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1. Introduction. Let 2g denote a compact orientable surface of genus g 3= 2. We
consider finite groups G acting effectively on 2g and preserving the orientation—for short,
G acts on 2g or G is a symmetry group of 2g. Each surface Sg admits only finitely many
symmetry groups G and the orders of these groups are bounded by Wiman's bound of
84(g — 1). This bound is attained for infinitely many values of g [12], see also [9], and all
values of g =£ 10" for which it is attained are known [4].

More detailed information on symmetry groups has been obtained by investigating
this general set-up from different view points. First of all, the problem of determining all
possible groups G acting on 2g for fixed g has been completed for g =£5 (e.g. [17], [13],
[10], [11]). Secondly the problem of determining the minimum genus g on which a given
group G acts has been solved for various groups G ranging from cyclic to alternating (e.g.
[7], [14], [6], [3]). Also, if for a class of groups <# one defines

M(<g, g) = max{o(G) | G acts o n 2 g , G e « }

upper and/or lower bounds for M(Ha,g) as linear functions of g have been obtained for
various classes of groups ranging from all groups and cyclic groups through to solvable
groups (e.g. [1], [15], [7], [8], [18], [2]).

Recently Kulkarni [8] has shown that for any given group G there is an integer no(G)
such that if G acts on 2g then g = 1 (mod no(G)) and for all but a finite number of g such
that g ss 1 (mod no(G)), G acts on 2g. There is thus a minimum (reduced) stable g0 (see
§2) such that for all g 3= g0 of the given form G acts on 2g and a gap sequence where G
does not act, between the minimum (reduced) genus and the minimum (reduced) stable
genus. Those groups G for which no(G) = 1 and so G acts on almost all 2g have been
characterized [8] and include cyclic groups. For related problems on groups acting on
non-closed surfaces see [16].

In this paper, given a prime power pe, we determine necessary and sufficient
conditions on g, in terms of p-adic expansion, for 2g to admit a cyclic group of order pe.
From this one can deduce the minimum stable genus and in the case of prime order, a
closed formula for the gap sequence, thereby determining all compact surfaces on which a
given cyclic group of prime order acts. In the reverse direction, for a fixed genus g, we
determine all primes p such that a cyclic group of order p acts on 2g. As will be seen the
methods employed can be readily extended to other classes of p-groups and these
problems will be taken up elsewhere. The computation of the gap sequence for small
order cyclic groups and certain gaps for cyclic groups of prime order has recently played a
role in determining "unstable" torsion in the cohomology of the mapping class group of
genus g. [5]

2. Basic Definitions. Let Gp denote a finite p-group of exponent p€p and order p"p.
The cyclic p-deficiency of Gp is defined to be np — ep and let

, — ep if p is odd or p = 2 and n2 = e2

i~e2-\ if p = 2 and n2>e2.

Glasgow Math. J. 33 (1991) 213-221.

https://doi.org/10.1017/S0017089500008247 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500008247


214 RAVI S. KULKARNI AND COLIN MACLACHLAN

In addition G2 is said to be type / if either it is cyclic or the elements of order <2e2 do not
form a subgroup of index 2, otherwise G2 is of type II.

Then for any finite group G, define

where the product is over all primes p dividing o(G), fp being defined as above for any
Sylow p-subgroup Gp of G, and t] = 1 or 2 according as G2 is of type I or II.

THEOREM [8]. / / G acts on Hg, g s= 2, then g e n0N and conversely, for all but a finite
number of integers

g e 1 + n0N, G acts on Zg.

If G acts on 2g with g = 1 + nogo, then we call g0 a reduced genus of G. Also
Ho = [io(G) will denote the minimum reduced genus of G and o0 = o0(G) the minimum
stable reduced genus of G i.e. minimal with the property that all g o ^ a o are reduced
genera of G. In addition, the integers in the interval [^0, a0] which do not occur as
reduced genera of G will constitute the reduced gap-sequence of G.

