EQUIVARIANT POLYNOMIAL AUTOMORPHISMS OF Θ-REPRESENTATIONS

ALEXANDRE KURTH

ABSTRACT. We show that every equivariant polynomial automorphism of a Θ -representation and of the reduction of an irreducible Θ -representation is a multiple of the identity.

1. Introduction. Given a representation *V* of an algebraic group *G* over \mathbb{C} we ask the question: What is Aut_{*G*}(*V*), the group of polynomial automorphisms that commute with the linear *G*-action. For many reducible representations nonlinear equivariant automorphisms exist: Consider for example the SL₂-module $R_2 \oplus R_4$ where R_j denotes the binary forms of degree *j*. The map $(p,q) \mapsto (p,q+p^2)$ is an SL₂-equivariant automorphism. For more information on SL₂-automorphisms of R_j see [13].

In order to determine $\operatorname{Aut}_G(V)$ for a simple *G*-module it suffices to assume *G* is semisimple. First replace *G* by the reductive group G/R(G) since the radical R(G) acts trivially on a simple module, and note that if there exists a one-dimensional subgroup of the center acting nontrivially, every automorphism commuting with this action therefore induces an automorphism on a projective space which is linear [6, II. Example 7.1.1].

In this work we investigate Aut_{*G*}(*V*) for the so-called Θ -representations $G \to \operatorname{GL}(V)$ which are defined as follows: Given a \mathbb{Z}_m -graduation on a simple Lie algebra $\mathfrak{g} = \bigoplus_{j \in \mathbb{Z}_m} \mathfrak{g}_j$ (with $[\mathfrak{g}_i, \mathfrak{g}_j] \subset \mathfrak{g}_{i+j}$) the induced \mathfrak{g}_0 -operation on \mathfrak{g}_1 defines a *G*-module structure on \mathfrak{g}_1 (called Θ -representation) where *G* is a connected reductive group with Lie algebra \mathfrak{g}_0 (see 3 for details). These representations which were classified by Kac ([8], [7]) have some properties of the adjoint representations. We call the representation of the commutator subgroup (*G*, *G*) on \mathfrak{g}_1 the *reduction of the* Θ -*representation*. The main result of this work is:

THEOREM (3.3).

- (a) The automorphism group of a Θ -representation $G \to GL(V)$ of a semisimple group G is $\mathbb{C}^* \operatorname{id}_V$.
- (b) The automorphism group of the reduction of an irreducible Θ-representation is also C^{*} id_V.

The question arises whether there is a simple module with nonlinear automorphisms. In [14] it is shown that the natural $SL_3 \times SL_5 \times SL_{13}$ -representation has an automorphism group of dimension 2. This is the lowest dimensional module with an open orbit and nonlinear equivariant automorphisms.

©Canadian Mathematical Society 1998.

Received by the editors March 17, 1997; revised July 24, 1997. AMS subject classification: 14L30, 14L27.

Theorem 3.3 is proved case by case to some extent. We distinguish between several types of Θ -representations such as adjoint representations, or more generally the ones with finite Nor_{*G*}(*H*)/*H* (where *H* denotes a generic isotropy group). We separately look at the prehomogeneous Θ -representations, and finally the ones without any of the properties above. The biggest class of Θ -representations ($\bar{N} := \text{Nor}_G(H)/H$ finite) can be handled by a general statement (Lemma 3.1). All the remaining ones are checked case by case to have no nonlinear equivariant automorphisms (Sections 5 and 6). However, the embedding of a generic stabilizer *H* of the Θ -representation *V* and its fixed point space V^H is of great importance. It is given for many examples of Θ -representations. In fact, if $\text{Aut}_{\bar{N}}(V^H)$ only consists of linear automorphisms, then so does $\text{Aut}_G(V)$ (see proof of 2.3). For few of the Θ -representations (6.1, 6.2) the method of restitution of multilinear invariants is used [10, Section 6].

The automorphism group of a *G*-module is related to a rationality question of the linearization problem: For a (finite) Galois field extension $k \subset K$ in characteristic 0 the non-abelian cohomology $\mathrm{H}^1(\mathrm{Gal}(K/k), \mathrm{Aut}_{G_K}(V_K))$ is the set of isomorphism classes of G_k -actions on the space V_k (defined over k) becoming G_K -isomorphic to the G_K -module V_K by field extension [14, Appendix], [22, III. 1]. If $\mathrm{Aut}_{G_K}(V_K) = K^* \mathrm{id}_{V_K}$, then $\mathrm{H}^1(\mathrm{Gal}(K/k), \mathrm{Aut}_{G_K}(V_K)) = 0$ which shows that every G_k -action on the affine space \mathbb{A}_k^n which is G_K -isomorphic to V_K is also linearizable over the subfield k.

ACKNOWLEDGEMENT. This work is part of the author's Ph.D. thesis [12]. I thank my supervisor Hanspeter Kraft for his support and help and Peter Littelmann for his helpful suggestions.

2. Remarks on *G*-modules with closed generic orbit. Let *G* be a reductive group and *V* a finite dimensional *G*-module. By a theorem of Matsushima the stabilizer G_v , $v \in V$ where $Gv \subset V$ is a closed orbit, is a reductive group [17], [16, I.2.].

For a closed subgroup $H \subset G$ the subgroup $\operatorname{Nor}_G(H) := \{g \in G \mid gHg^{-1} = H\}$ is called the normalizer of H and define $\overline{N} := \operatorname{Nor}_G(H)/H$. It induces a linear \overline{N} -action on the fixed point space $V^H = \{v \in V \mid hv = v \forall h \in H\}$.

The set of conjugacy classes (G_v) where $Gv \subset V$ is a closed orbit, is partially ordered, that is $(G_1) \leq (G_2)$ if G_1 is conjugate to a subgroup of G_2 . There is a unique minimal isotropy class (H) of the above set, called the principal isotropy class [16]. Let $H \subset G$ now be a principal isotropy group, *i.e.*, (H) is minimal. If G is semisimple and \bar{N} finite, then it follows from a theorem of Kraft-Petrie-Randall [11, Corollary 5.5] that $V^H/\bar{N} \cong \mathbb{C}^r$ for some $r \in \mathbb{N}$. By Chevalley's Theorem \bar{N} therefore acts on V^H as a finite reflection group (cf. for example [23, Theorem p. 76]).

DEFINITION. A set of hyperplanes $\{H_i \subset \mathbb{C}^n\}_{i \in I}$ is said to be in general position if $\bigcap_{i \in I} H_i = \{0\}$.

LEMMA 2.1. Let $\varphi: \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial automorphism. If φ stabilizes every element of a set of hyperplanes $H_i := Z(l_i)$, $i \in I$ in general position, then φ is diagonalizable; in particular φ is linear.

PROOF. Consider the induced (linear) automorphism on the regular functions of \mathbb{C}^n denoted by $\varphi^*: \mathbb{C}[\mathbb{C}^n] \to \mathbb{C}[\mathbb{C}^n]$. We have that $\varphi^*(l_i)(v) = l_i(\varphi(v)) = 0$ for any $v \in H_i$, consequently $\varphi^*(l_i) \in \mathbb{C}l_i$. Since the hyperplanes are in general position there is a basis l_1, \ldots, l_n of $(\mathbb{C}^n)^*$ (after renumbering). This means φ is diagonal with respect to the dual basis of l_1, \ldots, l_n .

REMARK 2.2. If *V* is a simple *G*-module, then by 2.1 every $\sigma \in \operatorname{Aut}_G(V)$ which stabilizes a hyperplane is a homothety. A general $\sigma \in \operatorname{Aut}_G(V)$ preserves every line $\mathbb{C}(gv)$ where *v* is a highest weight vector and $g \in G$, since $\mathbb{C}v$ is the fixed point space V^U of a maximal unipotent subgroup $U \subset G$. In fact, $u\sigma(\mathbb{C}v) = \sigma(u\mathbb{C}v) = \sigma(\mathbb{C}v)$ for all $u \in U$, so $\sigma|_{\mathbb{C}v} = \lambda \operatorname{id}_{\mathbb{C}v}$ for some $\lambda \in \mathbb{C}^*$, and by equivariance $\sigma|_{\mathbb{C}gv} = \lambda \operatorname{id}_{\mathbb{C}gv}$. For every $x \in V^*$ this implies that $\sigma^*(x)(gv) = x(\sigma(gv)) = x(\lambda gv)$. However, $\sigma^*(x)$ may not be a multiple of *x*, for we cannot show $\sigma^*(x)(w) = x(\lambda w)$ for all $w \in V$. It would need the fact $\sigma^*(x)(g_1v + g_2v) = x(\sigma(g_1v + g_2v)) = x(\sigma(g_1v) + \sigma(g_2v))$, but σ is not linear.

THEOREM 2.3. Let G be a semisimple group, V a simple G-module and $H \subset G$ a principal isotropy group. If the generic orbit is closed and $\overline{N} = \operatorname{Nor}_{G}(H)/H$ is finite then $\operatorname{Aut}_{G}(V) = \mathbb{C}^* \operatorname{id}_{V}$.

PROOF. Let $H_1, \ldots, H_t \subset V^H$ be the hyperplanes associated to the generating reflections s_1, \ldots, s_t of \bar{N} . Suppose $V_1 := \bigcap_{i=1}^t H_i \neq \{0\}$. $V_1 \subset V^H$ is \bar{N} -stable, and let V_2 be an \bar{N} -stable complement in V^H . Take an $x \in (V^H)^*$, $x \neq 0$ which vanishes on V_2 . It is easy to see that ${}^sx(v_j) = x(v_j)$ for all $v_j \in V_j$ and $s \in \bar{N}$, j = 1, 2. Hence $x \in \mathbb{C}[V^H]^{\bar{N}}$ which is isomorphic to $\mathbb{C}[V]^G$ by a theorem of Luna-Richardson. This means there is a nontrivial *G*-fixed point in V^* which is impossible since V^* is simple. It follows that the hyperplanes H_1, \ldots, H_t are in general position. So by the Lemma 2.1 above $\sigma|_{V^H}$ is linear.

We obtain the relation $\sigma \circ \lambda \operatorname{id}_V - \lambda \operatorname{id}_V \circ \sigma = 0$ on GV^H , even on *V* since *H* is a generic stabilizer, *i.e.*, $\overline{GV^H} = V$. So σ induces an automorphism on the projective space $\mathbb{P}V$ which has to be linear [6, II. Example 7.1.1]. Schur's Lemma finishes the proof.

The essential point in the proof is the general position of the hyperplanes H_j . A *G*-module *V* without nontrivial *G*-fixed points also guarantees this property. So we state the following corollary:

COROLLARY 2.4. Let G be a semisimple group and V a G-module. Let the generic orbit be closed and \overline{N} finite (thus a finite reflection group). If the hyperplanes, associated to the generators of \overline{N} are in general position, then $\operatorname{Aut}_G(V)$ only consists of linear automorphisms. In particular, if $V^G = \{0\}$, then all automorphisms in $\operatorname{Aut}_G(V)$ are linear.

These statements show that the adjoint representation of a semisimple group *G* only admits linear automorphisms. In fact, the generic isotropy group is a maximal torus and the generic orbit is closed. The Weyl group $\bar{N} := \operatorname{Nor}_G(T)/T$ acts on (Lie G)^{*T*} = Lie *T* by reflections. The hyperplanes of the associated generators of \bar{N} have trivial intersection. The adjoint representation of *G* is simple if and only if Lie *T* is a simple \bar{N} -module and

this is equivalent to *G* being a simple group. So by Corollary 2.4 one obtains (*cf.* [1, 2.2 Proposition]):

THEOREM 2.5. Let G be a semisimple group. Every G-equivariant automorphism of the adjoint representation is linear. In particular, such an automorphism is a multiple of the identity in case G is simple.

3. Introduction to Θ -representations. For many aspects adjoint representations are the 'nicest' representations. A class of nice representations which contains the adjoint representations, is the set of Θ -representations. They fulfill two important properties which also hold for the adjoint representations: coregularity (the algebra of invariant functions has algebraically independent homogeneous generators) and visibility (any fiber of the corresponding quotient map has the same dimension) [15].

Let (\mathfrak{g}, Θ) (or (\mathfrak{g}, m)) denote the \mathbb{Z}_m -graded Lie algebra

$$\mathfrak{g} = igoplus_{j \in \mathbb{Z}_m} \mathfrak{g}_j$$

where $m \in \{1, 2, 3, ...\} \cup \{\infty\}$ and $\mathbb{Z}_{\infty} := \mathbb{Z}$. Let Θ denote the corresponding linear automorphism

$$\Theta(x) = \varepsilon^j x, \quad x \in \mathfrak{g}_i, \text{ where } \varepsilon = e^{2\pi i/m}, \text{ if } m \neq \infty$$

and

$$\Theta_t(x) = t^j x, \quad x \in \mathfrak{g}_i, \text{ where } t \in \mathbb{C}^*, \text{ if } m = \infty.$$

There is a one-to-one correspondence between the isomorphism classes of \mathbb{Z}_m -gradings on g and the classes of conjugate automorphisms of period *m* of g if $m \neq \infty$, respectively the one-dimensional tori in the automorphism group of g if $m = \infty$.

