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On the Cohomology of Moduli of Vector
Bundles and the Tamagawa Number of SLn

Ajneet Dhillon

Abstract. We compute some Hodge and Betti numbers of the moduli space of stable rank r, degree d

vector bundles on a smooth projective curve. We do not assume r and d are coprime. In the process we

equip the cohomology of an arbitrary algebraic stack with a functorial mixed Hodge structure. This

Hodge structure is computed in the case of the moduli stack of rank r, degree d vector bundles on a

curve. Our methods also yield a formula for the Poincaré polynomial of the moduli stack that is valid

over any ground field. In the last section we use the previous sections to give a proof that the Tamagawa

number of SLn is one.

1 Introduction

We will work over a ground field k. Let Y be an algebraic stack defined over k. When

we speak of its cohomology, we will mean its ℓ-adic cohomology in the smooth topol-

ogy, except when k = C, in which case we will mean the cohomology of the constant

sheaf with values in Q with the usual topology. These constructions are reviewed in

Section 2. We use the generic notation H∗(Y) for these cohomology theories, and it

will be clear from the context what is meant. As we are working over a possibly non

algebraically closed field, we remind the reader that the ℓ-adic cohomology is always

defined by first passing to an algebraic closure, that is

Hi
sm(Y, Qℓ)

def
= Hi

sm(Y⊗k k̄, Qℓ).

The ground field k is detected only in the Galois action on these cohomology groups.

Let X be a smooth, geometrically connected, projective curve defined over k, with

genus g ≥ 2. Fix integers r > 0 and d and let Ms
r,d be the moduli space of rank r and

degree d stable vector bundles on this curve. We denote by Bunr,d the moduli stack

of rank r and degree d vector bundles on X. The integers r and d will frequently be

omitted from the notation.

In this article, we will calculate the Betti numbers, dim Hi(Ms) (and the Hodge

numbers for k = C), when i < 2(r − 1)(g − 1). For r and d coprime this question

has been extensively studied, see [AB82, HN75, BGL94]. On the other hand, when r

and d are no longer coprime, the question has remained open and only partial results

exist, which we now describe. In rank two, a desingularization M̃ss of Mss has been

constructed by C. Seshadri. Its cohomology is studied in [Bal90, Bal93, BKN97]. In

[AS01] the Hodge and Betti numbers of Hi(Ms) are computed for

i < 2(r − 1)g − (r − 1)(r2 + 3r + 1)− 7.
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On the Cohomology of Moduli of Vector Bundles 1001

Our method is to continue the study of the ind scheme Div that was started in

[BGL94]. (See Section 3 for the definition of Div.) In this frequently cited paper the

Poincaré polynomial of this ind scheme and its Shatz strata are computed. We will

review this computation in Section 3. In Section 4 we show that the natural map

(1) Div→Bun

is a quasi-isomorphism. This allows us to compute the Betti numbers of the stack.

Over C this was first done in [AB82]. In this paper the Poincaré polynomial of the

classifying space of the gauge group is written down. A simple argument shows that

in fact Bun and this classifying space have the same cohomology. In the introduction

to [BGL94], the remark was made that Div and this classifying space have the same

Poincaré polynomial and hence this coincidence is explained by the above isomor-

phism.

To obtain the Betti numbers of Ms we prove a comparison theorem between the

cohomology of Buns and Ms, see Section 5. As (1) holds for stable loci, this theorem

reduces the study of the cohomology of the coarse moduli space Ms to that of the

fine moduli space Divs, where superscript s refers to the stable locus. We are unable

to completely describe the cohomology of this ind scheme, so instead we provide an

upper bound on the codimension of the complement of Divs in Div.

Although not completely necessary here, it is desirable to provide a suitable theory

of mixed Hodge structures for algebraic stacks. Our first task will be to sketch such

a construction. Note that such a construction was first suggested in [Tel98] but has

not been published, so it is provided here.

The construction of a functorial mixed Hodge structure on the cohomology of a

stack is entirely analogous to that given in [Del74]. Given an algebraic stack X and a

smooth presentation

P→X,

we can form the simplicial algebraic space whose n-th term is

P ×X P ×X · · · ×X P︸ ︷︷ ︸
n times

,

or in the notation of [Del74]

cosk(P/X).

Essentially, the method for equipping such an algebraic space with a functorial mixed

Hodge structure is given in [Del74], provided it is of finite type. This condition is a

hindrance as the stack Bun is not of finite type. To remove this condition we construct

Y•→ cosk(P/X),

such that Y• is a disjoint union of schemes of finite type and the map is of cohomo-

logical descent. The finite type assumption is not really essential in [Del74]; what is

important is that the cohomology of the stack be finite dimensional.

In the last section we use these results to give an essentially algebraic proof that

the Tamagawa number of SLn is 1 in the function field case. This fact was originally
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proved by Weil [Wei82]. The calculation here is based on the the Lefschetz trace

formula for stacks, [Beh, Beh93, Beh03]. The relationship between this number and

the cohomology of moduli spaces of bundles was first observed in [HN75], where the

the Weil conjectures and the fact that the Tamagawa of SLn is 1 are used to calculate

Betti numbers in the moduli space in the coprime case. Here, we are reversing this

process. The reader will observe that using the moduli stack as opposed to the moduli

space simplifies matters considerably.

The interpretation of the Tamagawa number in terms of the Lefschetz trace for-

mula on a moduli stack of torsors is valid for a large class of groups. This idea has

been taken up in [Beh06] to prove a relationship between the Tamagawa number and

the number of components of the moduli stack of G-torsors.

2 Hodge Theory for Algebraic Stacks

It is not practical to redo the entire contents of [Del71, Del74] here, as the modi-

fications are only minor. We will therefore refer to these works for the bulk of the

construction.

We begin with a few remarks regarding stacks and their presentations. If X →
Spec(k) is an algebraic stack with smooth presentation P → X, then we can form

a groupoid in an algebraic space (see [LMB00, p. 11]) with objects P and P ×X P

and where the maps are the obvious projections and diagonals. The stack X can be

recovered from this groupoid via the construction [−] in [LMB00, p. 17]. When

k = C, then P and P ×X P have underlying topological spaces so we may pass to a

groupoid in topological spaces. The construction [−] applied to this groupoid yields

a topological stack that does not depend on the choice of presentation. This is called

the underlying topological stack X and is denoted X top

We now recall the definition of the cohomology of an algebraic stack X→Spec(k).
The stack X is a category fibered over schemes/k. This second category has a smooth

topology, so we define an arrow to be a cover if its image in schemes/k is. This allows

us to consider the ℓ-adic cohomology in the smooth topology on X. For details, see

[Beh03] or [LMB00]. When k = C, we may pass to the underlying topological stack

X top→top.