Those groups G for which n0 = 1 are classified in [8] and these include all cyclic
groups. Note that in that case, the actual values g such that G acts on 2g are related to the
reduced genera g0 by g = 1 + g0.

By expressing an integer g0 in its "p-adic form" we obtain necessary and sufficient
conditions on this form so that g0 should be a reduced genus for a cyclic p-group. As a
consequence we obtain formulae for the invariant o0 for these cyclic p -groups (the
invariant fi0 is already known [7]) and for the gap-sequence for cyclic groups of prime
order.

Now let G = Gp be a finite p -group with e = ep and n = np. If G acts on 2g then
Ilg/G — Xf, for some /i2*0 and jr:2g—^Z,, is a branched covering with branch indices
dividing pe. If there are *, branch points on Xh with branching index p', i = 1,2,. . . , e,
then the Riemann-Hurwitz relation gives

t \ (1)
Since g s= 2, the right hand side of (1) must be positive. Conversely, given integers h ss 0,
Xi 3* 0 such that the right hand side of (1) is positive, one can construct a (Fuchsian) group
of signature

(h;p^\p2^\...,pe^)

i.e. having a presentation of the form

Generators: au bu. . . , ah, bh, tu, tl2,. . . , tUl, t2U . . . , teXe

Relations; $ = 1 (i = 1,2,. . . , e; j = 1,2,. . . , *,)

k ij

Furthermore, if there exists a homomorphism of T onto G with torsion-free kernel
such that (1) holds, then G acts on 2g. In that case, we say that the data {h,xt}
corresponds to an action.
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3. Fundamental equation for p odd. Let p be an odd prime. From equation (1), it
becomes necessary to examine in detail, for all p-groups, the solutions of the diophantine
equation

N = peh + ixMpe-pe~i)- (2)e
1 = 1

Let Qe = Qe(p) denote the set of solutions N of (2)e for which h 5=0 and *, 5=0 all i. We
will describe Qe in terms of a p-adic expansion of N. Given p and e, let

2N = ao + alp + . . . +aep
e

where 0 =£ a,-<p for / = 0 , 1 , . . . , e - 1 and ae 5= 0. There is a unique expansion of this
form. The results are expressed in terms of the sum of the coefficients of this expansion
and so for brevity write

THEOREM 3.1. Qe = {N e N | Se(2N) 5= (e - i)(p - 1) where a, is the first non-zero
coefficient}.

Proof. If Q'e denotes the set described in the statement, we will prove by induction
on e that Qe = Q'e.

Let N e Q, so that 2N = 2ph + xx{p - 1). Furthermore let *, = c0 + cyp with 0 =£ c0 <
p. Then

+ cy{p-\) + c0-\]p + {p-c0) if co>0
2N =

[[2h ( l ) ] if c o =

co;vn i - i + (ci + 1)(P~1) if

h + cAp — 1) if

Now suppose IVeQ]. Hence

f p - 1 if
S ' ( 2 " ) L lo if »o=o.

In the second case, clearly N e Q,. In the first case, set

Thus AfeQ, with h = k and x{=p — a0.
Now assume that Qe_, = Q'e-\, and let

with a, the first non-zero coefficient. Define N' e N by

where w = min{a0,1}-
Let N eQe and so from equation (2)e we deduce that xe = (p — a0) + px'e with x'e s= 0.
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Then we obtain that N' e Qe_, = Q;_,. NOW let

2N' = b0 + bxp + . . . + be^lP
e~l

so that Se_](2N') 5= (e - 1 - i){p - 1) where bt is the first non-zero coefficient. But then

2N = a0 + (p - \)p + (p - l)p2 + . . . + (p - l)p' + (b, - l)p'+1

+ 6/+1p'+2 + . . . + be_2p
e~' + (6e_, + (p - ao))p

e

Se(2N) = ao + i(p - 1) + S,_,(2A") -1+p-ao

Se(2N) s* (i + l)(p - 1) + (e - 1 - i)(p - 1) = e(p - 1).

Now suppose that NeQ'eso that Se(2N) & e(p - 1).