Let (\mathfrak{g}, Θ) now be a simple \mathbb{Z}_m -graded Lie algebra. The adjoint representation of \mathfrak{g} induces by restriction a \mathfrak{g}_0 -module \mathfrak{g}_1 ; the adjoint group G_0 of the Lie algebra \mathfrak{g}_0 is a connected algebraic group, called Θ -group (cf. [24] and [8]).

Set $G := G_0$, $V := g_1$ and let θ be the restriction of the adjoint representation Ad to G, *i.e.*,

$$\theta := \operatorname{Ad} |_G : G \longrightarrow \operatorname{GL}(V).$$

 θ is called the Θ -representation of (\mathfrak{g}, Θ) .

The semisimple elements in g are precisely the elements of closed orbits of the adjoint representation. This is still true for the Θ -representation θ of a reductive graded Lie algebra (\mathfrak{g}, Θ): an element $x \in \mathfrak{g}_1 \subset \mathfrak{g}$ is semisimple if and only if Gx is a closed orbit [24, Section 2.4. Proposition 3]. An abelian maximal subspace $\mathfrak{c} \subset V$ consisting of semisimple elements is called a Cartan subspace. Every closed orbit in V intersects any fixed Cartan subspace [24, Corollary p. 473].

The notion of the Weyl group of an adjoint representation can be carried over to the Θ -representations: Let Nor_{*G*}(\mathfrak{c}) := { $g \in G \mid \theta(g)\mathfrak{c} = \mathfrak{c}$ } and $Z_G(\mathfrak{c}) := {g \in G \mid \theta(g)\mathfrak{c} = \mathfrak{c}}$ $x \forall x \in \mathfrak{c}$ }, then $W := \operatorname{Nor}_G(\mathfrak{c})/Z_G(\mathfrak{c})$ is a finite reflection group ([24, Section 3.4. Prop. 3, Section 6.1. Thm. 8]) called the Weyl group of the graded Lie algebra (\mathfrak{g}, Θ) . The (geometric) quotient \mathfrak{c}/W of the induced *W*-module \mathfrak{c} is isomorphic to $V/\!/G$ [24, Section 4.4. Theorem 7], thus we obtain an isomorphism on the invariant polynomial functions $\mathbb{C}[V]^G \cong \mathbb{C}[\mathfrak{c}]^W$ which is induced by the restriction map. This implies dim $\mathfrak{c} = \dim V/\!/G$.

We determine Aut_{*G*}(*V*) for all irreducible Θ -representations (*G*, *V*) of simple graded Lie algebras (\mathfrak{g}, m). The latter were classified by Kac (*cf.* [8], [24], [7]). So from now on let \mathfrak{g} be simple. If $m = \infty$ then $\mathbb{C}[V]^G = \mathbb{C}$ (and $\mathfrak{c} = 0$) since $\theta(G)$ contains \mathbb{C}^* id_{*V*} induced by the automorphisms Θ_t , $t \in \mathbb{C}^*$. In fact, all derivations of \mathfrak{g} are inner, so $t \mapsto \Theta_t$ corresponds to a one-dimensional torus in the adjoint group G_0 . So in case $m = \infty$ every *G*-automorphism induces an automorphism on the projective space $\mathbb{P}V$ since it commutes with \mathbb{C}^* id_{*V*} $\subset \theta(G)$, *i.e.*, Aut_{*G*}(*V*) only contains linear elements [6, II. Example 7.1.1]. We therefore consider *V* as a (*G*, *G*)-module called the *reduction of the* Θ -*representation*. Note that Popov and Vinberg call it the reduced Θ -representation (*cf.* [19, 8.5]). In Table 4.4 where all (irreducible) Θ -representations will be listed, the reduction of the Θ -representation is taken for the Θ -type (\mathfrak{g}, ∞).

Interestingly, if the Θ -group *G* is semisimple, *V* is automatically a simple *G*-module ([24, Section 8.3. Proposition 18]). Among several methods to find Aut_{*G*}(*V*) Theorem 2.3 is the most important one. So we start looking more closely at Θ -representations with generically closed orbits.

LEMMA 3.1. Let (\mathfrak{g}, Θ) be a simple \mathbb{Z}_m -graded Lie algebra where the associated Θ -representation (G, V) has generically closed orbits. Let G_{Θ} be a connected algebraic group with Lie $(G_{\Theta}) = \mathfrak{g}$ and $\mathfrak{c} \subset V$ denote a Cartan subspace, then:

- (a) $H := Z_G(\mathfrak{c}) = Z_{G_{\Theta}}(\mathfrak{c}) \cap G$ is a generic isotropy group.
- (b) $\mathfrak{c} \subseteq V^H$; moreover, $\mathfrak{c} = V^H$ (or equivalently dim $V//G = \dim V^H$) if and only if $\overline{N} := \operatorname{Nor}_G(H)/H$ is a finite group.
- (c) If G is semisimple and $c = V^H$, then $\operatorname{Aut}_G(V) = \mathbb{C}^* \operatorname{id}_V$.

PROOF. (a) Since the generic orbit is closed, it consists of semisimple elements and intersects \mathfrak{c} . Let $x \in \mathfrak{c}$ be a generic element, then $Z_{G_{\Theta}}(x) \cap G$ is a generic isotropy group. Using [24, Section 3.2] we see that $H = Z_{G_{\Theta}}(\mathfrak{c}) \cap G = Z_{G_{\Theta}}(x) \cap G$ (recall that $Z_{G_{\Theta}}(\mathfrak{c})$ is connected).

(b) Clearly $\mathfrak{c} \subseteq V^H$. If $\mathfrak{c} = V^H$, then it is easy to see that $\operatorname{Nor}_G(H) = \operatorname{Nor}_G(V^H) := \{g \in G \mid (\operatorname{Ad} g)_V \in V^H \; \forall_V \in V^H\}$. So $\overline{N} = \operatorname{Nor}_G(H)/H = W$ is finite. For the converse set $N := \operatorname{Nor}_G(\mathfrak{c})$. Since $G\mathfrak{c} \subset V$ is dense dim $V = \dim(G \times^N \mathfrak{c}) = \dim G + \dim \operatorname{Cor}_G(\mathfrak{c})$, and analogously dim $V = \dim G + \dim V^H - \dim \operatorname{Nor}_G(H)$. Therefore dim $\mathfrak{c} = \dim V^H$ since both, W = N/H and $\operatorname{Nor}_G(H)/H$ are finite. Recall that $G \times^N \mathfrak{c}$ is the (geometric) quotient of $G \times \mathfrak{c}$ by the group N; it is acting by $n(g, x) = (gn^{-1}, nx)$ where $n \in N$ and $(g, x) \in G \times \mathfrak{c}$.

(c) now follows from (b) and Theorem 2.3.

REMARK 3.2. Popov and Vinberg state in [19, 8.5] that $V^{Z_G(c)} = c$ for $m < \infty$. This is a mistake. In fact, consider for example the Θ -representation $(E_6^{(1)}, 2)$ (N° 29 in Table 4.4).

383

In 6.3 we show that dim $c = \dim V / / G = 2$ and dim $V^H = 16$ where *H* denotes a generic stabilizer.

The main result of this work is:

THEOREM 3.3.

- (a) The automorphism group of a Θ -representation $G \to GL(V)$ of a semisimple group G is $\mathbb{C}^* \operatorname{id}_V$.
- (b) The automorphism group of the reduction of an irreducible Θ-representation is also C^{*} id_V.

Recall that every Θ -representation is irreducible in case *G* is semisimple [24, Section 8.3. Proposition 18]. If *G* is reductive (and not semisimple), then the automorphism group of a Θ -representation is \mathbb{C}^* id_V, because the center of *G* acts as scalar transformations on *V*. In this case $\mathbb{C}[V]^G = \mathbb{C}$ and the Θ -representation is of type (\mathfrak{g}, ∞) (*cf*. [8, Proposition 3.1.I.] and [24, Section 8.3.]).

REMARK 3.4. Unfortunately, Theorem 3.3 is not valid for reductions of reducible Θ -representations. The $G := \operatorname{SL}_m \times \operatorname{SP}_{2n} \times T_1$ -module $V := (\mathbb{C}^m)^* \oplus (\mathbb{C}^m \otimes \mathbb{C}^{2n})$ defined by

$$(g, s, t).(x, v \otimes w) := \left(t^{2mn} \cdot (g^t)^{-1}x, t^{-m}(gv \otimes sw)\right)$$

is the reduction of the reducible Θ -representation (C_{m+n+1}, ∞) . Its automorphism group $\operatorname{Aut}_G(V)$ is 3-dimensional if $2(\frac{2n-1}{m}+1) \in \mathbb{Z}$ whereas the group of linear *G*-automorphisms is 2-dimensional. The proof is different from the methods for proving 3.3. Moreover, it is quite lengthy, it uses the Littlewood-Richardson Theorem. I refer to my Ph.D. thesis [12, 7.8].

For convenience we give the complete list of the irreducible Θ -representations, resp. of the reductions of them. All data not computed in this work, is taken from [8, Table II, III], corrections in [3]. For a complete table with the degrees of the homogeneous generating invariants see [15]. In case $m = \infty$ the group *G* in Table 4.4 always denotes the corresponding reduction of the Θ -group described as above. Without confusion they will also be called Θ -groups. Thus *G* is always a semisimple group.

The following notations are used in Table 4.4: For *G* acting on a vector space *V* we denote by S^iG (\wedge^iG , respectively) the *G*-module of the *i*-th symmetric (exterior, respectively) power of *V*. The highest irreducible component of S^iG is denoted by S_0^iG and analogously for \wedge_0^iG . The column labeled by \mathfrak{h} contains the Lie algebra type of a generic stabilizer unless $\mathfrak{h} = 0$, where the finite isotropy group is given after dividing with the kernel of the representation. \mathfrak{A}_k denotes the group of even permutations of *k* elements. The explicit decomposition of the finite generic stabilizers as semidirect products is omitted. *A*, *B*, *C*, *D*, *E*, *F*₄, *G*₂ denote the simple Lie algebra indexed by their rank. \mathfrak{t}_k is the Lie algebra of a *k*-dimensional torus and \mathfrak{u}_j is a *j*-dimensional nilpotent Lie algebra.

The rubric 'method' describes how $\operatorname{Aut}_G(V) = \mathbb{C}^* \operatorname{id}_V$ is verified: The expression 'prehom.' means that the corresponding module is prehomogeneous, *i.e.*, it has a dense

ALEXANDRE KURTH

orbit. They are handled in Proposition 5.1. The 'adjoint' representations have been settled in 2.5. 'Finite \overline{N} ' says that $\operatorname{Nor}_G(H)/H$ is finite, so we can make use of 3.1, respectively of Theorem 2.3 in case of a reduced Θ -representation with one-dimensional quotient. In some cases the tables of Élashvili [4], [5] are used to check dim $V//G = \dim V^H$ (which is equivalent to the finiteness of $\overline{N} = \operatorname{Nor}_G(H)/H$), but mostly we refer to later computations. The abbreviation 'restitution' stands for the restitution of multilinear covariants [10, Section 6] which is explicitly verified for $SO_n \otimes SP_{2m}$ in 6.1.

REMARK 3.5. If the generic isotropy group *H* is reductive, then G/H is affine, and therefore the generic orbit is closed [9, II.4.3. Satz 6]. All Θ -representations with dim V//G > 0 have generically closed orbits except N° 4b in Table 4.4.

4. Equivariant automorphisms of Θ -representations with finite \bar{N} . In this section we give details of Θ -representations $G \to GL(V)$ with dim $V^H = \dim V//G$ or equivalently with finite \bar{N} in order to apply Lemma 3.1. This shows that every *G*-automorphism is a homothety. The finiteness of \bar{N} for some Θ -representations was shown by Élashvili [4], [5] as pointed out in Table 4.4. So, for the examples not referred to the literature we briefly indicate the representation space *V*, the embedding of a generic stabilizer $H \subset G$ as well as the fixed point space V^H . The corresponding Θ -group is always denoted by *G* and its Lie algebra by g. For the verification of a stabilizer $H = G_v$, $v \in V$ to be generic, we sometimes use the equivalent condition that $\{u \in V^H \mid G_u = H\}$ is dense in V^H and $V = (\text{Lie } G).v + V^H$ (see [19, Theorem 7.3]). The equality dim G + dim V^H – dim $\text{Nor}_G(H) = \dim V$ (*i.e.*, $\overline{GV^H} = V$) also implies that $\{g \in G \mid gv = v \forall v \in V^H\}$ is a generic isotropy group.

4.1. $SL_n \otimes SL_n$. The representation space is the set of $n \times n$ -matrices M_n , and $H = G_{E_n} = \{(A, A) \in G \mid A \in SL_n\}$. So $M_n^H = \mathbb{C}E_n$.

