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EQUIVARIANT POLYNOMIAL AUTOMORPHISMS OF
Θ-REPRESENTATIONS

ALEXANDRE KURTH

ABSTRACT. We show that every equivariant polynomial automorphism of a Θ-
representation and of the reduction of an irreducible Θ-representation is a multiple of
the identity.

1. Introduction. Given a representation V of an algebraic group G overCwe ask the
question: What is AutG(V), the group of polynomial automorphisms that commute with
the linear G-action. For many reducible representations nonlinear equivariant automor-
phisms exist: Consider for example the SL2-module R2ýR4 where Rj denotes the binary
forms of degree j. The map ( pÒ q) 7! ( pÒ q + p2) is an SL2-equivariant automorphism.
For more information on SL2-automorphisms of Rj see [13].

In order to determine AutG(V) for a simple G-module it suffices to assume G is
semisimple. First replace G by the reductive group GÛR (G) since the radical R (G) acts
trivially on a simple module, and note that if there exists a one-dimensional subgroup of
the center acting nontrivially, every automorphism commuting with this action therefore
induces an automorphism on a projective space which is linear [6, II. Example 7.1.1].

In this work we investigate AutG(V) for the so-called Θ-representations G ! GL(V)
which are defined as follows: Given aZm-graduation on a simple Lie algebra ª = ýj2Zmªj

(with [ªiÒ ªj] ² ªi+j) the induced ª0-operation on ª1 defines a G-module structure on ª1

(called Θ-representation) where G is a connected reductive group with Lie algebraª0 (see
3 for details). These representations which were classified by Kac ([8], [7]) have some
properties of the adjoint representations. We call the representation of the commutator
subgroup (GÒG) on ª1 the reduction of the Θ-representation. The main result of this
work is:

THEOREM (3.3).
(a) The automorphism group of a Θ-representationG ! GL(V) of a semisimple group

G is CŁ idV.
(b) The automorphism group of the reduction of an irreducible Θ-representation is

also CŁ idV.

The question arises whether there is a simple module with nonlinear automorphisms.
In [14] it is shown that the natural SL3 ðSL5 ðSL13-representation has an automorphism
group of dimension 2. This is the lowest dimensional module with an open orbit and
nonlinear equivariant automorphisms.
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Theorem 3.3 is proved case by case to some extent. We distinguish between several
types of Θ-representations such as adjoint representations, or more generally the ones
with finite NorG(H)ÛH (where H denotes a generic isotropy group). We separately
look at the prehomogeneous Θ-representations, and finally the ones without any of the
properties above. The biggest class of Θ-representations (N̄ := NorG(H)ÛH finite) can
be handled by a general statement (Lemma 3.1). All the remaining ones are checked case
by case to have no nonlinear equivariant automorphisms (Sections 5 and 6). However,
the embedding of a generic stabilizer H of the Θ-representation V and its fixed point
space VH is of great importance. It is given for many examples of Θ-representations.
In fact, if AutN̄(VH) only consists of linear automorphisms, then so does AutG(V) (see
proof of 2.3). For few of the Θ-representations (6.1, 6.2) the method of restitution of
multilinear invariants is used [10, Section 6].

The automorphism group of a G-module is related to a rationality question of the
linearization problem: For a (finite) Galois field extension k ² K in characteristic 0 the
non-abelian cohomology H1

�
Gal(KÛk)ÒAutGK (VK)

�
is the set of isomorphism classes

of Gk-actions on the space Vk (defined over k) becoming GK-isomorphic to the GK-
module VK by field extension [14, Appendix], [22, III. 1]. If AutGK (VK) = KŁ idVK , then
H1
�
Gal(KÛk)ÒAutGK (VK)

�
= 0 which shows that every Gk-action on the affine space An

k

which is GK-isomorphic to VK is also linearizable over the subfield k.

ACKNOWLEDGEMENT. This work is part of the author’s Ph.D. thesis [12]. I thank my
supervisor Hanspeter Kraft for his support and help and Peter Littelmann for his helpful
suggestions.

2. Remarks on G-modules with closed generic orbit. Let G be a reductive group
and V a finite dimensional G-module. By a theorem of Matsushima the stabilizer Gv,
v 2 V where Gv ² V is a closed orbit, is a reductive group [17], [16, I.2.].

For a closed subgroup H ² G the subgroup NorG(H) := fg 2 G j gHg�1 = Hg is
called the normalizer of H and define N̄ := NorG(H)ÛH. It induces a linear N̄-action on
the fixed point space VH = fv 2 V j hv = v 8h 2 Hg.

The set of conjugacy classes (Gv) where Gv ² V is a closed orbit, is partially ordered,
that is (G1) � (G2) if G1 is conjugate to a subgroup of G2. There is a unique minimal
isotropy class (H) of the above set, called the principal isotropy class [16]. Let H ² G now
be a principal isotropy group, i.e., (H) is minimal. If G is semisimple and N̄ finite, then it
follows from a theorem of Kraft-Petrie-Randall [11, Corollary 5.5] that VHÛN̄ ≤ Cr for
some r 2 N. By Chevalley’s Theorem N̄ therefore acts on VH as a finite reflection group
(cf. for example [23, Theorem p. 76]).

DEFINITION. A set of hyperplanes fHi ² Cngi2I is said to be in general position ifT
i2I

Hi = f0g.

LEMMA 2.1. Let ß:Cn ! Cn be a polynomial automorphism. If ß stabilizes every
element of a set of hyperplanes Hi := Z(li), i 2 I in general position, then ß is
diagonalizable; in particular ß is linear.
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PROOF. Consider the induced (linear) automorphism on the regular functions of Cn

denoted by ßŁ:C[Cn] ! C[Cn]. We have that ßŁ(li)(v) = li
�
ß(v)

�
= 0 for any v 2 Hi,

consequently ßŁ(li) 2 Cli. Since the hyperplanes are in general position there is a basis
l1Ò    Ò ln of (Cn)Ł (after renumbering). This means ß is diagonal with respect to the dual
basis of l1Ò    Ò ln .

REMARK 2.2. If V is a simple G-module, then by 2.1 every õ 2 AutG(V) which
stabilizes a hyperplane is a homothety. A general õ 2 AutG(V) preserves every line
C(gv) where v is a highest weight vector and g 2 G, since Cv is the fixed point space
VU of a maximal unipotent subgroup U ² G. In fact, uõ(Cv) = õ(uCv) = õ(Cv) for all
u 2 U, so õjCv = ï idCv for some ï 2 CŁ, and by equivariance õjCgv = ï idCgv. For every
x 2 VŁ this implies that õŁ(x)(gv) = x

�
õ(gv)

�
= x(ïgv). However, õŁ(x) may not be a

multiple of x, for we cannot show õŁ(x)(w) = x(ïw) for all w 2 V. It would need the fact
õŁ(x)(g1v + g2v) = x

�
õ(g1v + g2v)

�
= x

�
õ(g1v) + õ(g2v)

�
, but õ is not linear.

THEOREM 2.3. Let G be a semisimple group, V a simple G-module and H ² G a
principal isotropy group. If the generic orbit is closed and N̄ = NorG(H)ÛH is finite then
AutG(V) = CŁ idV.

PROOF. Let H1Ò    ÒHt ² VH be the hyperplanes associated to the generating reflec-
tions s1Ò    Ò st of N̄. Suppose V1 :=

Tt
i=1 Hi 6= f0g. V1 ² VH is N̄-stable, and let V2 be

an N̄-stable complement in VH. Take an x 2 (VH)Ł, x 6= 0 which vanishes on V2. It is
easy to see that sx(vj) = x(vj) for all vj 2 Vj and s 2 N̄, j = 1Ò 2. Hence x 2 C[VH]N̄

which is isomorphic to C[V]G by a theorem of Luna-Richardson. This means there is
a nontrivial G-fixed point in VŁ which is impossible since VŁ is simple. It follows that
the hyperplanes H1Ò    ÒHt are in general position. So by the Lemma 2.1 above õjVH is
linear.

We obtain the relation õŽï idV �ï idV Žõ = 0 on GVH, even on V since H is a generic
stabilizer, i.e., GVH = V. So õ induces an automorphism on the projective space PV
which has to be linear [6, II. Example 7.1.1]. Schur’s Lemma finishes the proof.

The essential point in the proof is the general position of the hyperplanes Hj. A G-
module V without nontrivial G-fixed points also guarantees this property. So we state
the following corollary:

COROLLARY 2.4. Let G be a semisimple group and V a G-module. Let the generic
orbit be closed and N̄ finite (thus a finite reflection group). If the hyperplanes, associated
to the generators of N̄ are in general position, then AutG(V) only consists of linear
automorphisms. In particular, if VG = f0g, then all automorphisms in AutG(V) are
linear.

These statements show that the adjoint representation of a semisimple group G only
admits linear automorphisms. In fact, the generic isotropy group is a maximal torus and
the generic orbit is closed. The Weyl group N̄ := NorG(T)ÛT acts on (Lie G)T = Lie T by
reflections. The hyperplanes of the associated generators of N̄ have trivial intersection.
The adjoint representation of G is simple if and only if Lie T is a simple N̄-module and
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this is equivalent to G being a simple group. So by Corollary 2.4 one obtains (cf. [1,
2.2 Proposition]):

THEOREM 2.5. Let G be a semisimple group. Every G-equivariant automorphism of
the adjoint representation is linear. In particular, such an automorphism is a multiple of
the identity in case G is simple.

