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Abstract. The fractal dimension of an attracting torus Tk in U x Tk is shown to be
almost always equal to the Lyapunov dimension as predicted by a previous conjec-
ture. The cases studied here can have several Lyapunov numbers greater than 1 and
several less than 1

1. Introduction
This paper considers a pair of related problems. In § 2 we study the question of
determining the dimension of the graph of the scalar function, defined by the series

/(')= I AWO, (1.1)
=o

where 0<A < 1 and /?> I/A and q is a smooth, non-constant, periodic or almost
periodic, function. Our analysis and results are reminiscent of some classical work
of Hardy on properties of the continuous, but nowhere differentiable, Weierstrass
function [8]. Hardy studied various properties of (1.1) for A/3> 1 and q{t) = sin t
or q(t) = cos t. For Hausdorff dimension results see [2], [3], [5], [10], [12].

In § 3 we turn our attention to the study of the 'dimension' of the strange attractor
for the dynamical system denned by particular maps on the space T2xU where T2

is the torus or more generally on Tk xR. The value derived is consistent with a
conjecture stated by Frederickson et al. [7]. A preliminary version of their conjecture
appeared in [9]. A discussion of the various meanings of dimension appears in [6].

Roughly speaking, the dimension of a set indicates the amount of information
necessary to specify a given location with a desired precision. For a space S, let
N(e) be the minimum number of points that can be chosen so that the e balls
centred at these points cover the space. The fractal dimension (or capacity) of S
tells how N(e) grows as e shrinks to 0. If the set is d-dimensional we expect
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N(e) = ced for some constant c. Define the fractal dimension (i.e. capacity)

S ) = l i m ^ ^ . (1.2)
* logl /

whenever the limit exists.
Our principal result for / defined in (1.1) is the following.

THEOREM A. Assume
N

q(t)=l qt cos (att+ 6^,

for some real numbers qh a,, 0, where i = 1 , . . . , N for some N. Then either
(i) dim(graph/)=2-|logA/log/3|, or
( i i ) / f e C \

Of course when / i s C\ dim (graph/) = 1. Case (i) must hold when N = 1.
Our proof of this theorem deals with certain more general q(t) and the proof

characterizes when (ii) occurs in terms of a certain formal Fourier series. Our
techniques are aimed at a rather different situation described in the theorems below
and we cannot restrict attention to just those q that have a Fourier series with a
finite number of terms.

The only exceptional cases we know of where (ii) is satisfied are where there are
constants /30 and Ao and there is a C1 function r for which

q(t) = \0r(flot)-r(t). (1.3)

Then (ii) holds for A = Ao and (3 = j30. Roughly speaking for a given /3 and q, (i)
holds for all but a discrete set of A.

In § 3 we study the mapping F: Tk XRH> Tk xR defined as follows. Let Tk denote
the fc-dimensional torus and let x be in Tk where the coordinates of x are all taken
mod 1. Let A denote a k x k matrix with integer coefficients satisfying det A = 1.
Then A can be considered as a mapping on Tk when Ax is taken mod 1 in each
coordinate, and this mapping is continuous on Tk. Let y be real. Define F: Tk xlR->

•) = (Ax,\y+p(x)), (1.4)

where 0 < A < 1 and p: Tk -> U is a smooth function of period 1 in each coordinate.
The mapping F determines the system

(xn+uyn+l) = F(xn,yn) (1.5)

for which the compact set B = {(x,y): xe Tk and |y |< ( l -A)" ' sup |/?|} is
mapped into itself by F. The attracting limit set for (1.4) is

S=nF'(B). (1.6)

The form of F in (1.4) implies that the attractor S is of a special type. For each
xeTk there is exactly one yeR such that (x,y)eS and y = y(x) has an explicit
formula

y(x)= I A"
n = l
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(Notice A~'x is well defined on Tk since det A = 1.) Thus the graph of y, namely
{(x,y(x)): x£ Tk} is the attractor. To see the graph is invariant under F, compute

(x)) = (Ax,p(x)+\y(x))

= (Ax, I An

n = l

Note also that each line {x} xR is mapped to the line {Ax} xR and the map contracts
distances on each line by a factor of A. If we define <f>: Tfc-»IR by

</>(*)= I A>(A""x), (1.7)

then (x, y) e S if and only if (x, y) lies on the graph of y = 0(A~'x). It is not hard
to see that the dimension of the graph of (j> is the same as that of <f> ° A~'. Thus
our study of the dimension of the attractor S is reduced to the study of the dimension
of the graph of </>. By restricting <f> to appropriate 1-dimensional manifolds in Tk

we will be able to make use of the analysis of § 2 to establish our main result, which
we first state here for the 2x2 matrix A* where

(2 1\
! \1 1/

The number Bx = (3 +J5)/2 plays a special role since Bx and B2= 1/B, (which is
(3 —V5)/2) are eigenvalues of A+.

