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Abstract
This paper extends the standard double-exponential jump-diffusion (DEJD) model to allow for successive jumps
to bring about different effects on the asset price process. The double-exponentially distributed jump sizes are
no longer assumed to have the same parameters; instead, we assume that these parameters may take a series of
different values to reflect growing or diminishing effects from these jumps. The mathematical analysis of the
stock price requires an introduction of a number of distributions that are extended from the hypoexponential (HE)
distribution. Under such a generalized setting, the European option price is derived in closed-form which ensures
its computational convenience. Through our numerical examples, we examine the effects on the return distributions
from the growing and diminishing severity of the upcoming jumps expected in the near future, and investigate how
the option prices and the shapes of the implied volatility smiles are influenced by the varying severity of jumps.
These results demonstrate the benefits of the modeling flexibility provided by our extension.

1. Introduction

The study of jump-diffusion option pricing models can be dated back to Nobel laureate Robert C.
Merton’s seminal paper in 1976. There have been a few extensions in the recent decades on the
distributions of jump sizes (see [1,3,7,8,10] for some specific examples and see [5,9] for a review on the
category of jump-diffusion models). Among the competing models, Kou’s extension (see the original
paper of [8]) is considered to be the most representative version and has now become a new standard in
the category. In such a model, the jump size is assumed to follow a double-exponential (DE) distribution
which captures the tail-fatness of jump size distribution. For the convenience of our presentation, this
jump-diffusion model is termed DEJD which stands for double-exponential jump-diffusion. Under the
independent and identically distributed (i.i.d.) assumption on the sizes of a series of jumps, the European
option price under the DEJD model can be derived in closed-form.

In this paper, we intend to relax the i.i.d. assumption in the DEJD model in order to capture the
varying severity of upcoming jumps. Each jump size is still assumed to follow a DE distribution but
the parameters of the distribution may change in a series of jumps. The proposed model is termed
nonhomogeneous double-exponential jump-diffusion or NDEJD to reflect its nonhomogeneous nature
in its parameters. While our extended model allows for each jump size to take different parameters,
we focus our discussion on two particular scenarios, where (a) these jumps have growing effects and
(b) they have diminishing effects. The severity is modeled by the tail-fatness of the DE distributions,
meaning that the tails are getting fatter in the former scenario and getting lighter in the latter scenario.
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Figure 1. The growing and diminishing effects of jumps indicated by the log return (percentage change)
of the VIX series over the COVID-19 pandemic period: (a) the log return of VIX and (b) the levels of
VIX and S&P 500 indexes. The dates of the high points A, B, C, D, E, F, and G in the VIX returns
(interpreted as jumps in the underlying S&P 500 index) are February 24 and 27, March 3, 5, 9, 12, and
16 in year 2020.

The financial implications of the two scenarios are that the impacts on stock price from a particular
event can get stronger or fade away when subsequent jumps happen.

The global COVID-19 pandemic in 2020 provides us with a good opportunity to observe the growing
and diminishing effects from jumps. Since the WHO (World Health Organization) declared its outbreak
in March 2020, the high volatilities we witnessed in the stock markets across the globe have been
unprecedented, with all major indexes fluctuating to an extreme extent that was never seen before. Plot
(a) of Figure 1 shows the time series of daily log returns of VIX index from February to March 2020. It
is observed that, since the crisis began, the VIX return started to surge to the first high point A (February
24), reflecting a highly uncertain prospect for the economic situation. But the effects seemed to be
decreasing in the following week till point C (March 3), indicating that the market started to stabilize.
In this period of time, if we treat the marked high points when the jumps happened (a surge in VIX
usually indicates a big drop in the underlying S&P 500 index), namely, the three high points A, B, and
C, we will clearly observe a diminishing effect which showed itself in the series of jumps.

We next turn our focus to the period between points D and G (from March 5 to March 16), during
which we see that there were four high points D, E, F, and G, which we identify as jumps. The increasing
trend of these high VIX returns indicates that the effects of the jumps in the underlying S&P 500 index
are getting stronger, reflecting an even more uncertain market situation ahead. Plot (b) of Figure 1 shows
how the levels of VIX and the S&P 500 indexes were moving over the whole range of time. It is clear that
in the first shaded period, the S&P 500 index plummeted, with a short downward trend which quickly
ceased to continue. As a contrast, in the second shaded period, the S&P 500 index continued to drop
in a stronger way since the first plunge on March 5. The observations above provide us with empirical
support for our extended model, which incorporates growing or diminishing effects in a series of jumps.

In this paper, we provide a mathematical analysis for the proposed NDEJD model. As we relax the
i.i.d. assumption on which most of the existing models are built, this also poses a challenge in our
mathematical treatment. Using the fact that exponential distributions with different parameters sum to
a hypoexponential (HE) distribution, we define a number of distributions that are closely related to HE
distribution to facilitate our analysis. With the aid from these newly developed distributions, we are able
to characterize the risk-neutral distribution of the stock return, based on which the European option
pricing formula is derived in closed-form.

The proposed NDEJD model adds flexibility to the DEJD model and widens the coverage of market
scenarios without losing mathematical tractability. Using the analytical results, we provide numerical
examples that enable us to study the effects from nonhomogeneous jump sizes. We focus on the above-
mentioned two scenarios where the successive jump sizes are getting fatter- or thinner-tailed reflecting
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the growing or diminishing effects in jumps. A comprehensive comparison is provided across these
cases of interest with the DEJD model taken as a benchmark. What we will examine include: the risk-
neutral distribution of stock returns, the option prices, and the bias relative to the benchmark case in
them, as well as the richness in the shapes of the implied volatility smiles. Through the numerical
examples provided in our analysis, we demonstrate the benefits of our extended NDEJD model relative
to the original DEJD model.

The rest of this paper is structured as follows. Section 2 introduces the proposed extension of the
DEJD model. Section 3 provides an analysis of the jump accumulation process under the proposed
model. Section 4 further provides an analysis of stock return and European option prices. Section 5
provides numerical examples to demonstrate the influences from nonhomogeneous jump sizes. Finally,
this study is concluded in Section 6.

2. The proposed model

Consider a standard jump-diffusion model for the stock price 𝑆𝑡 :

𝑑𝑆𝑡
𝑆𝑡

= 𝜇 𝑑𝑡 + 𝜎 𝑑𝑊𝑡 + 𝑑𝐽𝑡 , (2.1)

where 𝜇 is the drift coefficient, 𝑊𝑡 is a Wiener (diffusion) process, and 𝐽𝑡 is a jump process. When a
jump happens at 𝜏𝑗 , 𝑗 = 1, 2, . . ., the stock price will move from 𝑆 𝑗 (before jump) to 𝑆 𝑗𝑌 𝑗 (after jump).
The instantaneous stock return caused by jump is ln(𝑆 𝑗𝑌 𝑗/𝑆 𝑗 ) = ln𝑌 𝑗 , which is referred to as jump size
in this paper. In the mainstream models such as [1,8,11], the series of jump sizes {ln𝑌 𝑗 , 𝑗 = 1, 2, . . .}
are i.i.d., and the models differ in their assumptions on the jump size distributions. In Merton’s classical
model [11], normal distribution is assumed. In Amin’s extended model [1], bivariate distribution is
assumed. Kou’s DEJD model [8] takes one step further to assume DE distribution. These models are
mathematically tractable due to the i.i.d. property and their distributional assumptions, under which the
European option prices can be derived analytically.

The purpose of this paper is to relax the i.i.d. assumption to incorporate nonhomogeneity in a series
of jump sizes. We consider an extension from the DEJD model in [8] because the DE assumption
has gained popularity in recent decades as it successfully captures the tail-fatness of jump sizes. It
should be noted that, in Merton’s classical model, where normally distributed jump sizes are assumed,
nonhomogeneity would not cause a problem for the mathematical analysis because normal distributions
with different parameters still sum to a normal distribution. However, there will be some technical issues
in the extension of DEJD model because exponential distributions with different parameters would no
longer sum to an Erlang distribution.

In the DEJD model, the jump size is assumed to follow a double exponential distribution which is
denoted by ln𝑌 𝑗 ∼ DE(𝑝, 𝜂, 𝜂) and defined as follows:

ln𝑌 𝑗
𝑑
=

{
𝜀, with probability 𝑝,
−𝜀, with probability 1 − 𝑝,

(2.2)

where 𝜀 ∼ Exp(𝜂) and 𝜀 ∼ Exp(𝜂) are exponential random variables with respective means 1/𝜂 and
1/𝜂. As depicted in Figure 2, a DE distribution is a mixture of a positive and a negative exponential
distributions, which are used to model the effect from either a positive or a negative shock caused by
an unexpected jump event. In our proposed NDEJD (nonhomogeneous DEJD) model, the exponential
parameters 𝜂 and 𝜂 are nonhomogeneous, that is, they are different from jump to jump. Specifically, we
assume

ln𝑌 𝑗
𝑑
=

{
𝜀𝑘 , with probability 𝑝,
−𝜀ℓ , with probability 1 − 𝑝,

(2.3)
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Figure 2. The double-exponential distribution in the DEJD model.

Figure 3. Nonhomogeneity in the exponentially distributed jump sizes.

where 𝜀𝑘 ∼ Exp(𝜂𝑘 ) and 𝜀ℓ ∼ Exp(𝜂ℓ). This means that the 𝑗 th jump is either the 𝑘th positive jump or
the ℓth negative jump. (Here, 𝑗 is the index of all jumps, whereas 𝑘 and ℓ are respectively the indexes
of positive and negative jumps.) As illustrated in Figure 3, {𝜂𝑘 , 𝑘 = 1, 2, . . .} denotes the series of
parameters of positive jump sizes and {𝜂ℓ , ℓ = 1, 2, . . .} denotes the series of parameters of negative
jump sizes.

In such a setting, before the occurrence of the 𝑗 th jump, the foregoing 𝑗 − 1 jumps include 𝑘 − 1
positive jumps and ℓ − 1 negative jumps, where 𝑗 − 1 = (𝑘 − 1) + (ℓ − 1). Below we give an example to
illustrate our model specification. Suppose that 𝑗 − 1 = 9 jumps have already happened and their details
are given as below:

jump + /− : + − − + − − − + −
probability : 𝑝 (1 − 𝑝) (1 − 𝑝) 𝑝 (1 − 𝑝) (1 − 𝑝) (1 − 𝑝) 𝑝 (1 − 𝑝)
jump size : 𝜀1 𝜀1 𝜀2 𝜀2 𝜀3 𝜀4 𝜀5 𝜀3 𝜀6
parameter : 𝜂1 𝜂1 𝜂2 𝜂2 𝜂3 𝜂4 𝜂5 𝜂3 𝜂6

In the foregoing nine jumps, there are three positive and six negative jumps. The forthcoming jump is
the 10th jump, and we have 𝑗 = 10, 𝑘 = 4, ℓ = 7. In this case, our model assumes that ln𝑌10 ∼ Exp(𝜂4)
with probability 𝑝 and ln𝑌10 ∼ Exp(𝜂7) with probability 1 − 𝑝.

For each given 𝑗 (the index of the forthcoming jump), there may be different combinations of positive
and negative jumps that have already happened. Therefore,

ln𝑌 𝑗
𝑑
=

{
𝜀𝑘 , with probability

( 𝑗−1
𝑘−1

)
𝑝𝑘 (1 − 𝑝) 𝑗−𝑘 , 𝑘 = 1, 2, . . . , 𝑗 ,

−𝜀ℓ , with probability
( 𝑗−1
ℓ−1

)
𝑝 𝑗−ℓ (1 − 𝑝)ℓ , ℓ = 1, 2, . . . , 𝑗 .