Similarly, one may define a Grothendieck topology on this stack by use of the big

site on top. Given a coefficient ring F we denote by H∗(X, F), the cohomology of the

constant sheaf with values in F on this site. (We remind the reader of our conventions,

stated at the beginning of the article, for when F = Q .) A good introduction to the

cohomology of stacks can be found in Kai Behrend’s talk at MSRI [Beh02].

These definitions are not completely necessary here, as we will be replacing our

stack by a simplicial space and the cohomology of this simplicial space will be the

same as that of the stack.

General references for simplicial objects and cohomological descent are [SD72,

Del74]. For a simplicial object, denote by skn the n-th truncation functor and by

coskn its right adjoint. Fix a locally finite stack X over k and a smooth presentation

α : P→X.
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Proposition 2.1

(i) The map α is of universal cohomological descent for the smooth topology.

(ii) The map

α top : P top→X top

is of universal cohomological descent for the usual topology.

Proof The proof of (i) can be found in [Beh03]. We give a sketch only of (ii) and

leave the details to the reader. Recall that X top
= [P

top
• ], where P

top
• is the topological

space in groupoids defined by

(P ×X P) top

s
//

t

// P top.

Both the arrows s and t admit sections locally on X top as they map underlying smooth

morphisms of algebraic spaces. Using this fact, one shows that for every topological

space T and every T→X top the map

T ×X top P top→T

admits sections locally on T. Now the result follows as the question is local on the

base X top.

Corollary 2.2 The natural augmentation map cosk(P/X)→X induces an isomorph-

ism Hi(cosk(P/X))
∼

−→ Hi(X).

It is worth noting that the following spectral sequence relates the cohomology of

the components of cosk(P/X) to that of X.

Proposition 2.3 Let Z• be a simplicial space. Then there is a spectral sequence with

E
pq
1 = Hq(Zp) abutting to Hp+q(Z•).

Proof See [SD72].

For the remainder of this section we will take k = C. Let lfschemes/C be the full

subcategory of schemes/C consisting of schemes that are separated and are disjoint

unions of schemes of finite type over C. Let lfssk be the category of k-truncated

simplicial objects in lfschemes/C. Our next task is to construct a smooth simplicial

scheme Y• in lfss∞ with a map Y•→ cosk(P/X) that is a hypercover. First let us recall

the standard method for construction of hypercovers.

In what follows, a simplicial space could mean simplicial scheme, simplicial alge-

braic space or a simplicial topological space.

Consider an m-truncated simplicial space X• augmented towards a stack S, i.e.,

a : X•→S. Recall that a is called a hypercover if the canonical maps deduced from

adjunction

Xn+1→(cosk skX•)n+1 for − 1 ≤ n ≤ m− 1,
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are of universal cohomological descent. This definition makes sense for m = ∞.

Recall the following ([SD72, 3.3.3]):

Theorem 2.4 If a : X•→S is a hypercover as above, then the natural map

cosk(X•/S)→S

is of universal cohomological descent.

We describe below the main method for constructing hypercovers. A k-truncated

simplicial space X• is said to be split if there exists for each j, k ≥ j ≥ 0, a subobject

NX j of X j such that the morphisms

∐
s :

∐

i≤n

∐

s∈Hom(∆n,∆i )

N(Xi)→Xn

are isomorphisms, for n ≤ k. This definition makes sense for k =∞.

Let X• be a split k-truncated simplicial space with k a finite number. We denote

by α(X•) the triple (X ′, N, β), where

(i) X ′ is the (k− 1)-truncated simplicial space obtained by restricting X•;

(ii) N = NXk;

(iii) β is the canonical map β : NXk→(coskk−1 skk−1(X•))k.

The triple α(X) = (X ′, N, β) satisfies the following condition

(S)
X ′ is a (k− 1)-truncated split simplicial space and

β is a map β : N→(coskk−1 X ′)k.

Proposition 2.5

(i) Let (X ′, N, β) be a triple satisfying (S). Up to isomorphism, there exists a unique

split k-truncated X• with α(X) ∼= (X ′, N, β).

(ii) In the setup of the previous part suppose Z is a k-truncated simplicial space. To give

a map f : X→Z is the same as giving the following data:

(a) a map f ′ : X ′→skk−1(Z),

(b) a map f ′ ′ : N→Zk such that the following diagram commutes:

N //

��

(cosk X ′)k

��

Zk
// (cosk skk−1Z)k.

Proof This is Proposition 5.1.3 of [SD72].

Now recall our setup from earlier in this section: we had a stack X and a smooth

presentation P→X. We construct our hypercover Y• of cosk(P/X) inductively as

follows:
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k = 0: Let P→X be a presentation. We may assume that P is a scheme by replacing

the algebraic space P by a presentation. As X is locally of finite type, we can assume

that P is in lfschemes/C, by replacing P by an open cover of P. We then take Y 0
•

to be a resolution of singularities of P. We view Y 0
• as a 0-truncated simplicial

space. Note that a smooth morphism locally admits sections and a resolution of

singularities is proper and surjective so Y 0
•→X is a hypercover.

k = 1: Let Z1 = (cosk(Y 0
•/X))1. We replace Z1 by an open affine cover and then

take a resolution of singularities of this cover to obtain a smooth scheme N1 in

lfschemes/C, and a map β : N1→Z1. Apply Proposition 2.5 to the triple

(Y 0
•, N1, β) to obtain a smooth 1-truncated split simplicial scheme Y 1

• .

k > 1: Inductively one produces for each k a split k-truncated simplicial scheme Y k
•

and an augmentation Y k
•→X such that

(1) The augmentation is a hypercover.

(2) Y k
i is in lfschemes/C.

(3) Y k
i is smooth over C.

(4) skk−1(Yk
•) = Yk−1

• .

Condition (4) means that Y i
i = Y i+1

i = · · · . We define Y∞
i to be this stable value

of Y ∗
i . The Y∞

i fit together to form a simplicial scheme that is in fact our required

hypercover Y• = Y∞
• →X.

A compactification of a simplicial scheme X• is a simplicial scheme X̄• and a mor-

phism j : X• →֒X̄• such that each of the maps jn are compactifications.

A divisor D• on a smooth simplicial scheme X• is a closed simplicial subscheme

D• →֒X• such that each of the morphisms Dn →֒Xn is a divisor. We say that D• has

simple normal crossings if each of the Dn do.

Theorem 2.6 Let X and Y be algebraic stacks locally of finite type.

(i) We can construct a hypercover X•→X with X• smooth and a smooth compactifi-

cation X̄• of X• such that X̄• \ X• is a divisor with simple normal crossings and both of

these simplicial schemes are in lfss∞.

