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On a unified approach to the law

of the iterated logarithm

for martingales

P.G. Hall and C.C. Heyde

There are two distinct approaches in the literature to framing a

version of the law of the iterated logarithm for martingales. One

involves norming by constants, using the martingale variance and

the other involves norming by random variables, using the sums of

conditional variances of the increments, given their past. In

this paper a portmanteau approach is provided, still based on the

Skorokhod representation of the martingale, but involving

normalization by more general random variables. This extends the

functional forms of all the previously existing results.

1. Introduction and results

The literature contains various laws of the iterated logarithm for

martingales which are not directly comparable. There are versions based on

norming by constants (for example, Heyde and Scott [/]) and versions based

on norming by random variables (for example, Strassen [7], Stout [5]). The

former use variances and the latter, conditional variances. Here we employ

a Skorokhod representation approach, based on the law of the iterated

logarithm for brownian motion, to relate the earlier results.

Let <j> be the real-valued function on (e, °°) defined by

<)>(*) = Ut log log t)* •

If W(t) (t > 0) is standard brownian motion then (Levy [3])
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lim sup W(t)/<fr(t) = +1 almost surely,

(1)
lim inf V( t)/4>( *) = -1 almost surely.

If {* , n > l} is a sequence of constants increasing to °° then (l)

lim sup W[t )/${t ) S +1 almost surely,

implies that

(2)
lim inf w{tj/<t>[tn) > -1 almost surely.

If the points of the sequence {t } are close enough together then

equality holds throughout (2) with probability 1 . In fact, if

{T , n > l} is any sequence of random variables satisfying

(3) Tn > e , Tn + » almost surely and 2>~^Tvi
 a - s ' ' 1 ,

then (l) implies that

CO

lim sup v(2'J/<t>(2'n) = 1 almost surely

lim inf v(2'n)/<)»(2' ) = -1 almost surely,

and so the variables S = (/(T ) satisfy the law of the iterated logarithm

with a random norming.

Now let {s , F , n 2 l} be a zero-mean, square-integrable martingale

on the probability space (Q, F, P) , where FQ = {i{), SI} and F is the

n

o-field generated by S . , 0 < j < n . Let Sn = Zn = 0 and S = £ JT. .
J u u n 1 K

We shal l wri te

and {V , n 2 l} will denote a non-decreasing sequence of positive random

variables such that W7 > e . By extending the original probability space
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if necessary, we may suppose that there exists a brownian motion W and a

non-decreasing sequence of non-negative variables {T , n i l} defined on

our probability space such that S = W[T ) almost surely for all n (see

the statement of the Skorokhod representation theorem in Strassen [7],

Theorem U.3). If the T satisfy condition (3) then (h) immediately gives

us a law of the iterated logarithm for {S , n J O ) .

Unfortunately the T are quite difficult to compute from the

martingale {S , F } , and the law is not very meaningful unless we can

Vr

differences X,, *„, ... ; w should satisfy

(5) r-V-a^-i.
v ' n n

Strassen [6] formulated a functional law of the iterated logarithm

which extends the law in (h). Consider the metric space (C, p) of all

real-valued continuous functions on [0, 1] with

p(x, y) = sup |x(t)-t/(t)| for x, y € C .

replace T by a variable Vr which can be expressed as a function of the

Let K be the set of absolutely continuous x € C such that x(0) = 0

and

[ x
J0

(t)2dt 5 1

where x denotes the derivative of x determined almost everywhere with

respect to Lebesgue measure. For u € [0, 1] define

I = l(n, u) = maxy 5 n \ V?. 5 uii^X (=0 if the set is empty)

and

yB(«) =

where S, = W^J and *„ = * „ - ̂  [SQ = o) .
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THEOREM A. If (3) and (5) hold then {un, n i l } is relatively

compact in C[0, 1] and the set of its almost sure limit points

coincides with K .

(Here we do not assume that {S , F , n > 0} is a martingale,

although we do in a l l the work which follows.)

If we are to use Theorem A to establish a law of the iterated
logarithm for martingales, we must find conditions under which T can be

approximated by functions n of the martingale differences. I t is

convenient to work with martingales whose differences are truncated, and
hence our technique is to approximate to \S } by a truncated martingale

{S*} = {W(T*)} , and then find functions W2 which are close to T* . Our

main result is given in the following theorem.