THEOREM B. Let A = A*. Lef p:T2^ R be C3 and assume A e (B2, 1). 77ien eitfier
(i) 4> is nowhere differentiate and

log A
dim (graph <f>) — 3 — (1.8)

logB2

or
(ii) <f> is smooth and dim (graph <£) =2.

The right side of (1.8) is a number strictly between 2 and 3. For a given non-constant
p condition (i) occurs for nearly every choice of A (i.e. all but a discrete set of A).
For A fixed there is an infinite number of independent relationships that the Fourier
series coefficients of p must satisfy in order for (ii) to be satisfied. In fact if w2 is
an eigenvector for B2 and we let q(t) = p(tw2), then

£ \"q(B2
nt)^0 (1.9)

if and only if (ii) is satisfied. (We show this sum is well defined.) The set of p in
C3 satisfying (ii) is a closed subspace having an infinite dimensional complementary
subspace. We are justified in saying that it is 'infinitely likely' the p satisfies (i).
There are no intermediate cases where the fractal dimension is greater than 2 but
is less than the number in (1.8). When 0<A <B2, conclusion (ii) always holds.
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When the domain of y(x) is restricted to a line or line segment on the torus, the
graph is easy to construct. For p(x) = 1 +cos (2vu) where x = (u, v) is restricted to
the segment (or circle) x = (u,0.5), O s u < l , the resulting curve is essentially
Weierstrass' nowhere differentiable curve, and Moser used this fact to show that
the attractor was nowhere differentiable [13], when p(x) = cos (2TTU).

Theorem B corresponds to a part of conjecture 2 of [7] for the specific dynamical
system (1.4), (1.5). In order to interpret this result and to motivate formula (1.8),
we must introduce some additional concepts.

For any k vectors vl,v2,...,vk in R", fc</i, let volk(vt,...,vk) denote the
fc-dimensional volume of the ^-dimensional parallelepiped that has a vertex at 0
and vi,..., vk as edges. Here vol, (v) = ||i;||. Write

Am = D(fm(x))

for the n x n matrix of partial derivatives of the m'th iterate of/: R" -> R". For x e R",
let

8k(x, » „ . . . , Vk) = Hmm^oo [volk (Amvu ..., Amvk)]
l/m

whenever this limit exists. If almost every choice of vuv2,... vk and almost every
x (with respect to Lebesgue measure) yields the same number then we say that the
mapping / has a k- dimensional growth rate and we denote this value by Sk. When
these rates exist for k = 1,2,..., n, write

We say L, is the /'th Lyapunov number of/ It can be seen that L, > L 2 s • • • a Ln.
If / is linear the Lyapunov numbers exist and they are the absolute values of the
eigenvalues of/ Next if L, > 1 let

log 5t

P = k+ * k
\\ogLk

k=\,2,...,n-\,

Define m = max{i: 5 , s i} . If L ,<1 , we define pm = 0. Notice that if m<n then
m < pm < m +1. We call pm the Lyapunov dimension and write dimLyap 5. Notice
that this concept of dimension depends upon the mapping / as well as the set S.

It often happens that almost every point in a neighbourhood of an ergodic attractor
will yield the same Lyapunov numbers. We will say that the Lyapunov numbers are
absolute if every x (with no exception in some neighbourhood of the attractor)
yields the same Lyapunov numbers.

In [7] we provided several examples and some heuristic arguments which suggested
this imprecisely stated conjecture:

Conjecture. For a 'typical' / with L, > 1, the attractor satisfies

dim 5>dimLyap 5;

for a 'typical' / with absolute Lyapunov numbers the attractor 5 satisfies

dim S = dimLyap S. (1.10)
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When Lyapunov numbers exist but are not absolute a different definition of
dimension must be substituted for the fractal dimension. See [6], [11] and [7]; [1]
gives our most careful formulation of what 'typical' means.

The function F in (1.4) has absolute Lyapunov numbers and they are the absolute
values of the eigenvalues of A and also |A|. For A = A^ they are (3 +V5)/2, A and
(3 -*fi)/2, and (1.8) is simply the Lyapunov dimension of S. For A < B2, equation
1.10 holds since dim S = 2.

The methods used in the example in theorem B extend easily to a larger class of
examples. Let A b e a Icxfc matrix with integer coefficients and determinant = 1.
Assume A has k real eigenvalues B, with corresponding eigenvectors w, which we
assume are linearly independent, and assume

|B, |>--->|Bt_, |> |Bf c | .

Write B^ for \Bk\ and let w^ be the corresponding eigenvector of A

THEOREM C. Let p be a Ck+1 function. When B^<\<1, it is 'infinitely likely' that
(f> is nowhere differentiable and

dim (S) = dimLyap (S)

andwhen (1.10) is not true, (1.9) is true where q(t) = p(tw^), and B2 is replaced by B^..