(2.4)

The difference between (2.3) and (2.4) is that (2.3) is conditional on knowing that 𝑘−1 positive and ℓ−1
negative jumps have already happened but (2.4) is its unconditional version without the information
about the precise values of 𝑘 and ℓ.
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Figure 4. A stopped Poisson (SP) process which generates at most 𝑛∗ jumps.

It should be noted that when nonhomogeneity is assumed for these 𝜂𝑘 and 𝜂ℓ , one can not specify
an infinitely large number of different values for these nonhomogeneous parameters. As will be seen,
if the number of the constituent exponential distributions is too large, in theory, they still sum to a
HE distribution, but in practice, the resultant HE distribution will become unmanageable (its density
function is computationally infeasible). To avoid this difficulty, we assume that the Poisson process may
generate at most 𝑛∗ jumps and will be stopped afterwards. By so doing, we may ease the problem in that
we only need to handle (compute the distribution of) the sum of at most 𝑛∗ exponential random variables.

Under the above assumption, our Poisson process is essentially a stopped Poisson (SP) process with
a maximal number of jumps denoted by 𝑛∗ (see Figure 4 where 𝑛∗ = 5). For such an SP process, the
jump count over a time period of length 𝑡 is then described by

𝑁𝑡 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
𝑛, with probability

𝑒−𝜆𝑡 (𝜆𝑡)𝑛
𝑛!

, 𝑛 = 0, 1, . . . , 𝑛∗ − 1,

𝑛∗, with probability 1 − Γ(𝑛∗, 𝜆𝑡)
(𝑛∗ − 1)! ,

(2.5)

or alternatively expressed in terms of the probability mass function as follows:

𝑓SP (𝑛;𝜆𝑡, 𝑛∗) = 𝑒−𝜆𝑡 (𝜆𝑡)𝑛
𝑛!

1{𝑛<𝑛∗ } +
(
1 − Γ(𝑛∗, 𝜆𝑡)

(𝑛∗ − 1)!

)
1{𝑛=𝑛∗ } . (2.6)

It is obvious that as 𝑡 gets short or as 𝑛∗ gets large, the stopped Poisson process should be close
to a standard Poisson process. The closeness of the two versions depends on the relation between the
concerned 𝑡, the selected 𝑛∗, as well as the Poisson intensity 𝜆. As we are interested in options with not
very long maturities (e.g., 1, 3, and 6 months, during which jumps are not expected to happen too many
times), such an assumption appears to be reasonable and should be acceptable. A proper selection of 𝑛∗
considered in this paper is 𝑛∗ = 5 or 10.

3. Analysis of the jump accumulation under NDEJD

The integral form of a jump-diffusion model in (2.1) is given by

𝑆𝑡 = 𝑆0𝑒
(𝜇−𝜎2/2)𝑡+𝜎𝑊𝑡+𝑋𝑡 , (3.1)

where 𝑋𝑡 is a compound (stopped) Poisson process which describes the accumulated contributions from
the series of jumps that happen in [0, 𝑡]:

𝑋𝑡 =
𝑁𝑡∑
𝑗=1

ln𝑌 𝑗 . (3.2)
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To analyze the jump accumulation process 𝑋𝑡 , we let 𝑋 (𝑛)
𝑡 = (𝑋𝑡 | 𝑁𝑡 = 𝑛) denote the compound Poisson

process 𝑋𝑡 conditional on 𝑁𝑡 = 𝑛. Moreover, we define 𝑀𝑡 as the number of positive jumps out of a
total of 𝑁𝑡 jumps, and let 𝑋 (𝑛,𝑚)

𝑡 = (𝑋𝑡 | 𝑁𝑡 = 𝑛, 𝑀𝑡 = 𝑚) denote 𝑋 (𝑛)
𝑡 conditional further on 𝑀𝑡 = 𝑚.

Under the assumption of the NDEJD model, we have

𝑋 (𝑛,𝑚)
𝑡 =

𝑛∑
𝑗=1

ln𝑌 𝑗 =
𝑚∑
𝑘=1

𝜀𝑘 −
𝑛−𝑚∑
ℓ=1

𝜀ℓ . (3.3)

In the original DEJD model, since the series of positive and negative jump sizes (𝜀𝑘 and 𝜀ℓ) are
homogeneous, it is clear that Erlang distribution (sum of i.i.d. exponential random variables) should
play a central role in its analysis. Here, in our NDEJD model, because the exponential random variables
in (3.3) are nonhomogeneous, in order to deal with their sums as well as the difference of these sums,
we must resort to other distributions.

3.1. The HE and DHE distributions

Given a set of 𝑛 exponential random variables 𝜀𝑖 ∼ Exp(𝜂𝑖), 𝑖 = 1, . . . , 𝑛, each with a density function
𝑓𝜀𝑖 (𝑦) = 𝜂𝑖𝑒

−𝜂𝑖 𝑦 , 𝑦 ≥ 0. Suppose that 𝜂𝑖 ≠ 𝜂 𝑗 for all 𝑖, 𝑗 = 1, . . . , 𝑛, 𝑖 ≠ 𝑗 . The distribution followed
by a sum of these nonhomogeneous exponential random variables is called a HE distribution (see, e.g.
[12]), which is denoted as below:

𝐻(𝑛) =
𝑛∑
𝑖=1

𝜀𝑖 ∼ HE(𝜼 (𝑛) ), where 𝜼 (𝑛) = [𝜂1, 𝜂2, . . . , 𝜂𝑛] ∈ R𝑛.

For the above nonnegative HE random variable 𝐻(𝑛) , its probability density function (pdf), moment
generating function (mgf), and moments are given analytically as follows.

Lemma 1. For a HE random variable 𝐻(𝑛) ∼ HE(𝜼 (𝑛) ), its pdf is given by

𝑓𝐻(𝑛) (𝑦) =
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )𝜂𝑖𝑒−𝜂𝑖 𝑦1{𝑦≥0}, (3.4)

where Ω(𝑖; 𝜼 (𝑛) ) =
∏𝑛

𝑗=1, 𝑗≠𝑖 𝜂 𝑗/(𝜂 𝑗 − 𝜂𝑖), and its mgf is given by

E[𝑒𝛼𝐻(𝑛) ] =
𝑛∏
𝑖=1

𝜂𝑖
𝜂𝑖 − 𝛼

. (3.5)

The 𝑘th moment of 𝐻(𝑛) , 𝑘 = 1, 2, . . ., can be obtained from the following formula

E[𝐻𝑘
(𝑛) ] = (−1)𝑘 𝑘! 𝝅D−𝑘1, (3.6)

where

𝝅 = [1, 0, . . . , 0]︸���������︷︷���������︸
1×𝑛

, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝜂1 𝜂1 · · · 0 0
0 −𝜂2 · · · 0 0

· · · · · · . . . · · · · · ·
0 0 · · · −𝜂𝑛−1 𝜂𝑛−1
0 0 · · · 0 −𝜂𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸�������������������������������︷︷�������������������������������︸
𝑛×𝑛

, 1 =

⎡⎢⎢⎢⎢⎢⎣
1
...
1

⎤⎥⎥⎥⎥⎥⎦︸︷︷︸
𝑛×1

.
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Proof. The pdf in (3.4) is derived in [12] pp. 309–311 and the mgf in (3.5) is obtained directly from
those of the constituent exponential random variables. See Appendix A for the derivation of the moment
formula in (3.6). �

It is clear from (3.3) that for the analysis of 𝑋𝑡 , we need to work with the difference of two nonnegative
random variables. For the convenience of our presentation, below we give a fundamental formula that
will be used repeatedly in our subsequent derivations.

Lemma 2. Let 𝑋1 and 𝑋2 be two continuous nonnegative random variables with density functions 𝑓1(𝑥)
and 𝑓2(𝑥). The density function of 𝑋1 − 𝑋2 is given by

𝑔(𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∫ ∞

0
𝑓1(𝑥 + 𝑦) 𝑓2(𝑥) 𝑑𝑥, 𝑦 ≥ 0,∫ ∞

0
𝑓1(𝑥) 𝑓2 (𝑥 − 𝑦) 𝑑𝑥, 𝑦 < 0.

(3.7)

Proof. Suppose that 𝑋1 and 𝑋2 are continuous real-valued random variables, the density function of
𝑋1 − 𝑋2 takes the following (convolution) form:

𝑔(𝑦) =
∫ ∞

−∞
𝑓1(𝑥) 𝑓2 (𝑥 − 𝑦) 𝑑𝑥.

It simplifies to (3.7) by noting that the arguments of both density functions take nonnegative values as
𝑋1 and 𝑋2 are nonnegative in our case. �

Now, we introduce a new distribution which is followed by the difference of two HE random
variables. Let 𝐻(𝑚) ∼ HE(�̃� (𝑚) ) where �̃� (𝑚) = [𝜂1, 𝜂2, . . . , 𝜂𝑚] ∈ R𝑚 be another HE random variable.
The distribution of the difference of 𝐻(𝑛) and 𝐻(𝑚) is called a differenced hypoexponential (DHE)
distribution, which is denoted as below:

𝐻(𝑛) − 𝐻(𝑚) ∼ DHE(𝜼 (𝑛) , �̃� (𝑚) ).

The following result shows that for this DHE distribution, the pdf, mgf, and moments can be derived in
closed-form.

Lemma 3. The pdf of the DHE random variable 𝐻(𝑛) − 𝐻(𝑚) is given by

𝑓𝐻(𝑛) −𝐻(𝑚) (𝑦) =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

Ω(𝑖; 𝜼 (𝑛) )Ω( 𝑗 ; �̃� (𝑚) )
𝜂𝑖𝜂 𝑗

𝜂𝑖 + 𝜂 𝑗
(𝑒−𝜂𝑖 𝑦1{𝑦≥0} + 𝑒 �̃� 𝑗 𝑦1{𝑦<0}). (3.8)

Its mgf is given by

E[𝑒𝛼(𝐻(𝑛) −𝐻(𝑚) ) ] =
(

𝑛∏
𝑖=1

𝜂𝑖
𝜂𝑖 − 𝛼

) (
𝑚∏
𝑗=1

𝜂 𝑗 − 𝛼

𝜂 𝑗

)
. (3.9)

The 𝑘th moment of the DHE random variable, 𝑘 = 1, 2, . . ., can be expressed in terms of the moments
of the constituent HE random variables as follows:

E[(𝐻(𝑛) − 𝐻(𝑚) )𝑘 ] =
𝑘∑
𝑗=0

(
𝑘

𝑗

)
(−1) 𝑗 E[𝐻𝑘− 𝑗

(𝑛) ] E[𝐻 𝑗
(𝑚) ] . (3.10)
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Proof. The pdf in (3.8) is obtained by (3.4) and (3.7) as follows. For 𝑦 ≥ 0,

𝑓𝐻(𝑛) −𝐻(𝑚) (𝑦) =
∫ ∞

0
𝑓𝐻(𝑛) (𝑥 + 𝑦; 𝜼 (𝑛) ) 𝑓𝐻(𝑚) (𝑥; �̃� (𝑚) ) 𝑑𝑥

=
𝑛∑
𝑖=1

𝑚∑
𝑗=1

Ω(𝑖; 𝜼 (𝑛) )Ω( 𝑗 ; �̃� (𝑚) )
𝜂𝑖𝜂 𝑗

𝜂𝑖 + 𝜂 𝑗
𝑒−𝜂𝑖 𝑦 ,

whereas for 𝑦 < 0,

𝑓𝐻(𝑛) −𝐻(𝑚) (𝑦) =
∫ ∞

0
𝑓𝐻(𝑛) (𝑥; 𝜼 (𝑛) ) 𝑓𝐻(𝑚) (𝑥 − 𝑦; �̃� (𝑚) ) 𝑑𝑥

=
𝑛∑
𝑖=1

𝑚∑
𝑗=1

Ω(𝑖; 𝜼 (𝑛) )Ω( 𝑗 ; �̃� (𝑚) )
𝜂𝑖𝜂 𝑗

𝜂𝑖 + 𝜂 𝑗
𝑒 �̃� 𝑗 𝑦 .