4.2. $\operatorname{SL}_n \otimes \operatorname{SO}_m$, $3 \le n = m$ and $1 \le n < m$. Let *V* denote the space of $n \times m$ -matrices $\operatorname{M}_{n \times m}$. Let $M_0 := (E_n \mid 0) \in V$, then $H = G_{M_0} = \left\{ \left(A, \begin{pmatrix} A \\ B \end{pmatrix}\right) \mid A \in \operatorname{SO}_n, B \in \operatorname{SO}_{m-n} \right\}$ and $V^H = \mathbb{C}M_0$.

4.3. $S_0^2 \operatorname{SO}_n$, n > 4. This representation is the SO_n -conjugation on $V = \operatorname{Sym}_n / \mathbb{C}E_n$ where Sym_n denotes the symmetric $n \times n$ -matrices. Let $A := \operatorname{diag}(1, 2, \dots, n)$ then $H = G_A = \{S = \operatorname{diag}(\pm 1, \dots, \pm 1) \mid \det S = 1\} \cong (\mathbb{Z}_2)^{n-1}$. One obtains dim $V^H = n - 1 = \operatorname{dim} V / / G$.

4.4. $\operatorname{SO}_n \otimes \operatorname{SO}_m$, $n \ge m > 2$. The composition $V = \operatorname{M}_{n \times m} \xrightarrow{\pi_{\operatorname{SO}_m}} S^2 \mathbb{C}^m \xrightarrow{\pi_{\operatorname{SO}_m}} \mathbb{C}^m$ is the $G = \operatorname{SO}_n \times \operatorname{SO}_m$ -quotient where π_L denotes the quotient by the group L. The matrix $A_0 := \left(\frac{A}{0}\right) \in V$ is an element of the generic orbit where A is defined as in 4.3. Then $H = G_{A_0} = \left\{ \left(\begin{pmatrix} S \\ T \end{pmatrix}, S \right) \mid S = \operatorname{diag}(\pm 1, \ldots, \pm 1) \in \operatorname{SO}_m, T \in \operatorname{SO}_{n-m} \right\}$ and $V^H = \left\{ \begin{pmatrix} D \\ 0 \end{pmatrix} \mid D \in \operatorname{M}_m$ is diagonal $\right\}$.

N°	G	Θ-type	h	$\dim V/\!/G$	method
la 1b	$SL_n \otimes SL_m$ $n > m \ge 1$ $n = m \ge 1$	(A_{n+m-1},∞)	$ \begin{split} & \mathfrak{sl}_{n-m} + \mathfrak{sl}_m + \mathfrak{u}_{m(n-m)} \\ & \mathfrak{sl}_n \end{split} $	0 1	prehom. 5.1 finite \bar{N} , 4.1
2a 2b 2c	$SL_n \otimes SO_m$ $n > m \ge 3$ $n = m \ge 3$ $1 \le n < m$	$(B_{n+m},\infty)^{-1}$ $(D_{n+m},\infty)^{-1}$	$\mathfrak{sl}_{n-m} + \mathfrak{so}_m + \mathfrak{u}_{m(n-m)}$ \mathfrak{so}_m $\mathfrak{so}_n + \mathfrak{so}_{m-n}$	0 1 1	prehom. 5.1 finite \bar{N} , 4.2 finite \bar{N} , 4.2
3a 3b 3c	$\begin{aligned} & \operatorname{SL}_n \otimes \operatorname{SP}_{2m} \\ & n > 2m \ge 4 \\ & 1 \le n < 2m, n \text{ odd} \\ & 2 \le n \le 2m, n \text{ even} \end{aligned}$	(C_{n+m},∞)	$ \begin{split} & \mathfrak{sl}_{n-2m} + \mathfrak{sp}_{2m} + \mathfrak{u}_{2m(n-2m)} \\ & \mathfrak{sp}_{n-1} + \mathfrak{sp}_{2m-n-1} + \mathfrak{u}_{2m-1} \\ & \mathfrak{sp}_n + \mathfrak{sp}_{2m-n} \end{split} $	0 0 1	prehom. 5.1 prehom. 5.1 restitution, 6.2
4a 4b 4c	$SO_n \otimes SP_{2m}$ $n > 2m \ge 4$ $2 < n < 2m, n \text{ odd}$ $2 < n \le 2m, n \text{ even}$	$(A_k^{(2)}, 4)$ k odd k even	$ \begin{split} & \mathfrak{t}_m + \mathfrak{so}_{n-2m} \\ & \mathfrak{t}_{\frac{n-1}{2}} + \mathfrak{sp}_{2m-n-1} + \mathfrak{u}_{2m-n} \\ & \mathfrak{t}_{\frac{n}{2}} + \mathfrak{sp}_{2m-n} \end{split} $	$\frac{\frac{n-1}{2}}{\frac{n}{2}}$	restitution, 6.1 restitution, 6.1 restitution, 6.1
5	$\mathrm{SO}_n\otimes\mathrm{SO}_m$ $n\geq m>2$	$(B_{k}^{(1)}, 2)^{2}$ $(D_{k}^{(1,2)}, 2)^{2}$	⇒໋ 0 _{n−m}	т	finite <i>N</i> , 4.4
6	$SP_{2n} \otimes SP_{2m}$ $n \ge m > 1$	$(C_n^{(1)}, 2)$	$m\mathfrak{sl}_2 + \mathfrak{sp}_{2n-2m}$	т	finite \bar{N} , 4.5
7	Ad SL _n , $n > 2$	$(A_n^{(1)}, 1)$	t_{n-1}	n-1	adjoint
8a 8b	$ ^{2} SL_{n} n odd \ge 3 n even \ge 4 $	(D_n,∞)	$ \mathfrak{sp}_{n-1} + \mathfrak{u}_{n-1} \\ \mathfrak{sp}_n $	0 1	prehom. 5.1 finite \bar{N} , [4]
9	S^2 SL _n , $n \ge 3$	(C_n,∞)	so_n	1	finite \bar{N} , [4]
10a	$\wedge^2 SO_n$ n > 3 odd	$(B_n^{(1)}, 1)$	$t_{\frac{n-1}{2}}$	$\frac{n-1}{2}$	adjoint
106	n > 5 even	$(D_n^{(1)}, 1)$ $(C_n^{(1)}, 1)$	$t \frac{n}{2}$	2	adjoint
11	$s^2 s c$	$(C_n, 1)$ $(A^{(2)}, 4)$	1 _n	п	aujoint
12a 12b	n > 4 odd $n > 4 even$	(1, ,))	$\begin{array}{c} (\mathbb{Z}_2)^{n-1} \\ (\mathbb{Z}_2)^{n-2} \end{array}$	$n - 1 \\ n - 1$	finite \bar{N} , 4.3 finite \bar{N} , 4.3
13	$\wedge_0^2\operatorname{SP}_{2n}, n>2$	$(A_{2n+1}^{(2)}, 2)$	nA ₁	n-1	finite \bar{N} , [4]
14	S^3 SL ₂	(G_2,∞)	\mathbb{Z}_3	1	6.1
15	S^4 SL ₂	$(A_2^{(2)}, 4)$	$(\mathbb{Z}_2)^2$	2	finite \bar{N} , 4.6
16	S^3 SL ₃	$(D_4^{(3)}, 3)$	$(\mathbb{Z}_3)^2$	2	finite \bar{N} , 4.7
17	\wedge^3 SL ₆	(E_6,∞)	$A_2 + A_2$	1	6.7
18	\wedge^3 SL ₇	(E_7,∞)	G_2	1	finite \bar{N} , [4]
19	\wedge^3 SL ₈	(E_8,∞)	A_2	1	finite \bar{N} , [4]
20	\wedge^3 SL ₉	$(E_8^{(1)}, 3)$	$(\mathbb{Z}_3)^4$	4	finite \bar{N} , 4.8

TABLE I

¹ In either case if *m* is odd, B_{n+m} is the Θ -type, and D_{n+m} else. ² Depending on the parity of *n* and *m* the Θ -type is chosen; so if *n* and *m* are odd it is $(D_{\frac{n+m}{2}}^{(2)}, 2)$.

386

ALEXANDRE KURTH

N°	G	Θ-type	ħ	dim <i>V</i> // <i>G</i>	method	
21	$\wedge^4 \operatorname{SL}_8$	$(E_7^{(1)}, 2)$	$(\mathbb{Z}_2)^6$	7	finite <i>N</i> , 4.9	
22	$SL_2 \otimes S^3 SL_2$	$(G_2^{(1)}, 2)$	$(\mathbb{Z}_2)^2$	2	finite <i>N</i> , 4.11	
23	$\operatorname{SL}_2\otimes S^2\operatorname{SL}_3$	(F_4,∞)	\mathfrak{A}_4	1	6.2	
24	$SL_2 \otimes S^2 SL_4$	$(E_6^{(2)}, 4)$	$(\mathbb{Z}_4)^2$	2	finite <i>N</i> , 4.12	
25	$\operatorname{SL}_2\otimes\wedge^2\operatorname{SL}_5$	(E_6,∞)	$A_1 + \mathfrak{u}_4$	0	prehom. [5]	
26	$\operatorname{SL}_2 \otimes \wedge^2 \operatorname{SL}_6$	(E_7,∞)	3A ₁	1	6.4	
27	$SL_2\otimes\wedge^2 SL_7$	(E_8,∞)	$A_1 + \mathfrak{u}_6$	0	prehom. [5]	
28	$\operatorname{SL}_2\otimes\wedge^2\operatorname{SL}_8$	$(E_8^{(1)}, 4)$	$4A_1$	2	6.4	
29	$\operatorname{SL}_2 \otimes \wedge^3 \operatorname{SL}_6$	$(E_6^{(1)}, 2)$	t ₂	4	6.3	
30	$SL_2 \otimes \wedge^3_0 SP_6$	$(F_{A}^{(1)}, 2)$	$(\mathbb{Z}_2)^3$	4	6.3	
31	$SL_2 \otimes Spin_7$	$(E_6^{(2)}, 4)$	$A_2 + t_1$	1	6.7	
32	$SL_2 \otimes Spin_{10}$	(E_7,∞)	$G_2 + A_1$	1	6.7	
33	$SL_2 \otimes Spin_{12}$	$(E_7^{(1)}, 2)$	3A ₁	4	6.7	
34	$SL_2 \otimes E_6$	(E_8,∞)	D_4	1	6.7	
35	$SL_2 \otimes E_7$	$(E_8^{(1)}, 2)$	D_4	4	6.7	
36	$SL_2 \otimes SL_3 \otimes SL_3$	(E_6,∞)	t ₂	1	6.3	
37	$SL_2 \otimes SL_3 \otimes SL_4$	(E_7,∞)	A_1	1	finite <i>N</i> , 4.14	
38	$SL_2 \otimes SL_3 \otimes SL_5$	(E_8,∞)	$A_1 + \mathfrak{u}_2$	0	prehom. [14, 3.]	
39	$SL_2 \otimes SL_3 \otimes SL_6$	$(E_8^{(1)}, 6)$	$A_2 + A_1$	1	finite <i>N</i> , 4.15	
40	$SL_2 \otimes SL_4 \otimes SL_4$	$(E_7^{(1)}, 4)$	t ₃	2	6.3	
41	$\operatorname{SL}_3\otimes {\it S}^2\operatorname{SL}_3$	$(F_4^{(1)}, 3)$	$(\mathbb{Z}_3)^2$	2	finite <i>N</i> , 4.13	
42	$SL_3\otimes\wedge^2 SL_5$	(E_7,∞)	A_1	1	finite <i>N</i> , [5]	
43	$\operatorname{SL}_3 \otimes \wedge^2 \operatorname{SL}_6$	$(E_7^{(1)}, 3)$	t ₁	3	6.5	
44	$\text{SL}_3 \otimes \text{Spin}_{10}$	(E_8,∞)	$A_1 + A_1$	1	finite <i>N</i> , [5]	
45	$SL_3 \otimes E_6$	$(E_8^{(1)}, 3)$	A_2	3	6.7	
46	$SL_3 \otimes SL_3 \otimes SL_3$	$(E_6^{(1)}, 3)$	$(\mathbb{Z}_3)^2$	3	6.4	
47	$SL_4\otimes \wedge^2 SL_5$	(E_8,∞)	\mathfrak{A}_5	1	finite <i>N</i> , 4.16	
48	$\text{SL}_4 \otimes \text{Spin}_{10}$	$(E_8^{(1)}, 4)$	$(\mathbb{Z}_2)^4$	4	6.6	
49	$SL_5 \otimes \wedge^2 SL_5$	$(E_{8}^{(1)}, 5)$	$(\mathbb{Z}_5)^2$	2	finite <i>N</i> , 4.17	
50	Spin ₇	(F_4,∞)	G_2	1	finite \bar{N} , [4]	
51	Spin ₉	$(F_{4}^{(1)}, 2)$	<i>B</i> ₃	1	finite <i>N</i> , [4]	
52	Spin ₁₀	(E_6,∞)	$B_3 + \mathfrak{u}_8$	0	prehom. [4]	
53	Spin ₁₂	(E_7,∞)	A_5	1	6.7	
54	Spin ₁₄	(E_8,∞)	$G_2 + G_2$	1	finite \bar{N} , [4]	
55	Spin ₁₆	$(E_8^{(1)}, 2)$	$(\mathbb{Z}_2)^8$	8	finite <i>N</i> , 4.10	
56	$\wedge_0^3 SP_6$	(F_4,∞)	A_2	1	6.7	
57	$\wedge_0^4 \operatorname{SP}_8$	$(E_6^{(2)}, 2)$	$(\mathbb{Z}_2)^6$	6	finite <i>N</i> , 4.9	