As before, when A s l B j , the attracting torus is smooth and both sides of (1.10)
equal k.

To simplify notation, we present the arguments for theorem B, and leave to the
reader the minor modifications needed for theorem C. We remark that we do not
know how to extend our results to the case p: Tk -»Rm where m > 1, though results
in [7] certainly suggest it may still be valid.

§ 2 concentrates on the Fourier series arguments needed for theorems A, B and
C. It is relatively easy to show that the dimension of the graph of/ cannot be larger
than what is given in (i) of theorem A (proposition 2.9). The primary problem is
to show that if there is a Fourier coefficient of q(t) that prevents / from being
smooth, then graph (/) must have dimension at least 2-|log A/log/3|.'Hardy had
a similar problem in his analysis of Weierstrass' nowhere differentiable function,
but he needed less uniformity and so his methods have been of no use to us, even
in the simplest case where q(t) = cos t. § 3 shows how theorems B and C reduce to
theorem A with B = B%, via a description of the geometry.

2. Nowhere differentiable functions
In this section we establish conditions under which / is smooth and thus will have
a one dimensional graph. We begin by considering an almost periodic non-constant
function q:R->U. We assume throughout this section that q is C1. Without loss of
generality we may assume q{0) = 0, replacing q(x) by q(x) — q(0) if necessary,
causing a vertical translation of the graphs studied. Let A e (0,1), B e (I/A, oo) be
constants. Denote the Fourier series of q by

q(t)~I.qae"", (2.1)
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where
1 f+T

g a = l i m — q(t)eia'dt.
T->co 21 J_y

From the theory of almost periodic functions {a: qa^ 0} is countable and q-a = qa;
see [4]. The symbol ~ may be read 'has the Fourier series'. This sum (2.1) is formal
in that it does not necessarily converge.

Define the continuous function

f(t)= I A W r ) . (2.2)
n=O

Let a = log (l/A)/log /3. Notice the role of this a in theorem A(i). It will remain a
regular participant. Observe that

0 < a < l and A=/3"a. (2.3)

Define the doubly infinite formal sum g(t) by

g(t)= I A W O - (2-4)
n = — oo

We interpret g formally as having the Fourier series

Ig.eK", (2.5)
(T

where
OO

ftr= I A V / 3 " - (2.6)

Note that qa is defined for all a e U even though it is 0 except for countably many
a's. Here we use only those a of the form a = af} k. The coefficients gCT can be well
defined if the sum (2.6) converges. That requires q^-" to go to 0 sufficiently rapidly
as fc-» -oo. Note again the coefficient ga can be well defined without the series (2.5)
being convergent. In order to guarantee convergence we assume the following
hypothesis:

(HI) Iko||ar«x>.
a

The objective of the next few pages is to prove that if (HI) is satisfied then

go. = 0forallo-=>/isC1.

The graph of/ must of course then have dimension equal to 1. Condition (HI)
clearly implies that the sum in (2,6) is absolutely convergent since the subscripts
being summed in (2.6) are a = <rfi~k, so

\a\a = \cr\ap-ka =\(T\a\k,

since f3~a = A. Hence the sum in (HI) equals S|S|o-|<p £"=-«> \cr\a^k(i<rp~k s m c e anY
a # 0 can be written uniquely as a = <rf3~k with 1 <\a\</3. Moreover it follows that

(i) g ^ = Aga; (2.7)
(ii) g-lT = go-

Again writing a > 0 as o-/3~k for some integer k and some a e [1, ;3), we may express
a sum over all a > 0 as a double sum over 1 s cr < (5 and over ail integers k. Further,
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\\kqap-«\ can then be written \(a/<r)aqa\ which is less than or equal to a"|ga|. Hence
we have

("0 I i s t r < / 3 l ^ l s l a > o k a | a a < 0 0 -
Note that (HI) always holds if q(t) is a finite sum £ qa e"", such as a trigonometric
polynomial. Roughly speaking, the sum in (HI) will converge if q is sufficiently
smooth in some sense. Indeed, if q is quasi-periodic with N independent frequencies
(i.e. q(t)= p{^\t,..., fiNt) where p:TN-*U is a function on the N-torus and
/*,,. . . , fj.N are linearly independent over the rationals) then (HI) will hold if p is
CN+1. In § 3 this is shown for N = 2, and the proof there generalizes for arbitrary
N. When p is defined on Tk as in theorem C, the number of independent frequencies
satisfies N<k,so for (HI) to hold, it suffices for p to be in Ck+l.

Next we define the function

h(t)= I A W O - (2.8)

This function is continuous because its series converges uniformly on compact
^-intervals. To show this recall q(0) = 0 and note that if Ki>0, then since qeC1

there must exist K2 such that \q'{t)\<K2, whenever |f |<K,. This implies that
\q(t)\<K2t, and similarly

so the series in (2.8) converges since A/3 > 1 and n is negative. It follows now that
g(t)=f(t)+h(t) is a continuous function. Also observe that g(/3f) = A~'g(f)- We
must relate the properties of the continuous function g(t) to the Fourier series in
(2.5), and we are especially interested in the case where all gCT = 0.

