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Introduction

The top 1% of the population controls 35% of the wealth. On Twitter, the top
2% of users send 60% of the messages. In the health care system, the treatment
for the most expensive fifth of patients create four-fifths of the overall cost.
These figures are always reported as shocking, as if the normal order of things
has been disrupted, as if [it] is a surprise of the highest order. It’s not. Or rather,
it shouldn’t be.
– Clay Shirky, in response to the question “What scientific concept would
improve everybody’s cognitive toolkit?” [194]

Introductory probability courses often leave the impression that the Gaussian distribution is
what we should expect to see in the world around us. It is referred to as the “Normal” distri-
bution after all! As a result, statistics like the ones in the quote above tend to be treated as
aberrations, since they would never happen if the world were Gaussian. The Gaussian distri-
bution has a “scale,” a typical value (the mean) around which individual measurements are
centered and do not deviate from by too much. For example, if we consider human heights,
which are approximately Gaussian, the average height of an adult male in the US is 5 feet 9
inches and most people’s heights do not differ by more than 10 inches from this. In contrast,
there are order-of-magnitude differences between individuals in terms of wealth, Twitter
followers, health care costs, and so on.
However, order-of-magnitude differences like those just mentioned are not new and should

not be surprising. Over a century ago, Italian economist Vilfredo Pareto discovered that the
richest 20 percent of the population controlled 80 percent of the property in Italy. This is
now termed the “Pareto Principle,” aka the “80-20” rule and variations of this principle have
shown up repeatedly in widely disparate areas in the time since Pareto’s discovery. For exam-
ple, in 2002 Microsoft reported that 80 percent of the errors in Windows are caused by 20
percent of the bugs [188], and similar versions of the Pareto principle apply (though not
always with 80/20) to many aspects of business, for example, most of the profit is made from
a small percentage of the customers and most of the sales are made by a small percentage of
the sales team.
Statistics related to the Pareto principle make for compelling headlines, but they are typ-

ically an indication of something deeper. When we see such figures, it is likely that there
is not a Gaussian distribution underlying them, but rather a heavy-tailed distribution is the
reason for the “surprising” statistics. The most celebrated such distribution again carries Vil-
fredo Pareto’s name: the Pareto distribution. Heavy-tailed distributions such as the Pareto
distribution are just as prominent as (if not more so than) the Gaussian distribution and
have been observed in hundreds of applications in physics, biology, computer science, the
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social sciences, and beyond over the past century. Some examples include the sizes of cities
[92, 163], the file sizes in computer systems and networks [52, 146], the size of avalanches
and earthquakes [109, 144], the length of protein sequences in genomes [130, 145], the size
of meteorites [13, 162], the degree distribution of the web graph [36, 116], the returns of
stocks [49, 94], the number of copies of books sold [14, 110], the number of households
affected during blackouts in power grids [114], the frequency of word use in natural language
[77, 227], and many more.
Given the breadth of areas where heavy-tailed phenomena have been observed, one might

guess that, by now, observations of heavy-tailed phenomena in new areas are expected – that
heavy tails are treated as more normal than the Normal. After all, Pareto’s work has been
widely known for more than a century. However, despite a century of experience, statistics
related to the Pareto Principle and, more broadly, heavy-tailed distributions are still typically
presented as surprising curiosities – anomalies that could not have been anticipated. Even
in scientific communities, observations of heavy-tailed phenomena are often presented as
mysteries to be explained rather than something to be expected a priori. In many cases, there
is even a significant amount of controversy and debate that follows the identification of
heavy-tailed phenomena in data.

Surprising? Mysterious? Controversial?
Given the century of mathematical and statistical work around heavy tails, it certainly should
not be the case that heavy tails are surprising, mysterious, and controversial. In fact, there
are many reasons why one should expect to see heavy-tailed distributions arise. Perhaps the
main reason why they are still viewed as surprising is that the version of the central limit
theorem taught in introductory probability courses gives the impression that the Gaussian
will occur everywhere. However, this introductory version of the central limit theorem does
not tell the whole story. There is a “generalized” version of the central limit theorem that
states that either the Gaussian or a heavy-tailed distribution will emerge as the limit of sums
of random variables. Unfortunately, the technical nature of this result means it rarely features
in introductory courses, which leads to unnecessary surprises about the presence of heavy-
tailed distributions. Going beyond sums of random variables, when random variables are
combined in other natural ways (e.g., products or max/min) heavy tails are even more likely
to emerge, whereas the Gaussian distribution is not.
So heavy-tailed phenomena should not be considered surprising. What about mysterious?

The view of heavy tails as mysterious is, to some extent, a consequence of unfamiliarity.
People are familiar with the Gaussian distribution because of its importance in introductory
probability courses, and when something emerges that has qualitatively and quantitatively
different properties it seems mysterious and counter-intuitive. The Pareto Principle is one
illustration of the counterintuitive properties that make heavy-tailed distributions seem mys-
terious, but there are many others. For example, while the Gaussian distribution has a clear
“scale” – most samples will be close to the mean – samples from heavy-tailed distributions
frequently differ by orders of magnitude and may even be “scale free” (e.g., in the case of
the Pareto distribution). Another example is that, while the moments (the mean, variance,
etc.) of the Gaussian distribution are all finite, it is not uncommon to see data that fits a
heavy-tailed distribution having an infinite variance, or even an infinite mean! For example,
the degree distribution of many complex networks tends to have a tail that matches that of
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a Pareto with infinite variance (see, for example, [23]). This can potentially lead to mind-
bending challenges when trying to apply statistical tools, which often depend on averages
and variances.
The combination of surprise and mystery that surrounds heavy-tailed phenomena means

that there is often considerable excitement that follows the discovery of data that fits a heavy-
tailed distribution in a new field. Unfortunately, this excitement often sparks debate and
controversy – often enough that an unfortunate pattern has emerged. A heavy-tailed phe-
nomenon is discovered in a new field. The excitement over the discovery leads researchers
to search for heavy tails in other parts of the field. Heavy tails are then discovered in many
settings and are claimed to be a universal property. However, the initial excitement of dis-
covery and lack of previous background in statistics related to heavy tails means that the first
wave of research identifying heavy tails uses intuitive but flawed statistical tools. As a result,
a controversy emerges – which settings where heavy tails have been observed really have
heavy tails? Are they really universal? Over time, more careful statistical analyses are used,
showing that some places really do exhibit heavy tails while others were false discoveries.
By the end, a mature view of heavy tails emerges, but the whole process can take decades.
At this point, the pattern just described has been replicated in many areas, including

computer science [68], biology [119], chemistry [160], ecology [10], and astronomy [216].
Maybe the most prominent example of this story is still ongoing in the area of network
science. Near the turn of the century, the study of complex networks began to explode in
popularity due to the growing importance of networks in our lives and the increasing ease
of gathering data about large networks. Initial results in the area were widely celebrated and
drove an enormous amount of research to look at the universality of scale-free networks.
However, as the field matured and the statistical tools became more sophisticated, it became
clear that many of the initial results were flawed. For example, claims that the internet graph
[80] and the power network [24] are heavy-tailed were refuted [4, 222], among others. This
led to a controversy in the area that continues to this day, 20 years later [37, 212].