TABLE I (continued)

N°	G	Θ-type	\mathfrak{h}	dim <i>V//G</i>	method
58	$\operatorname{Ad} G_2$	$(G_2^{(1)}, 1)$	t ₂	2	adjoint
59	G_2	$(D_4^{(3)}, 3)$	A_2	1	finite \bar{N} , [4]
60	$\operatorname{Ad} F_4$	$(F_4^{(1)}, 1)$	t_4	4	adjoint
61	F_4	$(E_6^{(2)}, 2)$	D_4	2	finite \bar{N} , [4]
62	$\operatorname{Ad} E_6$	$(E_{6}^{(1)}, 1)$	t ₆	6	adjoint
63	E_6	(E_7,∞)	F_4	1	finite \bar{N} , [4]
64	$\operatorname{Ad} E_7$	$(E_7^{(1)}, 1)$	t ₇	7	adjoint
65	E_7	(E_8,∞)	E_6	1	6.7
66	$\operatorname{Ad} E_8$	$(\boldsymbol{E}_8^{(1)},1)$	t ₈	8	adjoint

TABLE I (continued)

4.5. $\operatorname{SP}_{2n} \otimes \operatorname{SP}_{2m}$, $n \ge m > 1$. The representation space *V* is $\operatorname{M}_{2n \times 2m}$. For $\mu \in \mathbb{C}$ define $D_{\mu} = \begin{pmatrix} -\mu \\ \mu \end{pmatrix}$ and let $J := \operatorname{diag}(D_1, \ldots, D_1)$ be a skew symmetric form of even rank 2k. Then the symplectic group and Lie algebra are defined by

$$SP_{2k} := \{ S \in GL_{2k} \mid SJS^t = J \} \text{ and } \mathfrak{sp}_{2k} := \{ s \in M_{2k} \mid sJ + Js^t = 0 \}$$

The stabilizer $\mathfrak{h} := \mathfrak{g}_{A_0}$ of $A_0 := \left(\frac{A}{0}\right) \in V$ where $A := \operatorname{diag}(D_1, \ldots, D_m)$ is a generic stabilizer:

$$\mathfrak{h} = \left\{ \left(\left(\frac{\operatorname{diag}(s_1, \dots, s_m) \mid 0}{0 \mid s'} \right), \operatorname{diag}(-s_1^t, \dots, -s_m^t) \right) \mid s_i \in \mathfrak{sl}_2, s' \in \mathfrak{sp}_{2n-2m} \right\} \\ \cong m \mathfrak{sl}_2 + \mathfrak{sp}_{2n-2m}$$

Then $V^{\mathfrak{h}} = \left\{ \left(\frac{\operatorname{diag}(D_{\lambda_1}, \dots, D_{\lambda_m})}{0} \right) \mid \lambda_1, \dots, \lambda_m \in \mathbb{C} \right\}$ and so dim $V^{\mathfrak{h}} = \operatorname{dim} V /\!/ G$.

4.6. S^4 SL₂. The representation space is $R_4 := \mathbb{C}[x, y]_4$. The binary dihedral group $H = G_{x^4+y^4} = \left\langle \begin{pmatrix} i \\ -i \end{pmatrix}, \begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\rangle$ is a generic isotropy group and dim $R_4^H = \dim R_4 //G$.

4.7. S^3 SL₃. Take the ternary cubics $V := \mathbb{C}[x_1, x_2, x_3]_3$ with the induced natural $G = SL_3$ -representation. Then

$$H = G_{x_1^3 + x_2^3 + x_3^3} = \left\{ \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix}, \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix}, \begin{pmatrix} \zeta_1 \\ \zeta_2 \\ \zeta_3 \end{pmatrix} \right| \begin{pmatrix} \zeta_1 \zeta_2 \zeta_3 = 1 \\ \zeta_i^3 = 1, i = 1, 2, 3 \\ \zeta_i^3 = 1, j = 1, 2, 3 \\ \zeta_i^3 = 1, j = 1, 2, 3 \\ \zeta_i^3 = 1, j = 1, 3, 3 \\ \zeta_i^3 = 1, 1, 2, 3 \\ \zeta_i^3 = 1, 2, 3 \\ \zeta_i^3 = 1, 1, 2, 3 \\ \zeta_i^3 = 1, 2, 3 \\ \zeta_i^3$$

is a generic isotropy group. It follows that $V^H = \mathbb{C}(x_1^3 + x_2^3 + x_3^3) \oplus \mathbb{C}x_1x_2x_3$ and therefore dim $V^H = \dim V / / G$.

4.8. $\wedge^3 SL_9$. Let e_1, \ldots, e_9 be a basis of \mathbb{C}^9 and (ijk) denote the skew symmetric tensor $e_i \wedge e_j \wedge e_k \in V := \wedge^3 \mathbb{C}^9$. Let us define

ALEXANDRE KURTH

$$p_1 := (123) + (456) + (789), \qquad p_2 := (147) + (258) + (369),$$

$$p_3 := (159) + (267) + (348), \qquad p_4 := (168) + (249) + (357).$$

 $p_3 := (159) + (267) + (348), \qquad p_4 := (168) + (249) + (357).$ The element $p := \lambda_1 p_1 + \lambda_2 p_2 + \lambda_3 p_3 + \lambda_4 p_4$ with $\lambda_1, \lambda_2, \lambda_3, \lambda_4 \in \mathbb{C}$ pairwise distinct, is an element of a generic orbit [25]. The stabilizer $H = G_p$ consists of the matrices $\binom{A_1}{A_2}_{A_3}, \binom{A_2}{A_1}_{A_2}, \binom{A_2}{A_1}_{A_3} \in G$ where the $A_j \in SL_3$ allow the following shapes:

either
$$A_j = \begin{pmatrix} \xi_{j1} \\ \xi_{j2} \\ \xi_{j3} \end{pmatrix}, \begin{pmatrix} \xi_{j3} \\ \xi_{j1} \\ \xi_{j2} \end{pmatrix}, \text{ or } \begin{pmatrix} \xi_{j2} \\ \xi_{j1} \\ \xi_{j1} \end{pmatrix}$$
 for all $j = 1, 2, 3$
$$(\xi_{11}, \xi_{12}, \xi_{13}) \quad (\xi_{21}, \xi_{22}, \xi_{23}) \quad (\xi_{31}, \xi_{32}, \xi_{33})$$
$$(1, \zeta, \zeta^2) \quad (1, \zeta, \zeta^2) \quad (1, \zeta, \zeta^2)$$
$$(\zeta, \zeta^2, 1) \quad (\zeta, \zeta^2, 1) \quad (\zeta, \zeta^2, 1)$$
$$(\zeta, 1, \zeta^2) \quad (\zeta^2, \zeta, 1) \quad (1, \zeta^2, \zeta)$$

The table on the right hand side lists three generators for the group isomorphic to $(\mathbb{Z}_3)^3$ of the entries of A_1, A_2, A_3 where $\zeta = e^{2\pi i/3}$ is a third root of unity. In fact, the entries of A_1 are described by $(\mathbb{Z}_3)^2$ and for any choice for A_1 there are 3 possibilities for A_2 and A_3 is uniquely determined by A_1, A_2 . After dividing by the kernel ($\cong \mathbb{Z}_3$) we see that $H \cong (\mathbb{Z}_3)^4$. So one obtains that $V^H = \mathbb{C}p_1 \oplus \mathbb{C}p_2 \oplus \mathbb{C}p_3 \oplus \mathbb{C}p_4$, and dim $V^H = \dim V//G$.

4.9. $\wedge^4 SL_8$ and $\wedge^4_0 SP_8$. This is analogous to the computations in 4.8. Let (*ijkl*) denote the skew symmetric tensor $e_i \wedge e_j \wedge e_k \wedge e_l$ where e_1, \ldots, e_8 is a basis of \mathbb{C}^8 . We define

$$\begin{array}{ll} p_1 := (1234) + (5678), & p_2 := (1278) + (3456), & p_3 := (1368) + (2457), \\ p_4 := (1467) + (2358), & & \\ p_5 := (1256) + (3478), & p_6 := (1357) + (2468), & p_7 := (1458) + (2367). \end{array}$$

The generic isotropy group is equal to $H := G_p$ where $p := \sum_{r=1}^7 rp_r$. It consists of the elements $\binom{A_1}{A_2}$, $\binom{A_2}{A_1} \in G$ where $A_1, A_2 \in SL_4$ have one of the four forms:

The description of the table is similar to 4.8. After dividing with the kernel $H \cong (\mathbb{Z}_2)^6$. Then $V^H = \bigoplus_{r=1}^7 \mathbb{C}p_r$ and dim $V^H = \dim V //G$.

These computations are also useful for $\wedge_0^4 SP_8$: Consider the $G = SP_8$ -module decomposition $\wedge^4 \mathbb{C}^8 = \wedge_0^4 \mathbb{C}^8 \oplus W \oplus \mathbb{C}_0$ where $W \cong \wedge_0^2 \mathbb{C}^8$ and $\mathbb{C}_0 = \mathbb{C}(p_5 + p_6 + p_7)$ is the trivial

G-module in $\wedge^4 \mathbb{C}^8$ (see [2, VI 5.3]). Moreover, it holds $\mathbb{C}p_1 \oplus \mathbb{C}p_2 \oplus \mathbb{C}p_3 \oplus \mathbb{C}p_4 \subset \wedge_0^4 \mathbb{C}^8$ and $\mathbb{C}(p_5 - p_6) \oplus \mathbb{C}(p_6 - p_7) \subset \wedge_0^4 \mathbb{C}^8$ [2, VI 5.3]. So define $p := \sum_{r=1}^4 rp_r + 5(p_5 - p_6) + 6(p_6 - p_7) \in \wedge_0^4 \mathbb{C}^8$ and from above we get that $H := G_p \cong (\mathbb{Z}_2)^6$. These considerations yield that $(\wedge_0^4 \mathbb{C}^8)^H = \bigoplus_{r=1}^4 \mathbb{C}p_r \oplus \mathbb{C}(p_5 - p_6) \oplus \mathbb{C}(p_6 - p_7)$, and therefore $\dim(\wedge_0^4 \mathbb{C}^8)^H = \dim \wedge_0^4 \mathbb{C}^8 // G$.

4.10. Spin₁₆. The generic isotropy group $H \cong (\mathbb{Z}_2)^8$ is embedded as follows [21, Table 2]: $H = (\mathbb{Z}_2)^6 \times (\mathbb{Z}_2)^2 \subset SP_8 / \{\pm id\} \times SO_3 \subset G = SO_{16}$ where $(\mathbb{Z}_2)^6$ is embedded in SP₈ as above in 4.9. The latter inclusion is induced by $(SP_8 \otimes SL_2) / \{\pm id\} \subset G$, which is given by $\left(A, \begin{pmatrix} a & b \\ c & d \end{pmatrix}\right) \mapsto \begin{pmatrix} aA & bA \\ cA & dA \end{pmatrix} \in G$. If SP₈ is given with respect to the skew-symmetric form $J = \begin{pmatrix} -E_4 \\ -E_4 \end{pmatrix}$, then *G* is defined by $\{S \in SL_{16} \mid S^t \mid (J^{-J})S = (J^{-J})\}$. So we obtain that $H = \left\langle \begin{pmatrix} ig \\ ig \end{pmatrix}, \begin{pmatrix} ig \\ -ig \end{pmatrix} \mid g \in H_{SP_8} \right\rangle \subset G$, where $H_{SP_8} \subset SP_8$ denotes the generic stabilizer of $\wedge_0^4 SP_8$ (recall that the kernel of the half-spin representation of Spin_{16} is \mathbb{Z}_2). Since Nor_{*G*}(*H*)⁰ = $(Z_G(H)H)^0$ it is enough to show that the centralizer $Z_G(H)$ is finite, which is not difficult to verify by using the finiteness of $Z_{SL_8}(H_{SP_8})$ (4.9).