IN' = (a, + 1) + a2p + . . . + ae_lP
e~2 + (a0 + ae -p)pe~x.

Since each of the coefficients a,, a2, • . . , ae-i =Sp — 1 it follows that a0 + ae 5*p — 1 with
equality only in the case a, = . . . =ae_x =p — 1. In that exceptional case, 2W = (ao +
ac + 1 -p)pe~l so AT' e Q^_,. Let A: be the first integer so that k & 1 and a* =£p - 1. Then
we obtain the p-adic expansion

5e_,(2A") = t a, + 1 + a0-p = Se(2N) + l-p-(k- l)(p - 1)

Thus N' e Q;_, = Qe-{ and it then follows easily that N e Qe.

DEFINITION. Let ae(p) denote the smallest stable solution of (2)c i.e. oe(p) is minimal
with the property that all A7 5= oe(p) lie in Qe(p).

COROLLARY 3.2. oe(p) = {-[e(p - \)pe - 3(pe - 1)].

Proof. From the above description of Qe it is clear that the largest integer which fails
to lie in Qe occurs when Se(2N) = e(p - 1) - 2 and ao^O. Taking a()=l and a,, =
e(p — 1) - 3 gives the result.

4. The Fundamental equation for p = 2. The presence of the factors 2 in equation
(1) leads to a slightly different diophantine equation in the case of p = 2.

Â  = 2eA + | )x , (2 e - 1 -2 e - 1 - 1 ) (3)c

Let Qe(2) denote the set of solutions N of (3)e for which h, x, ̂  0. This is only defined for
e s* 2 and for e = 2, Q2 = N. Thus assume throughout that e s= 3. For fixed e, consider the
2-adic expansion

... +ae_,2e~'

where a,=0,1 for i = 0 ,1 , . . . ,e - 2 and ae_{s?0. Let Se(N) denote the sum of the
coefficients in this expansion. In a manner analogous to Theorem 3.1 we obtain

THEOREM 4.1. Qe = {A'6^J| Se(N) 3s e — 1 — i where a, is the first non-zero
coefficient}.
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COROLLARY 4.2. The least stable solution of (3)c, oe(2) is given by

5. Cyclic p-groups, p odd. In this section, we obtain necessary and sufficient
conditions on an integer g0 in terms of its p-adic expansion in order that it should be a
reduced genus for a Zpe action, p an odd prime. From this one readily deduces oQ(Zpe)
the minimum stable reduced genus and a formula for the gap sequence for Zp actions.

One readily sees that every g0 5= 1 is a reduced genus for Z3. Thus throughout this
section we assume that pe > 3.

Let integers /i3=0, x,3=0, i = 1,2,. . . ,e be given. For this data {h,Xj} define
M = min{n:Xj = 0 for each j>n}. By the criterion given at the end of §2, we deduce in
this case that the data {/*,*,} corresponds to an action of Zpe with reduced genus
go = g — 1 3= 1 if and only if g satisfies equation (1) and the data satisfies at least one of the
conditions in the table below

h M xM

1
2
3

3=2
3=1

3=0

0
3=1

e
s2
s2 and r.h.s. of (1) positive.

From equation (1) it follows that go = pe~Mg0 and

M

2g'o = 2pM(h - 1) + X Xi(p
M -pM->).

Condition 1 is equivalent to go3= 1.
Condition 2 is equivalent to g0 - (pM - 1) e QM

Condition 3 is equivalent to g0 + 1 e Qe\{0}. Note that g0 + 1 - pe e Qe implies that
go + 1 e Qe. Thus

THEOREM 5.1. Let g0 3= 1. Then g0 « a reduced genus for Zpe if and only if
(i) go+l€Qe,

or (ii) for some 1^ M <e, go= pe~Mg0 and g'0+ 1- pM eQM,
or (iii) go = pego-

THEOREM 5.2. Let g o ^ l - Let 2go = ao + axp +. ..+aep
e where 0=£a ,<p for i =

0 , 1 , . . . , e — 1 and ae 3= 0. Let i be the first integer so that a, ¥= 0 and let j be the first
integer 3= i such that ay =£p - 1 or j = e. Then g0 is a reduced genus for Zpe if and only if

A) i = 0 and Se(2g0) & (e +j)(p - 1) - 2
B) 0 < i =}'^ e and Se(2g0) &(e- i)(p - 1)
C) 1< i <j « e and 5e(2g0) s* (e - i + l)(p - 1)
D) 1 = i <j « e and Se(2gQ) 3= e(p - 1) - 2.