LEMMA 2.1. Assume (HI) holds. Then h(t) is a Cl function.

Proof. Define

This is a continuous function, since the series converges uniformly. Let

Thus for any /,

f f
•qk{s)ds->\ ri(s) ds, asfc-»oo.

Jo Jo
On the other hand

Jo
I

n=-k

hence h(t) = $'ori(s) ds is C\ •

PROPOSITION 2.2. Assume (HI) holds. Then the formal Fourier coefficients ga are all
0 if and only ifg(t) = O as a continuous function.
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Proof. We begin by denning the auxiliary functions ^(y) by

Because g(pt) = X~lg(t) it follows that

for all y e R, and i/r* is continuous. The continuous function g(t) is zero for all t if
and only if the periodic continuous functions ^(y) are both zero for all yeU. This
in turn is true if and only if each Fourier coefficient ipt = 0. Thus to prove proposition
2.2 we shall show gCT = 0 for all a if and only if i/C = <A« = 0 for all n, where

is the Fourier series for i/^, that is,

log/3 Jo

We will need the following lemma.

LEMMA 2.3.

a > 0
(2.9)

where the number Cln depends on a and p and is given by the formula

nn(a,p)=7^— I (e"-i)r<*-I-(2-*I/IOBfl)rft
logjS Jo

The proof will be delayed until we have shown how this proves proposition 2.2.
We may write any a > 0 uniquely as a = o-@~k where 1 < <r< p. From (2.6) and

(2.9) it follows in this notation that

= Z Z (q^-^n+q-^"TTrn)\
ko-ae2vinU'^/losfl (from (2.3))

lStr</3 lc = —oo

= I (gA+g^a^V-e2-""10^10^,

and similarly

Thus if gCT = 0 for each a-, then i/C = <An = 0 for each n, which in turn implies that
= O as a continuous function.
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Before we establish the converse, we show that Im (flnft_n)#0; we do this by
evaluating fln explicitly in terms of the F-function. Integration by parts yields

1 f°° ., _ _ .
n " = i o i ^ J 0

 {e'~l)ta ™°* dt

i f°°
: £.1 j-a-(2™i/logi3) £t

lirin/logp)) Jo
Shift the path of integration in the complex plane from the positive real axis
(0< x < oo) to the positive imaginary axis {y: y = it, 0< t < <x>}. In doing so, note that

/ •j\-or-(2irin/logj8) _ -(iria/2)+(Tr2n/log^) ,-(a-irin/log(3)

We now have

Jo
e-(m-a/2)+^n/logP / 2 ^ , ,

log/3

and so

e"""*

" "" dog/3)2 F -a-
2irin 2

Now l/(log )8)2|r(-a -(2irin/log /3)|2 is real and non-zero since 1/F(z) is an entire
function. Thus, Im (nnft^n)^0, since 0 < a < l .

Now assume g(() = 0 as a continuous function; then (as we will show later)

I goO.-e2-*»'o««'/logP=0 (2.10)

for each n. Introduce the variable s = logo-/log/? €[0,1), where o-e[l,/8), and
define a measure /A on [0,1) as follows: the measure fi consists of point masses of
weight

go"" = Erf™

at the points se[0,1). This defines a finite measure since Z l s o . < ^ \gcr<ra\<<x>.
Moreover (2.10) becomes

J[O,1
e2™sd/j.(s) for each n.

But this implies J[o 0 F(s) d/u,(s) = 0 for every 1-periodic continuous function, which
implies the measure i* must be the zero measure. Hence go. = 0 i fo -e [ l , /3 ) ; a similar
argument involving the g-a yields g_CT = 0 for all o-e [1, )8).

Now (2.10) and the corresponding equation for g_a are obtained by taking suitable
linear combinations of ty+

n and if/~, which are known to be zero since g( t) = 0; to do this
we need a certain 2 x 2 determinant to be non-zero. But this follows from the fact that
finn_n is not real, for then
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so gcr = g-CT = 0 for each o-e[l,/}). And from (2.7) it follows ^ = 0 for each creU.
This proves proposition 2.2, provided we can establish lemma 2.3. •

Proof of lemma 2.3. We prove only the formula for \p*. From the definition of
Fourier coefficient

og/3

<P+(y) e - 2 ^ ' ^ dyi r i o g

' "~ log)3 Jo

-—f
log P Jor

log/3

e-ayg(ey) e~
2™ynoili dy

m" ° dt.
log/3

Formal substitution of (2.5) and (2.6) would lead to the desired formula (2.9), if
we did not have to worry about convergence. In general, set

j rt+e n+d/s)

qM)=~ q(s)ds-e q{s) ds. (2.11)
e J, J,

g'(t)= I *k[qAPkt)-q.(0)] (2.12)

r-l-(2inn/logp) ^

logjS

Claim. ge(t)^g(t) pointwise, and sup |ge(r)|<oo for 0 < e < 1, l< t<)3 .