3. Introduction to Θ-representations. For many aspects adjoint representations
are the ‘nicest’ representations. A class of nice representations which contains the adjoint
representations, is the set of Θ-representations. They fulfill two important properties
which also hold for the adjoint representations: coregularity (the algebra of invariant
functions has algebraically independent homogeneous generators) and visibility (any
fiber of the corresponding quotient map has the same dimension) [15].

Let (ªÒΘ) (or (ªÒm)) denote the Zm-graded Lie algebra

ª =
M

j2Zm

ªj

where m 2 f1Ò 2Ò 3Ò   g [ f1g and Z1 := Z. Let Θ denote the corresponding linear
automorphism

Θ(x) = ¢jxÒ x 2 ªjÒ where ¢ = e2ôiÛmÒ if m 6= 1

and
Θt(x) = tjxÒ x 2 ªjÒ where t 2 CŁÒ if m = 1

There is a one-to-one correspondence between the isomorphism classes of Zm-gradings
on ª and the classes of conjugate automorphisms of period m of ª if m 6= 1, respectively
the one-dimensional tori in the automorphism group of ª if m = 1.

Let (ªÒΘ) now be a simple Zm-graded Lie algebra. The adjoint representation of ª
induces by restriction a ª0-module ª1; the adjoint group G0 of the Lie algebra ª0 is a
connected algebraic group, called Θ-group (cf. [24] and [8]).

Set G := G0, V := ª1 and let í be the restriction of the adjoint representation Ad to G,
i.e.,

í := Ad jG: G ! GL(V)

í is called the Θ-representation of (ªÒΘ).
The semisimple elements in ª are precisely the elements of closed orbits of the

adjoint representation. This is still true for the Θ-representation í of a reductive graded
Lie algebra (ªÒΘ): an element x 2 ª1 ² ª is semisimple if and only if Gx is a closed
orbit [24, Section 2.4. Proposition 3]. An abelian maximal subspace ∑ ² V consisting of
semisimple elements is called a Cartan subspace. Every closed orbit in V intersects any
fixed Cartan subspace [24, Corollary p. 473].

The notion of the Weyl group of an adjoint representation can be carried over to the
Θ-representations: Let NorG(∑) := fg 2 G j í(g)∑ = ∑g and ZG(∑) := fg 2 G j í(g)x =
x 8x 2 ∑g, then W := NorG(∑)ÛZG(∑) is a finite reflection group ([24, Section 3.4.
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Prop. 3, Section 6.1. Thm. 8]) called the Weyl group of the graded Lie algebra (ªÒΘ).
The (geometric) quotient ∑ÛW of the induced W-module ∑ is isomorphic to VÛÛG [24,
Section 4.4. Theorem 7], thus we obtain an isomorphism on the invariant polynomial
functions C[V]G ≤ C[∑]W which is induced by the restriction map. This implies dim ∑ =
dim VÛÛG.

We determine AutG(V) for all irreducible Θ-representations (GÒV) of simple graded
Lie algebras (ªÒm). The latter were classified by Kac (cf. [8], [24], [7]). So from now
on let ª be simple. If m = 1 then C[V]G = C (and ∑ = 0) since í(G) contains CŁ idV

induced by the automorphisms Θt, t 2 CŁ. In fact, all derivations of ª are inner, so
t 7! Θt corresponds to a one-dimensional torus in the adjoint group G0. So in case
m = 1 every G-automorphism induces an automorphism on the projective space PV
since it commutes with CŁ idV ² í(G), i.e., AutG(V) only contains linear elements [6,
II. Example 7.1.1]. We therefore consider V as a (GÒG)-module called the reduction of
the Θ-representation. Note that Popov and Vinberg call it the reduced Θ-representation
(cf. [19, 8.5]). In Table 4.4 where all (irreducible) Θ-representations will be listed, the
reduction of the Θ-representation is taken for the Θ-type (ªÒ1).

Interestingly, if the Θ-group G is semisimple, V is automatically a simple G-module
([24, Section 8.3. Proposition 18]). Among several methods to find AutG(V) Theorem 2.3
is the most important one. So we start looking more closely at Θ-representations with
generically closed orbits.

LEMMA 3.1. Let (ªÒΘ) be a simple Zm-graded Lie algebra where the associated Θ-
representation (GÒV) has generically closed orbits. Let GΘ be a connected algebraic
group with Lie(GΘ) = ª and ∑ ² V denote a Cartan subspace, then:

(a) H := ZG(∑) = ZGΘ (∑) \ G is a generic isotropy group.
(b) ∑ � VH; moreover, ∑ = VH (or equivalently dim VÛÛG = dim VH) if and only if

N̄ := NorG(H)ÛH is a finite group.
(c) If G is semisimple and ∑ = VH, then AutG(V) = CŁ idV.

PROOF. (a) Since the generic orbit is closed, it consists of semisimple elements and
intersects ∑. Let x 2 ∑ be a generic element, then ZGΘ (x)\G is a generic isotropy group.
Using [24, Section 3.2] we see that H = ZGΘ (∑) \ G = ZGΘ (x) \ G (recall that ZGΘ (∑) is
connected).

(b) Clearly ∑ � VH. If ∑ = VH, then it is easy to see that NorG(H) = NorG(VH) := fg 2
G j (Ad g)v 2 VH 8v 2 VHg. So N̄ = NorG(H)ÛH = W is finite. For the converse set
N := NorG(∑). Since G∑ ² V is dense dim V = dim(GðN∑) = dim G+dim ∑�dim NorG(∑),
and analogously dim V = dim G + dim VH � dim NorG(H). Therefore dim ∑ = dim VH

since both, W = NÛH and NorG(H)ÛH are finite. Recall that G ðN ∑ is the (geometric)
quotient of G ð ∑ by the group N; it is acting by n(gÒ x) = (gn�1Ò nx) where n 2 N and
(gÒ x) 2 G ð ∑.

(c) now follows from (b) and Theorem 2.3.

REMARK 3.2. Popov and Vinberg state in [19, 8.5] that VZG(∑) = ∑ for m Ú 1. This is a
mistake. In fact, consider for example the Θ-representation (E(1)

6 Ò 2) (NŽ 29 in Table 4.4).
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In 6.3 we show that dim ∑ = dim VÛÛG = 2 and dim VH = 16 where H denotes a generic
stabilizer.

The main result of this work is:

THEOREM 3.3.
(a) The automorphism group of a Θ-representationG ! GL(V) of a semisimple group

G is CŁ idV.
(b) The automorphism group of the reduction of an irreducible Θ-representation is

also CŁ idV.

Recall that every Θ-representation is irreducible in case G is semisimple [24, Sec-
tion 8.3. Proposition 18]. If G is reductive (and not semisimple), then the automorphism
group of a Θ-representation is CŁ idV , because the center of G acts as scalar transfor-
mations on V. In this case C[V]G = C and the Θ-representation is of type (ªÒ1) (cf.
[8, Proposition 3.1.I.] and [24, Section 8.3.]).

REMARK 3.4. Unfortunately, Theorem 3.3 is not valid for reductions of reducible
Θ-representations. The G := SLm ðSP2n ðT1-module V := (Cm)Ł ý (Cm 
 C2n) defined
by

(gÒ sÒ t)(xÒ v 
 w) :=
�
t2mn Ð (gt)�1xÒ t�m(gv 
 sw)

�
is the reduction of the reducible Θ-representation (Cm+n+1Ò1). Its automorphism group
AutG(V) is 3-dimensional if 2( 2n�1

m +1) 2 Zwhereas the group of linear G-automorphisms
is 2-dimensional. The proof is different from the methods for proving 3.3. Moreover, it
is quite lengthy, it uses the Littlewood-Richardson Theorem. I refer to my Ph.D. thesis
[12, 7.8].

For convenience we give the complete list of the irreducible Θ-representations, resp.
of the reductions of them. All data not computed in this work, is taken from [8, Table
II, III], corrections in [3]. For a complete table with the degrees of the homogeneous
generating invariants see [15]. In case m = 1 the group G in Table 4.4 always denotes
the corresponding reduction of the Θ-group described as above. Without confusion they
will also be called Θ-groups. Thus G is always a semisimple group.

The following notations are used in Table 4.4: For G acting on a vector space V
we denote by SiG (^iG, respectively) the G-module of the i-th symmetric (exterior,
respectively) power of V. The highest irreducible component of SiG is denoted by Si

0G
and analogously for ^i

0G. The column labeled by º contains the Lie algebra type of a
generic stabilizer unless º = 0, where the finite isotropy group is given after dividing
with the kernel of the representation. ¤k denotes the group of even permutations of
k elements. The explicit decomposition of the finite generic stabilizers as semidirect
products is omitted. A, B, C, D, E, F4, G2 denote the simple Lie algebras indexed by their
rank. »k is the Lie algebra of a k-dimensional torus and …j is a j-dimensional nilpotent
Lie algebra.