The mgf in (3.9) is obtained from the mgf of the two constituent HE random variables. The moment
formula in (3.10) is obtained from the binomial theorem. �

3.2. The distribution of the jump accumulation

Now that the HE and DHE distributions are well defined, the (conditional) jump accumulation process
in (3.3) can be written as 𝑋 (𝑛,𝑚)

𝑡 = 𝐻(𝑚) − 𝐻(𝑛−𝑚) which follows a DHE distribution with density
function given in Lemma 3. The unconditional version of 𝑋 (𝑛,𝑚)

𝑡 can be written as

𝑋𝑡 =
𝑁𝑡∑
𝑗=1

ln𝑌 𝑗 = 𝐻(𝑀𝑡 ) − 𝐻(𝑁𝑡−𝑀𝑡 ) =
𝑀𝑡∑
𝑘=1

𝜀𝑘 −
𝑁𝑡−𝑀𝑡∑
ℓ=1

𝜀ℓ . (3.11)

Its distribution can be obtained by unconditioning on 𝑁𝑡 = 𝑛 and 𝑀𝑡 = 𝑚 as follows.

Proposition 4. The pdf of 𝑋𝑡 is given by

𝑓𝑋𝑡
(𝑦) = 𝑒−𝜆𝑡𝛿(𝑦)

+
𝑛∗∑
𝑛=1

𝑓SP (𝑛;𝜆𝑡)
[
𝑝𝑛

𝑛∑
𝑘=1

Ω(𝑘; 𝜼 (𝑛) )𝜂𝑘𝑒−𝜂𝑘 𝑦1{𝑦≥0} + (1 − 𝑝)𝑛
𝑛∑
ℓ=1

Ω(ℓ; �̃� (𝑛) )𝜂ℓ𝑒𝜂ℓ 𝑦1{𝑦<0}

]

+
𝑛∗∑
𝑛=2

𝑛−1∑
𝑚=1

𝑓SP(𝑛;𝜆𝑡)
[(
𝑛

𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚

×
𝑚∑
𝑘=1

𝑛−𝑚∑
ℓ=1

Ω(𝑘; 𝜼 (𝑚) )Ω(ℓ; �̃� (𝑛−𝑚) )
𝜂𝑘𝜂ℓ
𝜂𝑘 + 𝜂ℓ

(𝑒−𝜂𝑘 𝑦1{𝑦≥0} + 𝑒 �̃�ℓ 𝑦1{𝑦<0})
]
,

where 𝛿(𝑦) is the Dirac delta function. The mgf of 𝑋𝑡 is given by

E[𝑒𝛼𝑋𝑡 ] = E[𝑒𝛼(
∑𝑀𝑡

𝑘=1 𝜀𝑘−
∑𝑁𝑡−𝑀𝑡

ℓ=1 �̃�ℓ ) ]

= 𝑒−𝜆𝑡 +
𝑛∗∑
𝑛=1

𝑓SP(𝑛;𝜆𝑡)
[
𝑝𝑛

𝑛∏
𝑘=1

𝜂𝑘
𝜂𝑘 − 𝛼

+ (1 − 𝑝)𝑛
𝑛∏
ℓ=1

𝜂ℓ − 𝛼

𝜂ℓ

]

+
𝑛∗∑
𝑛=2

𝑛−1∑
𝑚=1

𝑓SP(𝑛;𝜆𝑡)
[(
𝑛

𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚

(
𝑚∏
𝑘=1

𝜂𝑘
𝜂𝑘 − 𝛼

) (
𝑛−𝑚∏
ℓ=1

𝜂ℓ − 𝛼

𝜂ℓ

)]
. (3.12)
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The 𝑘th moments of 𝑋𝑡 , 𝑘 = 1, 2, . . ., are given by

E[𝑋 𝑘
𝑡 ] =

𝑛∗∑
𝑛=0

𝑛∑
𝑚=0

𝑓SP (𝑛;𝜆𝑡)
(
𝑛

𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚

[
𝑘∑
𝑗=0

(
𝑘

𝑗

)
(−1) 𝑗 E[𝐻𝑘− 𝑗

(𝑚) ] E[𝐻 𝑗
(𝑛−𝑚) ]

]
, (3.13)

where we define 𝐻(0) = 𝐻(0) = 0 and 𝐻0
(0) = 𝐻0

(0) = 1.

Proof. For a given 𝑁𝑡 = 𝑛 ≥ 1, the probability of 𝑀𝑡 = 𝑚 is
( 𝑛
𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚. Therefore, 𝑋 (𝑛)

𝑡 can be
expressed as a mixture of HE and DHE random variables as described below:

𝑋 (𝑛)
𝑡 =

⎧⎪⎪⎨⎪⎪⎩
𝑋 (𝑛,𝑛) = 𝐻(𝑛) , with prob 𝑝𝑛 (when 𝑚 = 𝑛),
𝑋 (𝑛,0) = −𝐻(𝑛) , with prob (1 − 𝑝)𝑛 (when 𝑚 = 0),
𝑋 (𝑛,𝑚) = 𝐻(𝑚) − 𝐻(𝑛−𝑚) , with prob

( 𝑛
𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚, 𝑚 = 1, . . . , 𝑛 − 1.

Moreover, its unconditional version 𝑋𝑡 is a mixture of 0 and 𝑋 (𝑛)
𝑡 where 𝑛 ≥ 1:

𝑋𝑡 =

{
0, for 𝑁𝑡 = 0 with probability 𝑒−𝜆𝑡 ,
𝑋 (𝑛)
𝑡 , for 𝑁𝑡 = 𝑛 ≥ 1 with probability 𝑓SP (𝑛;𝜆𝑡).

The claimed results are obtained by unconditioning on 𝑁𝑡 and 𝑀𝑡 . Specifically, the pdf is

𝑓𝑋𝑡
(𝑦) = 𝑒−𝜆𝑡𝛿(𝑦) +

𝑛∗∑
𝑛=1

𝑓SP(𝑛;𝜆𝑡) [𝑝𝑛 𝑓𝐻(𝑛) (𝑦; 𝜼 (𝑛) ) + (1 − 𝑝)𝑛 𝑓𝐻(𝑛) (−𝑦; �̃� (𝑛) )]

+
𝑛∗∑
𝑛=2

𝑛−1∑
𝑚=1

𝑓SP (𝑛;𝜆𝑡)
[(
𝑛

𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚 𝑓𝐻(𝑚) −𝐻(𝑛−𝑚) (𝑦; 𝜼 (𝑚) , �̃� (𝑛−𝑚) )

]
,

which leads to (3.12). The mgf in (3.12) is obtained in a similar way. The 𝑘th moment formula (3.13)
is obtained from its conditional version by using the binomial theorem:

E[(𝑋 (𝑛,𝑚)
𝑡 )𝑘 ] = E[(𝐻(𝑚) − 𝐻(𝑛−𝑚) )𝑘 ] =

𝑘∑
𝑗=0

(
𝑘

𝑗

)
(−1) 𝑗 E[𝐻𝑘− 𝑗

(𝑚) ] E[𝐻 𝑗
(𝑛−𝑚) ] .

�

The density function of 𝑋𝑡 is in fact a mixture of a discrete random variable (i.e., a constant 0
corresponding to 𝑁𝑡 = 0; it is described by the Dirac delta function in (3.12)) and many continuous
(HE, DHE) random variables. A typical density function is depicted in Figure 5 where 𝑥 = 0 is a point
carrying nonzero probability measure.

4. Option pricing under the proposed NDEJD model

In this section, we derive the risk-neutral stock return distribution, which is used to derive the European
option pricing formula. We start with the stock return distribution.

4.1. The risk-neutral stock return distribution

Let 𝑇 denote the maturity time of the option, and the time variable 𝑡 as seen in previous sections is now
replaced by the constant 𝑇 for convenience. Let 𝑅𝑇 denote the stock return over the time period [0, 𝑇].
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Figure 5. The density function of 𝑋𝑡 where the delta function at 𝑥 = 0 corresponds to 𝑁𝑡 = 0.

By (3.1), we have

𝑅𝑇 = ln
(
𝑆𝑇
𝑆0

)
=

(
𝜇 − 𝜎2

2

)
𝑇 + 𝜎𝑊𝑇 + 𝑋𝑇 . (4.1)

It is clear that 𝑅𝑇 can be seen as a normal random variable (diffusion) added to the compound Poisson
random variable (jump accumulation) 𝑋𝑇 . The key to the analysis is the treatment of the sum and
difference between a normal and the HE/DHE distributions.

When it comes to option pricing, we need to consider the risk-neutral measure under which the
martingale condition must hold, that is, E[𝑆𝑇 ] = 𝑆0𝑒

(𝑟−𝑞)𝑇 (where 𝑟 and 𝑞 stand for the risk-free rate
and stock dividend yield). The free variable 𝜇 in (4.1) can be adjusted to make this condition hold, that
is, 𝜇 = 𝑟 − 𝑞 − 𝜒 where

𝜒 =
1
𝑇

ln(E[𝑒𝑋𝑇 ])

=
1
𝑇

ln

[
𝑒−𝜆𝑇 +

𝑛∗∑
𝑛=1

𝑓SP(𝑛;𝜆𝑇)
(
𝑝𝑛

𝑛∏
𝑘=1

𝜂𝑘
𝜂𝑘 − 1

+ (1 − 𝑝)𝑛
𝑛∏
ℓ=1

𝜂ℓ − 1
𝜂ℓ

)

+
𝑛∗∑
𝑛=2

𝑛−1∑
𝑚=1

𝑓SP (𝑛;𝜆𝑇)
(
𝑛

𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚

(
𝑚∏
𝑘=1

𝜂𝑘
𝜂𝑘 − 1

) (
𝑛−𝑚∏
ℓ=1

𝜂ℓ − 1
𝜂ℓ

)]
. (4.2)

Note that 𝜒 defined above may have dependence on𝑇 . In (4.1), let 𝜈𝑇 = (𝜇−𝜎2/2)𝑇 = (𝑟−𝑞−𝜒−𝜎2/2)𝑇 ,
then we have the following simpler expression for stock return under the risk-neutral measure

𝑅𝑇 = 𝜈𝑇 + 𝜎𝑊𝑇 + 𝑋𝑇 . (4.3)

For the convenience of the subsequent analysis, let us introduce the following three new distributions
that are extended from HE and DHE distributions (where 𝑍 ∼ N(0, 𝜎2)):
• NHE+ distribution, defined as the sum of normal and HE distributions, that is,

𝑍 + 𝐻(𝑛) ∼ NHE+(𝜎2, 𝜼 (𝑛) ).

• NHE− distribution, defined as the difference of normal and HE distributions, that is,

𝑍 − 𝐻(𝑛) ∼ NHE−(𝜎2, �̃� (𝑛) ).
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• NDHE distribution, defined as the sum of normal and DHE distributions, that is,

𝑍 + 𝐻(𝑛) − 𝐻(𝑚) ∼ NDHE(𝜎2, 𝜼 (𝑛) , �̃� (𝑚) ).

The following lemma shows that the density functions for the above three distributions can be derived
in closed-form.