We will proceed as if this claim is valid. We will establish it later in the proof. By
the Lebesgue Dominated Convergence Theorem

•An "* 'An a s e " *0 .

Let us now calculate explicitly the formula for tf/e
n in terms of the Fourier coefficients

of q{t). We have

which is an absolutely convergent series, by (HI), and because
eiac-\ eia/e-l

y(a, e ) = — — —
me la/e

is of order O(a) as a -» 0, for any fixed e -» 0 (though this bound is not uniform in
e). By direct substitution this gives

\k[qAilks)-qcms-a-i-{27rinno*li) ds
i

Jl
I I*kqay(,) [ ( ^ ' D — i-w*n ds
= -co a J

where we were able to interchange the limits of summation because the series is
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absolutely convergent. This, in turn, is equal to

Zqay(a,e)-±- f (eias - i)5—'-Wog?) ds
a lOg/3 J o

I |or+(2irin/log/3) r<x>
= Iqay(a,e)U (e«-u"<«)_ 1)s-a-i-(2,H-/io,*» ds

log/8 Jo

/ n-ny{-a,e)l (2.13)

Finally, we take the limit in (2.13) as e-»0. The left hand side i/^-x/C as noted.
We have:

I k l | a | B < o o by(Hl),
a

sup \y(a, e)| <oo fora, e e R

limy(a, e) = l,

and consequently

lim I a " e 2 m " l o g a / 1 ° ^ [ o a f t n y ( a , i

2«nlogo/log^/ #-v , Q \

a > 0

This proves (2.9), except for the verification of our claim.
By direct substitution of (2.11) into (2.12), and a scaling of the integrand, we obtain

where

Bk [l+"f>k

/i(fe)=— q(Pks)ds,
£ J,
pk p/fl'
e Jo

q(flks)ds,

q(l3ks)ds.
Jo

Then, since q{t) is bounded, say |^(f) |< Ku we have for all fc>0,

|/,(fc)|<K, for all/.

If k < 0, then we have for e < 1,

f l (•| + l/(/3''e)-|
L(/sM^

0 J l / (B e) J
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for K2 = 2Ki /3. Also, if k < 0, and t < e//3k,
+e/f>l= ^ - | ^ - J +J

where K4 = 2K3p, and |9(r)|<X3/ on [0,2]. Here we use the facts that f</3 and

Finally, if fc<0 and t>e/fik we have

2(fc)|=^- ^ - J +J

4
since e < fikt. We therefore have, for the /c'th term in the series for ge(t)

iffc>0
iffc<0,

ik iffc>(

where X5 = max {X,, K2 + X4}. Because the series ZtI_0O(A)8)'c +Zr=o ^k converges,
we have a uniform bound on |ge(f)l» independent of e < 1 and t € [1, /3]. Moreover,
we may evaluate lime^0 g

e{t) simply by taking a term by term limit:

lim/,(£) =
e-*0

1 CT

Mm I3(k) = -q where ^=l im— q{t) dt
«-° T̂ co T Jo
lim IAk) = a,
e^0 ^

and so, for each t,
OO

D

COROLLARY. g(t) = O implies f(t) = -h(t) is smooth.

Since the fractal dimension of the graph of a smooth real valued function is one,
we may summarize the results thus far as follows.

THEOREM 2.4. Assume (HI) holds and q is C\ Suppose, further, that

gff = 0 for alia. (2.14)

Thenf(t) = —h(t) is smooth and dim (graph/) = 1.

The nowhere differentiable case when some g^ # 0. We next turn our attention to the
case in which (2.14) does not hold, that is, g^^O for some cr0. We will begin by
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demonstrating the existence of a constant C, >0 such that for sufficiently small L,

max/(O-min/(/) s= C,L°, (2.15)
leJ I<EJ

where J is any interval of length L. This in turn will imply that the number of
L-balls necessary to cover the graph of/ on any unit interval is at least propositional
to L"-lxL~i = La~2. Hence

as L-»0, where k is a constant of proportionality. The following proposition makes
such estimates.

PROPOSITION 2.5. Let

1 = y(t) cos (pt + tf>) dt,
2im J

where p > 0, <f> € U, and n > 0 is an integer. Then with J = [0,2im/p],

sup y — inf y> TT|/|.

/Yoo/ Without loss of generality we can add a constant to y, as that does not affect
the value of I. If the result is false then upon adding an appropriate constant we
have, for some e,

\y(t)\s^\I\-e, for all* e 7.