THEOREM 1. Let {z , n > l} be a sequence of non-negative random

variables and suppose that Z and W are F -measurable. If

(6) lira [ i ^ J ] | { V ( | ^ . | > Zj)*{Zjli\lj\ > Z.) | F . J } = 0

almost surely,

[^J] | V ^ j j j Z.) | F .

wn \ If
almost surely3

(8) E v ^ U V n ^ - l - ZJ I F- i < °° almost surely,

(9) lim ^~+1't' = 1 almost surely and W •*• <» almost surely.

t?ie conclusions of Theorem A

Two obvious candidates for (/ for use in this theorem are V v 2
n n

and !/ . v 2 . These lead to equivalent results if lim V~ IT = 1 almost
" - 1 n*» n n

https://doi.org/10.1017/S0004972700025363 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700025363


Martingales 439

surely, which would commonly be the case; but interestingly enough this

would not universally be true. When V is used in the norming the

condition (7) simplifies usefully, giving the following result.

COROLLARY 1. Let {Zn, n 2; l} be as in Theorem 1. The conclusions

of Theorem A hold for W = Vn v 2 if

do) ^[^]\l/

-E[X.I{\X.\ > Z.) I F . )} = 0 almost surely,
0 0 0 J—-L

(11) lim V~2 ZElfallxA > Z.) | F I = 0 almost surely,
M-KO " 1 \ 0 0 0 J--LJ

(12) Y, ^ M * ! t r ( | * , . | S Z . ) | F I < co almost surely,

and

(13) lim y~+-,V - 1 almost surely, V •* <*> almost surely.

The next corollary extends the main result (Theorem 1) of Heyde and

Scott [7] which deals with the case n = 1 almost surely. I t highlights

the restrictiveness of a constant norming form.

COROLLARY 2. If for some almost surely finite and non-zero random

variable r\ we have

(Ik) s~2l? a ' s " ' n2 and s •* » ,
n n n

00 i

(15) T.8iB[\x.\l(\x.\ > ee.)] < - , for all e > 0 ,
T d d d d

and

(16) £ e~^E\x\l[\X.\ < 6e .) 1 < °° ^ /or some 6 > 0 ,
2 <? L d 3 d J

t?zew the conclusions of Theorem k hold for W = U , v 2 .
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The final corollary presents a portmanteau form for the sufficient

conditions.

COROLLARY 3. Let f and g be positive non-decreasing functions on

(0, ») such that t~ f{t) 4- 0 , t~ g(t) + 0 as t increases and

(07) I t~2nt)dt < <*> .

If V •*•<*> almost surely as n •*• <=° and

then the conclusions of Theorem A hold for W = V v 2 .

This result can be compared with Corollary h.5 of Strassen [7] which

deals with the case f(t) = g(t) = £(log t)~ , t > e , and with Theorem

5.1 of Jain, Jogdeo and Stout [2] which deals with the case

f{t) = t(log t)~X(\og, log t)~6 , g(t) = t(log log t)~2 , t > e . These

results, however, are concerned with the integral test for upper and lower

functions which, even in the case of independent variables, requires the

imposition of slightly more stringent conditions than for the classical law

of the iterated logarithm itself. Theorem 3 of Stout [5] essentially deals

with the case f(t) = git) = o(t(log log t)~ ) , t > e , but obtains the

classical and not the functional law of the iterated logarithm.

2. Proofs

Proof of Theorem A. Define u(w) on [0, <"°) by

where

Then

p = p{u) = max-U | IT. 5 u\
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u (M) = [d)((̂ n pf^u

and so in view of Corollary 1 of Strassen [6], it suffices to prove that

(19) lim [(K*)]"1 sup \\i(u)-W(u)\ = 0 almost surely.

1 > u'1^, > IT? , ..fc/2, > a's' > 1 as M •* <»
p(w) p(w)+l p(u)

Now, (3) and (5) imply that ^ - ^ a'S' ' 1 and hence

so that

Similarly,

Combining these and (5).

Since

then result (19) follows as in Strassen's proof on page 217 of [6].

Proof of Theorem 1. The proof is based on that of Strassen [6] and

follows that of Heyde and Scott [7].

Define

(20) ~X. = X.l{o. < \X.\ 5 Z.) + kXJ[\X6\ 5 a.)

where {e ., j S l} is a monotone sequence of positive constants with
0

c. •*• 0 as j •* «> so fast that

a . < <» , Y" e .Z .)/"! < « almost surely.
J i J .7 J *
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( i f 2.(w) < a. , l e t I[a. < \X.\ 5 Z.)(w) = 0 .) Set a l so
3 3 3 3 3

xl ' ~XJ - <xo I rjj •

I t i s easi ly checked tha t X, ..., Xn and hence X* , X* also

generate the 0-f ield F .

n n
Write S* = I**. , Vf = £ , and i f u € [0, l ] , l e t

yt—It— r \ r \

nJJ L ̂  I n~ i) I ^+i~ Ĵ
T—1

We use (20) to obtain

\x.-xy{x.i{\x.\

and then

sup

— 1

sup

i > v i ^

as n •* °> , in view of (6) .