The rubric ‘method’ describes how AutG(V) = CŁ idV is verified: The expression
‘prehom.’ means that the corresponding module is prehomogeneous, i.e., it has a dense
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orbit. They are handled in Proposition 5.1. The ‘adjoint’ representations have been settled
in 2.5. ‘Finite N̄’ says that NorG(H)ÛH is finite, so we can make use of 3.1, respectively
of Theorem 2.3 in case of a reduced Θ-representation with one-dimensional quotient.
In some cases the tables of Élashvili [4], [5] are used to check dim VÛÛG = dim VH

(which is equivalent to the finiteness of N̄ = NorG(H)ÛH), but mostly we refer to
later computations. The abbreviation ‘restitution’ stands for the restitution of multilinear
covariants [10, Section 6] which is explicitly verified for SOn 
SP2m in 6.1.

REMARK 3.5. If the generic isotropy group H is reductive, then GÛH is affine, and
therefore the generic orbit is closed [9, II.4.3. Satz 6]. All Θ-representations with
dim VÛÛG Ù 0 have generically closed orbits except NŽ 4b in Table 4.4.

4. Equivariant automorphisms of Θ-representations with finite N̄. In this sec-
tion we give details of Θ-representations G ! GL(V) with dim VH = dim VÛÛG or
equivalently with finite N̄ in order to apply Lemma 3.1. This shows that every G-
automorphism is a homothety. The finiteness of N̄ for some Θ-representations was
shown by Élashvili [4], [5] as pointed out in Table 4.4. So, for the examples not re-
ferred to the literature we briefly indicate the representation space V, the embedding
of a generic stabilizer H ² G as well as the fixed point space VH. The corresponding
Θ-group is always denoted by G and its Lie algebra by ª. For the verification of a
stabilizer H = Gv, v 2 V to be generic, we sometimes use the equivalent condition that
fu 2 VH j Gu = Hg is dense in VH and V = (Lie G)v + VH (see [19, Theorem 7.3]).
The equality dim G + dim VH � dim NorG(H) = dim V (i.e., GVH = V) also implies that
fg 2 G j gv = v 8v 2 VHg is a generic isotropy group.

4.1. SLn 
SLn. The representation space is the set of n ð n-matrices Mn, and H =
GEn = f(AÒA) 2 G j A 2 SLng. So MH

n = CEn.

4.2. SLn 
SOm, 3 � n = m and 1 � n Ú m. Let V denote the space of nðm-matrices

Mnðm. Let M0 := (En j 0) 2 V, then H = GM0 =
²�

AÒ
�

A
B

��
j A 2 SOnÒB 2 SOm�n

¦
and VH = CM0.

4.3. S2
0 SOn, n Ù 4. This representation is the SOn-conjugation on V = Symn ÛCEn

where Symn denotes the symmetric n ð n-matrices. Let A := diag(1Ò 2Ò    Ò n) then
H = GA = fS = diag(š1Ò    Ò š1) j det S = 1g ≤ (Z2)n�1. One obtains dim VH = n�1 =
dim VÛÛG.

4.4. SOn 
SOm, n ½ m Ù 2. The composition V = Mnðm
ôSOn�! S2Cm ôSOm�! Cm is the

G = SOn ðSOm-quotient where ôL denotes the quotient by the group L. The matrix
A0 :=

�
A
0

�
2 V is an element of the generic orbit where A is defined as in 4.3.

Then H = GA0 =
²� �

S
T

�
Ò S
�
j S = diag(š1Ò    Ò š1) 2 SOmÒT 2 SOn�m

¦
and VH =² �

D
0

�
j D 2 Mm is diagonal

¦
.
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NŽ G Θ-type º dim VÛÛG method

SLn 
 SLm (An+m�1Ò1)
1a n Ù m ½ 1 «¿n�m + «¿m + …m(n�m) 0 prehom. 5.1
1b n = m ½ 1 «¿n 1 finite N̄, 4.1

SLn 
 SOm (Bn+mÒ1) 1

(Dn+mÒ1) 1

2a n Ù m ½ 3 «¿n�m + «√m + …m(n�m) 0 prehom. 5.1
2b n = m ½ 3 «√m 1 finite N̄, 4.2
2c 1 � n Ú m «√n + «√m�n 1 finite N̄, 4.2

SLn 
 SP2m (Cn+mÒ1)
3a n Ù 2m ½ 4 «¿n�2m + «ƒ2m + …2m(n�2m) 0 prehom. 5.1
3b 1 � n Ú 2m, n odd «ƒn�1 + «ƒ2m�n�1 + …2m�1 0 prehom. 5.1
3c 2 � n � 2m, n even «ƒn + «ƒ2m�n 1 restitution, 6.2

SOn 
SP2m (A(2)
k
Ò 4)

4a n Ù 2m ½ 4 »m + «√n�2m m restitution, 6.1
4b 2 Ú n Ú 2m, n odd k odd » n�1

2
+ «ƒ2m�n�1 + …2m�n

n�1
2 restitution, 6.1

4c 2 Ú n � 2m, n even k even » n
2

+ «ƒ2m�n
n
2 restitution, 6.1

5 SOn 
SOm (B(1)
k
Ò 2) 2

(D(1Ò2)
k Ò 2) 2

n ½ m Ù 2 «√n�m m finite N̄, 4.4

6 SP2n 
SP2m (C(1)
n Ò 2)

n ½ m Ù 1 m«¿2 + «ƒ2n�2m m finite N̄, 4.5

7 Ad SLn , n Ù 2 (A(1)
n Ò 1) »n�1 n � 1 adjoint

^2 SLn (DnÒ1)
8a n odd ½ 3 «ƒn�1 + …n�1 0 prehom. 5.1
8b n even ½ 4 «ƒn 1 finite N̄, [4]

9 S2 SLn , n ½ 3 (CnÒ1) «√n 1 finite N̄, [4]

^2 SOn

10a n Ù 3 odd (B(1)
n Ò 1) » n�1

2

n�1
2 adjoint

10b n Ù 5 even (D(1)
n Ò 1) » n

2

n
2 adjoint

11 S2 SP2n, n Ù 1 (C(1)
n Ò 1) »n n adjoint

S2
0 SOn (A(2)

n Ò 4)
12a n Ù 4 odd (Z2)n�1 n � 1 finite N̄, 4.3
12b n Ù 4 even (Z2)n�2 n � 1 finite N̄, 4.3

13 ^2
0 SP2n, n Ù 2 (A(2)

2n+1
Ò 2) nA1 n � 1 finite N̄, [4]

14 S3 SL2 (G2Ò1) Z3 1 6.1

15 S4 SL2 (A(2)
2
Ò 4) (Z2)2 2 finite N̄, 4.6

16 S3 SL3 (D(3)
4
Ò 3) (Z3)2 2 finite N̄, 4.7

17 ^3 SL6 (E6Ò1) A2 + A2 1 6.7

18 ^3 SL7 (E7Ò1) G2 1 finite N̄, [4]

19 ^3 SL8 (E8Ò1) A2 1 finite N̄, [4]

20 ^3 SL9 (E(1)
8 Ò 3) (Z3)4 4 finite N̄, 4.8

TABLE I

1 In either case if m is odd, Bn+m is the Θ-type, and Dn+m else.
2 Depending on the parity of n and m the Θ-type is chosen; so if n and m are odd it is (D(2)

n+m
2
Ò 2).
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NŽ G Θ-type º dim VÛÛG method