This implies

1 1 2 T I 7 J J o \ 2 ' ' - / • — * ' " - " - " •"• w «

which is a contradiction. •

Now to estimate the integral of the above proposition, we require several technical
lemmas.

LEMMA 2.6. Letp:U->U be almost periodic with Fourier series p(t) ~ X M Pit e'*'- Suppose
pp = 0 for some p > 0. Then for any <j>eU and any integer n > 0,

2irn/p

p(t) cos(pt + <f>) dt
m {1/Trn, fj,/p,\(fi/p) - l\}_ - v I , ram {1/Trn, fj,/p,\(fi/p) l\}

~2 L \Pv\ [7—T\—7, (2.16)
| ( / * / p ) l |

27J7! I Jo

Proof. Consider first the case p(t) = p ^ ' +p_IJ, e"'M', so thatp(f) = 2|pM| cos (/if + 0)
for some 0 € R. Thus we estimate

2irn/p

cos (fit+ 6) cos (pt + <f>) dtI
2-nnj p

0

sin ((2wnfi/p) + 0 + 0) - sin (0 + <ft) sin ((27rw,n./p)+fl-<ft)-sin (9-<t>)

" + 2(/t-p) "
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The absolute value of this quantity is at most min {2,2irn/j,/p, 2777i|(/i/p)~ 1|}/IM~PI

which gives the required estimate.
It follows next that if £ |/>J < oo, the lemma is easily proved by integrating term

by term.
Consider the general case. Without loss we assume

if this is not so then the right-hand side of (2.16) is infinite and the result is trivially
true. Define

=~\ p(s)ds-e\ p(s)ds.

Note that pe is almost periodic and, as e-»0, converges uniformly on R to p(t)-p
where p is the mean value of p. Moreover, with y(/i, e) as before,

For any fixed e > 0,

for some constant K(e). Hence the lemma holds with pe{t) replacing p(t) and
P».y{n, e) replacing p^. We may take the limit as e^O because of the uniform
convergence of pe(t), and because y(/A, e)-> 1 as e-»0,

sup\y((ji, e)|<oo. •

We next apply lemma 2.6 to any translate of the function

Mt)=f(t)-(l l-q^
\m=O

=/(0-2 cos

for some <j>k G U. Note that/fc is simply the function/ with the terms e±ia^k' removed
from its Fourier series. Setting p = crofi

k and choosing any 0eR, we obtain with
k

2nn
r°"

<T0(3
k

2-JTTl J o

I I*A"|9a
a>0m=0

f(t + 6) cos (crop
kt+(/>) dt-

fk(t + 6) cos

min {1 / 777i, a)3

dt

<2A
minjoo/Trn, apr, \ap^-ao\)

a>0 r=—oo

= 2\k<$>(e), where e = cro/7j-M. (2.17)
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In the double summations above, * denotes the omission of terms (a, m) with
a/3m = o-0/3

k, and ** the omission of terms for which a/T = o-0. From (2.17) we have

r f(t + 6) cos (<rop
kt+<t>)dt

-2\k<P(a0/im) (using \A-B\ = C^>A> -\B\ - C)

- A \ I A'fl .

?J+o(l)-2«I>(o-o/7rn) where o( 1)^0 as fe^oo. (2.18)

A final estimate choosing n so that Q{o-0/irn) is small; because gcro#0, this will
give a lower bound of order O(Ak) for the integral of (2.18), for some n independent
of it.

LEMMA 2.7. 4>(e)->0 as e ->0.

Proof. We have

a>0 r=-oo | a p -O"o|

Each term in this series tends monotonically to zero as e -» 0. Therefore it is sufficient
to show $(e) < oo for some e in order to conclude <fr(e) -» 0. Fix e < cr0 and consider
three ranges of r:

r < r0 where af)' < e,

r0 < r < Tj where e s a/3r < 2cr0,

r, < r where aj8r > 2cr0.

In the first range a/?7|a£r-o-0|< apr/(a0-e) = Kta^r; in the third range
e/|a/3r-<70|< X2(a/3r)~'forsomeX2.Inthesecondrangeusethequantity|a/3r-o-o|in
the minimum in the formula for <I>(e). We now have

rmin{e,flj8r,|aj8f-a'o|}
A |a/3r-cr0|

< I A:,a(A)8)r+ I A'+ I (K2/a)(\/py. (2.19)
r=—oo r = r 0 + l r=r,-M

Summing each of these geometric series, using the definitions of r0 and r,, and in
particular that A =/3~a, we obtain an upper bound K3a

a for (2.19), for some K3.
Therefore

by (HI). D

We may now use the above results to obtain the lower bound (2.15) for the variation
of/ over small intervals.
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PROPOSITION 2.8. Let (HI) hold and let g^O. Then there exist C,>0 and Lo>0
such that

max / - min f^C^L" (2.20)
j J

whenever length (J) = L< Lo.