(ii) If we have two such hypercover-compactification pairs (X•, X̄•) and (X ′
•, X̄ ′

•)

we can find a third pair (Z•, Z̄•) that satisfies the conditions of (i) and fits into a diagram

Z•
�
w

**UUUUUUUUUUUUUUUUUUUUUUUUU

  @
@@

@@
@@

~~~~
~~

~~
~~

X•
�
w

**UUUUUUUUUUUUUUUUUUUUUUUUU

��
00

00
00

00
00

00
00

00
0

X ′
•

����
��
��
��
��
��
��
��

�
w

**UUUUUUUUUUUUUUUUUUUUUUUUU Z̄•

  A
AA

AA
AA

A

��~~
~~

~~
~

X̄• X̄ ′
•

X

https://doi.org/10.4153/CJM-2006-038-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-038-8


1006 A. Dhillon

(iii) Let F : X→Y be a morphism. Then there exists hypercover-compactification

pairs (X•, X̄•) and (Y•, Ȳ•)as in (i) for X and Y respectively, along with morphisms

X•→Y• X̄•→Ȳ•

and a commutative diagram

X•

��

//
� p

  A
AA

AA
AA

Y•

��

� o

  @
@@

@@
@@

X̄•
// Ȳ•

X
F

// Y

Proof The proofs are analogous to those in [Del71]. For the convenience of the

reader we outline some of the proofs. (i) If X is a scheme that is a disjoint union of

smooth, separated, finite type schemes over C, we may find a compactification of it

by [Nag62]. We may assume by [Hir64] that this compactification, X̄, is smooth and

X̄ \X is a simple normal crossings divisor. The result will know follow from the ideas

in the discussion above.

(ii) The proof of this result is similar to that of (iii) so we only give the proof of

(iii).

(iii) Let Y→Y be a presentation of Y. We may assume that Y is a disjoint union

of separated schemes of finite type over C. The stack X×Y Y is algebraic and

X×Y Y→X

is a representable surjective and smooth morphism. So a presentation for this stack

gives a presentation for X by composition. We obtain a diagram

X
f

//

��

Y

��

X Y

where the two vertical arrows are of universal cohomological descent and X and Y are

in lfschemes/C. We may further assume that X and Y are smooth. To do this, first

resolve Y to Y ′ and then resolve X×Y Y ′ and note that the projection X×Y Y ′→X is

of universal cohomological descent.

We claim that there are smooth compactifications of X and Y denoted X̄ and Ȳ ,

respectively, such that f extends to a morphism f̄ : X̄→Ȳ and

X̄ \ X, Ȳ \ Y
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are simple normal crossings divisors. To do this choose any compactifications Ȳ of

Y and X̄ ′ of X. Let Γ f ⊆ X̄ ′ × Ȳ be the closure of the graph of f . It is compact, and

after applying [Hir64] to it we may assume that in addition the complement of the

inclusion X ⊆ Γ f has simple normal crossings. We take X̄ = Γ f , and this proves the

claim.

We take X0 = X, Y0 = Y , X̄0 = X̄ and Ȳ0 = Ȳ . To construct the next level of the

required simplicial schemes form a diagram

N ′

f1

//

p ′

��

N

p

��

cosk(X/X)1
// cosk(Y/Y)1,

where N and N ′ are smooth schemes in lfschemes/C and the vertical arrows are of

universal cohomological descent. We may compactify N and N ′ as above, so that f1

extends to a morphism on the compactifications. Now apply Proposition 2.5 as in

the discussion preceding this theorem. One continues by induction and the required

diagram is constructed.

Consider the category whose objects are pairs (X•, X̄•, ) where X• and X̄• are

smooth simplicial schemes in lfss∞ and X̄• is a compactification of X• with sim-

ple normal crossings on the boundary. We will now construct a functor from this

category to Q-mixed Hodge structures. The underlying vector space of this mixed

Hodge structure will be H∗(X•, Q).

Once this functor is constructed, Theorem 2.6 will show that a stack X has a

canonical functorial mixed Hodge structure. Note that a morphism of mixed Hodge

structures that is an isomorphism on underlying vector spaces is in fact an isomor-

phism of mixed Hodge structures, so (ii) shows that the construction is independent

of the choice of hypercover-compactification. Functoriality follows from (iii).

There is one very minor complication here. As Hi(X•, Q) may not be of finite

type, we may not directly apply [Del71, Del74]. However, we claim that once the

definitions of these papers are relaxed as outlined below, the results of these papers

still hold.

An infinite Q-Hodge structure of weight n is a Q-vector space V and a finite de-

creasing filtration F on V ⊗Q C = VC such that the filtrations F and F̄ are n-opposed,

that is

Gr
p
F Gr

q

F̄
(VC) = 0

for p + q 6= n. We do not require that V be finite dimensional.

An infinite Q-mixed Hodge structure consists of the following data:

(i) a Q-module V ,

(ii) a finite increasing filtration W on V , called the weight filtration,

(iii) a finite decreasing filtration F on V ⊗Q C = VC called the Hodge filtration,
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This data is required to satisfy the following axiom: F induces a weight n infinite

Hodge structure on GrW
n (V ).

A morphism f : V → V ′ of infinite mixed Hodge structures is a map of Abelian

groups that induces maps that are compatible with the filtrations.

A weight n infinite Hodge complex consists of

(α) A complex K• of Q-modules.

(β) A filtered complex (K•
C , F) in D+F(C) and an isomorphism

K• ⊗ C
∼

−→ K•
C in D+(C).

This data is required to satisfy the following axiom: For all k, the filtration on Hk(K•
C )

induced by F, defines a weight n + k infinite Hodge structure.

In the above D+F(C) is the filtered derived category as defined in [Del74]. In

particular the filtration F is biregular, that is it a finite filtration on each component

of the complex K•
C .

An infinite mixed Hodge complex consists of

(α) A filtered complex (K,W ) of Q-vector spaces in D+F(Q).

(β ) A bifiltered complex (K•
C ,W, F) a complex of C vector spaces, W an increasing

biregular filtration, F a decreasing biregular filtration and an isomorphism

C⊗Q K• ∼

−→ K•
C in D+F(C).

This data is required to satisfy the following axiom: The data consisting of the com-

plex GrW
n K•

Q and the quasi isomorphism

GrW
n K• ⊗ C

∼

−→ GrW
n K•

C

is a weight n infinite Hodge complex.