Proof. A) i = 0 so that g0 ^ 0 (modp). Now

2(go+ 1) ='(«„ +2) + aiP + . . . + aep
e.
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If ao^p — 2,p — l,so that j = 0, the inequality follows immediately from 5.1 and 3.1. If
a0 = p — 2, so that / = 0, let m s= 1 be the first integer so that am ¥=p — 1 or m = e. Thus

2(g0 + 1) = (am + l)pm + am+lp
m+l + ...+ aep\

It thus follows from 3.1 that

If a0 = p — 1 so that / > 0, from 3.1 it follows that

Se(2g0)^(e+j)(p-l)-2.

B) 0< / = / =s e. So we have

2g0 = "iP' + • • • + aep
e

with a^p — l. Note if i = e all such g0 (3=1) are reduced genera and the inequality
agrees.

For all M such that e - M =£ i, g0 = 0 (modpe~M). Thus g0 is a reduced genus if and
only if either (i) gQ + 1 e Qe or (ii) for some such M, go/p

e~M + 1 -pM e QM i.e. if and
only if one of the following four conditions holds:

(or) Se(2g0)^e(p-l)-2
(/3) e - M < i and Se(2g0) 5= M(p - 1)
(y) e - M = i, a, *p - 2 and Se{2g0) ^ M(p - 1)
(8) e — M = i, at = p — 2 and

5e(2g0) ^ (M - m)(p - 1) - 1 + (p - 2) + (m - \){p - 1) + 2 = M(p - 1)

where m is the first integer > i such that am¥=p — 1 or m=e. (The conditions and
inequalities in cases /3), y), <5) all imply that ae^2). Thus g0 is a reduced genus if and
only if either Se(2g0)^e(p - 1) - 2 or 5e(2g0)3

s (c -i)(p - 1). Since is=l, the first
inequality implies the second and the result follows.

C) and D) follow by a similar analysis.

COROLLARY 5.3. o0(Zpe) = ae{p) - 1 = |[(c(p - 1) - 3)pe + 1].

Proof. By Theorem 5.1, o0(Zpe)« <xe(p) - 1. Now let g0 = oe(p) - 2 so that

2go = (p-l) + (p-l)p + ...+(p- l)p<-' + [e(p - 1) -

so that, in the notation of Theorem 5.2, i = 0 and / = e. But the inequality given under A)
then fails.

Now consider the particular case of Zp. For p = 3, Z3 acts on all surfaces of genus
g ^ 2 . Otherwise from Theorem 5.2 we can read off the reduced minimum genus
Mo = 2(P~3), (but this is already known for all cyclic groups [7]) and the reduced
minimum stable genus CT0 = °\(p) ~ 1 = i[p(p - 4) + 1].

COROLLARY 5.4. The gap sequence for Zp is
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Proof. If 2go = ao + axp, then C) and D) of Theorem 5.2 do not apply in this case
and the other cases reduce to (i) ao = 0 all a, (ii) ao=£0, ao = p — l, ao + a, 3=2(p-2)
(iii) flo^Oflo^p - lao + a,3=p - 3 .

Let go = h{p ~ l) + bo + bip where 0 «&„</? and 6,3=0.
A) b0 = (p + l)/2. All such g0 are reduced genera.
B) bo = 0. Thenft,3=(p-3)/2.
C) (i) 1 =£ b0 =£ (p - l)/2. Then 2g0 = (260 - 1) + (2ft, + l)p so that

bo + b^(p-3)/2
(ii) (p + 3)/2=s ft0 *£/? - 1. Then 2g() = (2b0-l-p) + (2b{ + 2)p so that

6. Cyclic 2-groups. The results and methods are similar to those in the preceding
section and so only an outline is given.