Proof. Choose Kt > 0 and a sufficiently large integer n so that 0 < X, <
7r|ga.0|-24>(o-0/ir/i); this can be done by lemma 2.7. Set K2 = 2vn/cr0. Applying
proposition 2.5 to (2.18) shows that for large k,

m a x / - m i n / > Kx A
 k = X, p~ak

J J

whenever length {J)>K2p~k. For a given L, choosing k so that K2fZ~k<L<
K2p~k+i easily gives the result. D

The lower bound on max.,/-min,/ of the above proposition will be used to obtain
a lower bound for the fractal dimension, as well as for the dimension of the attractor
of the dynamical system (1.4). Obtaining similar upper bounds gives the exact value
of the dimension. Fortunately, such upper bounds are much more easily obtained
than lower bounds.

PROPOSITION 2.9. Let qcR-»R be C\ and suppose both q(t) and q'(t) are bounded
for teU. Then there exists C2>0 such that

m a x / - m i n / < C 2 L " (2.21)
J J

whenever length (/) = L.

Proof. We show | / ( r , ) -f(t2)\ < C2\t{ -12\". Assuming \q(t)\, \q'{t)\ < K3 for all t, let

P~"»~l < \tl -12\ < p~"°. Therefore

2K3 n > n0

so estimating term by term in the series (1.1) gives

A 4 p 2 \ t l - t 2 \ a . D

For a small interval J of length L, how many squares of size LxL are needed to
cover the graph of/ where / is restricted to J, assuming (HI) and (H2)? By (2.20)
we need at least C,//*"1 and at most C2L

a~l +1 by (2.21). The number of intervals
of length L in [0, 1] is approximately 1/L, so to cover the graph of/ on [0,1] the
number of squares N(L) needed to cover the graph is proportional to L~l xL°~'.
Actually we may not have chosen our boxes optimally, but optimal positioning
decreases the number of boxes negligibly, by at most a factor of 2. Hence

log N(L)
—— ->2-a asL->0.

log 1/L
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Summarizing we have the following result.

THEOREM 2.10. Assume (HI) and g^ # 0. Assume also that q'{t) is uniformly bounded
on (-00,00). Then

dim (graph/) = 2 - a = 2 - |log A/log B\.

Since the convergence condition (HI) is satisfied by trigonometric polynomials,
theorem A is proved.

3. The dimension of an attracting torus

We turn our attention here to the dynamical system (1.4), (1.5); recall the formula

F(x, y) = (Ax, Xy +p(x))

for F: Tk xR-> Tk xR, and the explicit formula for the attractor is

where

*(*)= Z

where A is a k x fc matrix as described in the introduction. In this section we apply
our previous results to prove theorem B, the 2x2 case with A = A%, that is, to
calculate dim (graph </>). We do this by first restricting </> to a dense one-dimensional
submanifold M of Tk; this restriction gives a function/of the type (1.1) considered
in § 2. Results of that section (theorem 2.4, propositions 2.8 and 2.9) and additional
results on the smoothness of <j> in a direction transverse to M (proposition 3.4) are
used to prove theorem B. Throughout this section we assume the hypotheses of
theorem B, namely that p: T2-*R is C3 and A € (B%, 1), where B% is the minimum
of the absolute values of the eigenvalues of A We let w+ denote the corresponding
eigenvector. As before, we assume without loss that p(0) = 0. In general p: Tk -»R
is Ck. We leave to the reader the very minor modifications needed for theorem C.

The manifold M is defined to be the line through 0 in the direction w%. Therefore
M = {x = (u, t>)mod 1: v = fiu}, where n = -(1 +s/5)/2. In particular w# = (l,/i) is
an eigenvector of A*. Observe M is dense in T2, as (j. is irrational. To restrict <£
to M, parameterize M by setting u = t,v = fit, mod 1 for teU; then using the fact
that B"1 is an eigenvalue, specifically

-o-o-
we obtain

= Z
n=0

def

where q(t) = p(t, /xt). The function q is almost periodic. With enough smoothness
on p, the various hypotheses of § 2 hold for q. When k> 2 we need p to be Ck+l

for (HI) to hold.
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LEMMA 3.1. The function q is C3, almost periodic, and satisfies (HI), and q'(t) is
bounded for allt.

Proof. We only verify the statement about (HI) as the other claims are easily proved.
Consider first the Fourier series for p:

p(u,v)~ I I Pmne
2rri{mu+nv) (3.1)

n = —oo m = —oo

3with coefficients pmn. Because p is at least C3, the functions B3p/du3 and d3p/dv
have Fourier series with corresponding coefficients (2mm)3pmn and {2mn)3pmn.
Moreover, these coefficients are bounded in m and n. Thus for some K,>0

X,
l /7mnl"l+|m|3+|nr

It follows that the series (3.1) is absolutely convergent, and also that

q(t)= I I pmne
2e2"i(m+n^<

n = — oo m = — oo

where q2^m+n,,) = Pmn- Thus

n = — oo m = —oo

OO OO

)- I
n = — oo m = — oo l i |

S S 1
- o o m = - o o

since 3 - a > 2 . (Recall 0 < a < l . ) This proves (HI) holds. •

For general k, the p coefficients have k subscripts and k nested sums are needed
so we need the function p to be Ck+1 for (HI) to be satisfied.