4.11. $SL_2 \otimes S^3 SL_2$. Here we argue in a slightly different manner from the previous examples: Let $H \subset G = SL_2 \times SL_2$ be the binary dihedral group D_2 which is generated by $\binom{i}{-i}, \binom{-i}{i}, \binom{-1}{-1}, \binom{-1}{-1} \in G$. Notice that the kernel of this representation is \pm (id, id). The representation space is realized by $V := \mathbb{C}^2 \otimes R_3$, where $R_3 := \mathbb{C}[x, y]_3$. Let e_1, e_2 be the standard basis of \mathbb{C}^2 . Then $V^H = \mathbb{C}(e_1 \otimes x^3 + e_2 \otimes y^3) \oplus \mathbb{C}(e_1 \otimes xy^2 + e_2 \otimes x^2y)$, and one easily verifies that the normalizer $N := \operatorname{Nor}_G(H)$ is finite. It follows that $GV^H \subset V$ is dense since dim $G \times^N V^H = \dim G + \dim V^H - \dim N = \dim V$. Hence the generic orbit intersects V^H and the generic stabilizer H' contains H. By Lemma 3.1(b) it exists a Cartan subspace \mathfrak{c} such that $\mathfrak{c} \subset V^{H'} \subset V^H$. But dim $\mathfrak{c} = 2 = \dim V^H$ which implies that $\mathfrak{c} = V^{H'}$. Furthermore, it is now easy to see that H' = H since $Z_G(\mathfrak{c}) = H$.

4.12. $SL_2 \otimes S^2 SL_4$. As usual let e_1, e_2 be the standard basis of \mathbb{C}^2 and $V := \mathbb{C}^2 \otimes R_2$ the representation space where $R_2 := \mathbb{C}[u, x, y, z]_2$. The stabilizer $H = G_w$ of an element $w \in W := \mathbb{C}(e_1 \otimes (u^2 + x^2) + e_2 \otimes (y^2 + z^2)) \oplus \mathbb{C}(e_1 \otimes yz + e_2 \otimes ux)$ in general position is a generic isotropy group. *H* is generated by the three elements ($\varepsilon = e^{\pi i/4}$)

$$\left(\begin{pmatrix} -1 \\ & -1 \end{pmatrix}, \begin{pmatrix} i \\ & i \\ & i \end{pmatrix} \right), \left(\begin{pmatrix} -i \\ & i \end{pmatrix}, \begin{pmatrix} \varepsilon \\ & \varepsilon^5 \\ & \varepsilon^3 \\ & & \varepsilon^7 \end{pmatrix} \right), \left(\begin{pmatrix} & -i \\ & -i \end{pmatrix}, \begin{pmatrix} & \varepsilon \\ & & \varepsilon \\ & & \varepsilon \\ & & \varepsilon \end{pmatrix} \right).$$

It is isomorphic (modulo the kernel \mathbb{Z}_4) to $(\mathbb{Z}_4)^2$. Hence $V^H = W$ and dim $V^H = \dim V //G$. 4.13. SL₃ $\otimes S^2$ SL₃. Consider the finite subgroup $H \subset G = SL_3 \times SL_3$ generated by the three elements

$$\left(\begin{pmatrix} \zeta \\ \zeta \\ \zeta \end{pmatrix}, \begin{pmatrix} \zeta^2 \\ \zeta^2 \\ \zeta^2 \end{pmatrix} \right), \left(\begin{pmatrix} 1 \\ \zeta \\ \zeta^2 \end{pmatrix}, \begin{pmatrix} 1 \\ \zeta \\ \zeta^2 \end{pmatrix} \right), \left(\begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right)$$

where $\zeta = e^{2\pi i/3}$. *H* is isomorphic to $(\mathbb{Z}_3)^3$ and the kernel of the module is isomorphic to \mathbb{Z}_3 . The representation space is realized by $V := \mathbb{C}^3 \otimes R_2$ where $R_2 := \mathbb{C}[x, y, z]_2$. Let e_1, e_2, e_3 denote the standard basis of \mathbb{C}^3 . The space of *H*-fixed points is

$$V^{H} = \mathbb{C}(e_{1} \otimes x^{2} + e_{3} \otimes y^{2} + e_{2} \otimes z^{2}) \oplus \mathbb{C}(e_{2} \otimes xy + e_{3} \otimes xz + e_{1} \otimes yz)$$

The normalizer $N := \operatorname{Nor}_G(H)$ is easily seen to be finite. Therefore $GV^H \subset V$ is dense because dim $G \times^N V^H = \dim V$. Now we make use of the same arguments as in 4.11 because dim $V^H = \dim V / / G$, *i.e.*, V^H is a Cartan subspace and H is a generic isotropy group.

4.14. $\operatorname{SL}_2 \otimes \operatorname{SL}_3 \otimes \operatorname{SL}_4$. Consider Lie algebra \mathfrak{g} of $\operatorname{SL}_2 \times \operatorname{SL}_3 \times \operatorname{SL}_4$ acting on $V = M_{6\times 4} \cong \mathbb{C}^2 \otimes \mathbb{C}^3 \otimes \mathbb{C}^4$ by embedding the $\mathfrak{sl}_2 \times \mathfrak{sl}_3$ -action in \mathfrak{sl}_6 ; the embedded Lie algebra is denoted by \mathfrak{g}_1 . The orbit $\mathfrak{g}m$ with $m = \begin{pmatrix} E_4 \\ 1 \end{pmatrix} \in V$ is generic because $\mathfrak{g}m + V^{\mathfrak{g}_m} = V$. The stabilizer of m is

$$\mathfrak{h} = \left\{ \left(\left(\begin{array}{cccc} a & b & & 2c \\ c & 3a & & 2c \\ & -3a & b & 2b \\ c & -a & 2b \\ b & c & -a & b \\ b & c & c & a \end{array} \right), \left(\begin{array}{cccc} a & b & 2c \\ 3c & 3a \\ & -3a & 3b \\ 2b & c & -a \end{array} \right) \right) \in \mathfrak{g}_1 \times \mathfrak{Sl}_4 \ \left| a, b, c \in \mathbb{C} \right\} \cong \mathfrak{Sl}_2$$

It follows $V^{\mathfrak{h}} = \mathbb{C}m$ and dim $V^{\mathfrak{h}} = V//G$.

4.15. $SL_2 \otimes SL_3 \otimes SL_6$. This representation is realized by left-action of $G_1 := SL_2 \times SL_3 \subset SL_6$ and right-action of SL_6 on M_6 . The stabilizer $H = G_{E_6} = \{(S, T) \in G_1 \times SL_6 \mid SE_6T^{-1} = E_6\} \cong SL_2 \times SL_3$ of the identity matrix $E_6 \in M_6$ is a generic stabilizer. The *H*-fixed points are $M_6^H = \{A \in M_6 \mid SAS^{-1} = A\} = \mathbb{C}E_6$ and therefore dim $M_6^H = \dim M_6 / / G$.

4.16. $SL_4 \otimes \wedge^2 SL_5$. Let e_1, \ldots, e_4 , resp. f_1, \ldots, f_5 be the standard basis of \mathbb{C}^4 , resp. \mathbb{C}^5 . Then $(i, jk) := e_i \otimes f_j \wedge f_k$ for $1 \le i \le 4, 1 \le j < k \le 5$ is a basis of $V := \mathbb{C}^4 \otimes \wedge^2 \mathbb{C}^5$. Consider the finite subgroup $H \subset G = SL_4 \times SL_5$ generated by the two elements

$$a = \left(\begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & -1 \end{pmatrix} \right), \ b = \left(\begin{pmatrix} 0 & -1 & -1 & 0 \\ 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 0 & -1 \\ 0 & -1 & 1 & 0 & -1 \\ 0 & -1 & 1 & -1 & 0 \\ 1 & -1 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 & 0 \end{pmatrix} \right).$$

The alternating group \mathfrak{A}_5 is generated by the permutations $\sigma_1 = (12345)$ and $\sigma_2 = (123)$. The SL₄- (resp. SL₅-) component of *a* and *b* are the images of σ_1 and σ_2 of the unique irreducible 4- (resp. 5-) dimensional representation of \mathfrak{A}_5 . This construction and Schur's Lemma immediately yield that $Z_G(H)$ is contained in the scalar matrices of *G*, hence finite. Since Nor_{*G*}(*H*)⁰ = (*Z*_{*G*}(*H*)*H*)⁰ it follows that Nor_{*G*}(*H*)/*H* is finite. The *H*-fixed point space is $V^H = \mathbb{C}v$ where

$$v = (1, 12) - (1, 15) - (1, 24) - (1, 25) - (1, 45)$$

+ 2(2, 12) + 2(2, 13) + (2, 14) + (2, 23) - (2, 25) + (2, 34) - (2, 35) - 2(2, 45)
+ (3, 12) + 2(3, 13) + 2(3, 14) + (3, 23) - 2(3, 25) + (3, 34) - (3, 35) - (3, 45)
+ (4, 12) + (4, 13) + 2(4, 14) + (4, 15) - (4, 23) + 2(4, 34) + (4, 35).

Since dim G + dim V^H - dim Nor_{*G*}(H) = dim V the finite group H is a generic stabilizer.

4.17. $SL_5 \otimes \wedge^2 SL_5$. Take the same notations as in 4.16. Consider the finite subgroup $H \subset G = SL_5 \times SL_5$ generated by

$$a = \left(\begin{pmatrix} 1 & 1 \\ 1 & \\ & 1 \\ & & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ & 1 & \\ & & 1 \end{pmatrix} \right), \quad b = \left(\begin{pmatrix} \zeta^4 & \zeta^2 & \\ & \zeta^2 & \\ & & \zeta^3 \\ & & \zeta^3 \\ & & \zeta^4 \end{pmatrix} \right), \quad c = (\zeta^3 E_5, \zeta E_5)$$

where $\zeta = e^{2\pi i/5}$. The *H*-fixed point space turns out to be

$$V^{H} = \mathbb{C}[(1, 12) + (2, 23) + (3, 34) + (4, 45) - (5, 15)]$$

$$\oplus \mathbb{C}[(1, 35) - (2, 14) - (3, 25) + (4, 13) + (5, 24)].$$

Just like in 4.16 $Z_G(H)$ and therefore Nor_{*G*}(*H*) are finite. Since dim *G* + dim *V*^{*H*} - dim Nor_{*G*}(*H*) = dim *V* it is easy to see that $\{g \in G \mid gv = v \forall v \in V^H\} = H$ is a generic stabilizer (cf. [18, Lemma 5.1]).

5. Equivariant automorphisms of prehomogeneous Θ -representations. For a prehomogeneous module *V* the embedding of a generic stabilizer *H* is also the main tool to find the equivariant automorphism group. We determine the dimension of the *H*-fixed point space V^H . In fact, for every prehomogeneous *G*-module (*G* semisimple) it is shown in [14, 2.] that dim Aut_{*G*}(*V*) = dim V^H = dim Nor_{*G*}(*H*)/*H*.

PROPOSITION 5.1. Let V be an irreducible prehomogeneous Θ -representation of a (semisimple) group. Then V^H is one-dimensional. In particular, $\operatorname{Aut}_G(V) = \mathbb{C}^* \operatorname{id}_V$.

PROOF. For $SL_n \otimes SL_m$, $n > m \ge 1$ (N° 1a) consider the representation space *V* of $n \times m$ -matrices. The element $v = \begin{pmatrix} \frac{E_m}{0} \end{pmatrix}$ is in a generic orbit with stabilizer $H = \left\{ \left(\begin{pmatrix} g & * \\ 0 & s \end{pmatrix}, g \right) \in SL_n \times SL_m \mid g \in SL_m, s \in SL_{n-m} \right\}$. Clearly, $V^H = \mathbb{C}v$.

The same arguments can also be used for $SL_n \otimes SO_m$ (N° 2a), $n > m \ge 3$ as well as for $SL_n \otimes SP_{2m}$, $n > 2m \ge 4$ (N° 3a).

A generic isotropy algebra \mathfrak{h} of SL_n \otimes SP_{2m}, 2 < n < 2m, n odd (N° 3a) is given in [20, pp. 101–102]. It is isomorphic to $\mathfrak{sp}_{2m} \oplus \mathfrak{sp}_{2n-m-1} \oplus \mathfrak{u}_{2n-1}$ where \mathfrak{u}_j is a *j*-dimensional unipotent Lie algebra. It is easy to see that dim $(\mathbb{C}^{2n} \otimes \mathbb{C}^{2m+1})^{\mathfrak{h}} = 1$.

The module $\wedge^2 SL_{2m+1}$, $m \ge 1$ (N° 8a) is listed in [4, Table 1]. However, we present this situation explicitly. The skew symmetric matrix *M* is an element of a generic orbit with stabilizer *H*:

$$M = \begin{pmatrix} 0 & E_m & 0 \\ -E_m & 0 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix} \quad H = \left\{ \begin{pmatrix} A & * \\ \hline 0 & 1 \end{pmatrix} \in \operatorname{SL}_{2m+1} \mid A \in \operatorname{SP}_{2m} \right\} \cong \operatorname{SP}_{2m} \times U_{2m}$$

We obtain $(\wedge^2 \mathbb{C}^{2m+1})^H = \mathbb{C}M$.

All modules $SL_2 \otimes \wedge^2 SL_{2m+1}$, $m \ge 1$ are prehomogeneous and have one-dimensional fixed point space V^H [5, Table 6 N° 1]. These modules handle the cases N° 25 and N° 27 of Table 4.4.

