{t}\left(J^{-J}\right) S=\left(J^{-J}\right)\right\}$. So we obtain that $H=\left\langle\binom{ i g}{i g}, \left.\binom{i g}{-i g} \right\rvert\, g \in H_{\mathrm{SP}_{8}}\right\rangle \subset G$, where $H_{\mathrm{SP}_{8}} \subset \mathrm{SP}_{8}$ denotes the generic stabilizer of $\wedge_{0}^{4} \mathrm{SP}_{8}$ (recall that the kernel of the half-spin representation of Spin_{16} is \mathbb{Z}_{2}). Since $\operatorname{Nor}_{G}(H)^{0}=\left(Z_{G}(H) H\right)^{0}$ it is enough to show that the centralizer $Z_{G}(H)$ is finite, which is not difficult to verify by using the finiteness of $Z_{\mathrm{SL}_{8}}\left(H_{\mathrm{SP}_{8}}\right)$ (4.9).
4.11. $\mathrm{SL}_{2} \otimes S^{3} \mathrm{SL}_{2}$. Here we argue in a slightly different manner from the previous examples: Let $H \subset G=\mathrm{SL}_{2} \times \mathrm{SL}_{2}$ be the binary dihedral group \mathcal{D}_{2} which is generated by $\left(\binom{i}{-i},\left(\begin{array}{cc}-i & \\ & i\end{array}\right)\right),\left(\binom{1}{-1},\binom{1}{-1}\right) \in G$. Notice that the kernel of this representation is $\pm(\mathrm{id}, \mathrm{id})$. The representation space is realized by $V:=\mathbb{C}^{2} \otimes R_{3}$, where $R_{3}:=\mathbb{C}[x, y]_{3}$. Let e_{1}, e_{2} be the standard basis of \mathbb{C}^{2}. Then $V^{H}=\mathbb{C}\left(e_{1} \otimes x^{3}+e_{2} \otimes y^{3}\right) \oplus \mathbb{C}\left(e_{1} \otimes x y^{2}+e_{2} \otimes x^{2} y\right)$, and one easily verifies that the normalizer $N:=\operatorname{Nor}_{G}(H)$ is finite. It follows that $G V^{H} \subset V$ is dense since $\operatorname{dim} G \times^{N} V^{H}=\operatorname{dim} G+\operatorname{dim} V^{H}-\operatorname{dim} N=\operatorname{dim} V$. Hence the generic orbit intersects V^{H} and the generic stabilizer H^{\prime} contains H. By Lemma 3.1(b) it exists a Cartan subspace \mathfrak{c} such that $\mathfrak{c} \subset V^{H^{\prime}} \subset V^{H}$. But $\operatorname{dim} \mathfrak{c}=2=\operatorname{dim} V^{H}$ which implies that $\mathfrak{c}=V^{H^{\prime}}$. Furthermore, it is now easy to see that $H^{\prime}=H$ since $Z_{G}(\mathfrak{c})=H$.
4.12. $\mathrm{SL}_{2} \otimes S^{2} \mathrm{SL}_{4}$. As usual let e_{1}, e_{2} be the standard basis of \mathbb{C}^{2} and $V:=\mathbb{C}^{2} \otimes R_{2}$ the representation space where $R_{2}:=\mathbb{C}[u, x, y, z]_{2}$. The stabilizer $H=G_{w}$ of an element $w \in W:=\mathbb{C}\left(e_{1} \otimes\left(u^{2}+x^{2}\right)+e_{2} \otimes\left(y^{2}+z^{2}\right)\right) \oplus \mathbb{C}\left(e_{1} \otimes y z+e_{2} \otimes u x\right)$ in general position is a generic isotropy group. H is generated by the three elements $\left(\varepsilon=e^{\pi i / 4}\right)$

It is isomorphic (modulo the kernel $\left.\mathbb{Z}_{4}\right)$ to $\left(\mathbb{Z}_{4}\right)^{2}$. Hence $V^{H}=W$ and $\operatorname{dim} V^{H}=\operatorname{dim} V / / G$.
4.13. $\mathrm{SL}_{3} \otimes S^{2} \mathrm{SL}_{3}$. Consider the finite subgroup $H \subset G=\mathrm{SL}_{3} \times \mathrm{SL}_{3}$ generated by the three elements

$$
\left(\left(\begin{array}{lll}
\zeta & & \\
& \zeta & \\
& & \zeta
\end{array}\right),\left(\begin{array}{lll}
\zeta^{2} & & \\
& & \zeta^{2} \\
\\
& & \zeta^{2}
\end{array}\right)\right),\left(\left(\begin{array}{lll}
1 & & \\
& & \zeta \\
& & \\
& & \zeta^{2}
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& & \\
& & \zeta^{2}
\end{array}\right)\right),\left(\left(\begin{array}{lll}
& 1 & \\
& & 1 \\
& &
\end{array}\right),\left(\begin{array}{ll}
& \\
1 & \\
1 & \\
& \\
& \\
&
\end{array}\right)\right.
$$

where $\zeta=e^{2 \pi i / 3}$. H is isomorphic to $\left(\mathbb{Z}_{3}\right)^{3}$ and the kernel of the module is isomorphic to \mathbb{Z}_{3}. The representation space is realized by $V:=\mathbb{C}^{3} \otimes R_{2}$ where $R_{2}:=\mathbb{C}[x, y, z]_{2}$. Let e_{1}, e_{2}, e_{3} denote the standard basis of \mathbb{C}^{3}. The space of H-fixed points is

$$
V^{H}=\mathbb{C}\left(e_{1} \otimes x^{2}+e_{3} \otimes y^{2}+e_{2} \otimes z^{2}\right) \oplus \mathbb{C}\left(e_{2} \otimes x y+e_{3} \otimes x z+e_{1} \otimes y z\right)
$$

The normalizer $N:=\operatorname{Nor}_{G}(H)$ is easily seen to be finite. Therefore $G V^{H} \subset V$ is dense because $\operatorname{dim} G \times{ }^{N} V^{H}=\operatorname{dim} V$. Now we make use of the same arguments as in 4.11 because $\operatorname{dim} V^{H}=\operatorname{dim} V / / G$, i.e., V^{H} is a Cartan subspace and H is a generic isotropy group.
4.14. $\mathrm{SL}_{2} \otimes \mathrm{SL}_{3} \otimes \mathrm{SL}_{4}$. Consider Lie algebra \mathfrak{g} of $\mathrm{SL}_{2} \times \mathrm{SL}_{3} \times \mathrm{SL}_{4}$ acting on $V=$ $M_{6 \times 4} \cong \mathbb{C}^{2} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{4}$ by embedding the $\mathfrak{S l}_{2} \times \mathfrak{S l}_{3}$-action in $\mathfrak{B l}_{6}$; the embedded Lie algebra is denoted by \mathfrak{g}_{1}. The orbit $\mathrm{g} m$ with $m=\left(\frac{E_{4}}{1 \frac{1}{1}}\right) \in V$ is generic because $\mathrm{g} m+V^{\mathfrak{g}_{m}}=V$. The stabilizer of m is