Lemma 5. The density functions of the NHE+, NHE−, and NDHE distributions as defined above are
given respectively by

𝑓𝑍+𝐻(𝑛) (𝑦) = 𝜙+(𝑦;𝜎2, 𝜼 (𝑛) ) =
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )𝜂𝑖𝑒 (𝜎𝜂𝑖)
2/2−𝑦𝜂𝑖Φ

( 𝑦
𝜎

− 𝜎𝜂𝑖

)
, (4.4)

𝑓𝑍−𝐻(𝑛) (𝑦) = 𝜙−(𝑦;𝜎2, �̃� (𝑛) ) =
𝑛∑
𝑖=1

Ω(𝑖; �̃� (𝑛) )𝜂𝑖𝑒 (𝜎�̃�𝑖)
2/2+𝑦 �̃�𝑖Φ

(−𝑦
𝜎

− 𝜎𝜂𝑖

)
, (4.5)

𝑓𝑍+𝐻(𝑛) −𝐻(𝑚) (𝑦) = 𝜑(𝑦;𝜎2, 𝜼 (𝑛) , �̃� (𝑚) ) =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

Ω(𝑖; 𝜼 (𝑛) )Ω( 𝑗 ; �̃� (𝑚) )
[
𝜂𝑖𝜂 𝑗

𝜂𝑖 + 𝜂 𝑗

×
(
𝑒 (𝜎𝜂𝑖)

2/2−𝑦𝜂𝑖Φ
( 𝑦
𝜎

− 𝜎𝜂𝑖

)
+ 𝑒 (𝜎�̃� 𝑗 )2/2+𝑦 �̃� 𝑗Φ

(−𝑦
𝜎

− 𝜎𝜂 𝑗

))]
. (4.6)

Proof. Firstly, by using (3.4) together with (3.7) (Lemma 2), we may derive

𝜙+(𝑦;𝜎2, 𝜼 (𝑛) ) =
∫ ∞

−∞
𝑓𝑍 (𝑥) 𝑓𝐻(𝑛) (𝑦 − 𝑥) 𝑑𝑥

=
∫ 𝑦

−∞
1

𝜎
√

2𝜋
𝑒−𝑥

2/2𝜎2

(
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )𝜂𝑖𝑒−𝜂𝑖 (𝑦−𝑥)
)
𝑑𝑥

=
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )𝜂𝑖𝑒 (𝜎𝜂𝑖)
2/2−𝑦𝜂𝑖

∫ 𝑦

−∞
1

𝜎
√

2𝜋
𝑒−(𝑥−𝜎

2𝜂𝑖 )2/2𝜎2
𝑑𝑥,

which leads to (4.4). The formula (4.5) for 𝜙−(𝑦;𝜎2, 𝜼 (𝑛) ) can be derived in a similar way. Lastly, by
using (3.8), we derive

𝜑(𝑦;𝜎2, 𝜼 (𝑛) , �̃� (𝑚) ) =
∫ ∞

−∞
𝑓𝑍 (𝑥) 𝑓𝐻(𝑛) −𝐻(𝑚) (𝑦 − 𝑥) 𝑑𝑥

=
𝑛∑
𝑖=1

𝑚∑
𝑗=1

Ω(𝑖; 𝜼 (𝑛) )Ω( 𝑗 ; �̃� (𝑚) )

×
∫ ∞

−∞
𝑓𝑍 (𝑥)

(
𝜂 𝑗

𝜂𝑖 + 𝜂 𝑗
𝑓𝜀𝑖 (𝑥 − 𝑦) + 𝜂𝑖

𝜂𝑖 + 𝜂 𝑗
𝑓 �̃� 𝑗

(𝑦 − 𝑥)
)
𝑑𝑥,

which leads to (4.6). �

Using the above results, the density function of 𝑅𝑇 can be expressed in terms of the 𝜙+, 𝜙−, and 𝜑
functions as given in (4.4), (4.5), and (4.6).
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Proposition 6. The density function of 𝑅𝑇 is given by

𝑓𝑅𝑇
(𝑦) = 1√

2𝜋𝜎2𝑇
𝑒−( (𝑦−𝜈𝑇 )

2/2𝜎2𝑇 +𝜆𝑇 )

+
𝑛∗∑
𝑛=1

𝑓SP (𝑛;𝜆𝑇) [𝑝𝑛𝜙+(𝑦 − 𝜈𝑇 ;𝜎2𝑇, 𝜼 (𝑛) ) + (1 − 𝑝)𝑛𝜙−(𝑦 − 𝜈𝑇 ;𝜎2𝑇, �̃� (𝑛) )]

+
𝑛∗∑
𝑛=2

𝑛−1∑
𝑚=1

𝑓SP(𝑛;𝜆𝑇)
[(
𝑛

𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚𝜑(𝑦 − 𝜈𝑇 ;𝜎2𝑇, 𝜼 (𝑚) , �̃� (𝑛−𝑚) )

]
, (4.7)

where 𝜈𝑇 = (𝑟 − 𝑞 − 𝜒 − 𝜎2/2)𝑇 with 𝜒 defined in (4.2).

Proof. Conditional on 𝑁𝑇 = 𝑛 (𝑛 ≥ 1), 𝑀𝑇 = 𝑚 (𝑚 = 0, 1, . . . , 𝑛), we have

𝑅 (𝑛,𝑚)
𝑇 = 𝜈𝑇 + 𝜎𝑊𝑇 + 𝑋 (𝑛,𝑚)

𝑇 .

Since 𝜎𝑊𝑇 ∼ N(0, 𝜎2𝑇), it is clear that

• When 𝑚 = 𝑛 (where 𝑛 ≥ 1):

𝜎𝑊𝑇 + 𝑋 (𝑛,𝑚)
𝑇 = 𝜎𝑊𝑇 +

𝑛∑
𝑖=1

𝜀𝑖 ∼ NHE+(𝜎2𝑇, 𝜼 (𝑛) ).

• When 𝑚 = 0 (where 𝑛 ≥ 1):

𝜎𝑊𝑇 + 𝑋 (𝑛,𝑚)
𝑇 = 𝜎𝑊𝑇 −

𝑛∑
𝑖=1

𝜀𝑖 ∼ NHE−(𝜎2𝑇, �̃� (𝑛) ).

• When 1 ≤ 𝑚 ≤ 𝑛 − 1 (where 𝑛 ≥ 2):

𝜎𝑊𝑇 + 𝑋 (𝑛,𝑚)
𝑇 = 𝜎𝑊𝑇 +

𝑚∑
𝑖=1

𝜀𝑖 −
𝑛−𝑚∑
𝑗=1

𝜀 𝑗 ∼ NDHE(𝜎2𝑇, 𝜼 (𝑚) , �̃� (𝑛−𝑚) ).

The density function of 𝑅𝑇 is then obtained by unconditioning on 𝑁𝑡 and 𝑀𝑡 . �

The mgf of 𝑅𝑇 can be easily obtained as a product of a normal mgf and (3.12). As to the 𝑘th moment
of 𝑅𝑇 , its general form can be obtained as

E[𝑅𝑘
𝑇 ] =

𝑘∑
𝑗=0

(
𝑘

𝑗

)
E[(𝜈𝑇 + 𝜎𝑊𝑇 ) 𝑗] E[𝑋 𝑘− 𝑗

𝑇 ] . (4.8)

We are mainly interested in the first four moments of 𝑅𝑇 , which can be obtained together with the
moments of normal random variable 𝜈𝑇 + 𝜎𝑊𝑇 ∼ N(𝜈𝑇 , 𝜎2𝑇) as given below:

E[𝜈𝑇 + 𝜎𝑊𝑇 ] = 𝜈𝑇 , E[(𝜈𝑇 + 𝜎𝑊𝑇 )2] = 𝜈2
𝑇 + 𝜎2𝑇,

E[(𝜈𝑇 + 𝜎𝑊𝑇 )3] = 𝜈3
𝑇 + 3𝜈𝑇𝜎2𝑇, E[(𝜈𝑇 + 𝜎𝑊𝑇 )4] = 𝜈4

𝑇 + 6𝜈2
𝑇𝜎

2𝑇 + 3𝜎4𝑇2.
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4.2. Option pricing formula

We are now in a position to derive the pricing formula for a European option. Consider a call option
with strike price 𝐾 and maturity time 𝑇 . Its price is given by the following risk-neutral pricing formula:

𝐶 = 𝑒−𝑟𝑇 E[(𝑆𝑇 − 𝐾)+] = 𝑒−𝑟𝑇 E[𝑆𝑇 1{𝑆𝑇 ≥𝐾 }] − 𝐾𝑒−𝑟𝑇 P(𝑆𝑇 ≥ 𝐾). (4.9)

To deal with the probability P(𝑆𝑇 ≥ 𝐾) in the second term, we define the complementary distribution
functions of the NHE+, NHE−, and NDHE distributions (where 𝑍 ∼ N(0, 𝜎2)).

• U+(𝑥;𝜎2, 𝜼 (𝑛) ) = P(𝑍 + 𝐻(𝑛) ≥ 𝑥),
• U−(𝑥;𝜎2, �̃� (𝑚) ) = P(𝑍 − 𝐻(𝑚) ≥ 𝑥),
• V(𝑥;𝜎2, 𝜼 (𝑛) , �̃� (𝑚) ) = P(𝑍 + 𝐻(𝑛) − 𝐻(𝑚) ≥ 𝑥).

As it turns out, the closed-form expressions of these functions can be derived.

Lemma 7. The closed-form expressions of the three functions U+,U−,V as defined above are
respectively given by

U+(𝑥;𝜎2, 𝜼 (𝑛) ) =
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )
(
Φ

(
− 𝑥

𝜎

)
+ 𝑒 (𝜎𝜂𝑖)2/2−𝑥𝜂𝑖Φ

( 𝑥
𝜎

− 𝜎𝜂𝑖

))
, (4.10)

U−(𝑥;𝜎2, �̃� (𝑚) ) =
𝑛∑
𝑗=1

Ω( 𝑗 ; 𝜼 (𝑚) )
(
Φ

(
− 𝑥

𝜎

)
− 𝑒 (𝜎𝜂 𝑗 )2/2+𝑥𝜂 𝑗Φ

(−𝑥
𝜎

− 𝜎𝜂 𝑗

))
, (4.11)

V(𝑥;𝜎2, 𝜼 (𝑛) , �̃� (𝑚) ) =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

Ω(𝑖; 𝜼 (𝑛) )Ω( 𝑗 ; �̃� (𝑚) )

×
[

𝜂 𝑗

𝜂𝑖 + 𝜂𝑖

(
Φ

(
− 𝑥

𝜎

)
+ 𝑒 (𝜎𝜂𝑖 )2

2 −𝑥𝜂𝑖Φ
( 𝑥
𝜎

− 𝜎𝜂𝑖

))
+ 𝜂𝑖
𝜂𝑖 + 𝜂 𝑗

(
Φ

(
− 𝑥

𝜎

)
− 𝑒

(𝜎�̃� 𝑗 )2
2 +𝑥 �̃� 𝑗Φ

(−𝑥
𝜎

− 𝜎𝜂 𝑗

))]
. (4.12)

Proof. See Appendix B. �

Next, to deal with the expected value E[𝑆𝑇 1{𝑆𝑇 ≥𝐾 }] in (4.9), we need to further define the following
three functions related to the NHE+, NHE−, and NDHE distributions.

• Π+(𝑥;𝜎2, 𝜼 (𝑛) ) = E[𝑒𝑍+𝐻(𝑛) 1{𝑍+𝐻(𝑛) ≥𝑥 }],
• Π−(𝑥;𝜎2, �̃� (𝑚) ) = E[𝑒𝑍−𝐻(𝑚) 1{𝑍−𝐻(𝑚) ≥𝑥 }],
• Λ(𝑥;𝜎2, 𝜼 (𝑛) , �̃� (𝑚) ) = E[𝑒𝑍+𝐻(𝑛) −𝐻(𝑚) 1{𝑍+𝐻(𝑛) −𝐻(𝑚) ≥𝑥 }] .