For both modules, $SL_2 \otimes SL_3 \otimes SL_5$ (N° 38) [14, 3.] and $Spin_{10}$ (N° 52) [4, Table 1], the dimension of the fixed point space is one.

REMARK 5.2. For an arbitrary simple prehomogeneous *G*-module (*G* semisimple), Proposition 5.1 is not valid. In [14] it is shown that $\operatorname{Aut}_{SL_3 \times SL_5 \times SL_{13}}(\mathbb{C}^3 \otimes \mathbb{C}^5 \otimes \mathbb{C}^{13})$ is two-dimensional.

6. Other methods. We briefly introduce the restitution of multilinear invariants which is the main tool to show the triviality of the automorphism group of certain Θ -representations. We keep the notations of the previous sections.

Let *G* be an algebraic group and V_1, \ldots, V_m, W are defined to be *G*-modules. We call a *G*-equivariant morphism $V_1 \oplus \cdots \oplus V_m \to W$ a *G*-covariant (of type *W*). Any *G*-covariant can be seen as a sum of multihomogeneous *G*-covariants (of multi-degree (d_1, \ldots, d_m) with $d_1, \ldots, d_m \in \mathbb{N}$). For a multilinear (*i.e.*, multihomogeneous of multi-degree $(1, \ldots, 1)$) map $f: V_1^{d_1} \oplus \cdots \oplus V_m^{d_m} \to W$ the multihomogeneous map $R_f: V_1 \oplus \cdots \oplus V_m \to W$ defined by

$$R_f(v_1,\ldots,v_m) := f(\underbrace{v_1,\ldots,v_1}_{d_1},\ldots,\underbrace{v_m,\ldots,v_m}_{d_m})$$

is called the restitution of f. Every multihomogeneous G-covariant of multi-degree (d_1, \ldots, d_m) is the restitution of a multilinear G-covariant on $V_1^{d_1} \oplus \cdots \oplus V_m^{d_m}$ with values in W(cf, [10, Section 6]).

The vector space of multilinear *G*-covariants $Mult(V_1^{d_1} \oplus \cdots \oplus V_m^{d_m}, W)^G$ can be determined by using the canonical *G*-isomorphism

$$\operatorname{Mult}(V_1^{d_1} \oplus \cdots \oplus V_m^{d_m}, W) \xrightarrow{\sim} \operatorname{Mult}(V_1^{d_1} \oplus \cdots \oplus V_m^{d_m} \oplus W^*, \mathbb{C}).$$

Now, we are able to handle another type of Θ -representations.

PROPOSITION 6.1. Aut_{SO_n × SP_{2m} ($\mathbb{C}^n \otimes \mathbb{C}^{2m}$) = \mathbb{C}^* id_{$\mathbb{C}^n \otimes \mathbb{C}^{2m}$} where m > 1 and n > 2.}

PROOF. Distinguish two cases: (a) $2 < n \le 2m$ and (b) 4 < 2m < n.

(a) Let (,) denote the corresponding SP_{2m} -invariant non-degenerate skew-symmetric bilinear form. By classical invariant theory [26, Theorem 6.1.A] it is known for every n > 2, m > 1 that

(1)
$$\mathbb{C}\left[(\mathbb{C}^{2m})^n\right]^{\mathrm{SP}_{2m}} = \mathbb{C}\left[(i|j) \mid 1 \le i < j \le n\right]$$

(2)
$$\mathbb{C}[(\mathbb{C}^{2m})^n \oplus (\mathbb{C}^{2m})^*]^{\mathrm{SP}_{2m}} = \mathbb{C}[(i|j), \varepsilon_l \mid 1 \le i < j \le n, \ 1 \le l \le n]$$

where $(i, j)(v_1, \ldots, v_n) := (v_i, v_j)$ and $\varepsilon_l(v_1, \ldots, v_n, f) := f(v_l)$. Every automorphism $\sigma \in Aut_{SO_n \times SP_{2m}}(\mathbb{C}^n \otimes \mathbb{C}^{2m})$ can be seen as an *n*-tuple $(\sigma_1, \ldots, \sigma_n)$ of SP_{2m}-covariants (of type $\mathbb{C}^{2m}) \sigma_s : (\mathbb{C}^{2m})^n \longrightarrow \mathbb{C}^{2m}$, $s = 1, \ldots, n$. By determining the restitution of the multilinear invariants of (2) it follows that

(3)
$$\sigma_s(v_1,\ldots,v_n) = \sum_{r=1}^n p_{rs}v_r, \quad s=1,\ldots,n$$

where $p_{rs} \in \mathbb{C}[(\mathbb{C}^{2m})^n]^{SP_{2m}}$ (see above). We claim that all p_{rs} are constant polynomials.

Denoting σ^* the corresponding automorphism on $\mathbb{C}[(\mathbb{C}^{2m})^n]$ we see that $\sigma^*((i,j)) = \mu(i,j)$ since σ induces an automorphism on $(\mathbb{C}^{2m})^n // \operatorname{SP}_{2m} = \wedge^2 \mathbb{C}^n$ (adjoint representation), which is a multiple of the identity (2.5).

Let *P* denote the $n \times n$ -matrix $(p_{ij})_{1 \le i,j \le n}$ with $p_{ij} \in \mathbb{C}[(\mathbb{C}^{2m})^n]^{\operatorname{SP}_{2m}}$ from equation (3). It was just shown that the $\binom{n}{2} \times \binom{n}{2}$ -matrix $\wedge^2 P$ consisting of all 2×2 -minors of *P* is a scalar multiple of the identity matrix $E_{\binom{n}{2}}$. Since the kernel of the canonical homomorphism $\operatorname{GL}(V) \to \operatorname{GL}(\wedge^2 V)$ is $\{\pm \operatorname{id}\}$ (dim V > 2), it follows that $P \in \mathbb{C}^* E_n$, *i.e.*, σ is a scalar multiple of $\operatorname{id}_{(\mathbb{C}^{2m})^n}$ (*cf.* [13, Proof of 3.1])

(b) Exchange the rôles of SP_{2m} and SO_n : Here, (,) denotes the corresponding SO_n -invariant non-degenerate symmetric bilinear form. For the SO_n -invariants there is an analogous relation [26, Theorem 2.9.A, 2.17.A]:

$$\mathbb{C}\left[(\mathbb{C}^n)^{2m}\right]^{\mathrm{SO}_n} = \mathbb{C}\left[(i,j) \mid 1 \le i \le j \le 2m\right]$$
$$\mathbb{C}\left[(\mathbb{C}^n)^{2m} \oplus (\mathbb{C}^n)^*\right]^{\mathrm{SO}_n} = \mathbb{C}\left[(i,j), \varepsilon_l \mid 1 \le i \le j \le 2m, 1 \le l \le 2m\right]$$

We can make the same conclusions as in (a) since SP_{2m} acts on $(\mathbb{C}^n)^{2m} // SO_n \cong S^2 \mathbb{C}^{2m}$ by the adjoint representation and the kernel of the canonical homomorphism $GL(V) \rightarrow GL(S^2V)$ is also $\{\pm id\}$ (dim V > 2).

REMARK 6.2. In the same way as in proof (a) of 6.1 one can show $\operatorname{Aut}_{\operatorname{SL}_n \times \operatorname{SP}_{2m}}(\mathbb{C}^n \otimes \mathbb{C}^{2m}) = \mathbb{C}^* \operatorname{id}_{\mathbb{C}^n \otimes \mathbb{C}^{2m}}$ for $2 \leq n \leq 2m$, *n* even. Indeed, $\sigma \in \operatorname{Aut}_{\operatorname{SL}_n \times \operatorname{SP}_{2m}}(\mathbb{C}^n \otimes \mathbb{C}^{2m})$ induces an SL_n -automorphism $\bar{\sigma} \in \operatorname{Aut}_{\operatorname{SL}_n}(\wedge^2 \mathbb{C}^n)$ which turns out to be in $\mathbb{C}^* \operatorname{id}_{\wedge^2 \mathbb{C}^n}$ (see N° 8b if $n \geq 4$; in case n = 2, $\bar{\sigma}$ is linear since $\wedge^2 \mathbb{C}^2 \cong \mathbb{C}$).

Analogously, this is also true if n is odd.

In the following an adaptation of the method for finite $\overline{N} = \operatorname{Nor}(H)/H$ works best. The fixed point space V^H of a generic stabilizer H for the following examples no longer coincides with a Cartan subspace. However, with the earlier methods we will be able to show that $\operatorname{Aut}_{\bar{N}}(V^H)$ consists of linear automorphisms. Just like in the proof of 2.3 this induces that every $\sigma \in \operatorname{Aut}_G(V)$ is a multiple of id_V by looking at $\sigma \circ \lambda \operatorname{id}_V - \lambda \operatorname{id}_V \circ \sigma$.

PROPOSITION 6.3. Aut_{SL₂ × SL_n × SL_n ($\mathbb{C}^2 \otimes \mathbb{C}^n \otimes \mathbb{C}^n$) = \mathbb{C}^* id_{$\mathbb{C}^2 \otimes \mathbb{C}^n \otimes \mathbb{C}^n$} for $n \ge 3$.}

PROOF. Embed $SL_2 \times SL_n$ into SL_{2n} and consider the linear $G = SL_2 \times SL_n \times SL_n$ action on the space of $2n \times n$ -matrices $V = M_{2n \times n}$. Let $\mathfrak{t}_{n-1} \subset \mathfrak{sl}_n$ denote the diagonal matrices. The stabilizer $\mathfrak{h} = \mathfrak{g}_A$ of

$$A := \begin{pmatrix} A_1 \\ \ddots \\ A_n \end{pmatrix} \text{ where } A_j = \begin{pmatrix} a_j \\ b_j \end{pmatrix} \text{ with pairwise distinct } a_i, b_j$$

has the form $\mathfrak{h} = \{(0, t, t) \in \mathfrak{g} \mid t \in \mathfrak{t}_{n-1}\} \cong \mathfrak{t}_{n-1}$. Its fixed point set is

$$V^{\mathfrak{h}} = \left\{ \begin{pmatrix} M_1 \\ & \ddots \\ & & M_n \end{pmatrix} \middle| M_j = \begin{pmatrix} \lambda_j \\ \mu_j \end{pmatrix} \in \mathbb{C}^2, j = 1, \dots, n \right\} \cong (\mathbb{C}^2)^n.$$

The normalizer $\mathfrak{n}(\mathfrak{h})$ consists of the elements $(s, t) \in \mathfrak{sl}_{2n} \times \mathfrak{sl}_n$ where

$$s = \begin{pmatrix} s_1 \\ \ddots \\ s_n \end{pmatrix} \text{ with } s_j = \begin{pmatrix} a+d_j & b \\ c & -a+d_j \end{pmatrix}, \quad \sum_{j=1}^n d_j = 0$$

and $t \in \mathfrak{t}_{n-1}$. The algebra \mathfrak{h} is a generic stabilizer and $\mathfrak{n}(\mathfrak{h}) \cong \mathfrak{sl}_2 \times \mathfrak{t}_{n-1} \times \mathfrak{t}_{n-1} \subset \mathfrak{g}$. Here we cannot make use of Lemma 3.1. So take a closer look at the Nor_{*G*}(*H*)/*H*-action on $V^{\mathfrak{h}}$ which is equivalent to the $\Gamma := \mathrm{SL}_2 \times S_n \ltimes T_{n-1}$ -action on $(\mathbb{C}^2)^n$ defined as follows:

$$(s, \operatorname{diag}(t_1, \ldots, t_n), \tau) \cdot (v_1, \ldots, v_n) = (t_1 s v_{\tau(1)}, \ldots, t_n s v_{\tau(n)})$$

It is shown in [13, 3.1.] that $\operatorname{Aut}_{\Gamma}((\mathbb{C}^2)^n) = \mathbb{C}^* \operatorname{id}_{(\mathbb{C}^2)^n}$ which induces $\operatorname{Aut}_G(V) = \mathbb{C}^* \operatorname{id}_V$.