We will now proceed to show that the cohomology of an infinite mixed Hodge

complex inherits a canonical infinite mixed Hodge structure. We first need to recall

some facts from [Del71].

Let (K•,W, F) be a bifiltered complex. On the terms E
pq
r (K•,W ) of the spectral

sequence associated to the filtered complex (K•,W ), we have three filtrations induced

by F:

(i) The first direct filtration, Fd, is formed by viewing E
pq
r as a quotient of a subobject

of K p+q.

(ii) The second direct filtration, Fd∗ , is formed by viewing E
pq
r as a subobject of a

quotient object of K p+q.

(iii) The recursive filtration, Fr , is formed by defining,

on E
pq
0 , Fr = Fd = Fd∗ (see below),

on Epq
r , Fr = the filtration induced by the direct filtration on E

pq
r−1.

Proposition 2.7

(i) On E0 and E1 the three filtrations coincide.
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(ii) The differentials dr are compatible with Fd and Fd∗ .

(iii) Fd ⊆ Fr ⊆ Fd∗ .

Proof See [Del71, p. 17].

Theorem 2.8 Let (K•,W, F) be a bifiltered complex. We let E
pq
r = E

pq
r (K•,W ) be

the terms of the spectral sequence. Suppose that F is biregular and for 0 ≤ r ≤ r0 the

differentials dr are strictly compatible with Fr . Then on Er0+1 we have Fd = Fr = Fd∗.

Proof See [Del71, p. 18].

Given a complex K• with an increasing filtration W , we define a new shifted fil-

tration Dec W on K• by Dec WnK i
= Wn−iK

i .

Theorem 2.9 Assume (K•,W, α, K•
C , F) is an infinite mixed Hodge complex. Then

Dec(W ) and F induce a mixed Hodge structure on Hi(K•).

Proof Consider the decreasing filtration W̃ on K defined by W̃ p
= W−p. This fil-

tration gives a spectral sequence with E
pq
1 = Hp+q(GrW

−p(K)), abutting to Hp+q(K).

By Proposition 2.7 the three filtrations on E
pq
1 coincide and the differential is com-

patible with this filtration. As d1 is defined over Q , this differential is compatible

with the conjugate filtration and therefore is strictly compatible with the filtration.

So d1 : E
pq
1 →E

p+1,q
1 is a morphism of Hodge structures of weight q.

Hence E
pq
2 has a weight q Hodge structure. By Theorem 2.8 the three filtrations

coincide on E2 and d2 is compatible with it. As before, we conclude that d2 is strictly

compatible with this filtration. However, d2 : E
pq
2 →E

p+2,q−1
2 is a morphism of Hodge

structure of different weights so it vanishes. Hence E
pq
2 = E

pq
∞ and so GrW

−pHp+q(K)

has a weight q Hodge structure. One checks that GrDec
q Hp+q(K) = GrW

−pHp+q(K) and

we are done.

One can now proceed to define infinite complexes of sheaves as in [Del74, pp. 28–

38]. The results will carry over verbatim to this setting. In particular, the analogue

of Proposition 8.1.20 [Del74] constructs a functorial mixed Hodge structure on the

cohomology of a hypercover-compactification pair.

3 The Cohomology of the Ind Scheme of Matrix Divisors

For the remainder of this paper, X is a smooth geometrically connected projective

curve defined over our ground field k.

The primary purpose of this section is to recall the results in [BGL94] regarding

the cohomology of Div and provide a bound on the codimension of the complement

Divss \Divs.

Let Λ be the partially ordered set of effective divisors on X. Fix D ∈ Λ and consider

the functor

Divr,d(D)♭ : schemes/k→sets
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whose S-points are equivalence classes of inclusions F→֒OX×S(D)r , where F is a fam-

ily of rank r degree d bundles on X×S. This functor is representable by a Quot scheme

that we denote by Divr,d(D) = Div(D). These Quot schemes fit together to form an

ind scheme denoted by Divr,d
= Div.

Let m = (m1, m2, . . . , mr) be a partition of the integer r. deg D−n, by non negative

integers. Then the product of Hilbert schemes of points

Hm
= Hilb(m1,C)×Hilb(m2,C)× · · · ×Hilb(mr,C)

sits canonically inside of Div(D). Recall that over an algebraically closed field, the

Hilbert scheme of points of a smooth curve is just a symmetric power of the curve.

The torus Gr
m acts on Div(D) and the above products of Hilbert schemes are clearly

fixed by this action. The converse is also true.

Theorem 3.1

(i) The fixed points of this action are precisely the schemes Hm as m varies over all

partitions of r. deg D− n.

(ii) The cohomology of Div stabilizes and its Poincaré polynomial is given by

P(Div; t) =

∏r
i=1(1 + t2 j−1)2g

(1− t2r)
∏r−1

i=1 (1− t2 j)2
.

The fact that the cohomology stabilizes means that the inverse limit

lim
←−
Λ

Hi(Div(D), Q)

is in fact finite.

(iii) When k = C, the Hodge–Poincaré polynomial of Div is

PH(Div; x, y) =
(1 + x)g(1 + y)g

(1− xr yr)

r−1∏

i=1

(1 + xi+1 y)g(1 + xyi+1)g

(1− xi yi)2
.

Proof The first part is proved in [Bif89]. The second part follows from the first

by some theorems of A. Białynicki-Birula and some deformation theory. For details

see [BB73, BB74] and [BGL94, Proposition 4.2]. The last part follows by noting that

the Białynicki-Birula decomposition is compatible with, among other things, Hodge

theory. A nice exposition of these ideas can be found in [dB01]. The formula we have

written down follows directly from Proposition 4.4 of that paper.

For a vector bundle E on X with rank r and degree d, its Harder–Narasimhan

E1 ⊆ E2 ⊆ · · · ⊆ El = E.

filtration is unique. So the sequence of pairs of numbers (r1, d1), (r2, d2), . . . , (rl, dl),

where ri is rank of Ei and di its degree, is unique. If these points are plotted in R2 and
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the line segments from (ri , di) to (ri+1, di+1) are joined, then one obtains a polygonal

curve from the origin to (r, d) such that the slope of each successive line segment

decreases. Such a curve will be called a Shatz polygon for (r, d). We denote the set

of Shatz polygons for (r, d) by Pr,d
= P. If one thinks of these polygons as graphs

of functions [0, r]→R, then this collection has a natural partial order determined by

the partial order on the set of functions with domain [0, r] and codomain R. For a