Fortunately, once again we are able to derive their closed-form results, as seen subsequently.

Lemma 8. Suppose that 𝜂𝑖 > 1, 𝑖 = 1, . . . , 𝑛. The closed-form expressions of the three functions
Π+,Π−,Λ as defined above are respectively given by

Π+(𝑥;𝜎2, 𝜼 (𝑛) ) =
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )
𝜂𝑖𝑒

(𝜎𝜂𝑖 )2
2

𝜂𝑖 − 1

×
(
𝑒−(𝜂

2
𝑖 −1)𝜎2/2Φ

(−𝑥
𝜎

+ 𝜎
)
+ 𝑒−(𝜂𝑖−1)𝑥Φ

( 𝑥
𝜎

− 𝜎𝜂𝑖

))
, (4.13)
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Π−(𝑥;𝜎2, �̃� (𝑚) ) =
𝑚∑
𝑗=1

Ω( 𝑗 ; �̃� (𝑚) )
𝜂 𝑗𝑒

(𝜎�̃� 𝑗 )2
2

𝜂 𝑗 + 1

×
(
𝑒−( �̃�

2
𝑗−1)𝜎2/2Φ

(−𝑥
𝜎

+ 𝜎
)
− 𝑒 ( �̃� 𝑗+1)𝑥Φ

(−𝑥
𝜎

− 𝜎𝜂 𝑗

))
, (4.14)

Λ(𝑥;𝜎2, 𝜼 (𝑛) , �̃� (𝑚) ) =
𝑛∑
𝑖=1

𝑚∑
𝑗=1

Ω(𝑖; 𝜼 (𝑛) )Ω( 𝑗 ; �̃� (𝑚) )
𝜂𝑖𝜂 𝑗

𝜂𝑖 + 𝜂 𝑗

× ×
[
𝑒 (𝜎𝜂𝑖)

2/2

𝜂𝑖 − 1

(
𝑒−(𝜂

2
𝑖 −1)𝜎2/2Φ

(−𝑥
𝜎

+ 𝜎
)
+ 𝑒−(𝜂𝑖−1)𝑥Φ

( 𝑥
𝜎

− 𝜎𝜂𝑖

))
+ 𝑒 (𝜎�̃� 𝑗 )2/2

𝜂 𝑗 + 1

(
𝑒−( �̃�

2
𝑗−1)𝜎2/2Φ

(−𝑥
𝜎

+ 𝜎
)
− 𝑒 ( �̃� 𝑗+1)𝑥Φ

(−𝑥
𝜎

− 𝜎𝜂 𝑗

))]
. (4.15)

Proof. See Appendix C. �

Remark. It is worth noting that in Lemma 8, we require 𝜂𝑖 > 1, 𝑖 = 1, . . . , 𝑛 to prevent the integrations
in (4.13) and (4.15) from blowing up. There is no such requirement for 𝜂 𝑗 , 𝑗 = 1, . . . , 𝑚 in (4.14) and
(4.15) because the integrations related to 𝜂 𝑗 are finite for all positive 𝜂 𝑗 . See Appendix C for details.

Armed with Lemmas 7 and 8, we are now ready to derive the European call option price under the
proposed NDEJD model.

Proposition 9. The price of a European call option with strike price 𝐾 and maturity time 𝑇 under the
NDEJD model is given by

𝐶 = 𝑆0𝑒
−(𝑞+𝜎2/2+𝜒)𝑇 Υ1(𝛼) − 𝐾𝑒−𝑟𝑇Υ2(𝛼), (4.16)

where 𝛼 = ln(𝐾/𝑆0) − 𝜈𝑇 and Υ1(𝛼), Υ2(𝛼) are respectively given by

Υ1(𝛼) = 𝑒𝜎
2𝑇 /2−𝜆𝑇Φ

(
𝜎2𝑇 − 𝛼

𝜎
√
𝑇

)

+
𝑛∗∑
𝑛=1

𝑓SP (𝑛;𝜆𝑇) [𝑝𝑛Π+(𝛼;𝜎2𝑇, 𝜼 (𝑛) ) + (1 − 𝑝)𝑛Π−(𝛼;𝜎2𝑇, �̃� (𝑛) )]

+
𝑛∗∑
𝑛=2

𝑛−1∑
𝑚=1

𝑓SP(𝑛;𝜆𝑇)
[(
𝑛

𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚Λ(𝛼;𝜎2𝑇, 𝜼 (𝑛) , �̃� (𝑚) )

]
, (4.17)

Υ2(𝛼) = 𝑒−𝜆𝑇Φ
(
− 𝛼

𝜎
√
𝑇

)

+
𝑛∗∑
𝑛=1

𝑓SP (𝑛;𝜆𝑇) [𝑝𝑛U+(𝛼;𝜎2𝑇, 𝜼 (𝑛) ) + (1 − 𝑝)𝑛U−(𝛼;𝜎2𝑇, �̃� (𝑛) )]

+
𝑛∗∑
𝑛=2

𝑛−1∑
𝑚=1

𝑓SP(𝑛;𝜆𝑇)
[(
𝑛

𝑚

)
𝑝𝑚 (1 − 𝑝)𝑛−𝑚V(𝛼;𝜎2𝑇, 𝜼 (𝑛) , �̃� (𝑚) )

]
. (4.18)
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Proof. It is clear from (4.9) together with (4.3) that

𝐶 = 𝑆0𝑒
−(𝑞+𝜎2/2+𝜒)𝑇 E[𝑒𝜎𝑊𝑇 +𝑋𝑇 1{𝜎𝑊𝑇 +𝑋𝑇 ≥𝛼}] − 𝐾𝑒−𝑟𝑇 P(𝜎𝑊𝑇 + 𝑋𝑇 ≥ 𝛼),

where we note that the event {𝑆𝑇 ≥ 𝐾} is equivalent to the event {𝜎𝑊𝑇 + 𝑋𝑇 ≥ 𝛼}. Let us define the
two functions:

Υ1(𝛼) = E[𝑒𝜎𝑊𝑇 +𝑋𝑇 1{𝜎𝑊𝑇 +𝑋𝑇 ≥𝛼}], Υ2(𝛼) = Pr(𝜎𝑊𝑇 + 𝑋𝑇 ≥ 𝛼).

Following the unconditioning technique on 𝑁𝑡 and 𝑀𝑡 as in the proof of Proposition 6, the two functions
can be derived as claimed using the results in Lemmas 7 and 8. �

5. Numerical results

Our numerical results are provided to look into the effects of nonhomogeneous jump sizes on stock
return distributions (under the risk-neutral measure), option prices, and implied volatility smiles under
the NDEJD model. In our model set-up, the series of 𝜂𝑘 and 𝜂𝑘 , 𝑘 = 1, 2, . . . can take different values,
but for demonstrative purpose, we assume that there is an internal structure among the series of 𝜂𝑘 and
𝜂𝑘 as described below:

𝜂𝑘+1 = 𝛾(𝜂𝑘 − 1) + 1, with 𝜂0 given,
𝜂𝑘+1 = 𝛾(𝜂𝑘 − 1) + 1, with 𝜂0 given,

where a new parameter 𝛾 is introduced to indicate that the series of 𝜂𝑘 and 𝜂𝑘 are increasing (𝛾 > 1) or
decreasing (𝛾 < 1). The above formulas assume that (𝜂𝑘 − 1) and (𝜂𝑘 − 1) are both geometric series.
The reason behind this assumption is that it ensures 𝜂𝑘 , 𝜂𝑘 > 1 for all 𝑘 in order to avoid the blow-up
problem in (4.13)–(4.15) (such that the integrations in the functions Π+, Π−, and Λ exist). Note that
𝛾 < 1 (𝛾 > 1) implies that the tail distributions of the successive jump sizes are getting fatter (lighter),
meaning that there is a growing (diminishing) effects from jumps.

Our benchmark model is the special case 𝛾 = 1 which is very close to the DEJD model except that
the jumps in the NDEJD with 𝛾 = 1 is driven by a stopped Poisson process (a maximal 𝑛∗ is specified)
whereas the jumps in the DEJD model are driven by a standard Poisson process. Precisely speaking,
they are different, but they are in fact close enough if the maturity time𝑇 is short or the maximal number
of jumps 𝑛∗ is large. In these cases, our benchmark NDEJD model with 𝛾 = 1 can be seen as almost
identical to the original DEJD model.

5.1. Return distributions

We first present the numerical results for the risk-neutral return distributions under the NDEJD model.
The basic parameters that are not related to jumps (about drift and diffusion) are 𝑟 = 0.05, 𝑞 = 0.01, and
𝜎 = 0.2. Some parameters about jumps are fixed: 𝜆 = 5, 𝑛∗ = 10, 𝜂0 = 10, and 𝜂0 = 5 (𝜂0 < 𝜂0 indicates
that the left tail is fatter than the right tail, as commonly seen empirically). In order to investigate the
influences from the growing and diminishing effects of jumps, we consider the following parameters
about jump size distributions: 𝑝 ∈ {0.2, 0.5, 0.8}, 𝛾 = {0.8, 0.9, 1.0, 1.1, 1.2}. Three maturity times are
considered: 𝑇 ∈ {0.25, 0.5, 1.0}.

Figure 6 shows the risk-neutral distribution of 𝑅𝑇 . The effect of maturity time 𝑇 can be seen from
top to bottom. As 𝑇 grows, the distribution becomes more widely spread as expected. The effect of
𝑝 (the probability of seeing positive jumps) can be seen from left to right. Larger 𝑝 indicates that
positive jumps are more likely to happen than negative jumps, and this makes the right tail fatter. The
differences between left and right tails become more prominent when 𝑇 gets longer. In each plot, five
curves are provided to show the effect of 𝛾. We observe that when jumps have growing effects (𝛾 < 1),

53Probability in the Engineering and Informational Sciences

https://doi.org/10.1017/S0269964822000493 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964822000493


Figure 6. Return distributions (pdf) under various combinations of 𝑝 and 𝑇 .

the distribution tends to be fatter-tailed and the left tail is generally (see the plots with 𝑝 = 0.5) lifted up
more because the influences from negative jumps are stronger than those from positive jumps (this is
because of our chosen parameters for the initial jump, i.e., 𝜂0 < 𝜂0). On the contrary, if the effects from
jumps are diminishing (𝛾 > 1), the distribution becomes more narrowly spread with thinner tails on both
sides. When 𝑝 = 0.2, the left tail becomes much fatter because negative jumps happen more frequently
than positive jumps. As 𝑝 gets larger, the right tails are lifted up more. This shows that positive jumps
bring about more impacts to the distribution.

The basic statistics (mean, standard deviation, skewness, kurtosis) of 𝑅𝑇 are provided in Table
1. The results for Kou’s (2002) DEJD model (where jumps are driven by a Poisson process) are
given below the results for the benchmark NDEJD model with 𝛾 = 1 (where jumps are driven by
a stopped Poisson process with 𝑛∗ = 10) in order to show that the two models are almost identical.
We observe close agreements bewteen Figure 6 and Table 1, but the figures in Table 1 provide more
insights. We see that as 𝛾 gets smaller, kurtosis becomes larger but skewness becomes more negative
when 𝑝 = 0.2 (left tails receive more impacts) and less negative when 𝑝 = 0.8 (right tails receive
more impacts). Moreover, it is worth pointing out that, as 𝑇 gets longer, the standard deviation (SD)
increases as expected, but both the skewness (in absolute value) and kurtosis seem to become smaller,
indicating that the distribution becomes less skewed and less fat-tailed. In contrast, however, as seen
in Figure 6, the influences on both tails appear to be more prominent as 𝑇 gets longer. This shows
that the statistical figures in Table 1 provide a different view which is not directly observable from
Figure 6.
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Table 1. The basic statistics of 𝑅𝑇 under various combinations of 𝑝 and 𝑇 .