It follows $V^{\mathfrak{h}}=\mathbb{C} m$ and $\operatorname{dim} V^{\mathfrak{h}}=V / / G$.
4.15. $\mathrm{SL}_{2} \otimes \mathrm{SL}_{3} \otimes \mathrm{SL}_{6}$. This representation is realized by left-action of $G_{1}:=\mathrm{SL}_{2} \times$ $\mathrm{SL}_{3} \subset \mathrm{SL}_{6}$ and right-action of SL_{6} on M_{6}. The stabilizer $H=G_{E_{6}}=\left\{(S, T) \in G_{1} \times \mathrm{SL}_{6} \mid\right.$ $\left.S E_{6} T^{-1}=E_{6}\right\} \cong \mathrm{SL}_{2} \times \mathrm{SL}_{3}$ of the identity matrix $E_{6} \in \mathrm{M}_{6}$ is a generic stabilizer. The H-fixed points are $\mathrm{M}_{6}^{H}=\left\{A \in \mathrm{M}_{6} \mid S A S^{-1}=A\right\}=\mathbb{C} E_{6}$ and therefore $\operatorname{dim} M_{6}^{H}=$ $\operatorname{dim} M_{6} / / G$.
4.16. $\mathrm{SL}_{4} \otimes \wedge^{2} \mathrm{SL}_{5}$. Let e_{1}, \ldots, e_{4}, resp. f_{1}, \ldots, f_{5} be the standard basis of \mathbb{C}^{4}, resp. \mathbb{C}^{5}. Then $(i, j k):=e_{i} \otimes f_{j} \wedge f_{k}$ for $1 \leq i \leq 4,1 \leq j<k \leq 5$ is a basis of $V:=\mathbb{C}^{4} \otimes \wedge^{2} \mathbb{C}^{5}$. Consider the finite subgroup $H \subset G=\mathrm{SL}_{4} \times \mathrm{SL}_{5}$ generated by the two elements
$a=\left(\left(\begin{array}{llll}0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1\end{array}\right),\left(\begin{array}{ccccc}1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 1 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1\end{array}\right)\right), b=\left(\left(\begin{array}{cccc}0 & -1 & -1 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right),\left(\begin{array}{ccccc}0 & 0 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 & -1 \\ 0 & -1 & 1 & -1 & 0 \\ 1 & -1 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0\end{array}\right)\right)$.
The alternating group \mathfrak{U}_{5} is generated by the permutations $\sigma_{1}=(12345)$ and $\sigma_{2}=(123)$. The $\mathrm{SL}_{4}{ }^{-}$(resp. $\mathrm{SL}_{5}{ }^{-}$) component of a and b are the images of σ_{1} and σ_{2} of the unique irreducible 4- (resp. 5-) dimensional representation of \mathfrak{U}_{5}. This construction and Schur's Lemma immediately yield that $Z_{G}(H)$ is contained in the scalar matrices of G, hence
finite. Since $\operatorname{Nor}_{G}(H)^{0}=\left(Z_{G}(H) H\right)^{0}$ it follows that $\operatorname{Nor}_{G}(H) / H$ is finite. The H-fixed point space is $V^{H}=\mathbb{C} v$ where

$$
\begin{aligned}
v=(1,12) & -(1,15)-(1,24)-(1,25)-(1,45) \\
& +2(2,12)+2(2,13)+(2,14)+(2,23)-(2,25)+(2,34)-(2,35)-2(2,45) \\
& +(3,12)+2(3,13)+2(3,14)+(3,23)-2(3,25)+(3,34)-(3,35)-(3,45) \\
& +(4,12)+(4,13)+2(4,14)+(4,15)-(4,23)+2(4,34)+(4,35) .
\end{aligned}
$$

Since $\operatorname{dim} G+\operatorname{dim} V^{H}-\operatorname{dim} \operatorname{Nor}_{G}(H)=\operatorname{dim} V$ the finite group H is a generic stabilizer.
4.17. $\mathrm{SL}_{5} \otimes \wedge^{2} \mathrm{SL}_{5}$. Take the same notations as in 4.16. Consider the finite subgroup $H \subset G=\mathrm{SL}_{5} \times \mathrm{SL}_{5}$ generated by

$$
\begin{aligned}
a=\left(\left(\begin{array}{lllll}
& & & & 1 \\
& & & & \\
& 1 & & & \\
& & 1 & & \\
& & & 1
\end{array}\right),\left(\begin{array}{lllll}
1 & & & & 1 \\
& 1 & & & \\
& & 1 & & \\
& & & 1
\end{array}\right)\right. & \left(\left(\begin{array}{lllll}
\zeta^{4} & & & & \\
& \zeta^{2} & & & \\
& & 1 & & \\
& & & \zeta^{3} & \\
& & & & \zeta
\end{array}\right),\left(\begin{array}{llll}
1 & & & \\
& & & \\
& & \zeta^{2} & \\
& & & \\
& & & \zeta^{3} \\
& & & \zeta^{4}
\end{array}\right)\right), \\
& \\
&
\end{aligned}
$$

where $\zeta=e^{2 \pi i / 5}$. The H-fixed point space turns out to be

$$
\begin{aligned}
& V^{H}=\mathbb{C}[(1,12)+(2,23)+(3,34)+(4,45)-(5,15)] \\
& \oplus \mathbb{C}[(1,35)-(2,14)-(3,25)+(4,13)+(5,24)]
\end{aligned}
$$

Just like in $4.16 Z_{G}(H)$ and therefore $\operatorname{Nor}_{G}(H)$ are finite. Since $\operatorname{dim} G+\operatorname{dim} V^{H}-$ $\operatorname{dim} \operatorname{Nor}_{G}(H)=\operatorname{dim} V$ it is easy to see that $\left\{g \in G \mid g v=v \forall v \in V^{H}\right\}=H$ is a generic stabilizer (cf. [18, Lemma 5.1]).
5. Equivariant automorphisms of prehomogeneous Θ-representations. For a prehomogeneous module V the embedding of a generic stabilizer H is also the main tool to find the equivariant automorphism group. We determine the dimension of the H-fixed point space V^{H}. In fact, for every prehomogeneous G-module (G semisimple) it is shown in $[14,2$.$] that \operatorname{dim} \operatorname{Aut}_{G}(V)=\operatorname{dim} V^{H}=\operatorname{dim} \operatorname{Nor}_{G}(H) / H$.

PROPOSITION 5.1. Let V be an irreducible prehomogeneous Θ-representation of a (semisimple) group. Then V^{H} is one-dimensional. In particular, $\operatorname{Aut}_{G}(V)=\mathbb{C}^{*} \mathrm{id}_{V}$.

Proof. For $\mathrm{SL}_{n} \otimes \mathrm{SL}_{m}, n>m \geq 1\left(\mathrm{~N}^{\circ} 1\right.$ a) consider the representation space V of $n \times m$-matrices. The element $v=\left(\frac{E_{m}}{0}\right)$ is in a generic orbit with stabilizer $H=$ $\left\{\left.\left(\left(\begin{array}{ll}g & * \\ 0 & s\end{array}\right), g\right) \in \mathrm{SL}_{n} \times \mathrm{SL}_{m} \right\rvert\, g \in \mathrm{SL}_{m}, s \in \mathrm{SL}_{n-m}\right\}$. Clearly, $V^{H}=\mathbb{C} \nu$.

The same arguments can also be used for $\mathrm{SL}_{n} \otimes \mathrm{SO}_{m}\left(\mathrm{~N}^{\circ} 2 \mathrm{a}\right), n>m \geq 3$ as well as for $\mathrm{SL}_{n} \otimes \mathrm{SP}_{2 m}, n>2 m \geq 4\left(\mathrm{~N}^{\circ} 3 \mathrm{a}\right)$.

A generic isotropy algebra \mathfrak{h} of $\mathrm{SL}_{n} \otimes \mathrm{SP}_{2 m}, 2<n<2 m, n$ odd ($\mathrm{N}^{\circ} 3 \mathrm{a}$) is given in [20, pp. 101-102]. It is isomorphic to $\mathfrak{s} \mathfrak{p}_{2 m} \oplus \mathfrak{\mathfrak { p }} \mathfrak{p}_{2 n-m-1} \oplus \mathfrak{u}_{2 n-1}$ where \mathfrak{u}_{j} is a j-dimensional unipotent Lie algebra. It is easy to see that $\operatorname{dim}\left(\mathbb{C}^{2 n} \otimes \mathbb{C}^{2 m+1}\right)^{\mathfrak{h}}=1$.