Demystifying Heavy Tails
The goal of this book is to demystify heavy-tailed phenomena. Heavy tails are not
anomalies – and their emergence should not be surprising or controversial either! Heavy
tails are an unavoidable part of our lives, and viewing statistics like the ones that started
this chapter as anomalies prevents us from thinking clearly about the world around us. Fur-
ther, while properties of heavy-tailed phenomena like the Pareto Principle may initially make
heavy-tailed distributions seem counterintuitive, they need not be. This book strives to pro-
vide tools and techniques that canmake heavy tails as easy and intuitive to reason about as the
Gaussian, to highlight when one should expect the emergence of heavy-tailed phenomena,
and to help avoid controversy when identifying heavy tails in data.
Because of the ubiquitousness and seductive nature of heavy-tailed phenomena, they are

a topic that has permeated wide ranging fields, from astronomy and physics, to biology and
physiology, to social science and economics. However, despite their ubiquity, they are also,
perhaps, one of the most misused and misunderstood mathematical areas, shrouded in both
excitement and controversy. It is easy to get excited about heavy-tailed phenomena as you
start to realize the important role they play in the world around us and become exposed to
the beautiful and counterintuitive properties they possess. However, as you start to dig into

https://doi.org/10.1017/9781009053730.002 Published online by Cambridge University Press

https://doi.org/10.1017/9781009053730.002


4 Introduction

the topic, it quickly becomes difficult. The mathematics that underlie the analysis of heavy-
tailed distributions are technical and advanced, often requiring prerequisites of graduate-level
probability and statistics courses. This is the reason why introductory probability courses
typically do not present much, if any, material related to heavy-tailed distributions. If they are
mentioned, they are typically used as examples illustrating that “strange” things can happen
(e.g., distributions can have an infinite mean). Thus, a scientist or researcher in a field outside
of mathematics who is interested in learning more about heavy tails may find it difficult, if
not impossible, to learn from the classical texts on the topic.
It is exactly this difficulty that led us to write this book. In this book we hope to introduce

the fundamentals of heavy-tailed distributions using only tools that one learns in an intro-
ductory probability course. The book intentionally does not spend much time on describing
the settings where heavy tails arise – there are simply too many different areas to do justice
to even a small subset of them. Instead, we assume that if you have found your way to this
book, then heavy tails are important to you. Given that, our goal is to provide an introduction
to how to think about heavy tails both intuitively and mathematically.
The book is divided into three parts, which focus on three foundational guiding questions.

l Part I: Properties.What leads to the counterintuitive properties of heavy-tailed phenom-
ena?

l Part II: Emergence. Why do heavy-tailed phenomena occur so frequently in the world
around us?

l Part III: Estimation. How can we identify and estimate heavy-tailed phenomena using
data?

In Part I of the book we provide insight into some of most mysterious and elegant prop-
erties of heavy-tailed distributions, connecting these properties to formal definitions of
subclasses of heavy-tailed distributions. We focus on three foundational properties: “scale-
invariance” (aka, scale-free), the “catastrophe principle,” and “increasing residual life.”
We illustrate that these properties provide qualitatively different behaviors than what is
seen under light-tailed distributions like the Gaussian, and provide intuition underlying
the properties. The three chapters that make up Part I strive to demystify some of the
particularly exotic properties of heavy-tailed distributions and to provide a clear view of
how these properties interact with each other and with the broader class of heavy-tailed
distributions.
In Part II of the book we explore simple laws that can “explain” the emergence of heavy-

tailed distributions in the same way that the central limit theorem “explains” the prominence
of the Gaussian distribution. We study three foundational stochastic processes in order to
understandwhen one should expect the emergence of heavy-tailed distributions as opposed to
light-tailed distributions. Our discussions in the three chapters that make up Part II highlight
that heavy-tailed distributions should not be viewed as anomalies. In fact, heavy tails should
not be surprising at all; in many cases they should be treated as something as natural as, if
not more natural than, the emergence of the Gaussian distribution.
In Part III of this book we focus on the statistical tools used for the estimation of heavy-

tailed phenomena. Unfortunately, there is no perfect recipe for “properly” detecting and
estimating heavy-tailed distributions in data. Our treatment, therefore, seeks to highlight a
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handful of important approaches and to provide insight into when each approach is appropri-
ate and when eachmay bemisleading. Combined, the chapters that make up Part III highlight
a crucial point: one must proceed carefully when estimating heavy-tailed phenomena in real-
world data. It is naive to expect to estimate exact heavy-tailed distributions in data. Instead,
a realistic goal is to estimate the tail of heavy-tailed phenomena. Even in doing this, one
should not rely on a single method for estimation. Instead, it is a necessity to build confidence
through the use of multiple, complementary estimation approaches.

1.1 Defining Heavy-Tailed Distributions
Before we tackle our guiding questions, we start with the basic question: What is a heavy-
tailed distribution?
One of the reasons for the mystique that surrounds heavy-tailed distributions is that

if you ask five people from different communities this question, you are likely to get
five different answers. Depending on the community, the term heavy-tailed may be used
interchangeably with terms like scale-free, power-law, fat-tailed, long-tailed, subexponen-
tial, self-similar, stable, and others. Further, the same names may mean different things to
different communities!
Sometimes the term “heavy-tailed” is used to refer to a specific distribution such as the

Pareto or the Zipf distribution. Other times, it is used to identify particular properties of a
distribution, such as the fact that it is scale-free, has an infinite (or very large) variance, a
decreasing failure rate, and so on. As a result, there is often a language barrier when dis-
cussing heavy-tailed distributions that stems from different associations with the same terms
across communities.
Hopefully, reading this book will equip you to navigate the zoo of terminology related to

heavy-tailed distributions. Each of the terms mentioned earlier does have a concrete, precise,
establishedmathematical definition. It is just that these terms are often used carelessly, which
leads to confusion. It will take us most of the book to get through the definitions of all
the terms mentioned in the previous paragraph, but we start in this section by laying the
foundation – defining the term “heavy-tailed” and discussing some of the most celebrated
examples.
The term “heavy-tailed” is inherently relative – heavier thanwhat? AGaussian distribution

has a heavier tail than a Uniform distribution, and an Exponential distribution has a heavier
tail than a Gaussian distribution, but neither of these is considered “heavy-tailed.” Thus, the
key feature of the definition is the comparison point chosen.
The comparison point that is used to define the class of heavy-tailed distributions is the

Exponential distribution. That is, a distribution is considered to be heavy-tailed if it has a
heavier tail than any Exponential distribution. Formally, this is stated in terms of the cumula-
tive distribution function (c.d.f.)F of a random variableX , that is,F (x) = Pr (X ≤ x), and
the complementary cumulative distribution function (c.c.d.f.) F̄ , that is, F̄ (x) = 1− F (x).

Definition 1.1 A distribution function F is said to be heavy-tailed if and only if, for all
µ > 0,

lim sup
x→∞

1− F (x)

e−µx
= lim sup

x→∞

F̄ (x)

e−µx
= ∞.
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(a) Linear scale (b) Log scale

Figure 1.1 Contrasting heavy-tailed and light-tailed distributions: The plots show
the c.c.d.f. of the exponential distribution (with mean 1) and a heavy-tailed Pareto
distribution (with minimal value xm = 1, scale parameter α = 2). While the
contrast in tail behavior is difficult to discern on a linear scale (Fig. (a)), it is quite
evident when the probabilities are plotted on a logarithmic scale (Fig. (b)).

Otherwise, F is light-tailed. A random variableX is said to be heavy-tailed (light-tailed) if
its distribution function is heavy-tailed (light-tailed).