21 ^4 SL8 (E(1)
7
Ò 2) (Z2)6 7 finite N̄, 4.9

22 SL2 
S3 SL2 (G(1)
2 Ò 2) (Z2)2 2 finite N̄, 4.11

23 SL2 
S2 SL3 (F4Ò1) ¤4 1 6.2

24 SL2 
S2 SL4 (E(2)
6 Ò 4) (Z4)2 2 finite N̄, 4.12

25 SL2 
 ^2 SL5 (E6Ò1) A1 + …4 0 prehom. [5]

26 SL2 
 ^2 SL6 (E7Ò1) 3A1 1 6.4

27 SL2 
 ^2 SL7 (E8Ò1) A1 + …6 0 prehom. [5]

28 SL2 
 ^2 SL8 (E(1)
8
Ò 4) 4A1 2 6.4

29 SL2 
 ^3 SL6 (E(1)
6
Ò 2) »2 4 6.3

30 SL2 
 ^3
0 SP6 (F(1)

4 Ò 2) (Z2)3 4 6.3

31 SL2 
 Spin7 (E(2)
6
Ò 4) A2 + »1 1 6.7

32 SL2 
 Spin10 (E7Ò1) G2 + A1 1 6.7

33 SL2 
 Spin12 (E(1)
7
Ò 2) 3A1 4 6.7

34 SL2 
E6 (E8Ò1) D4 1 6.7

35 SL2 
E7 (E(1)
8
Ò 2) D4 4 6.7

36 SL2 
 SL3 
SL3 (E6Ò1) »2 1 6.3

37 SL2 
 SL3 
SL4 (E7Ò1) A1 1 finite N̄, 4.14

38 SL2 
 SL3 
SL5 (E8Ò1) A1 + …2 0 prehom. [14, 3.]

39 SL2 
 SL3 
SL6 (E(1)
8
Ò 6) A2 + A1 1 finite N̄, 4.15

40 SL2 
 SL4 
SL4 (E(1)
7
Ò 4) »3 2 6.3

41 SL3 
S2 SL3 (F(1)
4
Ò 3) (Z3)2 2 finite N̄, 4.13

42 SL3 
 ^2 SL5 (E7Ò1) A1 1 finite N̄, [5]

43 SL3 
 ^2 SL6 (E(1)
7
Ò 3) »1 3 6.5

44 SL3 
 Spin10 (E8Ò1) A1 + A1 1 finite N̄, [5]

45 SL3 
E6 (E(1)
8
Ò 3) A2 3 6.7

46 SL3 
 SL3 
SL3 (E(1)
6
Ò 3) (Z3)2 3 6.4

47 SL4 
 ^2 SL5 (E8Ò1) ¤5 1 finite N̄, 4.16

48 SL4 
 Spin10 (E(1)
8
Ò 4) (Z2)4 4 6.6

49 SL5 
 ^2 SL5 (E(1)
8
Ò 5) (Z5)2 2 finite N̄, 4.17

50 Spin7 (F4Ò1) G2 1 finite N̄, [4]

51 Spin9 (F(1)
4
Ò 2) B3 1 finite N̄, [4]

52 Spin10 (E6Ò1) B3 + …8 0 prehom. [4]

53 Spin12 (E7Ò1) A5 1 6.7

54 Spin14 (E8Ò1) G2 + G2 1 finite N̄, [4]

55 Spin16 (E(1)
8
Ò 2) (Z2)8 8 finite N̄, 4.10

56 ^3
0 SP6 (F4Ò1) A2 1 6.7

57 ^4
0 SP8 (E(2)

6
Ò 2) (Z2)6 6 finite N̄, 4.9

TABLE I (continued)
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NŽ G Θ-type º dim VÛÛG method

58 Ad G2 (G(1)
2
Ò 1) »2 2 adjoint

59 G2 (D(3)
4 Ò 3) A2 1 finite N̄, [4]

60 Ad F4 (F(1)
4
Ò 1) »4 4 adjoint

61 F4 (E(2)
6
Ò 2) D4 2 finite N̄, [4]

62 Ad E6 (E(1)
6
Ò 1) »6 6 adjoint

63 E6 (E7Ò1) F4 1 finite N̄, [4]

64 Ad E7 (E(1)
7
Ò 1) »7 7 adjoint

65 E7 (E8Ò1) E6 1 6.7

66 Ad E8 (E(1)
8
Ò 1) »8 8 adjoint

TABLE I (continued)

4.5. SP2n 
SP2m, n ½ m Ù 1. The representation space V is M2nð2m. For ñ 2 C define
Dñ =

�
�ñ

ñ

�
and let J := diag(D1Ò    ÒD1) be a skew symmetric form of even rank 2k.

Then the symplectic group and Lie algebra are defined by

SP2k := fS 2 GL2k j SJSt = Jg and «ƒ2k := fs 2 M2k j sJ + Jst = 0g

The stabilizer º := ªA0
of A0 :=

�
A
0

�
2 V where A := diag(D1Ò    ÒDm) is a generic

stabilizer:

º =
( � diag(s1Ò    Ò sm) 0

0 s0
�
Ò diag(�st

1Ò    Ò �st
m)
! þþþþ si 2 «¿2Ò s

0 2 «ƒ2n�2m

)

≤ m«¿2 + «ƒ2n�2m

Then Vº =
² �

diag(Dï1
Ò    ÒDïm )
0

� þþþ ï1Ò    Ò ïm 2 C
¦

and so dim Vº = dim VÛÛG.

4.6. S4 SL2. The representation space is R4 := C[xÒ y]4. The binary dihedral group

H = Gx4+y4 =
− �

i
�i

�
Ò

�
1

�1

�×
is a generic isotropy group and dim RH

4 = dim R4ÛÛG.

4.7. S3 SL3. Take the the ternary cubics V := C[x1Ò x2Ò x3]3 with the induced natural
G = SL3-representation. Then

H = Gx3
1+x3

2+x3
3

=

8>><
>>:
0
BB@
ê1
ê2
ê3

1
CCA Ò

0
BB@

ê1
ê2

ê3

1
CCA Ò

0
BB@

ê1
ê2
ê3

1
CCA
þþþþþ ê1ê2ê3 = 1
ê3
i = 1Ò i = 1Ò 2Ò 3

9>>=
>>;

is a generic isotropy group. It follows that VH = C(x3
1 + x3

2 + x3
3)ýCx1x2x3 and therefore

dim VH = dim VÛÛG.

4.8. ^3 SL9. Let e1Ò    Ò e9 be a basis of C9 and (ijk) denote the skew symmetric tensor
ei ^ ej ^ ek 2 V := ^3C9. Let us define
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p1 := (123) + (456) + (789)Ò p2 := (147) + (258) + (369),
p3 := (159) + (267) + (348)Ò p4 := (168) + (249) + (357).

The element p := ï1p1 + ï2p2 + ï3p3 + ï4p4 with ï1Ò ï2Ò ï3Ò ï4 2 C pairwise distinct,
is an element of a generic orbit [25]. The stabilizer H = Gp consists of the matrices 

A1
A2

A3

!
,
 

A3
A1

A2

!
,
 

A2
A3

A1

!
2 G where the Aj 2 SL3 allow the following shapes:

either Aj =

0
BB@
òj1

òj2

òj3

1
CCA Ò

0
BB@

òj3

òj1

òj2

1
CCA Ò or

0
BB@

òj2

òj3

òj1

1
CCA for all j = 1Ò 2Ò 3

(ò11Ò ò12Ò ò13) (ò21Ò ò22Ò ò23) (ò31Ò ò32Ò ò33)
(1Ò êÒ ê2) (1Ò êÒ ê2) (1Ò êÒ ê2)
(êÒ ê2Ò 1) (êÒ ê2Ò 1) (êÒ ê2Ò 1)
(êÒ 1Ò ê2) (ê2Ò êÒ 1) (1Ò ê2Ò ê)

The table on the right hand side lists three generators for the group isomorphic to (Z3)3

of the entries of A1ÒA2ÒA3 where ê = e2ôiÛ3 is a third root of unity. In fact, the entries of
A1 are described by (Z3)2 and for any choice for A1 there are 3 possibilities for A2 and
A3 is uniquely determined by A1ÒA2. After dividing by the kernel (≤ Z3) we see that
H ≤ (Z3)4. So one obtains that VH = Cp1 ýCp2 ý Cp3 ý Cp4, and dim VH = dim VÛÛG.

4.9. ^4 SL8 and ^4
0 SP8. This is analogous to the computations in 4.8. Let (ijkl) denote

the skew symmetric tensor ei ^ ej ^ ek ^ el where e1Ò    Ò e8 is a basis of C8. We define

p1 := (1234) + (5678)Ò p2 := (1278) + (3456)Ò p3 := (1368) + (2457)Ò
p4 := (1467) + (2358)Ò
p5 := (1256) + (3478)Ò p6 := (1357) + (2468)Ò p7 := (1458) + (2367)

The generic isotropy group is equal to H := Gp where p :=
P7

r=1 rpr. It consists of the

elements
�

A1
A2

�
,
�

A1
A2

�
2 G where A1ÒA2 2 SL4 have one of the four forms:

Aj =

0
BBB@
ãj1

ãj2

ãj3

ãj4

1
CCCA Ò

0
BBB@

ãj2

ãj1

ãj4

ãj3

1
CCCA Ò

0
BBB@

ãj3

ãj4

ãj1

ãj2

1
CCCA Ò

0
BBB@

ãj4

ãj3

ãj2

ãj1

1
CCCA

(ã11Ò ã12Ò ã13Ò ã14) (ã21Ò ã22Ò ã23Ò ã24)
(�1Ò �1Ò 1Ò 1) (�1Ò �1Ò 1Ò 1)

(�1Ò �1Ò 1Ò 1) (1Ò 1Ò �1Ò �1)

(�1Ò 1Ò 1Ò �1) (1Ò �1Ò �1Ò 1)

(iÒ iÒ iÒ i) (iÒ iÒ iÒ i)
The description of the table is similar to 4.8. After dividing with the kernel H ≤ (Z2)6.
Then VH =

L7
r=1 Cpr and dim VH = dim VÛÛG.

These computations are also useful for ^4
0 SP8: Consider the G = SP8-module decom-

position ^4C8 = ^4
0C

8 ýWýC0 where W ≤ ^2
0C

8 and C0 = C( p5 + p6 + p7) is the trivial
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G-module in ^4C8 (see [2, VI 5.3]). Moreover, it holds Cp1 ýCp2 ýCp3 ýCp4 ² ^4
0C

8

and C( p5 � p6) ý C( p6 � p7) ² ^4
0C

8 [2, VI 5.3]. So define p :=
P4

r=1 rpr + 5( p5 �
p6) + 6( p6 � p7) 2 ^4

0C
8 and from above we get that H := Gp ≤ (Z2)6. These con-

siderations yield that (^4
0C

8)H =
L4

r=1 Cpr ý C( p5 � p6) ý C( p6 � p7), and therefore
dim(^4

0C
8)H = dim^4

0C
8ÛÛG.