𝑇 𝛾 𝑝 = 0.2 𝑝 = 0.5 𝑝 = 0.8

Mean SD Skew Kurt Mean SD Skew Kurt Mean SD Skew Kurt

0.25 0.8 −0.041 0.123 −2.032 10.483 −0.028 0.086 −1.532 9.963 −0.021 0.060 −0.089 9.008
0.9 −0.035 0.107 −1.767 8.451 −0.025 0.078 −1.422 8.622 −0.017 0.054 −0.367 8.122
1.0 −0.031 0.095 −1.588 7.321 −0.023 0.072 −1.345 7.851 −0.014 0.050 −0.537 7.800

DEJD −0.031 0.095 −1.588 7.321 −0.023 0.072 −1.345 7.851 −0.014 0.050 −0.537 7.800
1.1 −0.028 0.087 −1.469 6.706 −0.021 0.068 −1.291 7.403 −0.013 0.047 −0.646 7.692
1.2 −0.026 0.081 −1.390 6.371 −0.020 0.065 −1.253 7.138 −0.012 0.045 −0.719 7.671

0.5 0.8 −0.103 0.320 −1.738 8.534 −0.070 0.204 −1.205 7.688 −0.062 0.148 0.342 7.148
0.9 −0.079 0.240 −1.379 6.359 −0.055 0.169 −1.060 6.231 −0.039 0.117 −0.121 5.789
1.0 −0.062 0.190 −1.122 5.157 −0.046 0.145 −0.951 5.425 −0.029 0.100 −0.380 5.399

DEJD −0.062 0.190 −1.123 5.161 −0.046 0.145 −0.951 5.426 −0.029 0.100 −0.379 5.400
1.1 −0.051 0.158 −0.960 4.597 −0.039 0.129 −0.876 5.000 −0.023 0.089 −0.523 5.308
1.2 −0.043 0.138 −0.862 4.358 −0.034 0.118 −0.826 4.778 −0.019 0.083 −0.607 5.303

1 0.8 −0.305 0.981 −1.405 6.218 −0.207 0.563 −0.938 6.182 −0.254 0.446 0.698 5.869
0.9 −0.193 0.585 −1.066 4.880 −0.131 0.388 −0.799 4.927 −0.105 0.275 0.081 4.550
1.0 −0.123 0.374 −0.762 3.960 −0.091 0.288 −0.662 4.174 −0.057 0.199 −0.281 4.182

DEJD −0.124 0.380 −0.794 4.080 −0.091 0.290 −0.672 4.213 −0.058 0.200 −0.268 4.200
1.1 −0.081 0.265 −0.575 3.600 −0.066 0.230 −0.566 3.824 −0.037 0.162 −0.445 4.128
1.2 −0.057 0.208 −0.482 3.531 −0.051 0.194 −0.508 3.688 −0.027 0.142 −0.512 4.124

5.2. Option prices

Next, we present the numerical results about European call option prices. To investigate the nonlinear
influences from 𝛾 and other factors on call option prices, we conduct a regression analysis. Let 𝑀 = 𝐾/𝑆0
denote the moneyness for a call option (it is at-the-money if 𝑀 = 1). We consider option contracts with
different moneyness 𝑀 = 0.5, 0.6, . . . , 1.5 and maturity 𝑇 = 0.25, 0.5, 0.75, 1.0. Take 𝛾 = 1 (seen as
almost equivalent to the DEJD model) as the benchmark and define “Bias” for the 𝛾 ≠ 1 cases as the
percentage error of the call option price relative to the benchmark case, that is,

Bias =
𝐶𝛾 − 𝐶𝛾=1

𝐶𝛾=1
.

We expect that Bias is a nonlinear function of 𝛾 − 1, 𝑝, 𝑀,𝑇 , written as Bias = 𝑓 (𝛾 − 1, 𝑝, 𝑀,𝑇). In
our analysis, we intend to use the following quadratic formulation for the function 𝑓 , that is,

Bias = 𝛽0(𝑝, 𝑀,𝑇) + 𝛽1(𝑝, 𝑀,𝑇)(𝛾 − 1) + 𝛽2(𝑝, 𝑀,𝑇)(𝛾 − 1)2, (5.1)

to model the dependence of Bias on the main factor (𝛾 − 1). The contributions from 𝑝, 𝑀,𝑇 are left
to the coefficients 𝛽𝑖 (𝑝, 𝑀,𝑇), 𝑖 = 0, 1, 2. Specifically, the linear, quadratic, and interactive influences
that come purely from 𝑝, 𝑀,𝑇 are captured by 𝛽0(𝑝, 𝑀,𝑇), whereas their interactions with (𝛾 − 1) and
(𝛾 − 1)2 are respectively captured by 𝛽1(𝑝, 𝑀,𝑇) and 𝛽2 (𝑝, 𝑀,𝑇).

Table 2 presents the estimation results of eight nested regression models based on (5.1). Model 1 is
a purely linear model which takes the following form (𝑐𝑖 represents the coefficients)

Bias = 𝑐0 + 𝑐1𝑝 + 𝑐2𝑀 + 𝑐3𝑇 + 𝑐4 (𝛾 − 1), 𝑅2 = 32%.
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Table 2. Estimation results of the nested regression models for “Bias”.

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8

0 (Intercept) −0.685∗ −0.685∗ −0.685∗ −0.685∗ −0.857∗ 0.171∗ 0.171∗ 0.171∗
1 𝑝 0.496∗ 0.496∗ 0.496 0.496∗ 0.496∗ −0.150∗ −0.150∗ −0.150∗
2 𝑀 0.420∗ 0.420∗ 0.420∗ 0.420∗ 0.420∗ −0.081∗ −0.081∗ −0.081∗
3 𝑇 0.256∗ 0.256∗ 0.256∗ 0.256∗ 0.256∗ −0.070∗ −0.070∗ −0.070∗
4 𝛾 − 1 −1.409∗ 5.298∗ −0.813∗ −10.195∗ −10.195∗ −10.195∗ −10.195∗ −10.195∗
5 𝑝(𝛾 − 1) −3.060∗ 5.302∗ 18.714∗ 18.714∗ 18.714 18.714 18.714∗
6 𝑀 (𝛾 − 1) −3.904∗ 5.731∗ 13.501∗ 13.501∗ 13.501∗ 13.501∗ 13.501∗
7 𝑇 (𝛾 − 1) −2.037∗ −1.963∗ 4.900∗ 4.900∗ 4.900∗ 4.900∗ 4.900∗
8 𝑝2 (𝛾 − 1) −8.361∗ −8.361∗ −8.361∗ −8.361∗ −8.361∗ −8.361∗
9 𝑀2(𝛾 − 1) −4.818∗ −4.818∗ −4.818∗ −4.818∗ −4.818∗ −4.818∗
10 𝑇2 (𝛾 − 1) −0.059∗ −0.059∗ −0.059∗ −0.059∗ −0.059∗ −0.059∗
11 𝑝𝑀 (𝛾 − 1) −10.186 −10.186 −10.186 −10.186 −10.186
12 𝑝𝑇 (𝛾 − 1) −5.162∗ −5.162∗ −5.162∗ −5.162∗ −5.162∗
13 𝑀𝑇 (𝛾 − 1) −4.283∗ −4.283∗ −4.283∗ −4.283∗ −4.283∗
14 (𝛾 − 1)2 3.693∗ −18.341∗ 0.467∗ 34.509∗
15 𝑝(𝛾 − 1)2 13.843∗ −13.852 −64.328∗
16 𝑀 (𝛾 − 1)2 10.743∗ −17.284∗ −43.867∗
17 𝑇 (𝛾 − 1)2 6.992∗ 5.471∗ −20.549∗
18 𝑝2(𝛾 − 1)2 27.695∗ 27.695∗
19 𝑀2 (𝛾 − 1)2 14.013∗ 14.013∗
20 𝑇2 (𝛾 − 1)2 1.217∗ 1.217∗
21 𝑝𝑀 (𝛾 − 1)2 35.559
22 𝑝𝑇 (𝛾 − 1)2 23.867∗
23 𝑀𝑇 (𝛾 − 1)2 14.086∗

𝑅2 (%) 32.446 59.301 62.502 70.253 74.098 80.590 82.668 89.763
Adj. 𝑅2 (%) 32.299 59.146 62.298 70.042 73.900 80.409 82.479 89.634

∗Indicates that the coefficient is significant with 𝑝-value <0.05.

Such a linear model provides a baseline level of adjusted 𝑅2 = 32%. Model 2 adds the cross terms
between 𝑝, 𝑀,𝑇 and (𝛾 − 1) to model their interactions (these cross terms are part of 𝛽1(𝑝, 𝑀,𝑇) in
(5.1)), that is,

Bias = 𝑐0 + 𝑐1𝑝 + 𝑐2𝑀 + 𝑐3𝑇 + (𝑐4 + 𝑐5𝑝 + 𝑐6𝑀 + 𝑐7𝑇)(𝛾 − 1), 𝑅2 = 59%,

lifting the adjusted 𝑅2 to 59%. By adding quadratic and interaction terms between 𝑝, 𝑀,𝑇 to 𝛽1 (𝑝, 𝑀,𝑇),
the adjusted 𝑅2 is improved to 62% in Model 3 and further to 70% in Model 4. The stepwise inclusions
of all higher-order interaction terms increase the adjusted 𝑅2 to nearly 90% in Model 8. This is our full
model where 𝛽𝑖 (𝑝, 𝑀,𝑇), 𝑖 = 0, 1, 2 exhibit the following structure:

𝛽0 = (𝑐0 + 𝑐1𝑝 + 𝑐2𝑀 + 𝑐3𝑇),
𝛽1 = (𝑐4 + 𝑐5𝑝 + 𝑐6𝑀 + 𝑐7𝑇 + 𝑐8𝑝

2 + 𝑐9𝑀
2 + 𝑐10𝑇

2 + 𝑐11𝑝𝑀 + 𝑐12𝑝𝑇 + 𝑐13𝑀𝑇),
𝛽2 = (𝑐14 + 𝑐15𝑝 + 𝑐16𝑀 + 𝑐17𝑇 + 𝑐18𝑝

2 + 𝑐19𝑀
2 + 𝑐20𝑇

2 + 𝑐21𝑝𝑀 + 𝑐22𝑝𝑇 + 𝑐23𝑀𝑇).

In Table 2, the significant coefficients (marked with ∗) of the nonlinear terms show that the Bias depends
nonlinearly on its influencing factors (i.e., 𝛾 as well as 𝑝, 𝑀,𝑇). The significance of the coefficients in 𝛽1
(i.e., 𝑐4, . . . , 𝑐13, which are almost identical from Model 4 to Model 8) reveals that the main factor 𝛾 may
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Figure 7. Implied volatility smiles under various combinations of 𝑝 and 𝑇 .

cause strong Bias (percentage error) in call price if the nonhomogeneity in jumps is not considered. The
significance of the coefficients in 𝛽2 (i.e., 𝑐14, . . . , 𝑐23) further shows that the main factor 𝛾 influences
Bias in an asymmetric way. For example, from the positiveness of 𝑐14 = 3.693 (Model 5), we see that a
decrease in 𝛾 (e.g., 1 → 0.9) would cause a greater bias than an increase in 𝛾 (e.g., 1 → 1.1). The fact
that many of 𝑐14, . . . , 𝑐23 (Model 8) are significant indicates that 𝛽2 depends in a complicated nonlinear
way on 𝑝, 𝑀,𝑇 .