The module $\wedge^{2} \mathrm{SL}_{2 m+1}, m \geq 1\left(\mathrm{~N}^{\circ} 8 \mathrm{a}\right)$ is listed in [4, Table 1]. However, we present this situation explicitly. The skew symmetric matrix M is an element of a generic orbit with stabilizer H :

$$
M=\left(\begin{array}{cc|c}
0 & E_{m} & 0 \\
-E_{m} & 0 & 0 \\
\hline 0 & 0 & 0
\end{array}\right) \quad H=\left\{\left.\left(\begin{array}{c|c}
A & * \\
\hline 0 & 1
\end{array}\right) \in \mathrm{SL}_{2 m+1} \right\rvert\, A \in \mathrm{SP}_{2 m}\right\} \cong \mathrm{SP}_{2 m} \times U_{2 m}
$$

We obtain $\left(\wedge^{2} \mathbb{C}^{2 m+1}\right)^{H}=\mathbb{C} M$.
All modules $\mathrm{SL}_{2} \otimes \wedge^{2} \mathrm{SL}_{2 m+1}, m \geq 1$ are prehomogeneous and have one-dimensional fixed point space $V^{H}\left[5\right.$, Table $\left.6 \mathrm{~N}^{\circ} 1\right]$. These modules handle the cases $\mathrm{N}^{\circ} 25$ and $\mathrm{N}^{\circ} 27$ of Table 4.4.

For both modules, $\mathrm{SL}_{2} \otimes \mathrm{SL}_{3} \otimes \mathrm{SL}_{5}\left(\mathrm{~N}^{\circ} 38\right)[14,3$.$] and \operatorname{Spin}_{10}\left(\mathrm{~N}^{\circ} 52\right)$ [4, Table 1], the dimension of the fixed point space is one.

REMARK 5.2. For an arbitrary simple prehomogeneous G-module (G semisimple), Proposition 5.1 is not valid. In [14] it is shown that Aut $_{\mathrm{SL}_{3} \times \mathrm{SL}_{5} \times \mathrm{SL}_{13}}\left(\mathbb{C}^{3} \otimes \mathbb{C}^{5} \otimes \mathbb{C}^{13}\right)$ is two-dimensional.
6. Other methods. We briefly introduce the restitution of multilinear invariants which is the main tool to show the triviality of the automorphism group of certain Θ-representations. We keep the notations of the previous sections.

Let G be an algebraic group and V_{1}, \ldots, V_{m}, W are defined to be G-modules. We call a G-equivariant morphism $V_{1} \oplus \cdots \oplus V_{m} \rightarrow W$ a G-covariant (of type W). Any G-covariant can be seen as a sum of multihomogeneous G-covariants (of multi-degree $\left(d_{1}, \ldots, d_{m}\right)$ with $d_{1}, \ldots, d_{m} \in \mathbb{N}$). For a multilinear (i.e., multihomogeneous of multidegree $(1, \ldots, 1))$ map $f: V_{1}^{d_{1}} \oplus \cdots \oplus V_{m}^{d_{m}} \rightarrow W$ the multihomogeneous map $R_{f}: V_{1} \oplus$ $\cdots \oplus V_{m} \rightarrow W$ defined by

$$
R_{f}\left(v_{1}, \ldots, v_{m}\right):=f(\underbrace{v_{1}, \ldots, v_{1}}_{d_{1}}, \ldots, \underbrace{v_{m}, \ldots, v_{m}}_{d_{m}})
$$

is called the restitution of f. Every multihomogeneous G-covariant of multi-degree $\left(d_{1}, \ldots, d_{m}\right)$ is the restitution of a multilinear G-covariant on $V_{1}^{d_{1}} \oplus \cdots \oplus V_{m}^{d_{m}}$ with values in W (cf. [10, Section 6]).

The vector space of multilinear G-covariants $\operatorname{Mult}\left(V_{1}^{d_{1}} \oplus \cdots \oplus V_{m}^{d_{m}}, W\right)^{G}$ can be determined by using the canonical G-isomorphism

$$
\operatorname{Mult}\left(V_{1}^{d_{1}} \oplus \cdots \oplus V_{m}^{d_{m}}, W\right) \xrightarrow{\sim} \operatorname{Mult}\left(V_{1}^{d_{1}} \oplus \cdots \oplus V_{m}^{d_{m}} \oplus W^{*}, \mathbb{C}\right) .
$$

Now, we are able to handle another type of Θ-representations.
PROPOSITION 6.1. Aut $_{\mathrm{SO}_{n} \times \mathrm{SP}_{2 m}}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{2 m}\right)=\mathbb{C}^{*} \mathrm{id}_{\mathbb{C}^{n} \otimes \mathbb{C}^{2 m}}$ where $m>1$ and $n>2$.

Proof. Distinguish two cases: (a) $2<n \leq 2 m$ and (b) $4<2 m<n$.
(a) Let (,) denote the corresponding $\mathrm{SP}_{2 m}$-invariant non-degenerate skew-symmetric bilinear form. By classical invariant theory [26, Theorem 6.1.A] it is known for every $n>2, m>1$ that

$$
\begin{gather*}
\mathbb{C}\left[\left(\mathbb{C}^{2 m}\right)^{n}\right]^{\mathrm{SP}_{2 m}}=\mathbb{C}[(i \mid j) \mid 1 \leq i<j \leq n] \tag{1}\\
\mathbb{C}\left[\left(\mathbb{C}^{2 m}\right)^{n} \oplus\left(\mathbb{C}^{2 m}\right)^{*}\right]^{\mathrm{SP}_{2 m}}=\mathbb{C}\left[(i \mid j), \varepsilon_{l} \mid 1 \leq i<j \leq n, 1 \leq l \leq n\right] \tag{2}
\end{gather*}
$$

where $(i, j)\left(v_{1}, \ldots, v_{n}\right):=\left(v_{i}, v_{j}\right)$ and $\varepsilon_{l}\left(v_{1}, \ldots, v_{n}, f\right):=f\left(v_{l}\right)$. Every automorphism $\sigma \in$ Aut $_{\mathrm{SO}_{n} \times \mathrm{SP}_{2 m}}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{2 m}\right)$ can be seen as an n-tuple $\left(\sigma_{1}, \ldots, \sigma_{n}\right)$ of $\mathrm{SP}_{2 m}$-covariants (of type $\left.\mathbb{C}^{2 m}\right) \sigma_{s}:\left(\mathbb{C}^{2 m}\right)^{n} \longrightarrow \mathbb{C}^{2 m}, s=1, \ldots, n$. By determining the restitution of the multilinear invariants of (2) it follows that

$$
\begin{equation*}
\sigma_{s}\left(v_{1}, \ldots, v_{n}\right)=\sum_{r=1}^{n} p_{r s} v_{r}, \quad s=1, \ldots, n \tag{3}
\end{equation*}
$$

where $p_{r s} \in \mathbb{C}\left[\left(\mathbb{C}^{2 m}\right)^{n}\right]^{\mathrm{SP}_{2 m}}$ (see above). We claim that all $p_{r s}$ are constant polynomials.
Denoting σ^{*} the corresponding automorphism on $\mathbb{C}\left[\left(\mathbb{C}^{2 m}\right)^{n}\right]$ we see that $\sigma^{*}((i, j))=$ $\mu(i, j)$ since σ induces an automorphism on $\left(\mathbb{C}^{2 m}\right)^{n} / / \mathrm{SP}_{2 m}=\wedge^{2} \mathbb{C}^{n}$ (adjoint representation), which is a multiple of the identity (2.5).

Let P denote the $n \times n$-matrix $\left(p_{i j}\right)_{1 \leq i, j \leq n}$ with $p_{i j} \in \mathbb{C}\left[\left(\mathbb{C}^{2 m}\right)^{n}\right]^{\mathrm{SP}_{2 m}}$ from equation (3). It was just shown that the $\binom{n}{2} \times\binom{ n}{2}$-matrix $\wedge^{2} P$ consisting of all 2×2-minors of P is a scalar multiple of the identity matrix $E_{\binom{n}{2}}$. Since the kernel of the canonical homomorphism $\mathrm{GL}(V) \rightarrow \mathrm{GL}\left(\wedge^{2} V\right)$ is $\{ \pm \mathrm{id}\}(\operatorname{dim} V>2)$, it follows that $P \in \mathbb{C}^{*} E_{n}$, i.e., σ is a scalar multiple of $\mathrm{id}_{\left(\mathbb{C}^{2 m}\right)^{n}}(c f .[13$, Proof of 3.1])
(b) Exchange the rôles of $\mathrm{SP}_{2 m}$ and SO_{n} : Here, (,) denotes the corresponding $\mathrm{SO}_{n^{-}}$ invariant non-degenerate symmetric bilinear form. For the SO_{n}-invariants there is an analogous relation [26, Theorem 2.9.A, 2.17.A]:

$$
\begin{gathered}
\mathbb{C}\left[\left(\mathbb{C}^{n}\right)^{2 m}\right]^{\mathrm{SO}_{n}}=\mathbb{C}[(i, j) \mid 1 \leq i \leq j \leq 2 m] \\
\mathbb{C}\left[\left(\mathbb{C}^{n}\right)^{2 m} \oplus\left(\mathbb{C}^{n}\right)^{*}\right]^{\mathrm{SO}_{n}}=\mathbb{C}\left[(i, j), \varepsilon_{l} \mid 1 \leq i \leq j \leq 2 m, 1 \leq l \leq 2 m\right]
\end{gathered}
$$