vector bundle E, we let s(E) denote its Shatz polygon.

Now consider a family of vector bundles E on X × T of rank r and degree d, with

T in lfschemes/k. Fix a Shatz polygon P for (r, d) and recall the following results:

(i) The locus TP
= {t ∈ T | s(Et ) > P} is closed.

(ii) The locus {t ∈ T | s(Et ) = P} is closed in the open set T \ TP.

To prove these statements one considers the relative flag scheme FlagP(E/T) over T,

whose fiber over t ∈ T is a parameter space for flags of Et with rank and degree data

specified by P. It is proper over T so it has closed image in T. The above results follow

by use of this fact. Complete details can be found in [Bru83].

Denote by DivP(D) the open locus inside Div(D) parameterizing subbundles of

OX(D)r whose Shatz polygon is not bigger than P, i.e., the complement of the closed

set in (i) defined by taking T = Div(D). We can consider the corresponding ind

schemes DivP. We denote by Divss the semistable locus, corresponding to taking P

equal to the straight line from (0, 0) to (r, d).

Denote by SP(D) the locally closed locus inside Div(D) parameterizing bundles

with Shatz polygon exactly P. These fit together to form an ind scheme SP. For deg D

large enough SP(D) is smooth. If P has vertices (r0 = 0, d0 = 0), (r1, d1), . . . , (rl =

r, dl = d) and deg D large, then the codimension of this stratum is given by

dP =

∑

i< j

rir j(µi − µ j + g − 1)

where µi = di/ri .

Theorem 3.2 Let P be a Shatz polygon with vertices

(r0 = 0, d0 = 0), (r1, d1), . . . , (rl = r, dl = d)

Set r ′i = ri − ri−1 and d ′
i = di − di−1. There is a closed immersion

δ : Divr ′1 ,d ′
1 ,ss ×Divr ′2 ,d ′

2 ,ss × · · · ×Divr ′l ,d ′
l ,ss → SP

(E1, E2, . . . , El) 7→ E1 ⊕ E2 ⊕ El

that induces an isomorphism in cohomology.

Proof This is [BGL94, Proposition 7.1].

Let I be a subset of the collection of all matrix divisors. We say that I is open if

P ∈ I and P ′ ≤ P implies P ′ ∈ I. If P is a minimal element of the complement of I

then J = I ∪ {P} is also open. If I is open then the locus SI
=

⋃
P∈I SP is an open

subset of Div(D).
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Theorem 3.3 Suppose P is a minimal element of the complement of J with J open. Set

I = J ∪ {P}. The Gysin sequences

· · ·→Hi−2dP (SP, Q)→Hi(SI , Q)→Hi(SJ, Q)→· · ·

split into short exact sequences. Hence the following relation among Poincaré polynomi-

als holds:

P(Div; t) =

∑

P∈P

P(SP ; t)t2dP .

Proof See [BGL94, Proposition 10.1].

The above three theorems yield recursive formulas for the Hodge and Betti num-

bers of the ind varieties of matrix divisors associated to Shatz polygons.

In the remainder of this section we provide a dimension bound for the comple-

ment Divss \Divs.

We consider pairs of sequences of integers

(r, d) = ((r1, r2, . . . , rl), (d1, d2, . . . , dl))

satisfying the following conditions

(♯) 0 < r1 < r2 < · · · < rl = r, di =
dri

r
.

We denote by Flag(r,d)(D) the scheme representing the functor

T 7→ {E1 ⊆ E2 ⊆ · · · ⊆ El ⊆ OX(D)r | rkEi = ri deg Ei = di}

See [BGL94] for the existence of such a scheme. There is a proper morphism

π(r,d) : Flag(r,d)(D)→Div(D).

There is an open subset JH(r,d)(D) ⊆ Flag(r,d)(D) parameterizing semistable flags

with Ei/Ei−1 a stable bundle for all i. By the existence of Jordan–Holder filtrations

we have

Divs(D) = Div(D) \
⋃

(r,d)

π(r,d)( JH(r,d)).

To find a dimension bound on the complement Div(D) \ Divs(D), we need only

bound the dimensions of each of the open sets JH(r,d)(D).

Theorem 3.4

dim JH(r,d)(D) ≤ r2 deg D− rd− (g − 1)(r − 1),

where g is the genus of the curve.

https://doi.org/10.4153/CJM-2006-038-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2006-038-8


On the Cohomology of Moduli of Vector Bundles 1013

Proof Consider a point E1 ⊆ E2 ⊆ · · · ⊆ El ⊆ OX(D)r of JH(r,d)(D). Following

[BGL94] we denote by Ẽi the sheaf OX(D)r/Ei . From [BGL94], the tangent space to

JH(r,d)(D) at the above point is identified with the vector subspace of Hom(E1, Ẽ1)⊕

Hom(E2, Ẽ2)⊕ · · ·⊕Hom(El, Ẽl) consisting of l-tuples (x1, x2, . . . , xl) satisfying the

following condition:

• The images of xi and xi+1 agree in Hom(Ei , Ẽi+1).

(See [BGL94].)

We have exact sequences

0→E1→Ri+1→Li→0 and 0→Li→Ẽi→Ẽi+1→0

where Li is a stable bundle of rank ri+1 − ri . These sequences give rise to long exact

sequences

0→Hom(Ei , Li)→Hom(Ei , Ẽi)→Hom(Ei , Ẽi+1)→· · ·

and

0→Hom(Li , Ẽi+1)→Hom(Ei+1, Ẽi+1)→Ext1(Li, Ẽi+1)→· · · .

As Li is stable and Ei is semistable Hom(Ei , Li) = 0 and for deg D large enough

Ext1(Li, Ẽi+1) vanishes. It follows that

dim JH(r,d)(D) ≤ dim Hom(E1, Ẽ1) + dim Hom(L1, Ẽ2)

+ dim Hom(L2, Ẽ3) + · · · + dim Hom(Ll−1Ẽl).

In bounding the right-hand side above, we will freely make use of [Ful98, §5, §15].

We have

Td(C) = 1 +
1

2
c1(−K),

ch(E
∨

1 ) = r1 − c1(E1),

ch(Ẽ1) = r − r1 + rc1(D)− c1(E1),

ch(Ẽ1 ⊗ E
∨

1 ) = r1(r − r1) + r1rc1(D)− rc1(D).

Hence,

χ(Ẽ1 ⊗ E
∨

1 ) = r1(r − r1)(1− g) + r1r deg D− r1d.

Similarly,

ch(L
∨

i ⊗ Ẽi+1) = (r − ri+1)(ri+1 − ri)

+ (r − ri+1)ci(Ei)(ri − r)c1(Ei+1) + (ri+1 − ri)rc1(D).
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Hence

χ(L
∨

i ⊗ Ẽi+1) = (r − ri+1)(ri+1 − ri)(1− g)

+ (r − ri+1)di + (ri − r)di+1 + (ri+1 − ri)r deg D

= (ri+1 − ri)r deg D + (r − ri+1)(ri+1 − ri)(1− g) + (ri − ri+1)d.

So

dim JH(r,d)(D)

≤ r1(r − r1)(1− g) + r1r deg D− r1d + (r2 − r1)r deg D

+ ((r − r2)(r2 − r1)(1− g) + (r1 − r2)d + (r3 − r2)r deg D

+ (r − r3)(r3 − r2)(1− g) + (r2 − r3)d + · · · + (rl − rl−1)r deg D

+ (r − rl)(rl − rl−1)(1− g) + (rl−1 − rl)d

= r2 deg D− rd + (1− g)(r1(r − r1) + (r − r2)(r2 − r1) + (r − rl)(rl − rl−1)

≤ r2 deg D− rd + (1− g)(r − 1).

To see why the last inequality holds, first observe that for integers s and t with 1 ≤
s < t we have s(t−s)

t−1
≥ 1. Since 1− g < 0, the inequality in question is equivalent to

showing that r1(r2 − r1) + r2(r3 − r2) + · · · + rl−1(r − rl−1) ≥ r − 1 which follows

from the above inequality.