Using the same notation as in §5, the data {h, JC,-} corresponds to an action of Z2e if
and only if at least one of the conditions set out in the table below holds.

h M xM

1
2
3

3=2

2=0

0
3=1

e
Even
Even and r.h.s. of (1) positive.

THEOREM 6.1. All g()^\ are reduced genera for Z2 and Z4. Let g0 3= 1 and e 3= 3. Then
go is a reduced genus for Z2e if and only if

(i) go+leQe

or (ii) for some 2^M<e,go = 2e~Mg{) and g'o + l - 2 M e Q M

or (iii) gn = 2e~xg{).

THEOREM 6.2. Let g() 3= 1 and e 3= 3. Let

where a, e {0,1} for i = 0 ,1 , . . . , e - 2 and «,,_, 3= 0. Let i be the first integer so that a, ¥= 0
and let j be the first integer 5= i such that a; = 0 or j = e — 1. Then ga.is a reduced genus for
Z2e if and only if

A) i = 0andSe(go)&e-2
B) 1 <j « / « e - 1 and 5e(g,,) 3* e - i
C) 1 = i <j^e-land Se(g0) 3= e - 2.

COROLLARY 6.3. o()(ZH) = 1 and for e 3= 4

ao(Z2e) = 5+ (e-4)2*- ' .

7. Primes dividing the order of a symmetry group. In the preceding sections,
starting with a cyclic group of order pe we have determined conditions on g such that the
group acts on Hg. In this section, we consider the opposite problem of: given g, determine
the primes which divide o(G) where G is a symmetry group of 2g. Note that the earlier
results were in terms of the reduced genus g,,, while here the results are in terms of the
actual genus g (=g0 + 1).
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DEFINITION. Let ng = {primes p : Zp acts on Sg}.

The cyclic groups of order 2 and 3 act on surfaces of all genera, so that 2, 3 e ng for
all g. The minimum genus of a surface on which a cyclic group of prime order p acts is
{{p — 1) (e.g. [7]) so that p =£ 2g + 1. In addition, for every genus g, there are surfaces of
genus g which admit cyclic symmetry groups of orders 2(2g + 1) [7], 2(g + 1) [1][15] and
Ag. [This last arising from a triangle group of signature (0; 2, Ag, Ag)]. Similarly one easily
obtains that, if g = 0 (mod 2) (g = 0 (mod 3)) then 2g admits cyclic groups of order g + 2
(2g + 3 resp), the corresponding group having signature (0; |(g + 2), |(g + 2), g + 2, g + 2)
((0; i(2g + 3), 2g + 3, 2g + 3) resp). From theorem 5.2B) we see that if p \ g - 1 then
p e JT,,. From 5.3, p e 7cg whenever g 3= i[p{p — 4) + 3] so that ng includes all primes
p =£ V2g + 1 + 2. Let Sg be the set of primes p that satisfy at least one of the following

(1)

(2)

p | g + 2(2g + 3) if g - 0 (mod 2) (g = 0 (mod 3)). (3)

THEOREM 7.1. WWi notation as above, Jig = SgUTg where

f g
Tg = jpnmes p \p <-and 2g-2 = a0

with 0<ao<p-l andao + a^p -3\.
J

Proo/. If a0 = p - 1, and p e ^ g , by 5.2A), ax s=p - 3. This implies that p =£ V2g + 1
and so p e Sg.

If ps=g/2 , then 2 g - 2 = £ 4 p - 2 so that a,=?3. If ax = 3, then a o 5 = p - 6 and
2g — 2 = 4p — 6, 4p — 4, 4p — 2. But that implies that p eSg, these cases being covered in
(2) and (3). Otherwise if a, = 2, then 2 g - 2 = 3 p - 5 , 3p-3 again both cases giving
p e Sg. Similarly we reject al = l,0.
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