We can make the same conclusions as in (a) since $\mathrm{SP}_{2 m}$ acts on $\left(\mathbb{C}^{n}\right)^{2 m} / / \mathrm{SO}_{n} \cong S^{2} \mathbb{C}^{2 m}$ by the adjoint representation and the kernel of the canonical homomorphism GL(V) \rightarrow $\mathrm{GL}\left(S^{2} V\right)$ is also $\{ \pm \mathrm{id}\}(\operatorname{dim} V>2)$.

REMARK 6.2. In the same way as in proof (a) of 6.1 one can show Aut $\mathrm{SL}_{n} \times \mathrm{SP}_{2 m}\left(\mathbb{C}^{n} \otimes\right.$ $\left.\mathbb{C}^{2 m}\right)=\mathbb{C}^{*} \mathrm{id}_{\mathbb{C}^{n} \otimes \mathrm{C}^{2 m}}$ for $2 \leq n \leq 2 m, n$ even. Indeed, $\sigma \in$ Aut $_{\mathrm{SL}_{n} \times \mathrm{SP}_{2 m}}\left(\mathbb{C}^{n} \otimes \mathbb{C}^{2 m}\right)$ induces an SL_{n}-automorphism $\bar{\sigma} \in \operatorname{Aut}_{\mathrm{SL}_{n}}\left(\wedge^{2} \mathbb{C}^{n}\right)$ which turns out to be in $\mathbb{C}^{*} \mathrm{id}_{\wedge^{2} \mathbb{C}^{n}}$ (see $\mathrm{N}^{\circ} 8 \mathrm{~b}$ if $n \geq 4$; in case $n=2, \bar{\sigma}$ is linear since $\left.\wedge^{2} \mathbb{C}^{2} \cong \mathbb{C}\right)$.

Analogously, this is also true if n is odd.
In the following an adaptation of the method for finite $\bar{N}=\operatorname{Nor}(H) / H$ works best. The fixed point space V^{H} of a generic stabilizer H for the following examples no longer
coincides with a Cartan subspace. However, with the earlier methods we will be able to show that $\operatorname{Aut}_{\bar{N}}\left(V^{H}\right)$ consists of linear automorphisms. Just like in the proof of 2.3 this induces that every $\sigma \in \operatorname{Aut}_{G}(V)$ is a multiple of id_{V} by looking at $\sigma \circ \lambda \mathrm{id}_{V}-\lambda \mathrm{id}_{V} \circ \sigma$.

PROPOSITION 6.3. $\mathrm{Aut}_{\mathrm{SL}_{2} \times \mathrm{SL}_{n} \times \mathrm{SL}_{n}}\left(\mathbb{C}^{2} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}\right)=\mathbb{C}^{*} \mathrm{id}_{\mathbb{C}^{2} \otimes \mathbb{C}^{n} \otimes \mathbb{C}^{n}}$ for $n \geq 3$.
Proof. Embed $\mathrm{SL}_{2} \times \mathrm{SL}_{n}$ into $\mathrm{SL}_{2 n}$ and consider the linear $G=\mathrm{SL}_{2} \times \mathrm{SL}_{n} \times \mathrm{SL}_{n}{ }^{-}$
 matrices. The stabilizer $\mathfrak{h}=\mathfrak{g}_{A}$ of

$$
A:=\left(\begin{array}{ccc}
A_{1} & & \\
& \ddots & \\
& & A_{n}
\end{array}\right) \text { where } A_{j}=\binom{a_{j}}{b_{j}} \text { with pairwise distinct } a_{i}, b_{j}
$$

has the form $\mathfrak{h}=\left\{(0, t, t) \in \mathfrak{g} \mid t \in \mathfrak{t}_{n-1}\right\} \cong \mathfrak{t}_{n-1}$. Its fixed point set is

$$
V^{\mathfrak{h}}=\left\{\left.\left(\begin{array}{ccc}
M_{1} & & \\
& \ddots & \\
& & M_{n}
\end{array}\right) \right\rvert\, M_{j}=\binom{\lambda_{j}}{\mu_{j}} \in \mathbb{C}^{2}, j=1, \ldots, n\right\} \cong\left(\mathbb{C}^{2}\right)^{n} .
$$

The normalizer $\mathfrak{n}(\mathfrak{h})$ consists of the elements $(s, t) \in \mathfrak{B l}_{2 n} \times \mathfrak{B l}_{n}$ where

$$
s=\left(\begin{array}{ccc}
s_{1} & & \\
& \ddots & \\
& & s_{n}
\end{array}\right) \text { with } s_{j}=\left(\begin{array}{cc}
a+d_{j} & b \\
c & -a+d_{j}
\end{array}\right), \quad \sum_{j=1}^{n} d_{j}=0
$$

and $t \in \mathfrak{t}_{n-1}$. The algebra \mathfrak{h} is a generic stabilizer and $\mathfrak{n}(\mathfrak{h}) \cong \mathfrak{S l}_{2} \times \mathfrak{t}_{n-1} \times \mathfrak{t}_{n-1} \subset \mathfrak{g}$. Here we cannot make use of Lemma 3.1. So take a closer look at the $\operatorname{Nor}_{G}(H) / H$-action on $V^{\mathfrak{h}}$ which is equivalent to the $\Gamma:=\mathrm{SL}_{2} \times S_{n} \ltimes T_{n-1}$-action on $\left(\mathbb{C}^{2}\right)^{n}$ defined as follows:

$$
\left(s, \operatorname{diag}\left(t_{1}, \ldots, t_{n}\right), \tau\right) \cdot\left(v_{1}, \ldots, v_{n}\right)=\left(t_{1} s v_{\tau(1)}, \ldots, t_{n} s v_{\tau(n)}\right)
$$

It is shown in $[13,3.1$.$] that \operatorname{Aut}_{\Gamma}\left(\left(\mathbb{C}^{2}\right)^{n}\right)=\mathbb{C}^{*} \mathrm{id}_{\left(\mathbb{C}^{2}\right)^{n}}$ which induces $\operatorname{Aut}_{G}(V)=\mathbb{C}^{*} \mathrm{id}_{V}$.
PROPOSITION 6.4. Aut SL $_{2} \times \mathrm{SL}_{2 n}\left(\mathbb{C}^{2} \otimes \wedge^{2} \mathbb{C}^{2 n}\right)=\mathbb{C}^{*} \mathrm{id}_{\mathbb{C}^{2} \otimes \wedge^{2} \mathbb{C}^{2 n}}$ for $n \geq 3$.
Proof. Let e_{1}, e_{2}, resp. $f_{1}, \ldots, f_{2 n}$ be the standard basis of \mathbb{C}^{2}, resp. of $\mathbb{C}^{2 n}$. Define $v_{i, j, k}:=e_{i} \otimes\left(f_{j} \wedge f_{k}\right) \in V:=\mathbb{C}^{2} \otimes \wedge^{2} \mathbb{C}^{2 n}$ for $1 \leq i \leq 2,1 \leq j<k \leq 2 n$. Consider the $G=\mathrm{SL}_{2} \times \mathrm{SL}_{2 n}$-orbit through

$$
v=\sum_{i=1}^{2} \sum_{j=1}^{n} v_{i, 2 j-1,2 j} \in V \quad \text { where } \quad H=\left\{\left.\left(\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right),\left(\begin{array}{ccc}
A_{1} & & \\
& \ddots & \\
& & A_{n}
\end{array}\right)\right) \right\rvert\, A_{j} \in \mathrm{SL}_{2}\right\} \cong\left(\mathrm{SL}_{2}\right)^{n}
$$