Note that the definition of heavy-tailed distributions given above applies to the right tail of
the distribution, that is, it is concerned with the behavior of the probability of taking values
larger than x as x → ∞. In some applications, one might also be interested in the left tail.
In such cases, the definition of heavy-tailed can be applied to both the right tail (without
change) and the left tail (by considering the right tail of −X).
The definition of heavy-tailed is, in some sense, natural. It looks explicitly at the “tail” of

the distribution (i.e., the c.c.d.f. F̄ (x)), and it is easy to see from the definition that the tails
of distributions that are heavy-tailed are “heavier” (i.e., decay more slowly) than the tails of
distributions that are light-tailed; see Figure 1.1.
The particular choice of the Exponential distribution as the boundary between heavy-tailed

and light-tailed may, at first, seem arbitrary. In fact, without detailed study of the class
of heavy-tailed distributions, it is difficult to justify this particular choice. But, as we will
see throughout this book, the Exponential distribution serves to separate two classes of dis-
tributions that have qualitatively different behavioral properties and require fundamentally
different mathematical tools to work with.
To begin to examine the distinction between heavy-tailed and light-tailed distributions,

it turns out to be useful to consider two alternative, but equivalent, definitions of “heavy-
tailed.”

Lemma 1.2 Consider a random variableX . The following statements are equivalent.

(i) X is heavy-tailed.
(ii) The moment generating functionM(s) := E [esX ] = ∞ for all s > 0.

(iii) lim infx→∞− log Pr(X>x)
x

= 0.
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The proof of this lemma provides useful intuition about heavy-tailed distribution; however,
before proving this result, let us interpret the two new, equivalent definitions of heavy-tailed
that it provides.
First, consider (ii), which states that a random variable is heavy-tailed if and only if its

moment generating functionM(s) := E [esX ] is infinite for all s > 0. This definition high-
lights that heavy-tailed distributions require a different analytic approach than light-tailed
distributions. For light-tailed distributions the moment generating function often provides
an important tool for characterizing the distribution. It can be used to derive the moments of
the distribution, but it also can be inverted to characterize the distribution itself. Further, it is
a crucial tool for analysis because of the simplicity of handling convolutions via the moment
generating function, for example, when deriving concentration inequalities such as Chernoff
bounds. In contrast, the definition given by (ii) shows that such techniques are not applicable
for heavy-tailed distributions.
Next, consider (iii), which states that a random variable X is heavy-tailed if and only

if the log of its tail, log Pr (X > x), decays sublinearly. This again highlights that heavy-
tailed distributions require a different analytic approach than light-tailed distributions. In
particular, when studying the tail of light-tailed distributions it is common to use concentra-
tion inequalities such as Chernoff bounds, which inherently have an exponential decay. As
a result, such bounds focus on determining the optimal decay rate, which is characterized
by deriving a maximal µ such that Pr (X > x) ≤ Ce−µx. However, the definition given
by (iii) highlights that the maximum possible µ for heavy-tailed distributions is zero, and so
fundamentally different analytic approaches must be used.
To build more intuition on the relationship between these three equivalent definitions of

“heavy-tailed,” as well as to get practice working with the definitions, it is useful to consider
the proof of Lemma 1.2.

Proof of Lemma 1.2 To prove Lemma 1.2, we need to show the equivalence of each of the
three definitions of heavy-tailed. We do this by showing that (i) implies (ii), that (ii) implies
(iii), and finally that (iii) implies (i).

(i) ⇒ (ii). Suppose that X is heavy-tailed, with distribution F. By definition, this
implies that for any s > 0, there exists a strictly increasing sequence (xk)k≥1 satisfying
limk→∞ xk = ∞, such that

lim
k→∞

esxk F̄ (xk) = ∞. (1.1)

We can now bound E [esX ] as follows.

E
[
esX
]
=

∫ ∞
0

esxdF (x)

≥
∫ ∞
xk

esxdF (x)

≥ esxk F̄ (xk).

Since the above inequality holds for all k, it now follows from (1.1) that E [esX ] = ∞.
Therefore, Condition (i) implies Condition (ii).
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(ii) ⇒ (iii). Suppose that X satisfies Condition (ii). For the purpose of obtaining a
contradiction, let us assume that Condition (iii) does not hold. Since− log Pr(X>x)

x
≥ 0,

this means that

lim inf
x→∞

− log Pr (X > x)

x
> 0.

The above statement implies that there exist µ > 0 and x0 > 0 such that

− log Pr (X > x)

x
≥ µ ⇐⇒ Pr (X > x) ≤ e−µx ∀ x ≥ x0. (1.2)

Now, pick s such that 0 < s < µ.We may now bound the moment generating function
ofX at s as follows:

M(s) = E
[
esX
]
=

∫ ∞
0

Pr
(
esX > x

)
dx

=

∫ esx0

0

Pr
(
esX > x

)
dx+

∫ ∞
esx0

Pr
(
X >

log(x)

s

)
dx.

Here, we have used the following representation for the expectation of a nonnegative
random variable Y : E [Y ] =

∫∞
0

Pr (Y > y) dy. While the first term above can be
bounded from above by esx0 , we may bound the second using (1.2), since x ≥ esx0 is
equivalent to log(x)/s ≥ x0.

M(s) ≤ esx0 +

∫ ∞
esx0

e−µ
log(x)

s dx

= esx0 +

∫ ∞
esx0

x−µ/sdx.

Since µ/s > 1, we have
∫∞
1
x−µ/sdx < ∞, which implies thatM(s) < ∞, giving

us a contradiction. Therefore, Condition (ii) implies Condition (iii).

(iii) ⇒ (i). Suppose that the random variable X, having distribution F, satisfies
Condition (iii). Thus, there exists a strictly increasing sequence (xk)k≥1 satisfying
limk→∞ xk = ∞, such that

lim
k→∞

− log F̄ (xk)

xk
= 0.

Given µ > 0, this in turn implies that there exists k0 ∈ N such that

− log F̄ (xk)

xk
< e−

µ
2 ∀ k > k0

⇐⇒ F̄ (xk) > e−
µxk
2 ∀ k > k0

⇐⇒ F̄ (xk)

e−µxk
> e

µxk
2 ∀ k > k0.

The last assertion above implies that limk→∞
F̄ (xk)

e−µxk
=∞, which implies lim supx→∞

F̄ (x)

e−µx =∞. Since this is true for any µ> 0, we conclude that Condition (iii) implies
Condition (i).
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1.2 Examples of Heavy-Tailed Distributions
We now have three equivalent definitions of heavy-tailed distributions and, through the
proof, we understand how these three definitions are related. But, even with these restate-
ments, the definition of heavy-tailed is still opaque. It is difficult to get behavioral intuition
about the properties of heavy-tailed distributions from any of the definitions. Further, it is
very hard to see much about what makes heavy-tailed distributions have the mysterious
properties that are associated with them using these definitions alone.
In part, this is due to the breadth of the definition of heavy-tailed. The important proper-

ties commonly associated with heavy-tailed distributions, such as scale invariance, infinite
variance, the Pareto principle, etc., do not hold for all heavy-tailed distributions; they hold
only for certain subclasses of heavy-tailed distributions.
As a result, it is important to build intuition for the class of heavy-tailed distributions by

looking at specific examples. That is the goal of the remainder of this chapter. In particular,
we focus in detail on the Pareto distribution, the Weibull distribution, and the LogNormal
distribution with the goal of providing both the mathematical formalism for these distribu-
tions and some insight in their important properties and applications. Additionally, we briefly
introduce some of the other important examples of heavy-tailed distributions that come up
frequently in applications, including the Cauchy, Fréchet, Lévy, Burr, and Zipf distributions.
Perhaps the most important thing to keep in mind as you read these sections is the contrast

between the properties of the heavy-tailed distributions that we discuss and the properties
of light-tailed distributions, such as the Gaussian and Exponential distributions, with which
you are likely more familiar. To set the stage, we summarize the important formulas for these
two distributions next.