4.10. Spin16. The generic isotropy group H ≤ (Z2)8 is embedded as follows [21,
Table 2]: H = (Z2)6ð (Z2)2 ² SP8 Ûfš idgðSO3 ² G = SO16 where (Z2)6 is embedded
in SP8 as above in 4.9. The latter inclusion is induced by (SP8 
SL2)Ûfš idg ² G,

which is given by
�

AÒ
�

a b
c d

��
7!

�
aA bA
cA dA

�
2 G. If SP8 is given with respect to the skew-

symmetric form J =
�

E4
�E4

�
, then G is defined by

²
S 2 SL16 j St

�
�J

J

�
S =

�
�J

J

�¦
.

So we obtain that H =
− �

ig
ig

�
,

�
ig
�ig

�
j g 2 HSP8

×
² G, where HSP8 ² SP8 denotes

the generic stabilizer of ^4
0 SP8 (recall that the kernel of the half-spin representation of

Spin16 is Z2). Since NorG(H)0 =
�
ZG(H)H

�0
it is enough to show that the centralizer

ZG(H) is finite, which is not difficult to verify by using the finiteness of ZSL8(HSP8) (4.9).

4.11. SL2 
S3 SL2. Here we argue in a slightly different manner from the previous
examples: Let H ² G = SL2 ðSL2 be the binary dihedral group D2 which is generated

by
� �

i
�i

�
Ò

�
�i

i

��
,
� �

1
�1

�
Ò

�
1

�1

��
2 G. Notice that the kernel of this representation is

š(idÒ id). The representation space is realized by V := C2 
R3, where R3 := C[xÒ y]3. Let
e1Ò e2 be the standard basis of C2. Then VH = C(e1
x3 +e2
y3)ýC(e1
xy2 +e2
x2y),
and one easily verifies that the normalizer N := NorG(H) is finite. It follows that GVH ² V
is dense since dim G ðN VH = dim G + dim VH � dim N = dim V. Hence the generic
orbit intersects VH and the generic stabilizer H0 contains H. By Lemma 3.1(b) it exists a
Cartan subspace ∑ such that ∑ ² VH0

² VH. But dim ∑ = 2 = dim VH which implies that
∑ = VH0

. Furthermore, it is now easy to see that H0 = H since ZG(∑) = H.

4.12. SL2 
S2 SL4. As usual let e1Ò e2 be the standard basis of C2 and V := C2 
 R2

the representation space where R2 := C[uÒ xÒ yÒ z]2. The stabilizer H = Gw of an element
w 2 W := C

�
e1 
 (u2 + x2) + e2 
 (y2 + z2)

�
ýC(e1 
 yz + e2 
 ux) in general position is

a generic isotropy group. H is generated by the three elements (¢ = eôiÛ4)0
BBBB@
 
�1

�1

!
Ò

0
BBBB@

i
i

i
i

1
CCCCA

1
CCCCA Ò

0
BBBB@
 
�i

i

!
Ò

0
BBBB@
¢
¢5

¢3

¢7

1
CCCCA

1
CCCCA Ò

0
BBBB@
 

�i
�i

!
Ò

0
BBBB@

¢
¢

¢
¢

1
CCCCA

1
CCCCA 

It is isomorphic (modulo the kernelZ4) to (Z4)2. Hence VH = W and dim VH = dim VÛÛG.

4.13. SL3 
S2 SL3. Consider the finite subgroup H ² G = SL3 ðSL3 generated by the
three elements0

BB@
0
BB@
ê
ê
ê

1
CCA Ò

0
BB@
ê2

ê2

ê2

1
CCA
1
CCA Ò

0
BB@
0
BB@

1
ê
ê2

1
CCA Ò

0
BB@

1
ê
ê2

1
CCA
1
CCA Ò

0
BB@
0
BB@

1
1

1

1
CCA Ò

0
BB@

1
1

1

1
CCA
1
CCA

https://doi.org/10.4153/CJM-1998-020-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1998-020-5


390 ALEXANDRE KURTH

where ê = e2ôiÛ3. H is isomorphic to (Z3)3 and the kernel of the module is isomorphic
to Z3. The representation space is realized by V := C3 
 R2 where R2 := C[xÒ yÒ z]2. Let
e1Ò e2Ò e3 denote the standard basis of C3. The space of H-fixed points is

VH = C(e1 
 x2 + e3 
 y2 + e2 
 z2) ý C(e2 
 xy + e3 
 xz + e1 
 yz)

The normalizer N := NorG(H) is easily seen to be finite. Therefore GVH ² V is dense
because dim G ðN VH = dim V. Now we make use of the same arguments as in 4.11
because dim VH = dim VÛÛG, i.e., VH is a Cartan subspace and H is a generic isotropy
group.

4.14. SL2 
SL3 
SL4. Consider Lie algebra ª of SL2 ðSL3 ðSL4 acting on V =
M6ð4 ≤ C2 
 C3 
 C4 by embedding the «¿2 ð «¿3-action in «¿6; the embedded Lie

algebra is denoted by ª1. The orbit ªm with m =
 

E4
1

1

!
2 V is generic because

ªm + Vªm = V. The stabilizer of m is

º =

8>>>>>>>><
>>>>>>>>:

0
BBBBBBBB@

0
BBBBBBBB@

a b 2c
c 3a 2c

�3a b 2b
c �a 2b

b c �a b
b c c a

1
CCCCCCCCA
Ò

0
BBB@

a b 2c
3c 3a

�3a 3b
2b c �a

1
CCCA

1
CCCCCCCCA
2 ª1 ð «¿4

þþþþþþ aÒ bÒ c 2 C

9>>>>>>>>=
>>>>>>>>;
≤ «¿2

It follows Vº = Cm and dim Vº = VÛÛG.

4.15. SL2 
SL3 
SL6. This representation is realized by left-action of G1 := SL2 ð
SL3 ² SL6 and right-action of SL6 on M6. The stabilizer H = GE6 = f(SÒT) 2 G1ðSL6 j
SE6T�1 = E6g ≤ SL2 ðSL3 of the identity matrix E6 2 M6 is a generic stabilizer. The
H-fixed points are MH

6 = fA 2 M6 j SAS�1 = Ag = CE6 and therefore dim MH
6 =

dim M6ÛÛG.

4.16. SL4 
 ^2 SL5. Let e1Ò    Ò e4, resp. f1Ò    Ò f5 be the standard basis of C4, resp.
C5. Then (iÒ jk) := ei 
 fj ^ fk for 1 � i � 4, 1 � j Ú k � 5 is a basis of V := C4 
^2C5.
Consider the finite subgroup H ² G = SL4 ðSL5 generated by the two elements

a =

0
BBBBBBB@

0
BBBB@

0 0 0 �1
1 0 0 �1
0 1 0 �1
0 0 1 �1

1
CCCCA Ò

0
BBBBBBB@

1 0 0 0 0
1 0 0 0 �1
0 1 0 0 �1
0 0 1 0 �1
0 0 0 1 �1

1
CCCCCCCA

1
CCCCCCCA
Ò b =

0
BBBBBBB@

0
BBBB@

0 �1 �1 0
1 �1 1 0
0 0 1 0
0 0 0 1

1
CCCCA Ò

0
BBBBBBB@

0 0 0 0 �1
0 �1 1 0 �1
0 �1 1 �1 0
1 �1 1 �1 0
0 0 1 �1 0

1
CCCCCCCA

1
CCCCCCCA


The alternating group ¤5 is generated by the permutations õ1 = (12345) and õ2 = (123).
The SL4- (resp. SL5-) component of a and b are the images of õ1 and õ2 of the unique
irreducible 4- (resp. 5-) dimensional representation of ¤5. This construction and Schur’s
Lemma immediately yield that ZG(H) is contained in the scalar matrices of G, hence
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finite. Since NorG(H)0 = (ZG(H)H)0 it follows that NorG(H)ÛH is finite. The H-fixed
point space is VH = Cv where

v = (1Ò 12) � (1Ò 15) � (1Ò 24) � (1Ò 25) � (1Ò 45)

+ 2(2Ò 12) + 2(2Ò 13) + (2Ò 14) + (2Ò 23)� (2Ò 25) + (2Ò 34) � (2Ò 35) � 2(2Ò 45)

+ (3Ò 12) + 2(3Ò 13) + 2(3Ò 14) + (3Ò 23)� 2(3Ò 25) + (3Ò 34)� (3Ò 35) � (3Ò 45)

+ (4Ò 12) + (4Ò 13) + 2(4Ò 14) + (4Ò 15) � (4Ò 23) + 2(4Ò 34) + (4Ò 35)

Since dim G + dim VH � dim NorG(H) = dim V the finite group H is a generic stabilizer.

4.17. SL5 
 ^2 SL5. Take the same notations as in 4.16. Consider the finite subgroup
H ² G = SL5 ðSL5 generated by

a =

0
BBBBBBB@

0
BBBBBBB@

1
1

1
1

1

1
CCCCCCCA
Ò

0
BBBBBBB@

1
1

1
1

1

1
CCCCCCCA

1
CCCCCCCA
Ò b =

0
BBBBBBB@

0
BBBBBBB@

ê4

ê2

1
ê3

ê

1
CCCCCCCA
Ò

0
BBBBBBB@

1
ê
ê2

ê3

ê4

1
CCCCCCCA

1
CCCCCCCA
Ò

c = (ê3E5Ò êE5)

where ê = e2ôiÛ5. The H-fixed point space turns out to be

VH = C[(1Ò 12) + (2Ò 23) + (3Ò 34) + (4Ò 45)� (5Ò 15)]

ý C[(1Ò 35) � (2Ò 14) � (3Ò 25) + (4Ò 13) + (5Ò 24)]

Just like in 4.16 ZG(H) and therefore NorG(H) are finite. Since dim G + dim VH �
dim NorG(H) = dim V it is easy to see that fg 2 G j gv = v 8v 2 VHg = H is a generic
stabilizer (cf. [18, Lemma 5.1]).