is the stabilizer of v. The H-fixed points are $V^{H}=\oplus_{i=1}^{2} \oplus_{j=1}^{n} \mathbb{C} v_{i, 2 j-1,2 j}$. The group $\bar{N}=\operatorname{Nor}_{G}(H) / H$ is isomorphic to $\Gamma:=\mathrm{SL}_{2} \times S_{n} \ltimes T_{n-1}$. It follows that H is a generic isotropy group since $\overline{G V^{H}}=V$. The \bar{N}-action on V^{H} is equivalent to the Γ-module $\left(\mathbb{C}^{2}\right)^{n}$ as described in the proof of 6.3 . We have $\operatorname{Aut}_{\Gamma}\left(\left(\mathbb{C}^{2}\right)^{n}\right)=\mathbb{C}^{*} \mathrm{id}_{\left(\mathbb{C}^{2}\right)^{n}}$ as shown in $[13,3.1$. which induces $\operatorname{Aut}_{G}(V)=\mathbb{C}^{*} \operatorname{id}_{V}$.
6.1. $S^{3} \mathrm{SL}_{2}$. This module is isomorphic to the SL_{2}-representation on the binary forms $V=\mathbb{C}[x, y]_{3}$. A generic isotropy group is given by $H=G_{x^{3}+y^{3}}=\left\{\left.\left(\begin{array}{cc}\zeta & \\ \zeta^{-1}\end{array}\right) \right\rvert\, \zeta^{3}=1\right\} \cong$ \mathbb{Z}_{3}. Every $\sigma \in \operatorname{Aut}_{G}(V)$ induces a $\bar{\sigma} \in \operatorname{Aut}_{\text {Nor }_{G}(H)}\left(V^{H}\right)$ which must be linear, for $\bar{\sigma}$ preserves $\mathbb{C} x^{3}=V^{U}$ where $U:=\left\{\left.\left(\begin{array}{ll}1 & 1 \\ a & 1\end{array}\right) \right\rvert\, a \in \mathbb{C}\right\}$, and analogously $\bar{\sigma}$ also preserves $\mathbb{C} y^{3}$ (Lemma 2.1).
6.2. $\mathrm{SL}_{2} \otimes S^{2} \mathrm{SL}_{3}$. This module is realized by the $G=\mathrm{SL}_{2} \times \mathrm{SL}_{3}$-action on $V=\mathbb{C}^{2} \otimes R_{2}$ where $R_{2}:=\mathbb{C}[x, y, z]_{2}$ are the tenary forms of degree 2 . Let e_{1}, e_{2} be the standard basis of \mathbb{C}^{2} and define $v_{1}:=e_{1} \otimes\left(x^{2}+y z\right), v_{2}:=e_{2} \otimes\left(y^{2}+x z\right), v:=v_{1}+v_{2} \in V$. A generic stabilizer H is equal to $G_{v}\left(c f .\left[18\right.\right.$, p. 243]); it is generated by the three elements $\left(\zeta=e^{2 \pi i / 3}\right)$

$$
\begin{gathered}
g_{1}:=\left(\left(\begin{array}{ll}
\zeta & \\
& \zeta^{2}
\end{array}\right),\left(\begin{array}{lll}
\zeta & & \\
& \zeta^{2} & \\
& & 1
\end{array}\right)\right), \quad g_{2}:=\left(\left(\begin{array}{cc}
1 & \\
& 1
\end{array}\right), \frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 & 1 \\
2 & -1 & 1 \\
4 & 4 & -1
\end{array}\right)\right) \\
g_{3}:=\left(\left(\begin{array}{ll}
1 & \\
& 1
\end{array}\right), \frac{1}{3}\left(\begin{array}{ccc}
-1 & 2 \zeta & \zeta^{2} \\
2 \zeta^{2} & -1 & \zeta \\
4 \zeta & 4 \zeta^{2} & -1
\end{array}\right)\right) .
\end{gathered}
$$

The finite group H is isomorphic to \mathscr{U}_{4}, the alternating group of 4 elements (the isomorphism is given by $\left.g_{1} \longmapsto(234), g_{2} \longmapsto(12)(34), g_{3} \longmapsto(14)(23)\right)$. As usual we determine the H-fixed points in V which turn out to be $V^{H}=\mathbb{C} \nu_{1} \oplus \mathbb{C} \nu_{2}$. Since $T_{1} \times\left\{E_{3}\right\} \subset N:=\operatorname{Nor}_{G}(H)$ one easily sees that every $\varphi \in \operatorname{Aut}_{N}\left(V^{H}\right)$ is linear by using Lemma 2.1.
6.3. $\mathrm{SL}_{2} \otimes \wedge^{3} \mathrm{SL}_{6}$ and $\mathrm{SL}_{2} \otimes \wedge_{0}^{3} \mathrm{SP}_{6}$. Let e_{1}, e_{2}, resp. f_{1}, \ldots, f_{6} be the standard basis of \mathbb{C}^{2}, resp. of \mathbb{C}^{6}. Then $(i j k):=f_{i} \wedge f_{j} \wedge f_{k}$ for $1 \leq i<j<k \leq 6$ is a basis of $\wedge^{3} \mathbb{C}^{6}$. Consider the element

$$
\begin{aligned}
v:=\sum_{j=1}^{2}(& j e_{j} \otimes(123)+2 j e_{j} \otimes(126)+3 j e_{j} \otimes(135)+4 j e_{j} \otimes(156) \\
& \left.+5 j e_{j} \otimes(234)+6 j e_{j} \otimes(246)+7 j e_{j} \otimes(345)+8 j e_{j} \otimes(456)\right)
\end{aligned}
$$

The stabilizer $H=G_{v} \subset G=\mathrm{SL}_{2} \times \mathrm{SL}_{6}$ of $v \in V=\mathbb{C}^{2} \otimes \wedge^{3} \mathbb{C}^{6}$ has the following shape:

$$
H=\left\{\left.\left(\left(\begin{array}{ll}
\varepsilon & \\
& \varepsilon
\end{array}\right),\left(\begin{array}{ll}
S & \\
& S
\end{array}\right)\right) \in G \right\rvert\, S=\left(\begin{array}{lll}
\lambda & & \\
& \mu & \\
& & (\lambda \mu)^{-1}
\end{array}\right), \lambda, \mu \in \mathbb{C}^{*}, \operatorname{det} S=\varepsilon= \pm 1\right\} \cong T_{2} \times \mathbb{Z}_{2}
$$

For the space of H -fixed points one obtains

$$
\begin{aligned}
& V^{H}=\bigoplus_{j=1}^{2}\left(\mathbb{C} e_{j} \otimes(123) \oplus \mathbb{C} e_{j} \otimes(126) \oplus \mathbb{C} e_{j} \otimes(135) \oplus \mathbb{C} e_{j} \otimes(156)\right. \\
&\left.\oplus \mathbb{C} e_{j} \otimes(234) \oplus \mathbb{C} e_{j} \otimes(246) \oplus \mathbb{C} e_{j} \otimes(345) \oplus \mathbb{C} e_{j} \otimes(456)\right)
\end{aligned}
$$

The normalizer $N:=\operatorname{Nor}_{G}(H)$ is the following semidirect product:

$$
N=\mathrm{SL}_{2} \times\left\{\left.A=\left(\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right) \in \mathrm{SL}_{6} \right\rvert\, A_{j}=\operatorname{diag}\left(a_{j 1}, a_{j 2}, a_{j 2}\right), \operatorname{det} A=1\right\} \rtimes S_{3}
$$

It follows that $G v$ is a generic orbit. The identity component of N / H is isomorphic to $\left(\mathrm{SL}_{2}\right)^{4}$ and therefore the N-module V^{H} is equivalent to the $\mathrm{SO}_{4} \times \mathrm{SO}_{4}$-module $\mathbb{C}^{4} \otimes \mathbb{C}^{4}$ (because $\mathbb{C}\left[\mathbb{C}^{2} \otimes \mathbb{C}^{2}\right]^{\mathrm{SL}_{2} \times \mathrm{SL}_{2}}=\mathbb{C}[q]$ where q is a quadratic form). It follows with 4.4 that $\operatorname{Aut}_{N}\left(V^{H}\right)=\mathbb{C}^{*} \mathrm{id}_{V^{H}}$.