The Gaussian Distribution
The Gaussian distribution, also called the Normal distribution or the bell curve, is perhaps
the most widely recognized distribution and is extremely important in statistics and beyond.
It is defined using two parameters, the mean µ and the variance σ2, and is expressed most
conveniently through its probability density function (p.d.f.), f(x), or its moment generating
function (m.g.f.),M(s). Given a random variable Z ∼ Gaussian(µ, σ), we have

fZ(x) =
1

σ
√
2π
e−

(x−µ)2

2σ2 ,

MZ(s) = E[esZ ] = eµs+
1
2σ

2s2 .

Since MZ(s) < ∞ for all s > 0, it follows that the Gaussian distribution is light-tailed.
The light-tailedness of the Gaussian distribution can also be deduced directly by bounding
its c.c.d.f. (see Exercise 2).
The particular Gaussian distribution with zero mean and unit variance (µ = 0, σ = 1) is

commonly referred to as the standard Gaussian.

The Exponential Distribution
The Exponential distribution is a widely known and broadly applicable distribution that
serves as the light-tailed distribution on the boundary between light-tailed and heavy-tailed
distributions. It is a nonnegative distribution defined in terms of one parameter: λ, which is
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referred to as the “rate” since the mean of the distribution is 1/λ. Given a random variable
X ∼ Exponential(λ), the p.d.f., c.c.d.f., and m.g.f., can be expressed as

fX(x) = λe−λx (x ≥ 0),

F̄ (x) = e−λx (x ≥ 0),

MX(s) =
1

(1− s/λ)
(s < λ).

Note that the tail of the Exponential distribution is heavier than that of the Gaussian because
e−x goes to zero more slowly than e−x2 . Additionally, unlike the Gaussian, the moment
generating function is not finite everywhere.

1.2.1 The Pareto Distribution
Vilfredo Pareto originally presented the Pareto distribution, and introduced the idea of the
Pareto Principle, in the study of the allocation of wealth. But since then, it has been used
as a model in numerous other settings, including the sizes of cities, the file sizes in com-
puter systems and networks, the price returns of stocks, the size of meteorites, casualties
and damages due to natural disasters, frequency of words, and many more. It is perhaps the
most celebrated example of a heavy-tailed distribution, and as a result, the term Pareto is
sometimes, unfortunately, used interchangeably with the term heavy-tailed.
Formally, a random variableX follows a Pareto(xm, α) distribution if

Pr (X ≥ x) = F̄ (x) =

(
x

xm

)−α
, for α > 0, x ≥ xm > 0.

Here, α is the shape parameter of the distribution and is also commonly referred to as the
tail index, while xm is the minimum value of the distribution, that is, X ≥ xm. Given the
c.c.d.f. above, it is straightforward to differentiate and obtain the p.d.f.

f(x) =
αxαm
xα+1

, x ≥ xm.

It is easy to see from the c.c.d.f. that the Pareto is heavy-tailed. In particular, using
Definition 1.1, we can compute

lim sup
x→∞

F̄ (x)

e−µx
= lim sup

x→∞

(xm
x

)α
eµx = ∞, (1.3)

since the exponential eµx grows more quickly than the polynomial xα.
This highlights the key contrast between the Pareto distribution and common light-tailed

distributions like the Gaussian and Exponential distributions: the Pareto tail decays poly-
nomially, as x−α, instead of exponentially (as e−µx) in the case of the Exponential, or
superexponentially (as e−x2/2σ2) in the case of the Gaussian. As a consequence, large values
are much more likely to occur under a Pareto distribution than under a Gaussian or Expo-
nential distribution. For example, you are much more likely to meet someone whose income
is 10 times the average than someone whose height is 10 times the average.
This contrast is present visually too. Figure 1.2 shows that the tail of the Pareto is consid-

erably heavier. The figure illustrates the p.d.f. and c.c.d.f. of the Pareto for different values of
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(a) c.c.d.f. (b) p.d.f.

Figure 1.2 Contrasting Pareto distribution with the Exponential and the Gaussian:
The plots show (a) the c.c.d.f., and (b) the p.d.f., corresponding to Pareto
distributions with xm = 1 with different values of α, alongside the Exponential
distribution (with unit mean) and the standard Gaussian.

the tail index α,which is typically the parameter of interest since it controls the degree of the
polynomial decay of the p.d.f. and c.c.d.f., and thus determines the “weight” of the tail. As
α decreases, the tail becomes heavier, while as α → ∞ the Pareto distribution approaches
the Dirac delta function centered at xm.
While Figure 1.2 already contrasts the Pareto, Gaussian, and Exponential distributions,

we can better emphasize this contrast by presenting the figure in a different way, that is, by
rescaling its axes. In particular, Figure 1.3 shows the same c.c.d.f.s but presents the data on
a log-log scale, that is, with logarithmic horizontal and vertical axes. With this change, a
remarkable pattern emerges – the Pareto c.c.d.f. becomes a straight line, while the Gaussian
and Exponential distributions quickly drop off a cliff and disappear. This image viscerally
highlights the heaviness of the Pareto’s tail as compared to the tails of the Exponential and
the Gaussian.
To understand why the Pareto is linear when viewed on a log-log scale, let us do a quick

calculation. Letting C1 = xαm we can write

F̄ (x) =

(
x

xm

)−α
= C1x

−α.

Taking logarithms of both sides then gives

log F̄ (x)︸ ︷︷ ︸
′y′

= logC1︸ ︷︷ ︸
y-intercept

+(−α)︸ ︷︷ ︸
slope

log x︸ ︷︷ ︸
′x′

,

which reveals that, on a log-log scale, the c.c.d.f. is simply a linear function with y-intercept
logC1 and slope −α. Not only that, the p.d.f. is also of the same form, that is, f(x) =
C2x

−(α+1) where C2 = αxαm and so it also is linear in the log-log scaling.
This property – being (approximately) linear on a log-log scale – is important enough that

it has received a few different names from different communities. Distributions of the form
F̄ (x) = Cx−α for some constant C are referred to as power law distributions. A related
set of distributions are fat-tailed distributions, which are distributions with F̄ (x) ∼ x−α as
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Figure 1.3 A clearer contrast between the Pareto distribution and the Exponential
and Gaussian: The plots show the c.c.d.f.s corresponding to different Pareto
distributions with xm = 1 and different values of α, alongside the Exponential
distribution (with unit mean) and the standard Gaussian, on a log-log scale. This
scaling demonstrates clearly how the Pareto tail (linear on a log-log plot) is heavier
than those of the Exponential and the Gaussian.

x → ∞, where we use a(x) ∼ b(x) as x → ∞ as shorthand for limx→∞ a(x)/b(x) = 1.
Finally, the class of regularly varying distributions, which we introduce in Chapter 2, gener-
alizes both power law and fat-tailed distributions and has strong connections to the concept
of scale-invariance.
The fact that Pareto distributions, and more generally power law distributions, are approx-

imately linear on a log-log plot has a number of important consequences. Maybe the most
prominent one is that it provides an intuitive exploratory tool for identifying power laws in
data. Specifically, when presented with data, one can look at the empirical p.d.f. and c.c.d.f.
on a log-log scale and check whether they are approximately linear. If so, then there is the
potential that the data comes from a power-law distribution. One can even go further and
hope to estimate the tail index α using linear regression on the empirical p.d.f. and c.c.d.f.
This is a common approach across fields, which we illustrate in Figure 1.4 using population
data for US cities as per the 2010 census. Notice that the empirical c.c.d.f. (on a log-log
scale) looks roughly linear for large populations. It is therefore tempting to postulate that the
distribution of city populations (asymptotically) follows a power law, and further to estimate
the tail index by fitting a least squares regression line to the empirical c.c.d.f. beyond, say
104 (since the tail “looks linear” beyond this point), as shown in Figure 1.4. However, as
we discuss in Chapter 8, this approach is not statistically sound and may lead to incorrect
conclusions. In fact, the temptation to make conclusions based on such naive analyses is one
of the most common reasons for the controversy that often surrounds the identification of
heavy-tailed phenomena.