We will calculate dim (graph <f>) by estimating maxE<£— minE<£ where £ is a
small neighbourhood of an arbitrary point (u0, v0) e T2. To this end we first introduce
a special coordinate system (t, s) about the point (w0, v0). Let

*(r, 5; u0, v0) = <}>(u0 + t-iAS, vo + nt+s).

Observe that the f-direction is parallel to the manifold M, and the s-direction is
perpendicular in this coordinate system. Indeed, f{t) = <i>(t, 0; 0, 0). Using the rela-
tions

•0-0
we see that

'- (7)4
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PROPOSITION 3.4. <1> is a C1 function of s, and |d<I>/ds| is bounded independent of
t, s, u0, and v0. In fact

ds n=0

with

The proof is similar to that of lemma 2.1. For theorem C one needs to examine the
variation of <f> in all eigenvector directions other than w^ and one concludes in case
(i) that the variation of <p on an e-cube (i.e. max <f> - m i n <j>) is due primarily to the
variation in the w* direction.

The next lemma is the final link needed for theorem B, case (ii) (i.e. the case of
smooth <f>).

LEMMA 3.5. Let each Fourier coefficient ga = 0, where g(t) =Z*=_0 0 X"q(B"t). Then
<P is a Cx function of (t,s).

Proof. By proposition 2.2, g = 0 so

- I A

- I A
„=-«,

By theorem 2.4, this function is C1, but we need a little more. Because
M = {(t, fj.t): t G R} is dense in T2, we may take a limit (tk, fAtk)^>(u, u)ofa sequence of
points on M in the above expression, to obtain for any (u, v)e T2

Hence

>H'),).

Let Xn be the argument of p above. The proof is completed by showing

d*t* —1 /dp u
— (t, s;u0, vo) = - X (AB)"I — + M ~

again by the methods of lemma 2.1. Therefore 8$>/dt exists and is continuous. This
together with proposition 3.4 implies $ is a C1 function of (t, s), for any (u0, v0).

•
Notice theorem C does not claim <$> is C1 in case (ii) so the lines wtt are not assumed
to be dense.
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Proof of theorem B. If ga = 0 for each a, then conclusion (ii) holds; for by proposition
3.4, <f>: T2-»R is a C1 function, so its graph is two dimensional.

Suppose therefore gao # 0 for some cr0. We shall obtain conclusion (i), namely that

log A
dim (graph <£) = 3 -

logB

Fix (uo,vo)€ T2 and let EL be the box |f |s jL, |s|<3L centred at (uo,vo). The
manifold M is given by the line (uo + t — fis0, vo + ixt + so) as a function of t for a
dense set of s0; fix one such s0 with |so|—5^-- Then t-><$>(t, s0; u0, v0) is simply a
translate of f(t), so by propositions 2.8 and 2.9

Cx L
a < max 4>(r, s0; w0, D0) - min O((, s0; u0, v0) < C2V,

provided L< Lo. Also, by proposition 3.4 with the Lipschitz constant

sup
(«,s,uo,t>o)

in s, we have

C,L° - < max
EL

; w0, u0) - min
EL

; u0, v0)

<C2La+2K,,L.

If L is sufficiently small, in fact if V~"<min{C2/2Xn, C,/4Xn}, we have

5C,La<max^)(f, s; w0, uo)-min<l>(f, s; w0, vo)<2C2L
a.

EL EL

These bounds hold uniformly for (w0, v0) e T2 and small L. The number of L balls
needed to cover the graph of <f> is therefore proportional to La~l x l /L 2 = L"~3.
Hence,

dim (graph <f>) = 3 - a

log A
= 3 -

logB
D

Alterations for theorem C. In the general case we choose the eigenvectors of A to
be coordinate axes in Tk and we must estimate the variation (i.e. max <f>-min <f>)
on e-cubes in Tk.

In case (i), this variation is essentially due to the variation along M, that is the
variation in the direction w^. As argued above the number of L balls needed to
cover the graph is proportional to L"~l x \/Lk = La~k~\ Hence

log A
dim (graph <f>) = k +1 -

On the other hand l\k |Bf| = 1 and 1 > A > B* so that the product of the fc largest
Lyapunov numbers is \BX\ x • • • x|Bfc_,| xA > 1, which is A/B*. The integer part m
of the Lyapunov dimension is fc and so

dimLyap =k
logjA/B*)

logB,
= fc + l -

logA

logB,
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