Corollary 3.5 The inclusion Divs(D) →֒ Div(D) induces an isomorphism in coho-

mology

Hi(Div(D), Q)
∼

−→ Hi(Divs(D), Q)

for i < 2(g − 1)(r − 1).

Proof We calculate the dimension of Div(D) to be r2 deg D− rd. The result follows

from the Gysin sequence and the dimension bound above, see for example [Mil80, p.

268].

4 The Cohomology of the Stack

Let E be a family of vector bundles on X × S with S/k a smooth scheme. We say that

the family E is complete if the Kodaira–Spencer map TsS→Ext1(Es, Es) is surjective.

Lemma 4.1 Let S and T be schemes smooth over k and let ES (resp., ET) be a complete

family of bundles on X × S (resp., X × T). Assume also that the induced maps S→Bun

and T→Bun are smooth. Then the induced family on S×Bun T is complete.

Proof This is mostly a matter of unwinding definitions. Recall that if A is a k-algebra

then an A-point on S×Bun T consists of a triple (s, t, α) where s (resp., t) is an A-point

of S (resp., T) and α is an isomorphism α : (s× 1)∗ES
∼
−→ (t × 1)∗ET .
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So consider a closed point (s0, t0, α0) of the fibered product. We have a diagram

of Kodaira–Spencer maps

Ts0
S // Ext1(Es0

, Es0
)

∼

��

Tt0
T // Ext1(Et0

, Et0
),

where the vertical arrow is an isomorphism and the horizontal maps are surjective.

Fix an extension class and choose k[ǫ]-points of S and T lying above it. Call these

point s and t , respectively. The bundles (s× 1)∗ES and (t × 1)∗ET are isomorphic, as

they correspond to the same extension class. It is possible to choose an isomorphism

between these bundles that restricts to α upon specialization to the closed point of

k[ǫ]. Such an isomorphism gives a k[ǫ]-point of the fibered product that maps onto

the extension class we chose earlier.

We recall how a presentation of Bun was constructed in [LMB00]. Let p(x) =

rx + d + r(1− g). For every integer m we define an open subscheme

Qm →֒Quot(O
p(m)
X , p(x + m))

by requiring that

(i) the quotients parameterized by Qm be vector bundles;

(ii) for every T-point of Qm defined by the family τ : O
p(m)
X×T→F→0, we have

R1πT,∗F = 0 and πT,∗ : O
p(m)
X×T

∼
−→ πT,∗F is an isomorphism.

It follows from (ii) that if the quotient

0→G→O
p(m)
X →F→0

represents a point of Qm, then we have H1(F ⊗ G
∨

) = 0, i.e., Qm is smooth.

We have maps Qn→Bun and F 7→ F(−n). Then

Q =

∐

m

Qm→Bun

is a smooth presentation.

Proposition 4.2 The family on Q is complete and hence, by the lemma, cosk(Q/ Bun)

is a simplicial algebraic space each of whose components defines a smooth family.
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Proof Let

0→Gn→O
p(n)
X×Qn→Fn→0,

be the universal family on Qn × X. The Kodaira–Spencer map is identified with the

connecting homomorphism

Hom(Gn, Fn)→Ext1(Fn, Fn) = Ext1(Fn(−n), Fn(−n)).

The next term in the sequence vanishes and the result follows.

We note the following theorem from [Pot97, p. 206].

Theorem 4.3 Let E be a complete family of vector bundles X parameterized by S. As-

sume S is smooth. Let P = ((d1, r1), . . . , (dl, rl)) be a Shatz polygon for (r, d). Then

the subvariety SP of S parameterizing bundles with polygon P is locally closed and has

codimension

cod(P)
def
=

∑

i< j

rir j(µi − µ j + g − 1),

where µi = di/ri .

Let BunP be the open substack of Bun parameterizing bundles whose Shatz poly-

gon is not bigger than P.

Theorem 4.4 We have

lim
←−

P

Hi(BunP, Q) = Hi(Bun, Q),

and in fact the limit on the left stabilizes.

Proof First some notation, if E is a family of rank r degree d bundles on T × X,

denote by TP the open locus consisting of points t ∈ T such that s(Et ) is not bigger

than P. From definitions we have

(S×Bun T)P
= (SP ×BunP TP).

For each fixed integer i there are only finitely many Shatz polygons Q having

cod(Q) < i. Let P0 be a Shatz polygon greater than all of the Shatz polygons in

this finite set. Let P ≥ P0. It suffices to show that the natural map BunP→Bun

induces an isomorphism on degree i cohomology. By Propositions 2.3 and 4.2, it

suffices to show that if E is a complete family of vector bundles on X × T, then the

natural inclusionTP →֒T induces an isomorphism in cohomology of degree j for all

j ≤ i. But this follows by the Gysin sequence and choice of P.

The virtue of the above theorem is that the family of bundles parameterized by

BunP is bounded. To see this last statement, note that only finitely many Shatz poly-

gons appear in BunP and that the collection of bundles with a particular Shatz poly-

gon is bounded. We will now proceed to exploit this.

The proof of Theorem 4.6 will rely on the following lemma, (see [BGL94, Lemma

8.2]).
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Lemma 4.5 Let E and F be rank r bundles on X such that Ext1(E, F) = 0. Then

for any effective divisor D, the codimension cD of the closed locus in Hom(E, F(D))

consisting of non-injective homomorphisms satisfies cD ≥ deg D.

Theorem 4.6 The natural map Div→Bun is a quasi-isomorphism, i.e., it induces an

isomorphism on cohomology groups.

Proof By Theorem 4.4, it suffices to show that the natural map DivP→BunP, is a

quasi-isomorphism. As this last stack is of finite type, it suffices to show, by Propo-

sition 2.3, that for all schemes T of finite type and all maps T→BunP, the map pT

below is a quasi-isomorphism:

T ×BunP DivP

��

pT

// T

��

DivP // BunP .

Let F be the family of bundles on X × T defining the map T→BunP. For D large

enough we have H1(F
∨

t (D)) = 0 for each t ∈ T. So, by the standard results on base

change, for D large enough, we have that an S-point of T ×BunP DivP(D) consists of a

map φ : S→T and an injection

(φ× 1)∗F→֒OX×S(D)r.

Hence T ×BunP DivP(D) is an open subset of the vector bundle

πT,∗(Hom(F, OX×T (D)r.

The result follows by Lemma 4.5 and a Gysin sequence.

Corollary 4.7 When k = C or a finite field, the cohomology of Bun is pure and of the

correct weight.

5 The Cohomology of the Stack Versus That of the Moduli Space