5. Equivariant automorphisms of prehomogeneous Θ-representations. For a
prehomogeneous module V the embedding of a generic stabilizer H is also the main tool
to find the equivariant automorphism group. We determine the dimension of the H-fixed
point space VH. In fact, for every prehomogeneous G-module (G semisimple) it is shown
in [14, 2.] that dim AutG(V) = dim VH = dim NorG(H)ÛH.

PROPOSITION 5.1. Let V be an irreducible prehomogeneous Θ-representation of a
(semisimple) group. Then VH is one-dimensional. In particular, AutG(V) = CŁ idV.

PROOF. For SLn 
SLm, n Ù m ½ 1 (NŽ 1a) consider the representation space V of
n ð m-matrices. The element v =

�
Em

0

�
is in a generic orbit with stabilizer H =²� �

g Ł

0 s

�
Ò g
�
2 SLn ðSLm j g 2 SLmÒ s 2 SLn�m

¦
. Clearly, VH = Cv.

The same arguments can also be used for SLn 
SOm (NŽ 2a), n Ù m ½ 3 as well as
for SLn 
SP2m, n Ù 2m ½ 4 (NŽ 3a).
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A generic isotropy algebra ºof SLn 
SP2m, 2 Ú n Ú 2m, n odd (NŽ 3a) is given in [20,
pp. 101–102]. It is isomorphic to «ƒ2m ý «ƒ2n�m�1 ý …2n�1 where …j is a j-dimensional
unipotent Lie algebra. It is easy to see that dim(C2n 
 C2m+1)º = 1.

The module ^2 SL2m+1, m ½ 1 (NŽ 8a) is listed in [4, Table 1]. However, we present
this situation explicitly. The skew symmetric matrix M is an element of a generic orbit
with stabilizer H:

M =

0
BB@

0 Em 0
�Em 0 0

0 0 0

1
CCA H =

( 
A Ł
0 1

!
2 SL2m+1

þþþ A 2 SP2m

)
≤ SP2m ðU2m

We obtain (^2C2m+1)H = CM.
All modules SL2 
^2 SL2m+1, m ½ 1 are prehomogeneous and have one-dimensional

fixed point space VH [5, Table 6 NŽ 1]. These modules handle the cases NŽ 25 and NŽ 27
of Table 4.4.

For both modules, SL2 
SL3 
SL5 (NŽ 38) [14, 3.] and Spin10 (NŽ 52) [4, Table 1],
the dimension of the fixed point space is one.

REMARK 5.2. For an arbitrary simple prehomogeneous G-module (G semisimple),
Proposition 5.1 is not valid. In [14] it is shown that AutSL3 ðSL5 ð SL13(C

3 
 C5 
 C13) is
two-dimensional.

6. Other methods. We briefly introduce the restitution of multilinear invariants
which is the main tool to show the triviality of the automorphism group of certain
Θ-representations. We keep the notations of the previous sections.

Let G be an algebraic group and V1Ò    ÒVmÒW are defined to be G-modules. We
call a G-equivariant morphism V1 ý Ð Ð Ð ý Vm ! W a G-covariant (of type W). Any
G-covariant can be seen as a sum of multihomogeneous G-covariants (of multi-degree
(d1Ò    Ò dm) with d1Ò    Ò dm 2 N). For a multilinear (i.e., multihomogeneous of multi-
degree (1Ò    Ò 1)) map f : Vd1

1 ý Ð Ð Ð ý Vdm
m ! W the multihomogeneous map Rf : V1 ý

Ð Ð Ð ý Vm ! W defined by

Rf (v1Ò    Ò vm) := f (v1Ò    Ò v1| {z }
d1

Ò    Ò vmÒ    Ò vm| {z }
dm

)

is called the restitution of f . Every multihomogeneous G-covariant of multi-degree
(d1Ò    Ò dm) is the restitution of a multilinear G-covariant on Vd1

1 ýÐ Ð ÐýVdm
m with values

in W (cf. [10, Section 6]).
The vector space of multilinear G-covariants Mult(Vd1

1 ý Ð Ð Ð ý Vdm
m ÒW)G can be

determined by using the canonical G-isomorphism

Mult(Vd1
1 ý Ð Ð Ð ý Vdm

m ÒW)
¾
�! Mult(Vd1

1 ý Ð Ð Ð ý Vdm
m ý WŁÒ C)

Now, we are able to handle another type of Θ-representations.

PROPOSITION 6.1. AutSOn ðSP2m (Cn 
 C2m) = CŁ id
C

n

C

2m where m Ù 1 and n Ù 2.
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PROOF. Distinguish two cases: (a) 2 Ú n � 2m and (b) 4 Ú 2m Ú n.
(a) Let ( Ò ) denote the corresponding SP2m-invariant non-degenerate skew-symmetric

bilinear form. By classical invariant theory [26, Theorem 6.1.A] it is known for every
n Ù 2, m Ù 1 that

C
h
(C2m)n

iSP2m = C
h
(ij j) j 1 � i Ú j � n

i
(1)

C
h
(C2m)n ý (C2m)Ł

iSP2m = C
h
(ij j)Ò ¢l j 1 � i Ú j � nÒ 1 � l � n

i
(2)

where (iÒ j)(v1 Ò    Ò vn) := (viÒ vj) and ¢l(v1Ò    Ò vnÒ f ) := f (vl). Every automorphism õ 2
AutSOn ðSP2m (Cn
C2m) can be seen as an n-tuple (õ1Ò    Ò õn) of SP2m-covariants (of type
C2m) õs: (C2m)n �! C2m, s = 1Ò    Ò n. By determining the restitution of the multilinear
invariants of (2) it follows that

õs(v1Ò    Ò vn) =
nX

r=1
prsvrÒ s = 1Ò    Ò n(3)

where prs 2 C[(C2m)n]SP2m (see above). We claim that all prs are constant polynomials.
Denoting õŁ the corresponding automorphism on C[(C2m)n] we see that õŁ

�
(iÒ j)

�
=

ñ(iÒ j) since õ induces an automorphism on (C2m)nÛÛSP2m = ^2Cn (adjoint representa-
tion), which is a multiple of the identity (2.5).

Let P denote the nðn-matrix ( pij)1�iÒj�n with pij 2 C[(C2m)n]SP2m from equation (3). It
was just shown that the

�
n
2

�
ð
�

n
2

�
-matrix ^2P consisting of all 2ð2-minors of P is a scalar

multiple of the identity matrix E(n
2). Since the kernel of the canonical homomorphism

GL(V) ! GL(^2V) is fš idg (dim V Ù 2), it follows that P 2 CŁEn, i.e., õ is a scalar
multiple of id(C2m)n (cf. [13, Proof of 3.1])

(b) Exchange the rôles of SP2m and SOn: Here, ( Ò ) denotes the corresponding SOn-
invariant non-degenerate symmetric bilinear form. For the SOn-invariants there is an
analogous relation [26, Theorem 2.9.A, 2.17.A]:

C
h
(Cn)2m

iSOn = C
h
(iÒ j) j 1 � i � j � 2m

i
C
h
(Cn)2m ý (Cn)Ł

iSOn = C
h
(iÒ j)Ò ¢l j 1 � i � j � 2mÒ 1 � l � 2m

i

We can make the same conclusions as in (a) since SP2m acts on (Cn)2mÛÛSOn ≤ S2C2m

by the adjoint representation and the kernel of the canonical homomorphism GL(V) !
GL(S2V) is also fš idg (dim V Ù 2).

REMARK 6.2. In the same way as in proof (a) of 6.1 one can show AutSLn ðSP2m (Cn 

C2m) = CŁ id

C
n

C

2m for 2 � n � 2m, n even. Indeed, õ 2 AutSLn ð SP2m(Cn 
C2m) induces
an SLn-automorphism ȭ 2 AutSLn (^2Cn) which turns out to be in CŁ id^2C

n (see NŽ 8b if
n ½ 4; in case n = 2, ȭ is linear since ^2C2 ≤ C).

Analogously, this is also true if n is odd.

In the following an adaptation of the method for finite N̄ = Nor(H)ÛH works best.
The fixed point space VH of a generic stabilizer H for the following examples no longer
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coincides with a Cartan subspace. However, with the earlier methods we will be able to
show that AutN̄(VH) consists of linear automorphisms. Just like in the proof of 2.3 this
induces that every õ 2 AutG(V) is a multiple of idV by looking at õ Ž ï idV �ï idV Žõ.

PROPOSITION 6.3. AutSL2 ð SLn ð SLn(C
2 
 Cn 
 Cn) = CŁ id

C
2

C

n

C

n for n ½ 3.