Moments
One of the biggest contrasts between the Pareto distribution and light-tailed distributions
such as the Gaussian and Exponential is the fact that the Pareto distribution can have infinite
moments. In fact, for X ∼ Pareto(xm, α), E [Xn] = ∞ if n ≥ α. More specifically, the
mean of the Pareto distribution is
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1.2 Examples of Heavy-Tailed Distributions 13

Figure 1.4 Visualizing data on a log-log plot: The figure shows the empirical
c.c.d.f. of the populations of U.S. cities as per the 2010 census (data sourced from
[2]). Note that on a log-log scale, the data beyond population 104 looks
approximately linear. The least squares regression line on this data yields an
estimate α̂ = 1.02 of the power law exponent.

E [X] =

{
∞, α ≤ 1;
αxm

α−1 , α > 1.

The variance is

Var [X] =

{ ∞, α ∈ (1, 2];(
xm

α−1

)2
α
α−2 , α > 2.

And, in general, the nth moment is

E [Xn] =

{
αxn

m

α−n , n < α;
∞, n ≥ α.

Importantly, it is not just a curiosity that the Pareto distribution can have infinite moments.
In many cases where data has been modeled using the Pareto distribution, the distribution
that is fit has infinite variance and/or mean. For example, file sizes in computer systems and
networks [52] and the degree distributions of complex networks such as the web [68] appear
to have infinite variance. Additionally, the logarithmic returns on stocks in finance tend to
have finite variance, but infinite fourth moment [75], leading to values of α in the range
(2, 4).

The Pareto Principle
We began this chapter with a quote about the Pareto principle, so it is important to return
to it now that we have formally introduced the Pareto distribution. The classical version of
the Pareto principle is that the wealthiest 20 percent of the population holds 80 percent of
the wealth. Mathematically, we can ask a more general question about what fraction of the
wealth the largest P fraction of the population holds.
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Figure 1.5 Lorenz curves for the Pareto distribution: Lorenz curves for different
values of α. The smaller the value of α, the more pronounced the concentration of
wealth within a small fraction of the population. The black line represents perfect
equality, that is, the utopian scenario in which all individuals have exactly the same
wealth.

To compute an analytic version of the Pareto principle, we consider the fraction of the
population whose wealth exceeds x. Call this fraction P (x), and then we can calculate P (x)
in the case of a Pareto distribution as follows:

P (x) =

∫ ∞
x

f(t)dt = αxαm

∫ ∞
x

t−(α+1)dt =

(
x

xm

)−α
.

Then, the fraction of wealth that is in the hands of such people, which we denote byW (x),
is

W (x) =

∫∞
x
tf(t)dt∫∞

xm
tf(t)dt

=
αxαm

∫∞
x
t−αdt

αxαm
∫∞
xm
t−αdt

=

(
x

xm

)−α+1

,

assuming that α > 1. Combining the above equations then gives that, regardless of x, the
fraction of wealthW owned by the richest P fraction of the population is

W = P (α−1)/α.

We illustrate the curve of W as a function of P in Figure 1.5. It is always concave and
increasing, and when α is close to 1, it indicates that wealth is concentrated in a very small
fraction of the population. Such extreme concentration is an example of a more general
phenomenon called the “catastrophe principle,” which we discuss in detail in Chapter 3.
Curves like those in Figure 1.5 are referred to as Lorenz curves, after Max Lorenz, who

developed them in 1905 as a way to represent the inequality of wealth distribution. The
Gini coefficient, which is typically used to quantify wealth inequality today, is the ratio of
the area between the line of perfect equality (the 45 degree line) and the Lorenz curve, and
the area above the line of perfect equality. The greater the value of the Gini coefficient, the
more pronounced the asymmetry in wealth distribution. Understanding properties of the Gini
coefficient is still an area of active research, for example, [86] and the references therein.
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Relationship to the Exponential Distribution
While heavy-tailed distributions often behave qualitatively differently than light-tailed dis-
tributions, there are still some connections between the two that can be useful. In particular,
a heavy-tailed distribution can often be viewed as an exponential transformation of a light-
tailed distribution. In the case of the Pareto, this connection is to the Exponential distribution.
Specifically,

X ∼ Pareto(xm, α) ⇐⇒ log(X/xm) ∼ Exponential(α).

Or, equivalently,

Y ∼ Exponential(α) ⇐⇒ xme
Y ∼ Pareto(xm, α).

To see why this is true requires a simple change of variables. In particular, let Y =
log(X/xm) whereX ∼ Pareto(xm, α). Then,

Pr (Y > y) = Pr (log(X/xm) > y) = Pr (X > xme
y) =

(
xme

y

xm

)−α
= e−αy,

where the last expression is the c.c.d.f. of an Exponential distribution with rate α. This trans-
formation turns out to be a powerful analytic tool, andwemake use of it onmultiple occasions
in this book (e.g., Chapter 6, to study multiplicative processes, and Chapter 8, to derive
properties of the maximum likelihood estimator for data from a Pareto distribution).

1.2.2 The Weibull Distribution
We just saw that the Pareto distribution has an intimate connection to the Exponential dis-
tribution – it is an exponential of the Exponential. The second heavy-tailed distribution we
introduce has a similar connection to the Exponential distribution – it is a polynomial of the
Exponential. Specifically, for α, β > 0,

X ∼ Exponential(1) ⇐⇒ 1

β
X1/α ∼ Weibull(α, β).

From this relationship, one would expect that when 0 < α < 1, the Weibull distribution has
a heavier tail than the Exponential (though lighter than the Pareto), making it heavy-tailed.
On the other hand, when α > 1, one would expect that the Weibull has a lighter tail than the
Exponential.
It is straightforward to see what this transformation means for the c.c.d.f. of the Weibull

distribution. In particular, a random variable follows a Weibull(α, β) distribution if

F̄ (x) = e−(βx)
α

, for x ≥ 0. (1.4)

Differentiating the c.c.d.f. gives us the p.d.f.

f(x) = αβ (βx)
α−1

e−(βx)
α

, for x ≥ 0.

In these expressions, α is referred to as the shape parameter of the distribution, and β is the
scale parameter. Note that when α = 1 the Weibull is equivalent to an Exponential(β).
In fact, the Weibull distribution is an especially helpful distribution when seeking to con-

trast heavy tails with light tails because it can be either heavy-tailed or light-tailed depending
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(a) c.c.d.f. on linear scale (b) c.c.d.f. on log-log scale

Figure 1.6 Illustration of Weibull c.c.d.f.: Plots show the c.c.d.f. of the Weibull
distribution with scale parameter β = 1 and different values of shape parameter α,
alongside the Exponential distribution (with unit mean, which corresponds to
α = β = 1) and the standard Gaussian. Part (a) shows the c.c.d.f.s on a linear scale,
while (b) plots them on a log-log scale.

on the shape parameter α. If α < 1, then the Weibull is heavy-tailed, while if α ≥ 1, the
Weibull is light-tailed. Mathematically, this can be verified by a quick calculation based on
the definition of heavy-tailed distributions:

lim sup
x→∞

F̄ (x)

e−µx
= lim sup

x→∞
eµx−(βx)

α

.