PROPOSITION 6.4. Aut_{SL₂ × SL_{2n} ($\mathbb{C}^2 \otimes \wedge^2 \mathbb{C}^{2n}$) = \mathbb{C}^* id_{$\mathbb{C}^2 \otimes \wedge^2 \mathbb{C}^{2n}$} for $n \ge 3$.}

PROOF. Let e_1, e_2 , resp. f_1, \ldots, f_{2n} be the standard basis of \mathbb{C}^2 , resp. of \mathbb{C}^{2n} . Define $v_{i,j,k} := e_i \otimes (f_j \wedge f_k) \in V := \mathbb{C}^2 \otimes \wedge^2 \mathbb{C}^{2n}$ for $1 \le i \le 2, 1 \le j < k \le 2n$. Consider the $G = SL_2 \times SL_{2n}$ -orbit through

$$v = \sum_{i=1}^{2} \sum_{j=1}^{n} v_{i,2j-1,2j} \in V \quad \text{where} \quad H = \left\{ \left(\begin{pmatrix} 1 \\ & 1 \end{pmatrix}, \begin{pmatrix} A_1 \\ & \ddots \\ & & A_n \end{pmatrix} \right) \mid A_j \in \mathrm{SL}_2 \right\} \cong (\mathrm{SL}_2)^n$$

is the stabilizer of *v*. The *H*-fixed points are $V^H = \bigoplus_{i=1}^2 \bigoplus_{j=1}^n \mathbb{C}v_{i,2j-1,2j}$. The group $\overline{N} = \operatorname{Nor}_G(H)/H$ is isomorphic to $\Gamma := \operatorname{SL}_2 \times S_n \ltimes T_{n-1}$. It follows that *H* is a generic isotropy group since $\overline{GV^H} = V$. The \overline{N} -action on V^H is equivalent to the Γ -module $(\mathbb{C}^2)^n$ as described in the proof of 6.3. We have $\operatorname{Aut}_{\Gamma}((\mathbb{C}^2)^n) = \mathbb{C}^* \operatorname{id}_{(\mathbb{C}^2)^n}$ as shown in [13, 3.1.] which induces $\operatorname{Aut}_G(V) = \mathbb{C}^* \operatorname{id}_V$.

395

6.1. S^3 SL₂. This module is isomorphic to the SL₂-representation on the binary forms $V = \mathbb{C}[x, y]_3$. A generic isotropy group is given by $H = G_{x^3+y^3} = \left\{ \begin{pmatrix} \zeta \\ \zeta^{-1} \end{pmatrix} \middle| \zeta^3 = 1 \right\} \cong \mathbb{Z}_3$. Every $\sigma \in \operatorname{Aut}_G(V)$ induces a $\bar{\sigma} \in \operatorname{Aut}_{\operatorname{Nor}_G(H)}(V^H)$ which must be linear, for $\bar{\sigma}$ preserves $\mathbb{C}x^3 = V^U$ where $U := \left\{ \begin{pmatrix} 1 \\ a & 1 \end{pmatrix} \middle| a \in \mathbb{C} \right\}$, and analogously $\bar{\sigma}$ also preserves $\mathbb{C}y^3$ (Lemma 2.1).

6.2. $SL_2 \otimes S^2 SL_3$. This module is realized by the $G = SL_2 \times SL_3$ -action on $V = \mathbb{C}^2 \otimes R_2$ where $R_2 := \mathbb{C}[x, y, z]_2$ are the tenary forms of degree 2. Let e_1, e_2 be the standard basis of \mathbb{C}^2 and define $v_1 := e_1 \otimes (x^2 + yz), v_2 := e_2 \otimes (y^2 + xz), v := v_1 + v_2 \in V$. A generic stabilizer *H* is equal to G_v (*cf.* [18, p. 243]); it is generated by the three elements ($\zeta = e^{2\pi i/3}$)

$$g_{1} \coloneqq \left(\begin{pmatrix} \zeta \\ \zeta^{2} \end{pmatrix}, \begin{pmatrix} \zeta \\ \zeta^{2} \\ 1 \end{pmatrix} \right), \quad g_{2} \coloneqq \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{3} \begin{pmatrix} -1 & 2 & 1 \\ 2 & -1 & 1 \\ 4 & 4 & -1 \end{pmatrix} \right),$$
$$g_{3} \coloneqq \left(\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \frac{1}{3} \begin{pmatrix} -1 & 2\zeta & \zeta^{2} \\ 2\zeta^{2} & -1 & \zeta \\ 4\zeta & 4\zeta^{2} & -1 \end{pmatrix} \right).$$

The finite group *H* is isomorphic to \mathfrak{A}_4 , the alternating group of 4 elements (the isomorphism is given by $g_1 \mapsto (234)$, $g_2 \mapsto (12)(34)$, $g_3 \mapsto (14)(23)$). As usual we determine the *H*-fixed points in *V* which turn out to be $V^H = \mathbb{C}v_1 \oplus \mathbb{C}v_2$. Since $T_1 \times \{E_3\} \subset N := \operatorname{Nor}_G(H)$ one easily sees that every $\varphi \in \operatorname{Aut}_N(V^H)$ is linear by using Lemma 2.1.

6.3. $SL_2 \otimes \wedge^3 SL_6$ and $SL_2 \otimes \wedge^3_0 SP_6$. Let e_1, e_2 , resp. f_1, \ldots, f_6 be the standard basis of \mathbb{C}^2 , resp. of \mathbb{C}^6 . Then $(ijk) := f_i \wedge f_j \wedge f_k$ for $1 \le i < j < k \le 6$ is a basis of $\wedge^3 \mathbb{C}^6$. Consider the element

$$v := \sum_{j=1}^{2} \left(j \, e_j \otimes (123) + 2j \, e_j \otimes (126) + 3j \, e_j \otimes (135) + 4j \, e_j \otimes (156) \right. \\ \left. + 5j \, e_j \otimes (234) + 6j \, e_j \otimes (246) + 7j \, e_j \otimes (345) + 8j \, e_j \otimes (456) \right)$$

The stabilizer $H = G_v \subset G = SL_2 \times SL_6$ of $v \in V = \mathbb{C}^2 \otimes \wedge^3 \mathbb{C}^6$ has the following shape:

$$H = \left\{ \left(\left(\begin{array}{c} \varepsilon \\ \varepsilon \end{array} \right), \left(\begin{array}{c} S \\ S \end{array} \right) \right) \in G \mid S = \left(\begin{array}{c} \lambda \\ \mu \\ (\lambda \mu)^{-1} \end{array} \right), \lambda, \mu \in \mathbb{C}^*, \det S = \varepsilon = \pm 1 \right\} \cong T_2 \times \mathbb{Z}_2$$

For the space of H-fixed points one obtains

$$V^{H} = \bigoplus_{j=1}^{2} \Big(\mathbb{C}e_{j} \otimes (123) \oplus \mathbb{C}e_{j} \otimes (126) \oplus \mathbb{C}e_{j} \otimes (135) \oplus \mathbb{C}e_{j} \otimes (156) \\ \oplus \mathbb{C}e_{j} \otimes (234) \oplus \mathbb{C}e_{j} \otimes (246) \oplus \mathbb{C}e_{j} \otimes (345) \oplus \mathbb{C}e_{j} \otimes (456) \Big).$$

The normalizer $N := Nor_G(H)$ is the following semidirect product:

$$N = \operatorname{SL}_2 \times \left\{ A = \begin{pmatrix} A_1 & A_2 \\ A_3 & A_4 \end{pmatrix} \in \operatorname{SL}_6 \mid A_j = \operatorname{diag}(a_{j1}, a_{j2}, a_{j2}), \det A = 1 \right\} \rtimes S_3$$

It follows that Gv is a generic orbit. The identity component of N/H is isomorphic to $(SL_2)^4$ and therefore the *N*-module V^H is equivalent to the $SO_4 \times SO_4$ -module $\mathbb{C}^4 \otimes \mathbb{C}^4$ (because $\mathbb{C}[\mathbb{C}^2 \otimes \mathbb{C}^2]^{SL_2 \times SL_2} = \mathbb{C}[q]$ where *q* is a quadratic form). It follows with 4.4 that $\operatorname{Aut}_N(V^H) = \mathbb{C}^* \operatorname{id}_{V^H}$.

To examine the automorphism group of $SL_2 \otimes \bigwedge_0^3 SP_6$ take the above notations. By using the methods in [2, VI 5.3] the skew-symmetric tensors (123), (126), (135), (156), (234), (246), (345), (456) are elements of $\bigwedge_0^3 \mathbb{C}^6$. Therefore the element *v* from above is also an element of the generic orbit of the simple $G = SL_2 \times SP_6$ -module $V = \mathbb{C}^2 \otimes \bigwedge_0^3 \mathbb{C}^6$. The stabilizer $H = G_v$ is of the following shape:

$$H = \left\{ \left(\left(\begin{array}{c} \varepsilon \\ \varepsilon \end{array} \right), \left(\begin{array}{c} S \\ S \end{array} \right) \right) \in G \mid S = \left(\begin{array}{c} \pm 1 \\ \pm 1 \\ \pm 1 \end{array} \right), \det S = \varepsilon = \pm 1 \right\} \cong (\mathbb{Z}_2)^4$$

The *H*-fixed point space as well as $\operatorname{Nor}_G(H)^0$ are the same as for $\operatorname{SL}_2 \otimes \wedge^3 \operatorname{SL}_6$ above. So the same arguments lead to $\operatorname{Aut}_G(V) = \mathbb{C}^* \operatorname{id}_V$.

6.4. $SL_3 \otimes SL_3 \otimes SL_3$. Let e_1, e_2, e_3 be the standard basis of \mathbb{C}^3 and define $(ijk) := e_i \otimes e_j \otimes e_k \in V = \mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ for i, j, k = 1, 2, 3. The isotropy group *H* of

$$v := (111) + 2(222) + 3(333) + 4(123) + 5(132) + 6(213) + 7(231) + 8(312) + 9(321)$$

is the finite group generated by the three elements ($\zeta = e^{2\pi i/3}$)

$$\begin{pmatrix} \begin{pmatrix} \zeta \\ \zeta^2 \\ 1 \end{pmatrix}, \begin{pmatrix} \zeta^2 \\ \zeta \end{pmatrix}, \begin{pmatrix} 1 \\ \zeta \\ \zeta \end{pmatrix}, \begin{pmatrix} 1 \\ \zeta \\ \zeta \end{pmatrix}, \begin{pmatrix} \zeta \\ \zeta \\ \zeta \end{pmatrix}, \begin{pmatrix} \zeta^2 \\ \zeta \\ \zeta \end{pmatrix}, \begin{pmatrix} 1 \\ \zeta^2 \\ \zeta \end{pmatrix} \end{pmatrix}, \begin{pmatrix} \begin{pmatrix} \zeta \\ \zeta \\ \zeta \end{pmatrix}, \begin{pmatrix} \zeta \\ \zeta \\ \zeta \end{pmatrix}, \begin{pmatrix} \zeta \\ \zeta \\ \zeta \end{pmatrix} \end{pmatrix}.$$

The space of *H*-fixed points is easily computed:

 $V^{H} = \mathbb{C}(111) \oplus \mathbb{C}(222) \oplus \mathbb{C}(333) \oplus \mathbb{C}(123) \oplus \mathbb{C}(132) \oplus \mathbb{C}(213) \oplus \mathbb{C}(231) \oplus \mathbb{C}(312) \oplus \mathbb{C}(321)$

The connected component of $N := Nor_G(H)$ has the shape

$$N^0 = \left\{ (S_1, S_2, S_3) \in G \mid S_j = \begin{pmatrix} \lambda_j \\ \mu_j \\ (\lambda_j \mu_j)^{-1} \end{pmatrix}, \lambda_j, \mu_j \in \mathbb{C}^*, j = 1, 2, 3 \right\} \cong (T_2)^3.$$

Since dim G + dim V^H - dim N = dim V the finite group H is a generic stabilizer. Let $V_{(ijk)}^H \subset V^H$ be the hyperplane spanned by all standard basis elements except

 $(ijk) \in V^H$ and consider the element $s_t := (S, S, S) \in N$ with $S = \text{diag}(t, t, t^{-2}), t \in \mathbb{C}^*$. Then $\{w \in V^H \mid \lim_{t\to 0} s_t w \text{ exists}\} = V^H_{(333)}$, and this hyperplane is stabilized by every $\varphi \in \text{Aut}_{N^0}(V^H)$. Analogously, $V^H_{(123)}$ is $\text{Aut}_{N^0}(V^H)$ -stable by taking $s_t := (\text{diag}(t^{-2}, t, t), \text{diag}(t, t^{-2}, t), \text{diag}(t, t, t^{-2})) \in N^0$. In total one obtains 9 hyperplanes in general position which are $\text{Aut}_{N^0}(V^H)$ -stable. By Lemma 2.1 $\text{Aut}_{N^0}(V^H)$ only consists of linear automorphisms.