Next we introduce the Skorokhod representation (see Strassen [7 ] ,

Theorem k.3). By extending the original probability space i f necessary, we

may suppose t ha t there exis ts a brownian motion W and a sequence

{T*, M > l} of non-negative random variables defined on our probability

space such that S* = ^(2**) almost surely for a l l n . Let

*n = 21* _ T^_x , M > 1 (TQ = 0) . If Gn i s the a-f ie ld generated by

X , . . . , Xn and W(u) for u < T* , then *n i s GM-measurable,

= E[Xf I Gn-l] = £ ( X n 2 I f»- l
for some constant L ,
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*(*»

In view of (9) , (21) and Theorem A, i t suffices to prove that

(22) W~2T* a ' S ' » 1 .

To this end we first show that

(23) T* - V*2 = o V2 almost surely as nn n \ n)

Since

A i r*[*?

S llE'fj't I F.

we have from (8) that

£tf. E **. | F < co almost surely
-l 3 \ 3 «7~ J

and hence, using Proposition IV.6.2, page \k& of Neveu [4],

I [t.-E(t. | 6. ,)] = o\ir\ almost surely,

which is equivalent to (23).

Next, we have

(2U)

(25, ,(,f | F._J = ,(!-* | F._J -
and

(26) \E(X. | F.J

Then, using (26),
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.J}
2] =

o
= o \"\ almost surely

n
e..|ff(;rjr(|z..| Zj) | F^JI o ^ j almost surely,

by virtue of £ o.Z.iT. < °° almost surely and Kronecker's Lenma. Hence,
-i 3 3 3

from (7) in conjunction with (2k), (25), and (27), we have

V*2 - W^ = o \w^\ almost surely.

Combined with (23), t h i s establishes (22) and completes the proof of

Theorem 1.

Proof of Corollary 1. Take W = V v 2 for a l l n . Conditions
n n

(6), (8), and (9) translate immediately into (10), (12), and (13). To

check condition (7) i t suffices to show that

(28) llm V~2 t {E{X.I{\X.\ < Z .) | F ) }2 = 0 almost surely.
n-Kx> 1 " « " "

X.I{\X.\ Z .) |

" « " "

That (28) is indeed satisfied follows from

E{X.I[\X.\ S Z.) I F ) = -E[X.I[\X.\ > Z) | F ) almost surely,
v d J t/"-1- d o d J""-1-

{E[X.I{\X.\ > Z.) | F ^ . J } 2 ^E[X^I(\X.\ > Z<7.) | F ^ J almost surely,

and (11).

Proof of Corollary 2. We use Theorem 1 and take Z . = 6s . ,

3 3
W3 -

The condition (15), together with Kronecker's Lemma, gives
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(29)

as n •*• °° for any £ > 0 , so that in par t icu lar , for any £ > 0 ,

e " 1 sup | Z . | 5 e + s " 1 I \X.\I[\X.\ > es.) - ^ ^ E .
•<• „•<„ U n -, J 3 3

Hence

(30) 6^2 sup X2. a ' S ' > 0 ,

and in view of (lU),

U~2 sup / . a ' S - » 0 ,

which implies (9) . We can now observe from (29) that (6) holds, while (l6)

ensures (8).

Finally, (l6) yields via an application of Proposition IV.6.1 of [4] ,

= 0 almost surely,

while

(32) 8~2l
n 1

using (29) and (30). We deduce from (31) and (32) that

lim s"2 £ff[xf.r(|x.| < 6s.) I F = n2 almost surely,

and condition (7) follows in view of (29). This completes the proof.
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_2 ( o)
P r o o f o f C o r o l l a r y 3 . We t a k e 2r. = f\v.\ and check t h e c o n d i t i o n s

3 \ 3)

of Corollary 1.

A sufficient condition for (10) i s , using Proposition IV.6.2 of [4],

F. < °° almost surely>
3~±)

which holds in view of (18) since t~ g( t) -*• 0 as t -*•<*>. Furthermore,

tha t (11) holds follows immediately from (18) and an application of

Kronecker's Lemma.

To check (12), we have

y v. E x t x u 2 . s f \ i £ \ \ I F . < y v ~ . i
2 3 { 3 [ 3 J [ 3)) ' J-lJ g °

almost surely,

using the fact that t"V(*) + ° a n d

Final ly, V •*• °° almost surely,

n [ n ' n-lj n «-l

while

0 SK-2fff/ I F 1 =« [ n ' n-lj

since t~ /"(*) + 0 and (11) holds. This verifies condition (13) and
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completes the proof.
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