If α < 1, this limit equals∞ for any µ > 0, while if α > 1, it is 0 for any µ > 0. (If α = 1,
the Weibull is equivalent to an Exponential distribution, which is, of course, light-tailed.)
Figure 1.6(a) illustrates the tail of the Weibull distribution for different values of α, con-

trasting the c.c.d.f. with those of the Gaussian and Exponential distributions. As was the
case with the Pareto, the heaviness of the tail is clearly visible when we look at the log-log
plot of the distribution; see Figure 1.6(b). While the Weibull looks nearly linear on a log-log
plot when α is small (i.e., when the tail is heaviest) it is not perfectly linear like the Pareto
distribution. To see why, we can take logarithms of both sides of (1.4) to obtain

log F̄ (x) = −(βx)α.

While xα gets close to log x as α shrinks to zero, it never entirely matches. However, if we
move the negative sign to the other side and take logarithms again, we see that the Weibull
looks linear according to a different scaling:

log(− log F̄ (x))︸ ︷︷ ︸
′y′

= α log β︸ ︷︷ ︸
y-intercept

+ α︸︷︷︸
slope

log x︸ ︷︷ ︸
′x′

.

This tells us that the Weibull c.c.d.f. is linear on a log(− log F̄ (x)) versus log x plot. As
with the Pareto distribution, this is a useful tool for exploratory analysis of data but one that
must be used with care and should not be relied on for estimation.
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Figure 1.7 Weibull hazard rate for scale parameter β = 1 and different values of
shape parameter α.

The Hazard Rate
The shape parameterα influences not just the tail behavior, but other properties of theWeibull
distribution as well. One property that is of particular interest is the hazard rate (aka, failure
rate) of the distribution. We study the hazard rate in detail in Chapter 4, and the Weibull is
a particularly important distribution for that chapter because its hazard rate can have widely
varying behaviors.
The hazard rate is defined as q(t) = f(t)/F̄ (t) and has the following interpretation.

Thinking of the distribution as capturing the time to failure (lifetime) of a component, q(t)
captures the instantaneous likelihood of a failure at time t of a component that entered into
use at time 0, given that failure has not occurred until time t. Interestingly, when α > 1,
the hazard rate of the Weibull is increasing, meaning the likelihood of an impending failure
increases with the age of the component; whenα < 1, the hazard rate is decreasing, meaning
the likelihood of an impending failure actually decreases with the age of the component; and
when α = 1, the hazard rate is constant. We illustrate this in Figure 1.7.
The properties of the Weibull with respect to its hazard rate make it an extremely impor-

tant distribution for survival analysis, reliability analysis, and failure analysis in a variety of
areas. Additionally, the Weibull plays an important role in weather forecasting, specifically
related to wind speed distributions and rainfall. As we discuss in Chapter 7, the Weibull
(specifically, the mirror image of the Weibull distribution defined here) is an “extreme
value distribution,” which means that it is deeply connected to extreme events, such as
the maximal rainfall in a day or year, the maximal overvoltage in an electrical system, or
the maximal size of insurance claims. However, it was first used to describe the particle
size distribution from milling and crushing operations in the 1930s [189]. Interestingly,
though the distribution is named after Waloddi Weibull, who studied it in detail in the
1950s, it was introduced much earlier by Fréchet in 1927 in the context of extreme value
theory [91].

Moments
An important difference between the Weibull distribution and the Pareto distribution is that
all the moments of the Weibull distribution are finite. They can be large, especially when α
is small, but they are not infinite.
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To express the moments, we need to use the gamma function, Γ, which is a continuous
extension of the factorial function. Specifically, Γ(n) = (n − 1)!, for integer n. More
generally,

Γ(z) =

∫ ∞
0

xz−1e−xdx, for z > 0.

Using the gamma function, we can write the mean and variance of the Weibull as

E [X] =

(
1

β

)
Γ(1 + 1/α),

Var [X] =

(
1

β

)2 [
Γ(1 + 2/α)− (Γ(1 + 1/α))2

]
.

Notice that the mean grows quickly as α → 0: it grows like the factorial of 1/α. More
generally, the raw moments of the Weibull are given by

E [Xn] =

(
1

β

)n
Γ(1 + n/α).

1.2.3 The LogNormal distribution
While both the Pareto and the Weibull can be viewed as transformations of the Exponential
distribution, as its name would suggest, the LogNormal distribution is a transformation of
the Normal (aka Gaussian) distribution. In fact, the transformation of the Gaussian distri-
bution that produces the LogNormal distribution is the same transformation that creates the
Pareto from the Exponential – the LogNormal distribution is an exponential of the Gaussian
distribution. Specifically,

X ∼ LogNormal(µ, σ2) ⇐⇒ log(X) ∼ Gaussian(µ, σ2).

Or, equivalently,

Z ∼ Gaussian(µ, σ2) ⇐⇒ eZ ∼ LogNormal(µ, σ2).

This means that the LogNormal distribution can be specified in terms of the Gaussian
distribution via a logarithmic transformation. For example, the p.d.f. of a LogNormal(µ, σ2)
distribution is

f(x) =
1√
2πσx

e−(log x−µ)
2/(2σ2). (1.5)

Note that the change of variables of log x introduces a 1/x term outside of the exponential
in the p.d.f. as compared to the Gaussian distribution. This connection with the Gaussian
distribution can also be used to show that the LogNormal distribution is heavy-tailed; this is
left as an exercise for the reader (see Exercise 3).
While it may not be evident from the functional form of the p.d.f., the LogNormal dis-

tribution has a shape that is quite similar to that of the Pareto distribution. We illustrate the
p.d.f. and c.c.d.f. in Figure 1.8. In fact, even when viewed on a log-log plot, the LogNormal
and the Pareto can look similar. Specifically, when the variance parameter σ2 is large, the
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(a) p.d.f. on linear scale (b) p.d.f. on log-log scale

(c) c.c.d.f. on linear scale (d) c.c.d.f. on log-log scale

Figure 1.8 Illustration of LogNormal distribution: The c.c.d.f. and p.d.f. of
LogNormal distributions with µ = 0 and different values of σ are depicted. The
p.d.f.s are plotted on a linear scale in (a), and on a log-log scale in (b). The
corresponding c.c.d.f.s are plotted on a linear scale in (c), and on a log-log scale in
(d). Note that the p.d.f. as well as the c.c.d.f. appears nearly linear on a log-log plot
when σ is large.

LogNormal p.d.f. looks nearly linear on the log-log plot. To see why, let us take logarithms
of both sides of (1.5):

log f(x)︸ ︷︷ ︸
′y′

= − log x− log(σ
√
2π)− (log x− µ)2

2σ2

= −(log x)2

2σ2
+
( µ
σ2

− 1
)
log x︸ ︷︷ ︸

′x′

− log(σ
√
2π)− µ2

2σ2
.