Proposition 5.1 Let G be a geometrically connected group scheme over k and let

f : P→Y be a G-torsor. Then the local systems R f∗Q or for the etále site R f∗Ql, are

constant.

Proof This result is from [Beh93, §1.4]. For the convenience of the reader we give

an outline of the ideas.

First, the action of G on itself by left multiplication induces an action of G on

Hi(G). This action is trivial as it comes from an action of G on the discrete spaces

Hi(G, Z), if k = C, or for general k, Hi
ét(G ⊗k k̄, Z/lnZ). The fibration g : P ×G

Hi(G)→Y is hence trivial over Y and one shows that R f∗Q = Rg∗Q .
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Proposition 5.2 Consider the natural map Φ : GLn→PGLn×Gm that is the projec-

tion on the first factor and the determinant on the second factor. Then Φ is a quasi-

isomorphism.

Proof Consider the commutative diagram

GLn

Φ
//

f

$$J
JJ

JJJ
JJJJ

J
PGLn×Gm

g

��

PGLn,

where f and g are the projections. It suffices to show that map induced by Φ on the

Leray spectral sequences for f and g is an isomorphism at the E2 level. We have

Φ
∗ : E

pq
2 (g) = Hp(PGLn, Hq(Gm, Q))→E

pq
2 ( f ) = Hp(PGLn, R f q

∗ Q).

By the above Proposition the local system on the right is constant, and it suffices to

observe that the n-th power map Gm→Gm induces an isomorphism in cohomology.

Let G be an algebraic group over k acting on a scheme X over C. Let the action

be given by σ : X × G→G. The map X→[X/G] is a presentation and we wish to

describe the simplicial space cosk(X/[X/G]). The n-th term of the simplicial scheme

cosk(X/[X/G]) is of the form

X × G× G× · · · × G︸ ︷︷ ︸
n times

.

The i-th face map is given by

δi(x, g1, g2, . . . , gn) =

{
(x, g1, . . . , ĝi, . . . , gn) for i > 0,

(xg1, g−1
1 g2, . . . , g−1

1 gn) for i = 0.

Let Buns be the open substack of Bun parameterizing stable bundles. The follow-

ing is well known:

Proposition 5.3 There is a scheme Q and a commutative diagram of stacks

[Q/ GL] //

��

[Q/ PGL]

��

Buns // Ms

in which the two vertical arrows are isomorphisms.
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Proof The Q in the above theorem is the open locus inside the quot scheme that is

both a presentation for Buns and the GIT quotient of it by PGL is the moduli space.

For details, see [Gom, Proposition 3.3].

Theorem 5.4 There is an isomorphism H∗(Buns, Q)
∼

−→ H∗(Ms, Q)⊗H∗(BGm, Q).

Proof We have a map cosk(Q/[Q/ GL]) → cosk(Q/[Q/ PGL]). We define a map

cosk(Q/[Q/ GL]) → cosk(point/BGm) by projecting onto cosk(point /BGL) and

then taking the determinant. Hence we have a map

cosk(Q/[Q/ GL])→ cosk(Q/[Q/ PGL])× cosk(point /BGm).

We see that this map induces an isomorphism in cohomology by using the standard

spectral sequence, Proposition 2.3, and Proposition 5.2.

Corollary 5.5 The natural map Divs→Ms is a quasi-isomorphism. The Betti and

Hodge numbers of Hi(Ms) can be calculated for i < 2(r− 1)(g − 1). If k is a finite field

or C these cohomology groups are pure and of the correct weight.

Proof First, the natural map Buns→Ms is a quasi-isomorphism, as the proof of

Theorem 4.6 carries over to this case verbatim. The result now follows from the

above theorem and Corollary 3.5.

6 The Tamagawa Number of SLn

In the remainder of this paper k will be a finite field of cardinality q. Let K be the

function field of X and let A be its adele ring. Let K be the canonical maximal

compact in SLn(A). We have a standard bijection between the double coset space

K\ SLn(A)/ SLn(K) and the set of SLn-torsors on X. To see this first observe that ev-

ery SLn-torsor is rationally trivial, after all a SLn-torsor over a field is a vector space

with a trivialization of its top exterior power, and these structures are all abstractly

isomorphic. Next an SLn-torsor can be described by descent data, and we may as-

sume that one component of our étale cover is a Zariski open set. Such an étale cover

can always be refined to a flat cover of the form U ∪
⋃

SpecÔX,xi
, where the union

above is over a finite number of points xi and U is a Zariski open in X and ÔX,xi
is the

completion of the local ring at xi . It follows from faithfully flat descent that the points

of SLn(A) are in bijection with the collection of triples (P, φ, (ρx)x closed in X), where P

is an SLn-torsor, φ is a generic trivialization, and a trivialization ρx is a family of

trivializations over each SpecÔX,xi
. From this the above bijection follows.

Before proceeding further we will briefly recall the construction of the Tamagawa

measure on G(A), where G is a semisimple algebraic group over the function field K.

The details of this construction can be found in [Wei82, Oes84]. Given a differential

form ω on G of highest degree and a closed point x ∈ X, there is a way to produce

a Haar measure on the locally compact group G(k̂(x)): here k̂(x) is the quotient field

of ÔX,x. Multiplying ω by f ∈ K multiplies the Haar measure by f , thinking of K as
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a subfield of k̂(x). From the product formula it follows that the limit of the product

measures on G(A) does not depend on the choice of top form ω. The Tamagawa

measure is this measure multiplied by a factor of q(1−g) dim G, where g is the genus of

X. The group G(K) is a discrete subgroup of G(A), and the Tamagawa number is

defined to be the volume of G(A)/G(K) under the above measure.

We now recall the Siegel formula for the Tamagawa number of G (quasi-split),

denoted τ (G). We have

τ (G) = vol(G(A))/G(K))

=

∑

x

vol(KxG(K)/G(K))

(as x runs over a collection of double coset representatives)

=

∑

x

vol(K)
1

|xKx−1 ∩ G(K)|

= vol(K)
∑

x∈BunG(k)

1

|Aut(x)|
(where the sum is over isomorphism classes)

= vol(K)qdim BunG

∞∑

i=0

(−1)i Tr Φ|Hi (BunG),Ql
, (by [Beh]).

In the last line, Φ is the arithmetic Frobenius and the last equality is by the Lef-

schetz trace formula for stacks. We will show that right-hand side above is in fact

1.

When G = SLn in the above, we have

vol(K) = q−(n2−1)(g−1)