To examine the automorphism group of $\mathrm{SL}_{2} \otimes \wedge_{0}^{3} \mathrm{SP}_{6}$ take the above notations. By using the methods in [2, VI 5.3] the skew-symmetric tensors (123), (126), (135), (156), (234), (246), (345), (456) are elements of $\wedge_{0}^{3} \mathbb{C}^{6}$. Therefore the element v from above is also an element of the generic orbit of the simple $G=\mathrm{SL}_{2} \times \mathrm{SP}_{6}$-module $V=\mathbb{C}^{2} \otimes \wedge_{0}^{3} \mathbb{C}^{6}$. The stabilizer $H=G_{v}$ is of the following shape:

$$
H=\left\{\left.\left(\left(\begin{array}{ll}
\varepsilon & \\
& \varepsilon
\end{array}\right),\left(\begin{array}{ll}
S & \\
& \\
& S
\end{array}\right)\right) \in G \right\rvert\, S=\left(\begin{array}{lll}
\pm 1 & & \\
& & \pm 1 \\
& & \\
& & \\
& &
\end{array}\right), \operatorname{det} S=\varepsilon= \pm 1\right\} \cong\left(\mathbb{Z}_{2}\right)^{4}
$$

The H-fixed point space as well as $\operatorname{Nor}_{G}(H)^{0}$ are the same as for $\mathrm{SL}_{2} \otimes \wedge^{3} \mathrm{SL}_{6}$ above. So the same arguments lead to $\operatorname{Aut}_{G}(V)=\mathbb{C}^{*} \mathrm{id}_{V}$.
6.4. $\mathrm{SL}_{3} \otimes \mathrm{SL}_{3} \otimes \mathrm{SL}_{3}$. Let e_{1}, e_{2}, e_{3} be the standard basis of \mathbb{C}^{3} and define (ijk) $:=$ $e_{i} \otimes e_{j} \otimes e_{k} \in V=\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ for $i, j, k=1,2,3$. The isotropy group H of

$$
v:=(111)+2(222)+3(333)+4(123)+5(132)+6(213)+7(231)+8(312)+9(321)
$$

is the finite group generated by the three elements $\left(\zeta=e^{2 \pi i / 3}\right)$

$$
\begin{aligned}
\left(\left(\begin{array}{lll}
\zeta & & \\
& \zeta^{2} & \\
& & 1
\end{array}\right),\left(\begin{array}{lll}
\zeta^{2} & & \\
& & 1 \\
& & \\
& & \\
& & \left(\left(\begin{array}{lll}
1 & & \\
& & \\
& & \\
& & \zeta^{2}
\end{array}\right)\right), \\
& & \left(\left(\begin{array}{lll}
\zeta & & \\
& 1 & \\
& & \zeta^{2}
\end{array}\right),\left(\begin{array}{lll}
\zeta^{2} & & \\
& \zeta & \\
& & \\
& & 1
\end{array}\right),\left(\begin{array}{lll}
1 & & \\
& \zeta^{2} & \\
& & \zeta
\end{array}\right)\right) \\
& & \\
& & \zeta
\end{array}\right)\right.
\end{aligned}
$$

The space of H-fixed points is easily computed:
$V^{H}=\mathbb{C}(111) \oplus \mathbb{C}(222) \oplus \mathbb{C}(333) \oplus \mathbb{C}(123) \oplus \mathbb{C}(132) \oplus \mathbb{C}(213) \oplus \mathbb{C}(231) \oplus \mathbb{C}(312) \oplus \mathbb{C}(321)$
The connected component of $N:=\operatorname{Nor}_{G}(H)$ has the shape

$$
N^{0}=\left\{\left(S_{1}, S_{2}, S_{3}\right) \in G \left\lvert\, S_{j}=\left(\begin{array}{lll}
\lambda_{j} & & \\
& & \\
& & \\
& & \left(\lambda_{j} \mu_{j}\right)^{-1}
\end{array}\right)\right., \lambda_{j}, \mu_{j} \in \mathbb{C}^{*}, j=1,2,3\right\} \cong\left(T_{2}\right)^{3}
$$

Since $\operatorname{dim} G+\operatorname{dim} V^{H}-\operatorname{dim} N=\operatorname{dim} V$ the finite group H is a generic stabilizer. Let $V_{(i j k)}^{H} \subset V^{H}$ be the hyperplane spanned by all standard basis elements except
(ijk) $\in V^{H}$ and consider the element $s_{t}:=(S, S, S) \in N$ with $S=\operatorname{diag}\left(t, t, t^{-2}\right), t \in$ \mathbb{C}^{*}. Then $\left\{w \in V^{H} \mid \lim _{t \rightarrow 0} s_{t} w\right.$ exists $\}=V_{(333)}^{H}$, and this hyperplane is stabilized by every $\varphi \in \operatorname{Aut}_{N^{0}}\left(V^{H}\right)$. Analogously, $V_{(123)}^{H}$ is $\operatorname{Aut}_{N^{0}}\left(V^{H}\right)$-stable by taking $s_{t}:=$ $\left(\operatorname{diag}\left(t^{-2}, t, t\right), \operatorname{diag}\left(t, t^{-2}, t\right), \operatorname{diag}\left(t, t, t^{-2}\right)\right) \in N^{0}$. In total one obtains 9 hyperplanes in general position which are $\mathrm{Aut}_{N^{0}}\left(V^{H}\right)$-stable. By Lemma 2.1 $\mathrm{Aut}_{N^{0}}\left(V^{H}\right)$ only consists of linear automorphisms.
6.5. $\mathrm{SL}_{3} \otimes \wedge^{2} \mathrm{SL}_{6}$. Let e_{1}, e_{2}, e_{3}, resp. f_{1}, \ldots, f_{6} be the standard basis of \mathbb{C}^{3}, resp. \mathbb{C}^{6}. Then $v_{i, j k}:=e_{i} \otimes\left(f_{j} \wedge f_{k}\right), 1 \leq i \leq 3,1 \leq j<k \leq 6$ is a basis of $V=\mathbb{C}^{3} \otimes \wedge^{2} \mathbb{C}^{6}$. The isotropy group of the element

$$
\begin{aligned}
v:=v_{1,14} & +2 v_{1,25}+3 v_{1,36}+4 v_{2,14}+5 v_{2,25}+6 v_{2,36}+7 v_{3,14}+8 v_{3,25}+9 v_{3,36} \\
& +10 v_{1,15}+11 v_{1,16}+12 v_{1,24}+13 v_{1,26}+14 v_{1,34}+15 v_{1,35}
\end{aligned}
$$

turns out to be a generic stabilizer and has the form

$$
H:=\left\{\left.\left(\left(\begin{array}{ccc}
1 & & \\
& 1 & \\
& & 1
\end{array}\right),\left(\begin{array}{ll}
\lambda E_{3} & \\
& \\
& \\
& \lambda^{-1} E_{3}
\end{array}\right)\right) \in G \right\rvert\, \lambda \in \mathbb{C}^{*}\right\} \cong \mathbb{C}^{*} .
$$

The space of H-fixed points looks as follows:

$$
V^{H}=\bigoplus_{i=1}^{3}\left(\mathbb{C} v_{i, 14} \oplus \mathbb{C} v_{i, 15} \oplus \mathbb{C} v_{i, 16} \oplus \mathbb{C} v_{i, 24} \oplus \mathbb{C} v_{i, 25} \oplus \mathbb{C} v_{i, 26} \oplus \mathbb{C} v_{i, 34} \oplus \mathbb{C} v_{i, 35} \oplus \mathbb{C} v_{i, 36}\right)
$$