This calculation shows that when σ is sufficiently large, the quadratic term above will be
small for a large range of x and so the log-log plot will look nearly linear. Consequently, it is
nearly impossible to distinguish the LogNormal from a Pareto using the log-log plot. Hence,
one should be very careful when using the log-log plot as a statistical tool. We emphasize
this point further in Chapter 8.
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Properties
The LogNormal inherits many of the useful properties of the Gaussian distribution, with
suitable adjustments owing to the exponential transformation between the distributions.
Perhaps the most important property of the Gaussian is that the sum of independent

Gaussians is a Gaussian. Because of the exponential transformation, for the LogNormal,
this property holds for the product rather than the sum. In particular, suppose Yi ∼
LogNormal(µi, σ2

i ) are n independent random variables, Then

Y =
n∏
i=1

Yi =⇒ Y ∼ LogNormal

(
n∑
i=1

µi,
n∑
i=1

σ2
i

)
.

This suggests that the LogNormal distribution is intimately tied to the growth of mul-
tiplicative processes. In particular, if a process grows multiplicatively, then it is additive
on a logarithmic scale and, by the central limit theorem, it is likely to be Gaussian on the
logarithmic scale. This, in turn, means that it is a LogNormal in the original scale. As a
consequence, the LogNormal is a very common distribution in nature and human behavior.
It has been used to model phenomena in finance, computer networks, hydrology, biology,
medicine, and more. In fact, the LogNormal distribution was first studied by Robert Gibrat in
the context of deriving a multiplicative version of the central limit theorem, which is some-
times termed “Gibrat’s Law.” Gibrat formulated this law during his study of the dynamics of
firm sizes and industry structure [203]. We devote Chapter 6 to a discussion of multiplicative
versions of the central limit theorem and their connections to heavy-tailed distributions.
Beyond products, LogNormal distributions also behave pleasantly with respect to other

transformations. An important example is that

X ∼ LogNormal(µ, σ2) =⇒ Xa ∼ LogNormal(aµ, a2σ2) for a ̸= 0. (1.6)

Moments
Like the Weibull distribution, the moments of the LogNormal are always finite. They can be
quite large but are never infinite. Perhaps the most counterintuitive thing about the moments
of the LogNormal distribution is that, while we adopt the same parameter names as for the
Gaussian, µ and σ2 do not refer to the mean and variance of the LogNormal. Instead, they
refer to the mean and variance of the Gaussian that is obtained by taking the log of the
LogNormal. The mean and variance of the LogNormal are as follows:

E [X] = eµ+σ
2/2,

Var [X] = e2µ+σ
2
(
eσ

2

− 1
)
.

The fact that mean and variance are exponentials of the distribution’s parameters emphasizes
that one should expect them to be large. More generally, the raw moments of the LogNormal
distribution are given by

E [Xn] = enµ+
1
2n

2σ2

.

Interestingly, though all the moments of the LogNormal distribution are finite, the distribu-
tion is not uniquely determined by its (integral) moments.
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1.2.4 Other Heavy-Tailed Distributions
The Pareto,Weibull, and LogNormal are the most commonly used heavy-tailed distributions,
but there are also other heavy-tailed distributions that appear frequently. We end this chapter
by briefly introducing a few other distributions that come up later in the book as important
examples of the concepts we discuss.

The Cauchy Distribution
The Cauchy distribution is an important distribution in statistics and is strongly connected
to the central limit theorem, as we discuss in Chapter 5. However, it is most often used
as a pathological example as a result of the fact that it does not have a well-defined mean
(or variance). In fact, though it is named after Cauchy, the first explicit analysis of it was
conducted by Poisson in 1824 in order to provide a counterexample showing that the variance
condition in the central limit theorem cannot be dropped.
The c.d.f. and p.d.f. of a Cauchy(x0, γ) distribution are given, for x ∈ R, by

F (x) =
1

π
arctan

(
x− x0

γ

)
+

1

2
,

f(x) =
1

πγ

(
γ2

(x− x0)2 + γ2

)
,

with location parameter x0 ∈ R and scale parameter γ > 0. The distribution is plotted in
Figure 1.9.
While the distribution function looks complicated, the Cauchy has a simple representation

as the ratio of two Gaussian random variables. Specifically, if U and V are independent
Gaussian random variables with mean 0 and variance 1, then U/V ∼ Cauchy(0, 1) (see
Exercise 12). A Cauchy(0, 1) is referred to as the standard Cauchy and is important in its
own right because it coincides with the Student’s t-distribution, which is crucially important
for estimating the mean and variance of a Gaussian distribution from data.
The Cauchy distribution’s emergence in the context of the central limit theorem is a result

of the fact that sums of Cauchy distributions have a property similar to sums of Gaussian
distributions: if X1, . . . , Xn are i.i.d. Cauchy(0, 1) random variables, then the sum is also
a Cauchy. Specifically, 1

n

∑n
i=1Xi ∼ Cauchy(0, 1); we prove this property in Chapter 5

using characteristic functions.
Finally, a related distribution to the Cauchy is the LogCauchy, which has the same rela-

tionship to the Cauchy distribution that the LogNormal has to the Gaussian distribution, that
is,

X ∼ Cauchy(x0, γ) ⇐⇒ eX ∼ LogCauchy(x0, γ),

or, equivalently,

Y ∼ LogCauchy(x0, γ) ⇐⇒ log(Y ) ∼ Cauchy(x0, γ).

The LogCauchy is one of the few common distributions that has a heavier tail than the Pareto
distribution – it has a logarithmically decaying tail. For this reason, it is sometimes referred
to as a super-heavy-tailed distribution.
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(a) c.c.d.f.s (b) c.c.d.f.s on log-log scale

Figure 1.9 The plots show the c.c.d.f. of the standard Cauchy (x0 = 0, γ = 1), the
Fréchet (with xm = 0, β = 1, α = 2), the Lévy (with µ = 0, c = 1), and the Burr
distribution (with c = λ = 1, k = 2). Part (a) shows the plots on a linear scale, and
(b) on a log-log scale. Note that all c.c.d.f.s look (asymptotically) linear on a log-log
scale; we will formalize this property in Chapter 2.

The Fréchet Distribution
The Fréchet distribution plays a central role in extreme value theory, as we discuss in
Chapter 7. It is commonly used in hydrology when studying the extremes of rainfall
distributions.
The distribution is named after Maurice Fréchet, who introduced it in 1927; however, it is

also referred to as the inverse Weibull distribution, which is a much more descriptive name
since it is defined as exactly that. Specifically,

X ∼ Weibull(α, β) ⇐⇒ 1/X ∼ Fréchet(α, β, 0).

More generally, the c.d.f. and p.d.f. of the Fréchet(α, β, xm) distribution are given, for x >
xm, by

F (x) = e−(β(x−xm))−α

,

f(x) = αβ (β(x− xm))
−1−α

e−(β(x−xm))−α

.

Here, α > 0 is the shape parameter, β > 0 is the scale parameter, and xm is the minimum
value taken by the distribution. The distribution is plotted in Figure 1.9.

The Lévy Distribution
The Lévy distribution is used most prominently in the study of financial models to explain
stylized phenomena such as volatility clustering. Within mathematics and physics, it also
plays an important role in the study of Brownian motion: the hitting time of a single point at
a fixed distance from the starting point of a Brownian motion has a Lévy distribution. But
perhaps its most prominent use is in the context of the generalized central limit theorem,
which we discuss in Chapter 5.
Like the Cauchy distribution and the LogNormal distribution, the Lévy distribution is

most conveniently defined as a transformation of the Gaussian distribution. In particular, a
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Lévy distribution coincides with the square of the inverse of a Gaussian distribution (and is
therefore sometimes also called the inverse Gaussian):

Z ∼ Gaussian(µ, σ2) =⇒ 1

(Z − µ)2
∼ Lévy(0, 1/σ2).