6.5. SL₃ $\otimes \wedge^2$ SL₆. Let e_1, e_2, e_3 , resp. f_1, \ldots, f_6 be the standard basis of \mathbb{C}^3 , resp. \mathbb{C}^6 . Then $v_{i,jk} := e_i \otimes (f_j \wedge f_k)$, $1 \le i \le 3$, $1 \le j < k \le 6$ is a basis of $V = \mathbb{C}^3 \otimes \wedge^2 \mathbb{C}^6$. The isotropy group of the element

$$v := v_{1,14} + 2v_{1,25} + 3v_{1,36} + 4v_{2,14} + 5v_{2,25} + 6v_{2,36} + 7v_{3,14} + 8v_{3,25} + 9v_{3,36} + 10v_{1,15} + 11v_{1,16} + 12v_{1,24} + 13v_{1,26} + 14v_{1,34} + 15v_{1,35}$$

turns out to be a generic stabilizer and has the form

$$H \coloneqq \left\{ \left(\left(\begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right), \left(\begin{array}{c} \lambda E_3 \\ \lambda^{-1} E_3 \end{array} \right) \right) \in G \ \Big| \ \lambda \in \mathbb{C}^* \right\} \cong \mathbb{C}^*.$$

The space of *H*-fixed points looks as follows:

$$V^{H} = \bigoplus_{i=1}^{3} (\mathbb{C}v_{i,14} \oplus \mathbb{C}v_{i,15} \oplus \mathbb{C}v_{i,16} \oplus \mathbb{C}v_{i,24} \oplus \mathbb{C}v_{i,25} \oplus \mathbb{C}v_{i,26} \oplus \mathbb{C}v_{i,34} \oplus \mathbb{C}v_{i,35} \oplus \mathbb{C}v_{i,36}).$$

Since $\bar{N}^0 := (\operatorname{Nor}_G(H)/H)^0 = \operatorname{SL}_3 \times (\operatorname{SL}_3)^2$ and the \bar{N}^0 -action on V^H is equivalent to the natural $(\operatorname{SL}_3)^3$ -action on $\mathbb{C}^3 \otimes \mathbb{C}^3 \otimes \mathbb{C}^3$ it holds that $\operatorname{Aut}_{\bar{N}^0}(V^H) = \mathbb{C}^* \operatorname{id}_{V^H}(6.4)$.

6.6. $SL_4 \otimes Spin_{10}$. Consider the finite subgroup $H \subset G := SL_4 \times Spin_{10}$ generated by the two elements:

$$h_1 := (\operatorname{diag}(1, 1, -1, -1), \operatorname{diag}(1, -i, 1, i, 1; -1, i, -1, -i, -1))$$

$$h_2 := (\operatorname{diag}(-1, 1, -1, 1), \operatorname{diag}(i, i, 1, 1, 1; -i, -i, -1, -1, -1)).$$

The Spin₁₀-part of h_1 acts as diag $(E_8, -E_8)$ on \mathbb{C}^{16} (see [20, 5.28, 5.38]). For a short outline of the spin-representation of Spin₁₀ we refer to [20, p. 110 ff. and 5.38].

The representation space of $SL_4 \otimes Spin_{10}$ is defined to be the space of 4×16 -matrices $V = M_{4 \times 16}$. The space of *H*-fixed points turns out to be:

The Lie algebra \mathfrak{n} of $N := \operatorname{Nor}_G(H)$ consists of the elements

where all variables are complex numbers. The algebra n is isomorphic to $t_3 \oplus t_3 \oplus \mathfrak{so}_4\left(\begin{pmatrix}E_2 & E_2\end{pmatrix}\right)$, where $t := t_3 \oplus t_3$ commutes with $\mathfrak{so}_4(cf. [20, 5.38])$; the second copy of t_3 in t consists of the elements $(a_1, a_2, a_4) \in \mathfrak{so}_{10}$. For a generic element $v \in V^H$, Gv is a generic orbit and $GV^H \subset V$ is dense since dim Gv = 60 and dim $(G \times^N V^H) = 64 = \dim V$. Therefore it suffices to show that $\operatorname{Aut}_N(V^H)$ consists of linear elements. Notice that H is not a generic isotropy group, one can only say that H is contained in it. A generic stabilizer is isomorphic to $(\mathbb{Z}_2)^4$ [18, Table 1].

Up to an outer isomorphism the \mathfrak{so}_4 -module V^H corresponds to the $SL_2 \times SL_2$ -module $(\mathbb{C}^2)^4 \oplus (\mathbb{C}^2)^4 \oplus (\mathbb{C}^2)^4$ where the first (second) copy of SL_2 naturally acts on the first (second) four copies of \mathbb{C}^2 (consider the \mathfrak{so}_4 -part in [20, 5.38] acting on $V^H \cong (\mathbb{C}^2)^8$). Its ring of invariant functions is

$$\mathbb{C}\left[(\mathbb{C}^2)^4 \oplus (\mathbb{C}^2)^4\right]^{\operatorname{SL}_2 \times \operatorname{SL}_2} = \mathbb{C}\left[(\mathbb{C}^2)^4\right]^{\operatorname{SL}_2} \otimes \mathbb{C}\left[(\mathbb{C}^2)^4\right]^{\operatorname{SL}_2} = \mathbb{C}\left[[i,j] \mid \begin{array}{c} 1 \leq i < j \leq 4 \text{ or } \\ 5 \leq i < j \leq 8 \end{array}\right]$$

where $[i,j](v_1, \ldots, v_8) = \det(v_i, v_j)$. The ideal of the relations among the [i,j] is generated by the Plücker relations [1,2][3,4]-[1,3][2,4]+[1,4][2,3] and [5,6][7,8]-[5,7][6,8]+[5,8][6,7]. Using the fact $\operatorname{Aut}_{\operatorname{SL}_2 \times S_4 \ltimes} T_3((\mathbb{C}^2)^4) = \mathbb{C}^* \operatorname{id}_{(\mathbb{C}^2)^4}$ [13, Prop. 3.1] and the t_3 equivariance of the copy $t_3 \subset \mathfrak{so}_{10}$ every *N*-automorphism of V^H is linear. Since $GV^H \subset V$ is dense $\operatorname{Aut}_G(V) = \mathbb{C}^* \operatorname{id}_V$.

6.7. For the last few cases of Table 4.4 where $\operatorname{Nor}_G(H)/H$ is not finite, we are going to use Élashvili's tables [5, Table 6] and [4, Table 1]. Let (G, V) denote a *G*-module *V*. As usual $H \subset G$ is a generic stabilizer and $\overline{N} := \operatorname{Nor}_G(H)/H$. In all following examples we use the fact that if $\operatorname{Aut}_{\overline{N}}(V^H) = \mathbb{C}^*$ id_V, then also $\operatorname{Aut}_G(V) = \mathbb{C}^*$ id_V (see proof of 2.3).

For $(G, V) = \operatorname{SL}_2 \otimes \operatorname{Spin}_{10} (\mathbb{N}^\circ 32)$ it is $(\overline{N}^0, V^H) \cong (T_3 \subset \operatorname{SL}_4, \mathbb{C}^4)$. This representation does not admit any nonlinear automorphisms: Take $t_u = \operatorname{diag}(u^{-3}, u, u, u) \in T_3$, $u \in \mathbb{C}^*$. Let $v \in \mathbb{C}^4$, then $\lim_{u \to 0} t_u v$ exists if and only if v lies in a hyperplane. This hyperplane is stabilized by any T_3 -equivariant automorphism (*cf.* 6.3). By changing the spot of the entry u^{-3} one obtains four hyperplanes in total which are in general position. Now Lemma 2.1 finishes this example.

Concerning $SL_2 \otimes Spin_{12}$ (N° 33) there is a mistake in [5, Table 6, No. 7]. A generic stabilizer is isomorphic to $3A_1$ embedded in D_6 [8] (also cf. [20, Section 5, Proposition 38]). Its normalizing Lie algebra in $A_1 + D_6$ is then isomorphic to $7A_1$. Hence (\bar{N}^0, V^H) is isomorphic to $((SL_2)^4, (\mathbb{C}^2)^{\otimes 4}) \cong ((SO_4)^2, (\mathbb{C}^4)^{\otimes 2})$. This module is without nonlinear automorphisms (4.4).

For SL₂ $\otimes E_6$ (N° 34) we have $(\bar{N}, V^H) \cong (SL_2 \times S_3 \ltimes T_2, (\mathbb{C}^2)^3)$ whose equivariant automorphism are linear [13, 3.1].

The module $SL_2 \otimes E_7$ (N° 35) yields $(\overline{N}, V^H) \cong ((SL_2)^4, (\mathbb{C}^2)^{\otimes 4}) \cong ((SO_4)^2, (\mathbb{C}^4)^{\otimes 2})$. By 4.4 there are no nonlinear automorphisms.

For $(G, V) = SL_3 \otimes E_6$ (N° 45) one obtains $(\overline{N}, V^H) \cong ((SL_3)^3, (\mathbb{C}^3)^{\otimes 3})$; in 6.4 all equivariant automorphisms are proved to be linear.

The modules \wedge^3 SL₆ (N° 17), SL₂ \otimes Spin₇ (N° 31), Spin₁₂ (N° 53), \wedge^3_0 SP₆ (N° 56) and E_7 (N° 65) are all of the same type: Using the tables [5, Table 6], [4, Table 1] all these modules fulfil (\bar{N}^0 , V^H) \cong (\mathbb{C}^* , \mathbb{C}^2) and dim $V//G = \dim V^H//\bar{N}^0 = 1$. \mathbb{C}^* acts on \mathbb{C}^2 by a positive and a negative weight. By a limit consideration either line through the weight vector is preserved by every $\sigma \in \operatorname{Aut}_{\bar{N}^0}(V^H)$ implying that σ is linear (see Lemma 2.1).

REFERENCES

- A. A'Campo-Neuen, Morphisms of G-modules with finite fibers. C. R. Acad. Sci. Paris Sér. I 316(1992), 255–260.
- T. Bröcker and T. tom Dieck, *Representations of Compact Groups*. Graduate Texts in Math. 98, Springer-Verlag, Berlin-New York, 1985.
- 3. J. Dadok and V. G. Kac, Polar Representations. J. Algebra. 92(1985), 504–524.
- A. G. Élashvili, Canonical Form and Stationary Subalgebras of Points of General Position for Simple Linear Lie Groups. Functional Anal. Appl. 6(1972), 44–53.
- 5. _____, Stationary Subalgebras of Points of the Common State for Irreducible Linear Lie Groups. Functional Anal. Appl. 6(1972), 139–148.
- 6. R. Hartshorne, *Algebraic Geometry*. Graduate Texts in Math. 52, Springer-Verlag, Berlin-New York, 1977.
- V. G. Kac, Automorphisms of Finite Order of Semisimple Lie Algebras. Functional Anal. Appl. 3(1969), 252–254.
- 8. _____, Some Remarks on Nilpotent Orbits. J. Algebra 64(1980), 190–213.
- 9. H. Kraft, Geometrische Methoden in der Invariantentheorie. Aspekte der Mathematik D1, Vieweg, 1985.
- Klassische Invariantentheorie: Eine Einführung. In: Algebraische Transformationsgruppen und Invariantentheorie, Algebraic Transformation Groups and Invariant Theory (Eds. H. Kraft, P. Slodowy and T. A. Springer). DMV Seminar Band 13, Birkhäuser, 1989, 41–62.
- 11. H. Kraft, T. Petrie and J. D. Randall, Quotient Varieties. Adv. in Math. (2) 74(1989), 145-162.
- 12. A. Kurth, Equivariant Polynomial Automorphisms. Ph.D. Thesis, Basel, 1996.
- SL₂-equivariant polynomial automorphisms of the binary forms. Ann. Inst. Fourier, Grenoble (2) 47(1997), 585–597.
- 14. _____ Nonlinear Equivariant Automorphisms. Manuscripta Math., 94(1997), 327–335...
- 15. P. Littelmann, Koreguläre und äquidimensionale Darstellungen. J. Algebra. 123(1989), 193–222.
- 16. D. Luna, Slices étales. Bull. Soc. Math. France, Mémoire 33(1973), 81-105.
- Y. Matsushima, Espace homogène de Stein des groupes de Lie complexes. Nagoya Math. J. 16(1960), 205–218.
- A. M. Popov, Finite isotropy subgroups in general position of irreducible semisimple linear Lie groups. Trans. Moscow Math. Soc. 50(1988), 205–249.
- V. L. Popov and E. B. Vinberg, *Invariant Theory*. In: Algebraic Geometry IV (Eds. A. N. Parshin and I. R. Shafarevich), Encyclopaedia of Mathematical Sciences Vol. 55. Springer-Verlag, Berlin-Heidelberg, 1994, 123–278.

ALEXANDRE KURTH

- **20.** M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants. Nagoya Math. J. **65**(1977), 1–155.
- **21.** G. W. Schwarz, *Representations of Simple Lie Groups with a Free Module of Covariants*. Invent. Math. **50**(1978), 1–12.
- 22. J. P. Serre, *Cohomologie Galoisienne*. Lecture Notes in Math. 5, Springer-Verlag, Berlin-New York, 1964.
- 23. T. A. Springer, Invariant Theory. Lecture Notes in Math. 585, Springer-Verlag, Berlin-New York, 1977.
- 24. E. B. Vinberg, *The Weyl group of a graded Lie algebra*. Math. USSR-Izv. (3) 10(1976), 463–495.
- E. B. Vinberg and A. G. Élashvili, A classification of trivectors of a nine-dimensional space. Sel. Math. Sov. (1) 7(1978), 63–98.
- **26.** H. Weyl, *The Classical Groups, their Invariants and Representations*. Second edition, Princeton University Press, Princeton, NJ, 1946.

Department of Mathematics University of British Columbia Vancouver, BC V6T 1Z2 Current address: Kronenweg 12 4102 Binningen Switzerland email: kurth@math.unibas.ch