∏

x∈X

(1−
1

q2 deg x
) · · · (1−

1

qn deg x
),

by [Wei82, p. 31]. The product above is over all closed points of X. In summary:

Proposition 6.1 We have the following formula for the Tamagawa number of SLn;

τ (SLn) =

(∏

x∈X

(
1−

1

q2 deg x

)
· · ·

(
1−

1

qn deg x

))( ∞∑

i=0

(−1)i Tr Φ|Hi (BunSLn ,Ql)

)
.

For D an effective divisor on X we define DivSLn
(D) by the Cartesian square

DivSLn
(D) //

��

Divn,0(D)

��

BunSLn
// Bunn,0,
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where the lower horizontal map is induced by the standard faithful representation

of SLn. A point of DivSLn
(D) consists of a triple (E, i, r), where E is a rank n degree

0 bundle on X, i is inclusion of E into OX(D)n and r is a reduction of the structure

group of E to SLn. Now GLn / SLn = Gm is an affine algebraic group and as X is pro-

jective every morphism from X to Gm is constant. It follows that DivSLn
(D) → S(D)

is a Gm-torsor, where S(D) ⊆ Div(D) is the locus of bundles with trivial determinant.

Furthermore, by arguments similar to those as in Section 4, one shows that the nat-

ural map DivSLn
→ BunSLn

, is a quasi-isomorphism. Here DivSLn
is the obvious ind

scheme.

Writing Tr(Φ|X) for the alternating sum of the traces of the arithmetic Frobenius

on the cohomology of X, we have

(2) Tr(Φ|DivSLn (D)) = Tr(Φ|Gm
) Tr(Φ|S(D))

=
q− 1

q
Tr(Φ|S(D)).

A standard deformation theory argument shows that S(D) is smooth and the tan-

gent space at a point

0→ E→ OX(D)n → Q→ 0

is the the subspace of Hom(E, Q) consisting of maps whose image under the con-

necting homomorphism is inside H1(adSLn
E) →֒ H1(adE).

A point in the fixed locus of the torus action on Divn,0(D) is of the form

n⊕

i=1

OX(D− Fi) →֒ OX(D)n.

Hence the connected components of the fixed point locus are parameterized by par-

titions of n deg D = nd. If m = (m1, m2, . . . , mn), mi ≥ 0, is such a partition, then

the corresponding fixed point locus is Hilb(m1, X)× · · · ×Hilb(mn, X).

Let Sm(D) be its intersection with S(D). If

n⊕

i=1

OX(D− Fi) →֒ OX(D)n

is a point of Sm(D), its tangent space to Divn,0(D) is

⊕

i, j

Hom(OX(D− Fi), OF j
)

and the tangent space to S(D) is a proper subspace that we do not write down. The

bundle positive weights inside the normal bundle to the fixed locus inside Divn,0(D)

is

(3)
⊕

i> j

Hom(OX(D− Fi), OF j
).
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One checks that the bundle of positive weights of the normal bundle of Sm(D) in

S(D) is the same thing.

The Lefschetz trace formula for the arithmetic Frobenius on a smooth variety X

over k reads
1

|X(k)|
qdim X

= Tr(Φ|X),

where |X(k)| is the number of k-rational points on X. As dim S(D) = n2 deg D − g

we have

(4) Tr(Φ|S(D)) =

∑

m

|S+
m(D)(k)|

qn2 deg D−g
,

where the sum is over all partitions of n deg D = nd and S+
m(D) is the strata corre-

sponding to Sm(D).

Before proceeding further we record a few elementary remarks regarding Hilbert

schemes and zeta functions. Let ζ(s) be the zeta function of X, so ζ(s) = Z(q−s),

where Z(t) is a zeta function in the sense of Weil. Let Ni be the number of closed

points of degree i on X. To give a k point of Hilb(m, X) is the same as giving a

partition of m of the form

m = (x11 + x12 + · · · + x1,N1
) + 2(x21 + x22 + · · · + x2,N2

) + · · ·

with xi j ≥ 0. Let c(N, m) be the number of such partitions and let c(N, m) be the

number of k points on Hilb(m1, X)×· · ·×Hilb(mn, X), when m = (m1, m2, . . . , mn).

Lemma 6.2 We have

ζ(2)ζ(3) · · · ζ(n) =

∏

x∈X

(
1−

1

q2 deg x

)−1

· · ·
(

1−
1

q(n+1) deg x

)−1

,

and in fact the product of the right converges (absolutely). For a positive integer α let

Aα = {(m2, . . . , mn) |
∑

imi = α}. The coefficient of q−α in the above product is

∑

m∈Aα

c(m, N)
def
= Bα.

Proof The remark about special values of zeta functions is by definition and the

convergence statement is well known, for example it follows from Weil’s analogue of

the Riemann hypothesis. To see the second part¡ expand each term in the product as

a geometric series and then expand using the combinatorics described above.

Corollary 6.3 For any subset of the positive integers I, we have

ζ(2)−1 · · · ζ(n)−1 ≥
∑

i∈I

Bαq−i.
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We write d = deg D. In order to calculate the Tamagawa number we just need to

calculate the right-hand side of (4), which we now do. We are only interested in the

limit as d → ∞. The calculation is broken into two cases and the second case will

disappear as d become large.

Case 1, m1 > 2g−2: We have a Pm1−g bundle Sm → Hilb(m2, X)×· · ·×Hilb(mn, X).

The weight positive weight space has dimension m1(n − 1) +
∑

i≥2(n − i)mi . Re-

membering that m is a partition of nd, we have

|Sm(k)|

qn2d−g
=

q

q− 1
c(m◦, N)(q−

∑
i≥2

imi − error),

where m◦
= (m2, m3, . . . , mn). It is straightforward to check that the sum of the

errors goes to zero as d becomes large, using the corollary above. (See below also).

Case 2, m1 ≤ 2g − 2: We wish to show that the sum of the terms in this case goes

to zero as d increases, so it is assumed that d > n(2g − 2). Let 0 ≤ k ≤ 2g − 2 and

let 2 ≤ l ≤ n. Let ǫkl be the sum of the terms contributing to (4), in this case with

m1 = k and mk > 2g − 2. It suffices to show that ǫkl goes to 0 as d increases. For this

we may assume that l = 2. Consider the projection

Sm → Hilb(m1 = k, X)×Hilb(m3, X)× · · · ×Hilb(mn, X).

Counting fibers and points as before we find that

Sm

qn2d−g
=

c(k, N)c(m♯, N)q

q− 1
(q−2nd−

∑
i≥3

(i−1)mi − q−1+k−2nd−
∑

i≥3
(i−2)mi +g),

where m♯
= (m1, m2, . . . , mn). Summing over the possibilities and applying the

corollary, we find ǫk2 ≤ (Constant)q−2nd.

Theorem 6.4 The Tamagawa number of SLn is 1.

Proof By the above calculation and Lemma 6.2 we have

lim
d→∞

Tr(Φ|S(D)) =
q

q− 1
ζ(2) · · · ζ(n).

The result follows from (2), Proposition 6.1 and the remarks immediately follow-

ing it.
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