PROOF. Embed SL2 ðSLn into SL2n and consider the linear G = SL2 ðSLn ðSLn-
action on the space of 2n ð n-matrices V = M2nðn. Let »n�1 ² «¿n denote the diagonal
matrices. The stabilizer º = ªA of

A :=

0
BBB@

A1

. . .
An

1
CCCA where Aj =

 
aj

bj

!
with pairwise distinct aiÒ bj

has the form º = f(0Ò tÒ t) 2 ª j t 2 »n�1g ≤ »n�1. Its fixed point set is

Vº =

8>>><
>>>:

0
BBB@

M1

. . .
Mn

1
CCCA
þþþþ Mj =

 
ïj

ñj

!
2 C2Ò j = 1Ò    Ò n

9>>>=
>>>; ≤ (C2)n

The normalizer ¬(º) consists of the elements (sÒ t) 2 «¿2n ð «¿n where

s =

0
BBB@

s1

. . .
sn

1
CCCA with sj =

 
a + dj b

c �a + dj

!
Ò

nX
j=1

dj = 0

and t 2 »n�1. The algebra º is a generic stabilizer and¬(º) ≤ «¿2ð»n�1ð»n�1 ² ª. Here
we cannot make use of Lemma 3.1. So take a closer look at the NorG(H)ÛH-action on
Vº which is equivalent to the Γ := SL2 ðSn ð Tn�1-action on (C2)n defined as follows:�

sÒ diag(t1Ò    Ò tn)Ò ú
�
Ð (v1Ò    Ò vn) = (t1svú(1)Ò    Ò tnsvú(n))

It is shown in [13, 3.1.] that AutΓ
�
(C2)n

�
= CŁ id(C2)n which induces AutG(V) = CŁ idV .

PROPOSITION 6.4. AutSL2 ð SL2n(C
2 
 ^2C2n) = CŁ id

C
2

^2C

2n for n ½ 3.

PROOF. Let e1Ò e2, resp. f1Ò    Ò f2n be the standard basis of C2, resp. of C2n. Define
viÒ jÒk := ei 
 ( fj ^ fk) 2 V := C2 
 ^2C2n for 1 � i � 2, 1 � j Ú k � 2n. Consider the
G = SL2 ðSL2n-orbit through

v =
2X

i=1

nX
j=1

viÒ2j�1Ò2j 2 V where H =

8>><
>>:

0
BBB@
 

1
1

!
Ò

0
BBB@

A1

. . .
An

1
CCCA
1
CCCA
þþþþ Aj 2 SL2

9>>=
>>; ≤ (SL2)n

is the stabilizer of v. The H-fixed points are VH = ý2
i=1 ý

n
j=1 CviÒ2j�1Ò2j. The group

N̄ = NorG(H)ÛH is isomorphic to Γ := SL2 ðSn ð Tn�1. It follows that H is a generic
isotropy group since GVH = V. The N̄-action on VH is equivalent to the Γ-module (C2)n

as described in the proof of 6.3. We have AutΓ
�
(C2)n

�
= CŁ id(C2)n as shown in [13, 3.1.]

which induces AutG(V) = CŁ idV .
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6.1. S3 SL2. This module is isomorphic to the SL2-representation on the binary forms

V = C[xÒ y]3. A generic isotropy group is given by H = Gx3+y3 =
² �

ê

ê�1

� þþþþ ê3 = 1
¦
≤

Z3. Every õ 2 AutG(V) induces a ȭ 2 AutNorG(H)(VH) which must be linear, for ȭ

preserves Cx3 = VU where U :=
² �

1
a 1

� þþþ a 2 C
¦

, and analogously ȭ also preserves Cy3

(Lemma 2.1).

6.2. SL2 
S2 SL3. This module is realized by the G = SL2 ðSL3-action on V = C2
R2

where R2 := C[xÒ yÒ z]2 are the tenary forms of degree 2. Let e1Ò e2 be the standard basis of
C2 and define v1 := e1
(x2 +yz), v2 := e2
(y2 +xz), v := v1 +v2 2 V. A generic stabilizer
H is equal to Gv (cf. [18, p. 243]); it is generated by the three elements (ê = e2ôiÛ3)

g1 :=

0
BB@
 
ê
ê2

!
Ò

0
BB@
ê
ê2

1

1
CCA
1
CCA Ò g2 :=

0
BB@
 

1
1

!
Ò

1
3

0
BB@
�1 2 1
2 �1 1
4 4 �1

1
CCA
1
CCA Ò

g3 :=

0
BB@
 

1
1

!
Ò

1
3

0
BB@
�1 2ê ê2

2ê2 �1 ê
4ê 4ê2 �1

1
CCA
1
CCA 

The finite group H is isomorphic to ¤4, the alternating group of 4 elements (the iso-
morphism is given by g1 7! (234), g2 7! (12)(34), g3 7! (14)(23)). As usual we
determine the H-fixed points in V which turn out to be VH = Cv1 ý Cv2. Since
T1 ð fE3g ² N := NorG(H) one easily sees that every ß 2 AutN(VH) is linear by
using Lemma 2.1.

6.3. SL2 
 ^3 SL6 and SL2 
 ^3
0 SP6. Let e1Ò e2, resp. f1Ò    Ò f6 be the standard basis

of C2, resp. of C6. Then (ijk) := fi ^ fj ^ fk for 1 � i Ú j Ú k � 6 is a basis of ^3C6.
Consider the element

v :=
2X

j=1

�
j ej 
 (123) + 2j ej 
 (126) + 3j ej 
 (135) + 4j ej 
 (156)

+ 5j ej 
 (234) + 6j ej 
 (246) + 7j ej 
 (345) + 8j ej 
 (456)
�


The stabilizer H = Gv ² G = SL2 ðSL6 of v 2 V = C2 
^3C6 has the following shape:

H =

8><
>:
  

¢

¢

!
Ò

 
S

S

!!
2 G

þþþþ S =

0
B@ ï

ñ

(ïñ)�1

1
CA Ò ïÒ ñ 2 CŁ

Ò det S = ¢ = š1

9>=
>; ≤ T2 ð Z2

For the space of H-fixed points one obtains

VH =
2M

j=1

�
Cej 
 (123)ý Cej 
 (126)ý Cej 
 (135)ý Cej 
 (156)

ý Cej 
 (234)ý Cej 
 (246)ý Cej 
 (345) ý Cej 
 (456)
�
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The normalizer N := NorG(H) is the following semidirect product:

N = SL2 ð
(

A =
 

A1 A2

A3 A4

!
2 SL6

þþþ Aj = diag(aj1Ò aj2Ò aj2)Ò det A = 1
)
ðS3

It follows that Gv is a generic orbit. The identity component of NÛH is isomorphic to
(SL2)4 and therefore the N-module VH is equivalent to the SO4 ðSO4-module C4 
 C4

(because C[C2 
C2]SL2 ðSL2 = C[q] where q is a quadratic form). It follows with 4.4 that
AutN(VH) = CŁ idVH .

To examine the automorphism group of SL2 
 ^3
0 SP6 take the above notations. By

using the methods in [2, VI 5.3] the skew-symmetric tensors (123), (126), (135), (156),
(234), (246), (345), (456) are elements of ^3

0C
6. Therefore the element v from above is

also an element of the generic orbit of the simple G = SL2 ðSP6-module V = C2
^3
0C

6.
The stabilizer H = Gv is of the following shape:

H =

8>><
>>:
  

¢
¢

!
Ò
 

S
S

!!
2 G

þþþþ S =

0
BB@
š1

š1
š1

1
CCA Ò det S = ¢ = š1

9>>=
>>; ≤ (Z2)4

The H-fixed point space as well as NorG(H)0 are the same as for SL2 
 ^3 SL6 above.
So the same arguments lead to AutG(V) = CŁ idV .

6.4. SL3 
SL3 
SL3. Let e1Ò e2Ò e3 be the standard basis of C3 and define (ijk) :=
ei 
 ej 
 ek 2 V = C3 
 C3 
 C3 for iÒ jÒ k = 1Ò 2Ò 3. The isotropy group H of

v := (111) + 2(222) + 3(333) + 4(123) + 5(132) + 6(213) + 7(231) + 8(312) + 9(321)

is the finite group generated by the three elements (ê = e2ôiÛ3)0
BB@
0
BB@
ê
ê2

1

1
CCA Ò

0
BB@
ê2

1
ê

1
CCA Ò

0
BB@

1
ê
ê2

1
CCA
1
CCA Ò

0
BB@
0
BB@
ê

1
ê2

1
CCA Ò

0
BB@
ê2

ê
1

1
CCA Ò

0
BB@

1
ê2

ê

1
CCA
1
CCA Ò

0
BB@
0
BB@
ê
ê
ê

1
CCA Ò

0
BB@
ê
ê
ê

1
CCA Ò

0
BB@
ê
ê
ê

1
CCA
1
CCA 

The space of H-fixed points is easily computed:

VH = C(111)ýC(222)ýC(333)ýC(123)ýC(132)ýC(213)ýC(231)ýC(312)ýC(321)

The connected component of N := NorG(H) has the shape

N0 =

8>><
>>:(S1Ò S2Ò S3) 2 G

þþþþ Sj =

0
BB@
ïj

ñj

(ïjñj)�1

1
CCA Ò ïjÒ ñj 2 CŁÒ j = 1Ò 2Ò 3

9>>=
>>; ≤ (T2)3

Since dim G + dim VH � dim N = dim V the finite group H is a generic stabilizer.
Let VH

(ijk) ² VH be the hyperplane spanned by all standard basis elements except
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(ijk) 2 VH and consider the element st := (SÒ SÒ S) 2 N with S = diag(tÒ tÒ t�2)Ò t 2
CŁ. Then fw 2 VH j limt!0 stw existsg = VH

(333), and this hyperplane is stabilized
by every ß 2 AutN0 (VH). Analogously, VH

(123) is AutN0 (VH)-stable by taking st :=�
diag(t�2Ò tÒ t)Ò diag(tÒ t�2Ò t)Ò diag(tÒ tÒ t�2)

�
2 N0. In total one obtains 9 hyperplanes

in general position which are AutN0 (VH)-stable. By Lemma 2.1 AutN0 (VH) only consists
of linear automorphisms.