5.3. Implied volatility smiles

We move on to present our numerical results on implied volatiliy smiles which reveal the risk structure
behind the model. Suppose that the market follows the proposed NDEJD model, the implied volatility
�̂� is the particular volatility in the Black–Scholes formula that gives the same option price, that is,

𝐶NDEJD = 𝐶BS (𝑆0, 𝐾, 𝑇, 𝑟, 𝑞, �̂�),

where 𝐶NDEJD is obtained from our pricing formula (4.16). The volatility smile (�̂� as a function of
moneyness, which is redefined as 𝑀 = ln(𝐾/𝑆0)) is then obtained by solving the above nonlinear
equation for all 𝑀 . (See [4] for its implication and [6] for an example of its empirical analysis.)

The results are presented in Figure 7 where the at-the-money (𝑀 = 0) implied volatility is fixed at
0.4 (by setting 𝜆 = 2 with 𝜎 left free; other parameters remain the same as in Figure 6). We see that
the smile curves are pulled higher (lower) when 𝛾 decreases (increases), indicating that the level of
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Figure 8. The features of a typical smile curve.

risk is heightened (lowered) when there are growing (diminishing) impacts from jumps. The smiles for
𝑝 = 0.5 tend to be more symmetric than 𝑝 = 0.2 or 0.8. When 𝑝 = 0.2 (0.8), more influences are made
on the left (right) tails of the return distributions, and thus the left (right) wings of the smiles are lifted
or lowered more. Moreover, the smiles exhibit the highest curvature when 𝑇 = 0.25 (which is consistent
with Table 1 where higher kurtosis is seen in smaller 𝑇 cases). As 𝑇 increases, the smiles become less
curved, but the differences across all 𝛾 become more noticeable.

In contrast with the above qualitative observations, below we give a quantitative analysis on how the
shapes of the IV smiles vary with 𝛾 and other parameters. To this end, we consider a typical IV smiles
as depicted in Figure 8, where IV1, IV2, and IV3 are the IV for three moneyness 𝑀1, 𝑀2, 𝑀3 (𝑀2 refers
to the lowest point and 𝑀1 = 𝑀2 − 1, 𝑀3 = 𝑀2 + 1). The following five parameters are used to capture
the main features of a typical smile curve:

• 𝑎 = 𝑀2: the moneyness where the smile drops to the lowest point,
• 𝑏 = IV2: the minimal level of IV at 𝑀2,
• 𝑐 = IV3 − 2IV2 + IV1: the curvature of the smile,
• 𝑑 = IV2 − IV1: the (negative) slope of the left wing,
• 𝑒 = IV3 − IV2: the (positive) slope of the right wing.

The five shape parameters of all IV smiles in Figure 7 are summarized in Table 3, from which we
may take a closer inspection of the smile curves. It is seen from the results of parameter 𝑎 that the lowest
point of smiles moves leftward as 𝑝 gets large but it moves rightward as 𝑇 gets large. From the results
of parameter 𝑏, we observe that smaller 𝛾 leads to higher 𝑏 (the overall volatility level is also pulled up,
as seen in every plot). The shape parameters 𝑐, 𝑑, 𝑒 carry more important information about the risk-
neutral distributions. We observe that as either 𝛾 or 𝑇 increases, the curvature 𝑐 decreases, indicating
that the distribution becomes less fat-tailed (this is in close agreement with Table 1). The parameters
𝑑 and 𝑒 are concerned with the slopes of the left and right wings. It is observed that smaller 𝛾 makes
the two wings steeper, and therefore, the values of |𝑑 | and 𝑒 become greater. But the parameter 𝑝 tends
to influence one side of the smile. Smaller 𝑝 makes the left wing steeper, whereas greater 𝑝 makes the
right wing steeper. All these observations are consistent with Figure 6 and Table 1.

5.4. Empirical analysis

To further justify the proposed NDEJD model which exhibits a richer shape of the IV smile relative to
the DEJD model as shown in the preceding subsection, we provide an empirical analysis. The standard
S&P 500 index option (SPX) data are collected and the two competing models are calibrated to their
implied volatility smiles for various times to maturity. The data for the whole year of 2021 are collected
and analyzed; among them, eight data sets (see Table 4) are picked for our presentation. The chosen two
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Table 3. The five shape parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 of IV smiles.

𝑇 𝛾 𝑝 = 0.2 𝑝 = 0.5 𝑝 = 0.8

𝑎 𝑏 𝑐 𝑑 𝑒 𝑎 𝑏 𝑐 𝑑 𝑒 𝑎 𝑏 𝑐 𝑑 𝑒

0.25 0.8 0.253 0.363 0.594 −0.359 0.235 0.116 0.394 0.561 −0.323 0.238 −0.057 0.399 0.532 −0.296 0.235
0.9 0.256 0.364 0.561 −0.342 0.219 0.122 0.393 0.523 −0.311 0.212 −0.047 0.399 0.491 −0.288 0.203
1.0 0.259 0.366 0.537 −0.328 0.209 0.127 0.393 0.497 −0.301 0.195 −0.039 0.400 0.464 −0.282 0.182
1.1 0.261 0.367 0.521 −0.317 0.204 0.132 0.393 0.480 −0.294 0.186 −0.032 0.400 0.447 −0.278 0.169
1.2 0.262 0.368 0.509 −0.308 0.201 0.135 0.393 0.469 −0.289 0.181 −0.027 0.400 0.435 −0.274 0.161

0.5 0.8 0.397 0.349 0.372 −0.227 0.145 0.188 0.392 0.327 −0.183 0.144 −0.102 0.398 0.303 −0.163 0.140
0.9 0.416 0.354 0.323 −0.200 0.123 0.215 0.391 0.279 −0.165 0.114 −0.066 0.399 0.253 −0.149 0.104
1.0 0.430 0.358 0.288 −0.178 0.110 0.237 0.390 0.246 −0.151 0.095 −0.035 0.400 0.220 −0.139 0.082
1.1 0.442 0.361 0.264 −0.162 0.102 0.255 0.390 0.224 −0.141 0.084 −0.008 0.400 0.199 −0.130 0.069
1.2 0.450 0.364 0.246 −0.149 0.098 0.268 0.390 0.210 −0.132 0.078 0.015 0.400 0.185 −0.124 0.061

1 0.8 0.576 0.324 0.264 −0.167 0.097 0.267 0.391 0.196 −0.103 0.092 −0.238 0.394 0.185 −0.091 0.094
0.9 0.674 0.340 0.182 −0.114 0.067 0.363 0.389 0.136 −0.078 0.058 −0.131 0.399 0.119 −0.068 0.051
1.0 0.752 0.351 0.130 −0.081 0.050 0.455 0.388 0.097 −0.059 0.038 −0.012 0.400 0.081 −0.051 0.030
1.1 0.809 0.360 0.099 −0.059 0.040 0.534 0.387 0.074 −0.046 0.029 0.103 0.400 0.059 −0.039 0.020
1.2 0.848 0.366 0.081 −0.046 0.035 0.596 0.387 0.061 −0.037 0.024 0.202 0.399 0.047 −0.031 0.016
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Table 4. Eight data sets for the comparison of model calibration.

Observation
day (time 0) Maturity day (𝑇) 𝜏 (annualized) 𝑆0 𝐾min 𝐾max 𝑛 (numbers of 𝐾’s)

(a) Jan 4, 2021 Mar 19, 2021 0.20 (year) 3700.7 600 5600 411
(b) Jun 18, 2021 0.45 (year) 400 5600 349
(c) Dec 17, 2021 0.95 (year) 300 6400 156
(d) Jun 17, 2022 1.45 (year) 800 6500 129
(e) Jul 1, 2021 Jul 21, 2021 0.05 (year) 4202.0 3425 5700 157
(f) Sep 30, 2021 0.25 (year) 1950 6200 337
(g) Dec 31, 2021 0.50 (year) 1000 6500 326
(h) Jun 30, 2022 1.00 (year) 1300 5300 97

Table 5. Results of model calibration.

DEJD parameters NDEJD paramaters DEJD NDEJD

𝜎 𝜆 𝜂0 𝜂0 𝑝 𝜎 𝜆 𝜂0 𝜂0 𝑝 𝛾 SSE SSE

(a) 0.177 0.285 8.641 2.823 0.050 0.127 3.056 17.157 18.303 0.050 0.368 0.203 0.059
(b) 0.150 0.315 8.311 2.552 0.050 0.105 1.655 12.976 11.169 0.050 0.399 0.104 0.027
(c) 0.139 0.213 6.074 2.106 0.050 0.091 1.037 9.240 9.033 0.050 0.430 0.053 0.032
(d) 0.116 0.268 4.859 2.375 0.050 0.081 0.786 9.553 6.710 0.107 0.478 0.010 0.004
(e) 0.068 2.211 20.000 20.000 0.050 0.066 2.421 20.000 19.970 0.050 1.805 0.006 0.006
(f) 0.089 0.617 13.440 6.291 0.050 0.079 1.064 15.410 9.415 0.050 0.525 0.018 0.015
(g) 0.114 0.208 9.070 2.778 0.050 0.088 0.851 20.000 9.106 0.100 0.281 0.050 0.013
(h) 0.078 0.589 15.716 4.010 0.262 0.081 0.572 17.627 3.767 0.287 1.182 0.003 0.003

observation dates are the very first trading days in the first half year (sets (a)(b)(c)(d)) and in the second
half year (sets (e)(f)(g)(h)). For each observation day, four maturity days are considered in order to cover
different times to maturity (𝜏). Table 4 also shows the initial index (𝑆0), the maximal and minimal strike
prices (𝐾min, 𝐾max), and the number of strike prices (𝑛) for each maturity date.

With the interest rate and dividend yield chosen as 𝑟 = 0.01, 𝑞 = 0, we calibrate the two models to
determine the model parameter set 𝒙 by minimizing the sum of squared errors (SSE) of the implied
volatility curve, that is,

min
𝒙

𝑛∑
𝑖=1

(IVmodel(𝒙, 𝐾𝑖) − IVmarket (𝐾𝑖))2,

where the parameter set is 𝒙 = (𝜎, 𝜆, 𝜂0, 𝜂0, 𝑝) for DEJD, and is 𝒙 = (𝜎, 𝜆, 𝜂0, 𝜂0, 𝑝, 𝛾) for NDEJD.
The results are given in Table 5, where we observe that the NDEJD parameter 𝛾 may deviate from 1 (it
could be greater or less than 1). The inclusion of 𝛾 provides one more degree of freedom which reduces
the SSE significantly, indicating the advantage of NDEJD over DEJD for these particular data sets.

Figure 9 provides a graphical illustration of the calibration results from the eight data sets. In each
plot, the horizontal axis is moneyness 𝑀 which is defined to be 𝑀 = ln(𝐾/𝑆0). While DEJD provides
satisfactory results, it is not difficult to see that our NDEJD model provides an even closer fit to the
market IV smiles. In particular, the deviations between the two models are more prominent at the left
ends (with large negative 𝑀), showing that the flexibility in NDEJD provides advantages for the options
that are far-away-from-the-money. This gives a justification for the proposed NDEJD model.
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Figure 9. Graphical illustration of the calibration results in Table 5.