Since $\bar{N}^{0}:=\left(\operatorname{Nor}_{G}(H) / H\right)^{0}=\mathrm{SL}_{3} \times\left(\mathrm{SL}_{3}\right)^{2}$ and the \bar{N}^{0}-action on V^{H} is equivalent to the natural $\left(\mathrm{SL}_{3}\right)^{3}$-action on $\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$ it holds that $\mathrm{Aut}_{\bar{N}^{0}}\left(V^{H}\right)=\mathbb{C}^{*} \mathrm{id}_{V^{H}}(6.4)$.
6.6. $\mathrm{SL}_{4} \otimes \operatorname{Spin}_{10}$. Consider the finite subgroup $H \subset G:=\mathrm{SL}_{4} \times \operatorname{Spin}_{10}$ generated by the two elements:

$$
\begin{aligned}
& h_{1}:=(\operatorname{diag}(1,1,-1,-1), \operatorname{diag}(1,-i, 1, i, 1 ;-1, i,-1,-i,-1)) \\
& h_{2}:=(\operatorname{diag}(-1,1,-1,1), \operatorname{diag}(i, i, 1,1,1 ;-i,-i,-1,-1,-1)) .
\end{aligned}
$$

The Spin_{10}-part of h_{1} acts as $\operatorname{diag}\left(E_{8},-E_{8}\right)$ on \mathbb{C}^{16} (see [20,5.28,5.38]). For a short outline of the spin-representation of Spin_{10} we refer to [20, p. 110 ff . and 5.38].

The representation space of $\mathrm{SL}_{4} \otimes \operatorname{Spin}_{10}$ is defined to be the space of 4×16-matrices $V=\mathrm{M}_{4 \times 16}$. The space of H-fixed points turns out to be:

$$
V^{H}=\left\{\left.\left(\begin{array}{cccc|cccc|cccc|cccc}
u_{1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & u_{2} & 0 & u_{3} & 0 & u_{4} & 0 & 0 \\
0 & 0 & u_{5} & 0 & u_{6} & 0 & u_{7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & u_{8} \\
0 & u_{9} & 0 & 0 & 0 & 0 & 0 & 0 & u_{10} & 0 & u_{11} & 0 & u_{12} & 0 & 0 & 0 \\
0 & 0 & 0 & u_{13} & 0 & u_{14} & 0 & u_{15} & 0 & 0 & 0 & 0 & 0 & 0 & u_{16} & 0
\end{array}\right) \right\rvert\, u_{i} \in \mathbb{C}\right\}
$$

The Lie algebra \mathfrak{n} of $N:=\operatorname{Nor}_{G}(H)$ consists of the elements

$$
\left(\begin{array}{lllllll}
t_{1} & & & \\
& t_{2} & & \\
& & t_{3} & & \\
& & & -t_{1}-t_{2}-t_{3}
\end{array}\right),\left(\begin{array}{ccccccc}
a_{1} & & & & & & \\
& a_{2} & & & & & \\
& & & a_{3} & & & a_{35} \\
& & & a_{4} & & & \\
& & & & & & \\
& & & a_{53} & & a_{5} & \\
\hline
\end{array}\right.
$$

where all variables are complex numbers. The algebra \mathfrak{n} is isomorphic to $\mathfrak{t}_{3} \oplus \mathfrak{t}_{3} \oplus$ $\mathfrak{S o}_{4}\left(\left(E_{2} E_{2}\right)\right)$, where $\mathfrak{t}:=\mathfrak{t}_{3} \oplus \mathfrak{t}_{3}$ commutes with $\mathfrak{S o}_{4}(c f .[20,5.38])$; the second copy of \mathfrak{t}_{3} in \mathfrak{t} consists of the elements $\left(a_{1}, a_{2}, a_{4}\right) \in \mathfrak{B o}_{10}$. For a generic element $v \in V^{H}, G v$ is a generic orbit and $G V^{H} \subset V$ is dense since $\operatorname{dim} G v=60$ and $\operatorname{dim}\left(G \times^{N} V^{H}\right)=64=\operatorname{dim} V$. Therefore it suffices to show that $\operatorname{Aut}_{N}\left(V^{H}\right)$ consists of linear elements. Notice that H is not a generic isotropy group, one can only say that H is contained in it. A generic stabilizer is isomorphic to $\left(\mathbb{Z}_{2}\right)^{4}[18$, Table 1].

Up to an outer isomorphism the $\mathfrak{B g}_{4}$-module V^{H} corresponds to the $\mathrm{SL}_{2} \times \mathrm{SL}_{2}$-module $\left(\mathbb{C}^{2}\right)^{4} \oplus\left(\mathbb{C}^{2}\right)^{4}$ where the first (second) copy of SL_{2} naturally acts on the first (second) four copies of \mathbb{C}^{2} (consider the $\mathfrak{B}_{\mathfrak{D}_{4}}$-part in $[20,5.38]$ acting on $\left.V^{H} \cong\left(\mathbb{C}^{2}\right)^{8}\right)$. Its ring of invariant functions is

$$
\mathbb{C}\left[\left(\mathbb{C}^{2}\right)^{4} \oplus\left(\mathbb{C}^{2}\right)^{4}\right]^{\mathrm{SL}_{2} \times \mathrm{SL}_{2}}=\mathbb{C}\left[\left(\mathbb{C}^{2}\right)^{4}\right]^{\mathrm{SL}_{2}} \otimes \mathbb{C}\left[\left(\mathbb{C}^{2}\right)^{4}\right]^{\mathrm{SL}_{2}}=\mathbb{C}\left[[i, j] \left\lvert\, \begin{array}{l}
1 \leq i<j \leq 4 \text { or } \\
5 \leq i<j \leq 8
\end{array}\right.\right]
$$

where $[i, j]\left(v_{1}, \ldots, v_{8}\right)=\operatorname{det}\left(v_{i}, v_{j}\right)$. The ideal of the relations among the $[i, j]$ is generated by the Plücker relations $[1,2][3,4]-[1,3][2,4]+[1,4][2,3]$ and $[5,6][7,8]-[5,7][6,8]+$ $[5,8][6,7]$. Using the fact Aut $\left._{\mathrm{SL}_{2} \times S_{4} \ltimes T_{3}}\left(\mathbb{C}^{2}\right)^{4}\right)=\mathbb{C}^{*} \mathrm{id}_{\left(\mathbb{C}^{2}\right)^{4}}$ [13, Prop. 3.1] and the $\mathrm{t}_{3}-$ equivariance of the copy $\mathfrak{t}_{3} \subset \mathfrak{g}_{10}$ every N-automorphism of V^{H} is linear. Since $G V^{H} \subset V$ is dense $\operatorname{Aut}_{G}(V)=\mathbb{C}^{*} \mathrm{id}_{V}$.
6.7. . For the last few cases of Table 4.4 where $\operatorname{Nor}_{G}(H) / H$ is not finite, we are going to use Élashvili's tables [5, Table 6] and [4, Table 1]. Let (G, V) denote a G-module V. As usual $H \subset G$ is a generic stabilizer and $\bar{N}:=\operatorname{Nor}_{G}(H) / H$. In all following examples we use the fact that if $\operatorname{Aut}_{\bar{N}}\left(V^{H}\right)=\mathbb{C}^{*} \mathrm{id}_{V^{H}}$, then also $\operatorname{Aut}_{G}(V)=\mathbb{C}^{*} \mathrm{id}_{V}$ (see proof of 2.3).

For $(G, V)=\mathrm{SL}_{2} \otimes \operatorname{Spin}_{10}\left(\mathrm{~N}^{\circ} 32\right)$ it is $\left(\bar{N}^{0}, V^{H}\right) \cong\left(T_{3} \subset \mathrm{SL}_{4}, \mathbb{C}^{4}\right)$. This representation does not admit any nonlinear automorphisms: Take $t_{u}=\operatorname{diag}\left(u^{-3}, u, u, u\right) \in T_{3}$, $u \in \mathbb{C}^{*}$. Let $v \in \mathbb{C}^{4}$, then $\lim _{u \rightarrow 0} t_{u} v$ exists if and only if v lies in a hyperplane. This hyperplane is stabilized by any T_{3}-equivariant automorphism (cf. 6.3). By changing the spot of the entry u^{-3} one obtains four hyperplanes in total which are in general position. Now Lemma 2.1 finishes this example.