More directly, the p.d.f. of the Lévy(µ, c) distribution is given, for x ∈ R, by

f(x) =

√
c

2π(x− µ)3
e−

c
2(x−µ) . (1.7)

From this equation, it is straightforward to see that the Lévy distribution is not just heavy-
tailed, it is more specifically a “power law” distribution, since f(x) ∼

√
c
2π
x−3/2. A plot

of the distribution is shown in Figure 1.9.

The Burr Distribution
The Burr distribution is a generalization of the Pareto distribution that often appears in sta-
tistics and econometrics. It is most frequently used in the study of household incomes and
related wealth distributions. It was introduced by Irving Burr in 1942 as one of a family of
12 distributions, of which it is the Burr Type XII distribution. The c.c.d.f. and p.d.f. of a
Burr(c, k, λ) distribution are given, for x > 0, by

F̄ (x) = (1 + λxc)−k, (1.8)

f(x) =
ckxc−1

(1 + xc)k+1
, (1.9)

where c, k, λ > 0. The distribution is illustrated in Figure 1.9. When c = 1, the Burr corre-
sponds to a so-called Type II Pareto distribution, and it is easy to see that it is a power law
distribution, like the Cauchy, Fréchet, and Lévy distributions. In Chapter 7, we discuss an
interesting connection between the Burr distribution and the residual life of the Pareto distri-
bution. The hazard rate of the Burr distribution itself serves as an important counterexample
in the same chapter.

The Zipf Distribution
We conclude by mentioning the Zipf distribution, which is a discrete version of the Pareto
distribution. The Zipf distribution rose to prominence because of “Zipf’s law,” which states
that, given a natural language corpus, the frequency of any word is inversely proportional to
its rank in the frequency table of the corpus. That is, the most common word occurs twice
as often as the second most common word, three times more than the third most common
word, and so on. This law is named after George Zipf, who popularized it in 1935; however,
the observation of the phenomenon predated his work by more than fifty years.
The Zipf(s,N) distribution is one example of a distribution that would explain Zipf’s law,

and is defined in terms of its probability mass function (p.m.f.):

p(n; s,N) =
1/ns∑N
i=1 1/i

s
, (1.10)

where N can be thought of as the number of elements in the corpus, and s is the exponent
characterizing the power law.
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While the Zipf distribution is not heavy-tailed, given that it has a finite support, its gen-
eralization to the case N = ∞, which is called the Zeta distribution, is heavy-tailed (for
s > 1).

1.3 What’s Next
In this chapter we have introduced the definition of the class of heavy-tailed distributions,
along with a few examples of common heavy-tailed distributions. Through these examples,
you have already seen some illustrations of how heavy-tailed distributions behave differently
from light-tailed distributions. But we have not yet sought to build intuition about these
differences or to explain why heavy-tailed distributions are so common in the world around
us. We have mentioned that controversy often surrounds heavy-tailed distributions because
intuitive statistical approaches for identifying heavy tails in data are flawed, but we have not
yet provided tools for correct identification and estimation of heavy-tailed phenomena.
The remainder of this book is organized to first provide intuition, both qualitative and

mathematical, for the defining properties of heavy-tailed distributions (Part I: Properties),
then explain why heavy-tailed distributions are so common in the world around us (Part
II: Emergence), and finally develop the statistical tools for the estimation of heavy-tailed
distributions (Part III: Estimation).
Given the mystique and excitement that surrounds the discovery of heavy-tailed phenom-

ena, the detection and estimation of heavy tails in data is a task that is often (over)zealously
pursued. While reading this book, you may be tempted to skip directly to Part III on estima-
tion. However, the book is written so that the tools used in Part II are developed in Part I, and
the tools used in Part III are developed in Parts I and II. Thus, we encourage readers to work
through the book in order. That said, we have organized the material in each chapter so that
there is a main body that presents the core ideas that are important for later chapters, followed
by sections that present examples and/or variations of the main topic. These later sections
can be viewed as enrichment opportunities that can be skipped as desired if the goal is to
move quickly to Part III. However, if one is looking for the quickest path to understand the
background needed before digging into Part III, then we recommend focusing on Chapter 2
from Part I, then Chapters 5 and 7 from Part II before moving to Part III.
Our goal for this book is that, through reading it, heavy-tailed distributions will be demys-

tified for you. That their properties will be intuitive, not mysterious. That their emergence
will be expected, not surprising. And that you will have the proper statistical tools for study-
ing heavy-tailed phenomena and so will be able to resolve (or avoid) controversies rather
than feed them. Happy reading!

1.4 Exercises
1. For a standard Gaussian random variable Z, show that for x > 0,

Pr (Z > x) ≤ e−x
2/2

√
2πx

.

Note: In fact, the above bound can be shown to be asymptotically tight, that is, it can be
shown that Pr (Z > x) ∼ e−x2/2

√
2πx

; see [81, Chapter 7].
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2. Use the bound of Exercise 1 to prove that the Gaussian(µ, σ2) distribution is light-tailed.
3. Prove that the LogNormal(µ, σ2) distribution is heavy-tailed.
4. Consider a distribution F over R+ with finite mean µ. The excess distribution Fe

corresponding to F is defined as

F̄e(x) =
1

µ

∫ ∞
x

F̄ (y)dy.

Prove that F is heavy-tailed if and only if Fe is heavy-tailed.
5. LetX ∼ Exponential(µ) and Y = 1/X. Prove that Y is heavy-tailed.
6. The random variable N takes values in N. The distribution of N, conditioned on

a uniformly distributed random variable U taking values in (0, 1), is given by
Pr (N > n | U) = Un. Assuming U is uniformly distributed, show that N is heavy-
tailed.
Note: Even though the conditional distribution ofN given the value of U is light-tailed
(in fact, Geometrically distributed),N itself is heavy-tailed!

7. In Exercise 6, you do not need U to be uniformly distributed for N to be heavy-tailed.
Prove that, so long as Pr (U > x) > 0 for all x ∈ (0, 1), N is heavy-tailed.

8. Derive an expression for the Gini coefficient corresponding to the Pareto distribution.
Show that the Gini coefficient converges to 1 as tail index α ↓ 1.

9. Compute the Lorenz curve corresponding to the Exponential distribution. Prove that the
Gini coefficient in this case equals 1/2.

10. Prove property (1.6) of the LogNormal distribution.
11. The goal of this exercise is to prove the following geometric interpretation of the stand-

ard Cauchy distribution. On the Cartesian plane, draw a random line passing through the
origin, making an angle Θ with the x-axis as shown in the following figure, where Θ
is uniformly distributed over (−π/2, π/2). Let (1, Y ) denote the point where this ran-
dom line intersects the vertical line x = 1. Prove that Y is a standard Cauchy random
variable.

12. Prove that if U and V are independent, standard Gaussian random variables, then U/V
is a standard Cauchy.
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Hint: The geometric interpretation from Exercise 11 might help. Interpreting (U, V ) as
the Cartesian coordinates of a random point on the Cartesian plane, what is the joint
distribution of the polar coordinates (R,Θ)?

13. The goal of this exercise is to compare the “heaviness” of the tails of the Pareto, Weibull,
and LogNormal distributions. Let X ∼ Pareto(xm, α1), Y ∼ LogNormal(µ, σ2), and
Z ∼ Weibull(α2, β2). Prove that

lim
x→∞

Pr (Z > x)

Pr (Y > x)
= 0, lim

x→∞

Pr (Y > x)

Pr (X > x)
= 0.

Note: This exercise shows that the Pareto has a heavier tail than the LogNormal, which
has a heavier tail than the Weibull.
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