6. Conclusion

In this paper, we propose an extended version of the DEJD model where jump sizes follow DE distri-
butions but are no longer i.i.d. The proposed NDEJD model can be used to capture the varying impacts
from a series of jumps. For the extended model, we provide a mathematical analysis on the risk-neutral
return distribution, which requires some distributions in close relation with HE distributions. Based on
these distributions, we derive the European option pricing formula in closed-form. While our model
allows for all the exponential parameters to take different values, our numerical analysis focuses on
two scenarios where the effects from jumps are either growing or diminishing. Numerical results show
that in the former scenario, the return distributions become more fatter-tailed, the option prices become
significantly higher, and the implied volatility smiles are significantly heightened with higher curvature
and greater slopes (in absolute value) on both wings. In contrast, in the latter scenario, the effects are not
as significant. In sum, our study contributes to the option pricing literature by adding more flexibility to
the popular EDJD model to adapt it for better reflecting the changing nature of jump processes.
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Appendix A. Proof of Lemma 1

A HE distribution is a special case of the phase-type distribution (PTD) (see, e.g., the discussion in
Chapter 2 of [2]) which is followed by the time to absorption of a finite state continuous-time Markov
chain (CTMC). Consider such a chain that has 𝑛 + 1 states, where the first 𝑛 states are transient and
the last one is absorbing. Suppose that this CTMC moves sequentially from state 1, 2, . . . until it is
absorbed in state 𝑛 + 1 (see the following diagram, where the transition from state 𝑖 to 𝑖 + 1 has a rate of
𝜂𝑖 , 𝑖 = 1, . . . , 𝑛), then the total time from start to absorption follows a HE distribution. By the equation
(2.12) of [2], the density function of a HE random variable 𝐻(𝑛) can be expressed in the following
matrix form:

𝑓𝐻(𝑛) (𝑥) = 𝝅𝑒D𝑥d for 𝑥 ≥ 0,

where

𝝅 = [1, 0, . . . , 0]︸���������︷︷���������︸
1×𝑛

, D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−𝜂1 𝜂1 · · · 0 0
0 −𝜂2 · · · 0 0

· · · · · · . . . · · · · · ·
0 0 · · · −𝜂𝑛−1 𝜂𝑛−1
0 0 · · · 0 −𝜂𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸�������������������������������︷︷�������������������������������︸
𝑛×𝑛

, d =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
𝜂𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦︸︷︷︸
𝑛×1

.

The 𝑘th moment of 𝐻(𝑛) as seen in (3.6) can be derived as follows:

E[𝐻𝑘
(𝑛) ] =

∫ ∞

0
𝑥𝑘𝝅𝑒D𝑥d 𝑑𝑥 = (−1)𝑘 𝑘! 𝝅D−𝑘1.

See also equation (2.14) of [2] for the 𝑘th moment of a general phase-type random variable.

Appendix B. Proof of Lemma 7

The three functions U+, U−, and V are respectively derived as follows.

1.

U+(𝑥;𝜎2, 𝜼 (𝑛) ) =
∫ ∞

𝑥

𝜙+(𝑦;𝜎2, 𝜼 (𝑛) ) 𝑑𝑦

= −
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) ) 𝑒
(𝜎𝜂𝑖 )2

2

∫ ∞

𝑥

Φ
( 𝑦
𝜎

− 𝜎𝜂𝑖

)
𝑑𝑒−𝜂𝑖 𝑦

= −
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) ) 𝑒
(𝜎𝜂𝑖 )2

2

(
𝑒−𝜂𝑖 𝑦Φ

( 𝑦
𝜎

− 𝜎𝜂𝑖

)%%%∞
𝑥

−
∫ ∞

𝑥

𝑒−𝜂𝑖 𝑦 𝑑Φ
( 𝑦
𝜎

− 𝜎𝜂𝑖

))
=

𝑛∑
𝑗=1

Ω( 𝑗 ; 𝜼 (𝑛) )
(
Φ

(
− 𝑥

𝜎

)
+ 𝑒 (𝜎𝜂 𝑗 )2/2−𝑥𝜂 𝑗 Φ

( 𝑥
𝜎

− 𝜎𝜂 𝑗

))
,
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2.

U−(𝑥;𝜎2, 𝜼 (𝑛) ) =
∫ ∞

𝑥

𝜙−(𝑦;𝜎2, 𝜼 (𝑛) ) 𝑑𝑦

=
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )
(
Φ

(
− 𝑥

𝜎

)
− 𝑒 (𝜎𝜂𝑖)

2/2+𝑥𝜂𝑖Φ
(−𝑥
𝜎

− 𝜎𝜂𝑖

))
,

(the derivation is similar to U+)

3.

V(𝑥;𝜎2, 𝜼 (𝑛) , �̃� (𝑚) ) =
∫ ∞

𝑥

𝜑(𝑦;𝜎2, 𝜼 (𝑛) , �̃� (𝑚) ) 𝑑𝑦

=
𝑛∑
𝑖=1

𝑚∑
𝑗=1

Ω(𝑖; 𝜼 (𝑛) )Ω( 𝑗 ; �̃� (𝑚) )
𝜂𝑖𝜂 𝑗

𝜂𝑖 + 𝜂 𝑗

×
(
𝑒

(𝜎𝜂𝑖 )2
2

∫ ∞

𝑥

𝑒−𝑦𝜂𝑖 Φ
( 𝑦
𝜎

− 𝜎𝜂𝑖

)
𝑑𝑦 + 𝑒

(𝜎�̃� 𝑗 )2
2

∫ ∞

𝑥

𝑒𝑦 �̃� 𝑗Φ
(−𝑦
𝜎

− 𝜎𝜂 𝑗

)
𝑑𝑦

)
=

𝑛∑
𝑖=1

𝑚∑
𝑗=1

Ω(𝑖; 𝜼 (𝑛) )Ω( 𝑗 ; �̃� (𝑚) )
[

𝜂 𝑗

𝜂𝑖 + 𝜂𝑖

(
Φ

(
− 𝑥

𝜎

)
+ 𝑒 (𝜎𝜂𝑖 )2

2 −𝑥𝜂𝑖Φ
( 𝑥
𝜎

− 𝜎𝜂𝑖

))

+ 𝜂𝑖
𝜂𝑖 + 𝜂 𝑗

(
Φ

(
− 𝑥

𝜎

)
− 𝑒

(𝜎�̃� 𝑗 )2
2 +𝑥 �̃� 𝑗Φ

(−𝑥
𝜎

− 𝜎𝜂 𝑗

))]
.

Appendix C. Proof of Lemma 8

The three functions Π+, Π−, and Λ are respectively derived as follows.

1.

Π+(𝑥;𝜎2, 𝜼 (𝑛) ) =
∫ ∞

𝑥

𝑒𝑦𝜙+(𝑦;𝜎2, 𝜼 (𝑛) ) 𝑑𝑦

=
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )𝜂𝑖𝑒
(𝜎𝜂𝑖 )2

2

∫ ∞

𝑥

𝑒−(𝜂𝑖−1)𝑦 Φ
( 𝑦
𝜎

− 𝜎𝜂𝑖

)
𝑑𝑦

= −
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )
𝜂𝑖

𝜂𝑖 − 1
𝑒

(𝜎𝜂𝑖 )2
2

∫ ∞

𝑥

Φ
( 𝑦
𝜎

− 𝜎𝜂𝑖

)
𝑑𝑒−(𝜂𝑖−1)𝑦

= −
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )
𝜂𝑖

𝜂𝑖 − 1
𝑒

(𝜎𝜂𝑖 )2
2

[
𝑒−(𝜂𝑖−1)𝑦Φ

( 𝑦
𝜎

− 𝜎𝜂𝑖

)%%%∞
𝑥

−
∫ ∞

𝑥

𝑒−(𝜂𝑖−1)𝑦 𝑑Φ
( 𝑦
𝜎

− 𝜎𝜂𝑖

)]
(note: 𝜂𝑖 > 1)

=
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )
𝜂𝑖𝑒

(𝜎𝜂𝑖)2/2

𝜂𝑖 − 1

[
𝑒−

(𝜂2
𝑖 −1)𝜎2

2 Φ
(−𝑥
𝜎

+ 𝜎
)
+ 𝑒−(𝜂𝑖−1)𝑥Φ

( 𝑥
𝜎

− 𝜎𝜂𝑖

)]
,
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2.

Π−(𝑥;𝜎2, 𝜼 (𝑛) ) =
∫ ∞

𝑥

𝑒𝑦𝜙−(𝑦;𝜎2, 𝜼 (𝑛) ) 𝑑𝑦

=
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )𝜂𝑖𝑒
(𝜎𝜂𝑖 )2

2

∫ ∞

𝑥

𝑒 (𝜂𝑖+1)𝑦Φ
(−𝑦
𝜎

− 𝜎𝜂𝑖

)
𝑑𝑦

=
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )
𝜂𝑖

𝜂𝑖 + 1
𝑒

(𝜎𝜂𝑖 )2
2

[
𝑒 (𝜂𝑖+1)𝑦Φ

(−𝑦
𝜎

− 𝜎𝜂𝑖

)%%%∞
𝑥

−
∫ ∞

𝑥

𝑒 (𝜂𝑖+1)𝑦 𝑑Φ
(−𝑦
𝜎

− 𝜎𝜂𝑖

)]
,

(note: lim
𝑥→∞

𝑒𝛼𝑥Φ(𝛽𝑥 + 𝛿) = 0 when 𝛼 ≠ 0 and 𝛽 < 0)

=
𝑛∑
𝑖=1

Ω(𝑖; 𝜼 (𝑛) )
𝜂𝑖𝑒

(𝜎𝜂𝑖 )2
2

𝜂𝑖 + 1

[
𝑒−

(𝜂2
𝑖 −1)𝜎2

2 Φ
(−𝑥
𝜎

+ 𝜎
)
− 𝑒 (𝜂𝑖+1)𝑥Φ

(−𝑥
𝜎

− 𝜎𝜂𝑖

)]
,

3.

Λ(𝑥;𝜎2, 𝜼 (𝑛) , �̃� (𝑚) ) =
∫ ∞

𝑥

𝑒𝑦𝜑(𝑦;𝜎2, 𝜼 (𝑛) , �̃� (𝑚) ) 𝑑𝑦

=
𝑛∑
𝑖=1

𝑚∑
𝑗=1

Ω(𝑖; 𝜼 (𝑛) )Ω( 𝑗 ; �̃� (𝑚) )
𝜂𝑖𝜂 𝑗

𝜂𝑖 + 𝜂 𝑗

×
[
𝑒

(𝜎𝜂𝑖 )2
2

∫ ∞

𝑥

𝑒−(𝜂𝑖−1)𝑦Φ
( 𝑦
𝜎

− 𝜎𝜂𝑖

)
𝑑𝑦 + 𝑒

(𝜎�̃� 𝑗 )2
2

∫ ∞

𝑥

𝑒 ( �̃� 𝑗+1)𝑦Φ
(−𝑦
𝜎

− 𝜎𝜂 𝑗

)
𝑑𝑦

]
=

𝑛∑
𝑖=1

𝑚∑
𝑗=1

Ω(𝑖; 𝜼 (𝑛) )Ω( 𝑗 ; �̃� (𝑚) )
𝜂𝑖𝜂 𝑗

𝜂𝑖 + 𝜂 𝑗

×
⎡⎢⎢⎢⎢⎣
𝑒

(𝜎𝜂𝑖 )2
2

𝜂𝑖 − 1

(
𝑒−

(𝜂2
𝑖 −1)𝜎2

2 Φ
(−𝑥
𝜎

+ 𝜎
)
+ 𝑒−(𝜂𝑖−1)𝑥Φ

( 𝑥
𝜎

− 𝜎𝜂𝑖

))

+ 𝑒
(𝜎�̃� 𝑗 )2

2

𝜂 𝑗 + 1

(
𝑒−

( �̃�2
𝑗−1)𝜎2

2 Φ
(−𝑥
𝜎

+ 𝜎
)
− 𝑒 ( �̃� 𝑗+1)𝑥Φ

(−𝑥
𝜎

− 𝜎𝜂 𝑗

))⎤⎥⎥⎥⎥⎦ .
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