Concerning $\mathrm{SL}_{2} \otimes \operatorname{Spin}_{12}\left(\mathrm{~N}^{\circ} 33\right)$ there is a mistake in [5, Table 6, No. 7]. A generic stabilizer is isomorphic to $3 A_{1}$ embedded in D_{6} [8] (also cf. [20, Section 5, Proposition 38]). Its normalizing Lie algebra in $A_{1}+D_{6}$ is then isomorphic to $7 A_{1}$. Hence $\left(\bar{N}^{0}, V^{H}\right)$ is isomorphic to $\left(\left(\mathrm{SL}_{2}\right)^{4},\left(\mathbb{C}^{2}\right)^{\otimes 4}\right) \cong\left(\left(\mathrm{SO}_{4}\right)^{2},\left(\mathbb{C}^{4}\right)^{\otimes 2}\right)$. This module is without nonlinear automorphisms (4.4).

For $\mathrm{SL}_{2} \otimes E_{6}\left(\mathrm{~N}^{\circ} 34\right)$ we have $\left(\bar{N}, V^{H}\right) \cong\left(\mathrm{SL}_{2} \times S_{3} \ltimes T_{2},\left(\mathbb{C}^{2}\right)^{3}\right)$ whose equivariant automorphism are linear [13, 3.1].

The module $\mathrm{SL}_{2} \otimes E_{7}\left(\mathrm{~N}^{\circ} 35\right)$ yields $\left(\bar{N}, V^{H}\right) \cong\left(\left(\mathrm{SL}_{2}\right)^{4},\left(\mathbb{C}^{2}\right)^{\otimes 4}\right) \cong\left(\left(\mathrm{SO}_{4}\right)^{2},\left(\mathbb{C}^{4}\right)^{\otimes 2}\right)$. By 4.4 there are no nonlinear automorphisms.

For $(G, V)=\mathrm{SL}_{3} \otimes E_{6}\left(\mathrm{~N}^{\circ} 45\right)$ one obtains $\left(\bar{N}, V^{H}\right) \cong\left(\left(\mathrm{SL}_{3}\right)^{3},\left(\mathbb{C}^{3}\right)^{\otimes 3}\right)$; in 6.4 all equivariant automorphisms are proved to be linear.

The modules $\wedge^{3} \mathrm{SL}_{6}\left(\mathrm{~N}^{\circ} 17\right), \mathrm{SL}_{2} \otimes \operatorname{Spin}_{7}\left(\mathrm{~N}^{\circ} 31\right), \operatorname{Spin}_{12}\left(\mathrm{~N}^{\circ} 53\right), \wedge_{0}^{3} \mathrm{SP}_{6}\left(\mathrm{~N}^{\circ} 56\right)$ and $E_{7}\left(\mathrm{~N}^{\circ} 65\right)$ are all of the same type: Using the tables [5, Table 6], [4, Table 1] all these modules fulfil $\left(\bar{N}^{0}, V^{H}\right) \cong\left(\mathbb{C}^{*}, \mathbb{C}^{2}\right)$ and $\operatorname{dim} V / / G=\operatorname{dim} V^{H} / / \bar{N}^{0}=1$. \mathbb{C}^{*} acts on \mathbb{C}^{2} by a positive and a negative weight. By a limit consideration either line through the weight vector is preserved by every $\sigma \in \operatorname{Aut}_{\bar{N}^{0}}\left(V^{H}\right)$ implying that σ is linear (see Lemma 2.1).

REFERENCES

1. A. A'Campo-Neuen, Morphisms of G-modules with finite fibers. C. R. Acad. Sci. Paris Sér. I 316(1992), 255-260.
2. T. Bröcker and T. tom Dieck, Representations of Compact Groups. Graduate Texts in Math. 98, SpringerVerlag, Berlin-New York, 1985.
3. J. Dadok and V. G. Kac, Polar Representations. J. Algebra. 92(1985), 504-524.
4. A. G. Élashvili, Canonical Form and Stationary Subalgebras of Points of General Position for Simple Linear Lie Groups. Functional Anal. Appl. 6(1972), 44-53.
5. $ـ$ Stationary Subalgebras of Points of the Common State for Irreducible Linear Lie Groups. Functional Anal. Appl. 6(1972), 139-148.
6. R. Hartshorne, Algebraic Geometry. Graduate Texts in Math. 52, Springer-Verlag, Berlin-New York, 1977.
7. V. G. Kac, Automorphisms of Finite Order of Semisimple Lie Algebras. Functional Anal. Appl. 3(1969), 252-254.
8. __, Some Remarks on Nilpotent Orbits. J. Algebra 64(1980), 190-213.
9. H. Kraft, Geometrische Methoden in der Invariantentheorie. Aspekte der Mathematik D1, Vieweg, 1985.
10. _, Klassische Invariantentheorie: Eine Einführung. In: Algebraische Transformationsgruppen und Invariantentheorie, Algebraic Transformation Groups and Invariant Theory (Eds. H. Kraft, P. Slodowy and T. A. Springer). DMV Seminar Band 13, Birkhäuser, 1989, 41-62.
11. H. Kraft, T. Petrie and J. D. Randall, Quotient Varieties. Adv. in Math. (2) 74(1989), 145-162.
12. A. Kurth, Equivariant Polynomial Automorphisms. Ph.D. Thesis, Basel, 1996.
13. __, SL_{2}-equivariant polynomial automorphisms of the binary forms. Ann. Inst. Fourier, Grenoble (2) 47(1997), 585-597.
14. $\longrightarrow, ~ N o n l i n e a r ~ E q u i v a r i a n t ~ A u t o m o r p h i s m s . ~ M a n u s c r i p t a ~ M a t h ., ~ 94(1997), ~ 327-335 . . ~$
15. P. Littelmann, Koreguläre und äquidimensionale Darstellungen. J. Algebra. 123(1989), 193-222.
16. D. Luna, Slices étales. Bull. Soc. Math. France, Mémoire 33(1973), 81-105.
17. Y. Matsushima, Espace homogène de Stein des groupes de Lie complexes. Nagoya Math. J. 16(1960), 205-218.
18. A. M. Popov, Finite isotropy subgroups in general position of irreducible semisimple linear Lie groups. Trans. Moscow Math. Soc. 50(1988), 205-249.
19. V. L. Popov and E. B. Vinberg, Invariant Theory. In: Algebraic Geometry IV (Eds. A. N. Parshin and I. R. Shafarevich), Encyclopaedia of Mathematical Sciences Vol. 55. Springer-Verlag, Berlin-Heidelberg, 1994, 123-278.
20. M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. 65(1977), 1-155.
21. G. W. Schwarz, Representations of Simple Lie Groups with a Free Module of Covariants. Invent. Math. 50(1978), 1-12.
22. J. P. Serre, Cohomologie Galoisienne. Lecture Notes in Math. 5, Springer-Verlag, Berlin-New York, 1964.
23. T. A. Springer, Invariant Theory. Lecture Notes in Math. 585, Springer-Verlag, Berlin-New York, 1977.
24. E. B. Vinberg, The Weyl group of a graded Lie algebra. Math. USSR-Izv. (3) 10(1976), 463-495.
25. E. B. Vinberg and A. G. Élashvili, A classification of trivectors of a nine-dimensional space. Sel. Math. Sov. (1) 7(1978), 63-98.
26. H. Weyl, The Classical Groups, their Invariants and Representations. Second edition, Princeton University Press, Princeton, NJ, 1946.

Department of Mathematics
University of British Columbia
Vancouver, BC
V6T 1Z2

Current address:
Kronenweg 12
4102 Binningen
Switzerland
email: kurth@math.unibas.ch

[^0]: Received by the editors March 17, 1997; revised July 24, 1997.
 AMS subject classification: 14L30, 14L27.
 (c)Canadian Mathematical Society 1998.

[^1]: ${ }^{1}$ In either case if m is odd, B_{n+m} is the Θ-type, and D_{n+m} else.
 2 Depending on the parity of n and m the Θ-type is chosen; so if n and m are odd it is $\left(D_{\frac{n+m}{2}}^{(2)}, 2\right)$.