6.5. SL3 
 ^2 SL6. Let e1Ò e2Ò e3, resp. f1Ò    Ò f6 be the standard basis of C3, resp. C6.
Then viÒjk := ei 
 ( fj ^ fk), 1 � i � 3, 1 � j Ú k � 6 is a basis of V = C3 
 ^2C6. The
isotropy group of the element

v := v1Ò14 + 2v1Ò25 + 3v1Ò36 + 4v2Ò14 + 5v2Ò25 + 6v2Ò36 + 7v3Ò14 + 8v3Ò25 + 9v3Ò36

+ 10v1Ò15 + 11v1Ò16 + 12v1Ò24 + 13v1Ò26 + 14v1Ò34 + 15v1Ò35

turns out to be a generic stabilizer and has the form

H :=

8>><
>>:
0
BB@
0
BB@

1
1

1

1
CCA Ò

 
ïE3

ï�1E3

!1CCA 2 G
þþþþ ï 2 CŁ

9>>=
>>; ≤ CŁ

The space of H-fixed points looks as follows:

VH =
3M

i=1
(CviÒ14 ý CviÒ15 ý CviÒ16 ý CviÒ24 ý CviÒ25 ý CviÒ26 ý CviÒ34 ý CviÒ35 ý CviÒ36)

Since N̄0 := (NorG(H)ÛH)0 = SL3 ð(SL3)2 and the N̄0-action on VH is equivalent to the
natural (SL3)3-action on C3 
 C3 
 C3 it holds that AutN̄0 (VH) = CŁ idVH (6.4).

6.6. SL4 
Spin10. Consider the finite subgroup H ² G := SL4 ðSpin10 generated by
the two elements:

h1 :=
�
diag(1Ò 1Ò �1Ò �1)Ò diag(1Ò �iÒ 1Ò iÒ 1;�1Ò iÒ �1Ò �iÒ �1)

�
h2 :=

�
diag(�1Ò 1Ò �1Ò 1)Ò diag(iÒ iÒ 1Ò 1Ò 1;�iÒ �iÒ �1Ò �1Ò �1)

�


The Spin10-part of h1 acts as diag(E8Ò �E8) on C16 (see [20, 5.28, 5.38]). For a short
outline of the spin-representation of Spin10 we refer to [20, p. 110 ff. and 5.38].

The representation space of SL4 
Spin10 is defined to be the space of 4ð16-matrices
V = M4ð16. The space of H-fixed points turns out to be:

VH =

8>>>><
>>>>:

0
BBBB@

u1 0 0 0 0 0 0 0 0 u2 0 u3 0 u4 0 0
0 0 u5 0 u6 0 u7 0 0 0 0 0 0 0 0 u8

0 u9 0 0 0 0 0 0 u10 0 u11 0 u12 0 0 0
0 0 0 u13 0 u14 0 u15 0 0 0 0 0 0 u16 0

1
CCCCA
þþþþþþ ui 2 C

9>>>>=
>>>>;
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The Lie algebra ¬ of N := NorG(H) consists of the elements

0
BBBBBBBBBBBBBBBBBBBB@

0
BBBB@

t1
t2

t3
�t1 � t2 � t3

1
CCCCA Ò

0
BBBBBBBBBBBBBBBBBBBB@

a1

a2

a3 a35 b35

a4

a53 a5 �b35

�a1

�a2

c35 �a3 �a53

�a4

�c35 �a35 �a5

1
CCCCCCCCCCCCCCCCCCCCA

1
CCCCCCCCCCCCCCCCCCCCA

where all variables are complex numbers. The algebra ¬ is isomorphic to »3 ý »3 ý

«√4

��
E2

E2

��
, where » := »3 ý»3 commutes with «√4 (cf. [20, 5.38]); the second copy of

»3 in » consists of the elements (a1Ò a2Ò a4) 2 «√10. For a generic element v 2 VH, Gv is a
generic orbit and GVH ² V is dense since dim Gv = 60 and dim(GðN VH) = 64 = dim V.
Therefore it suffices to show that AutN(VH) consists of linear elements. Notice that H
is not a generic isotropy group, one can only say that H is contained in it. A generic
stabilizer is isomorphic to (Z2)4 [18, Table 1].

Up to an outer isomorphism the «√4-module VH corresponds to the SL2 ðSL2-module
(C2)4 ý (C2)4 where the first (second) copy of SL2 naturally acts on the first (second)
four copies of C2 (consider the «√4-part in [20, 5.38] acting on VH ≤ (C2)8). Its ring of
invariant functions is

C
h
(C2)4 ý (C2)4

iSL2 ð SL2 = C
h
(C2)4

iSL2 
 C
h
(C2)4

iSL2 = C
�
[iÒ j] j 1 � i Ú j � 4 or

5 � i Ú j � 8

½

where [iÒ j](v1Ò    Ò v8) = det(viÒ vj). The ideal of the relations among the [iÒ j] is generated
by the Plücker relations [1Ò 2][3Ò 4]�[1Ò 3][2Ò 4]+[1Ò 4][2Ò 3] and [5Ò 6][7Ò 8]�[5Ò 7][6Ò 8]+
[5Ò 8][6Ò 7]. Using the fact AutSL2 ðS4ð T3

�
(C2)4

�
= CŁ id(C2)4 [13, Prop. 3.1] and the »3-

equivariance of the copy »3 ² «√10 every N-automorphism of VH is linear. Since
GVH ² V is dense AutG(V) = CŁ idV .

6.7. . For the last few cases of Table 4.4 where NorG(H)ÛH is not finite, we are going
to use Élashvili’s tables [5, Table 6] and [4, Table 1]. Let (GÒV) denote a G-module V.
As usual H ² G is a generic stabilizer and N̄ := NorG(H)ÛH. In all following examples
we use the fact that if AutN̄(VH) = CŁ idVH , then also AutG(V) = CŁ idV (see proof of 2.3).

For (GÒV) = SL2 
Spin10 (NŽ 32) it is (N̄0ÒVH) ≤ (T3 ² SL4Ò C
4). This represen-

tation does not admit any nonlinear automorphisms: Take tu = diag(u�3Ò uÒ uÒ u) 2 T3,
u 2 CŁ. Let v 2 C4, then limu!0 tuv exists if and only if v lies in a hyperplane. This
hyperplane is stabilized by any T3-equivariant automorphism (cf. 6.3). By changing the
spot of the entry u�3 one obtains four hyperplanes in total which are in general position.
Now Lemma 2.1 finishes this example.
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Concerning SL2 
Spin12 (NŽ 33) there is a mistake in [5, Table 6, No. 7]. A generic
stabilizer is isomorphic to 3A1 embedded in D6 [8] (also cf. [20, Section 5, Propo-
sition 38]). Its normalizing Lie algebra in A1 + D6 is then isomorphic to 7A1. Hence
(N̄0ÒVH) is isomorphic to

�
(SL2)4Ò (C2)
4

�
≤
�
(SO4)2Ò (C4)
2

�
. This module is without

nonlinear automorphisms (4.4).
For SL2 
E6 (NŽ 34) we have (N̄ÒVH) ≤

�
SL2 ðS3 ð T2Ò (C

2)3
�

whose equivariant
automorphism are linear [13, 3.1].

The module SL2 
E7 (NŽ 35) yields (N̄ÒVH) ≤
�
(SL2)4Ò (C2)
4

�
≤
�
(SO4)2Ò (C4)
2

�
.

By 4.4 there are no nonlinear automorphisms.
For (GÒV) = SL3 
E6 (NŽ 45) one obtains (N̄ÒVH) ≤

�
(SL3)3Ò (C3)
3

�
; in 6.4 all

equivariant automorphisms are proved to be linear.
The modules ^3 SL6 (NŽ 17), SL2 
Spin7 (NŽ 31), Spin12 (NŽ 53), ^3

0 SP6 (NŽ 56)
and E7 (NŽ 65) are all of the same type: Using the tables [5, Table 6], [4, Table 1] all these
modules fulfil (N̄0ÒVH) ≤ (CŁÒ C2) and dim VÛÛG = dim VHÛÛN̄0 = 1. CŁ acts on C2 by a
positive and a negative weight. By a limit consideration either line through the weight
vector is preserved by every õ 2 AutN̄0 (VH) implying that õ is linear (see Lemma 2.1).
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