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Heat Kernels of Lorentz Cones
Hongming Ding

Abstract. We obtain an explicit formula for heat kernels of Lorentz cones, a family of classical symmetric
cones. By this formula, the heat kernel of a Lorentz cone is expressed by a function of time t and two eigen-
values of an element in the cone. We obtain also upper and lower bounds for the heat kernels of Lorentz
cones.

The irreducible symmetric cones, or equivalently the corresponding simple formally real
Jordan algebras, were classified in 1934 by Jordan, von Neumann, and Wigner [7] into four
families of classical cones together with a single exceptional cone. They are Πr(R), Πr(C),
Πr(H), the cones of all r × r positive definite matrices over R, C, H, the Lorentz cones Λn,
and Π3(O), the cone of all 3× 3 positive definite matrices over the algebra O of octonions
(cf. [4] or [3]). As summarized in a comprehensive research monograph [4], one important
analysis problem on symmetric cones is to construct various kernels, among which the heat
kernels provide important analytic and geometric informations of these cones.

[8] and [13] give an explicit formula for heat kernels of symmetric cones Πr(C). [12]
gives an explicit formula for heat kernels of Πr(H). [9] gives an explicit formula for heat
kernels of Πr(R). [10] and [11] prove the Anker’s conjecture [1] about the growth of the
heat kernels on symmetric spaces of noncompact type for Πr(H), Π3(O) and Πr(R). To
complete this study, we give in this note an explicit formula for heat kernels of Lorentz
cones Λn, another family of classical symmetric cones mentioned in the first paragraph,
and prove the Anker’s conjecture for these cones.

As well known (cf. [4]), the Lorentz cone Λn is defined by

Λn = {x ∈ Rn : x2
1 − x2

2 − · · · − x2
n > 0, x1 > 0},(1)

where n ≥ 2. G = R+×SO0(1, n−1) is the automorphism group ofΛn and K = SO(n−1)
is the maximal compact subgroup of G. Let p = (p1, . . . , pn) ∈ Λn, x = (x1, . . . , xn) ∈ Λn.
Since G acts on Λn transitively, there is g ∈ G such that g p = I = (1, 0, . . . , 0). Denote
z = gx. Since the rank of Λn is 2, z has a spectral decomposition z = λ1c1 + λ2c2, where
the eigenvalues λ1 and λ2 of z depend only on p, x ∈ Λn and are independent of choices of
g ∈ G. Setting λ1 = exp r1 and λ2 = exp r2, r1 = r1(p, x) and r2 = r2(p, x) are unique in
the sense r1 ≥ r2.

Recall that the heat kernel of Λn is a function H : R × R × R+ → R which satisfies the
following conditions:
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(H1) H is continuous in all three variables, is of class C2 in the first two variables, and is of
class C1 in the third variable.

(H2)

∂H

∂t
= LH,(2)

where L is the radial part of the Laplace-Beltrami operator

LH =
1

ωd

{
∂

∂r1

(
ωd ∂H

∂r1

)
+
∂

∂r2

(
ωd ∂H

∂r2

)}
(3)

with d = n− 2, and

ω = sinh
1

2
(r1 − r2).(4)

(H3) For any continuous function f on Λn with compact support,

lim
t→0+

c

∫ ∞
−∞

∫ ∞
−∞

H
(

r1(I, x), r2(I, x), t
)

f (r1, r2)|ω|d dr1 dr2 = f (0, 0),(5)

where c =
2n−3π

n
2−1Γ( n

2 )
(n−2)! (cf. [4, Sect. VI.2 and Exercise VI.3]).

The following lemma gives a heat kernel formula for a real hyperbolic space, and can be
found in Section 5.7 of [2], or Theorem 1 and its corollary of [6].

Lemma The function H : R × R × R+ → R given by

H(x, y, t) = (2π)−m exp(−m2t)

(
−

1

sinh r

∂

∂r

)m(
(4πt)−

1
2 exp

(
−

r2

4t

))
(6)

for d = 2m or

H(x, y, t) = (2π)−m exp

(
−

(
m−

1

2

)2

t

)
2
√

2

(
−

1

sinh r

∂

∂r

)m

∫ ∞
0

(
(4πt)−

1
2 exp

(
−

s2

4t

))
cosh s=cosh r+u2

du

(7)

for d = 2m− 1 satisfies the differential equation

∂u(r, t)

∂t
=

1

sinhd r

∂

∂r

(
sinhd r

∂u(r, t)

∂r

)
,(8)

where r = x − y in (6) and (7). Moreover,

lim
t→0+

∫ ∞
−∞

H(x, y, t) f (y)| sinhd y| dy = f (x).(9)
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We now state and prove the heat kernel formula for Lorentz cones.

Theorem 1 The heat kernel of the Lorentz cone Λn is

H(p, x, t) =
1

c
(2π)−m(4πt)−1 exp

(
−

1

2
m2t

)
exp

(
−

(r1 + r2)2

8t

)

×

(
−

1

sinh 1
2 (r1 − r2)

(
∂

∂r1
−
∂

∂r2

))m(
exp

(
−

(r1 − r2)2

8t

))(10)

for n = 2m + 2 or

H(p, x, t) =
1

c
(2π)−m(4πt)−1 exp

(
−

1

2

(
m−

1

2

)2

t

)

× exp

(
−

(r1 + r2)2

8t

)
2
√

2

(
−

1

sinh 1
2 (r1 − r2)

(
∂

∂r1
−
∂

∂r2

))m

∫ ∞
0

exp

(
−

y2

2t

)
cosh y=cosh 1

2 (r1−r2)+u2

du

(11)

for n = 2m + 1, where r1 = r1(p, x) and r2 = r2(p, x) are discussed above.

Proof It is clear that the function H given by (10) or (11) satisfies condition (H1). Let
s1 =

1
2 (r1 + r2), s2 =

1
2 (r1 − r2). It follows from (3) that

L =
1

2

∂2

∂s2
1

+
1

2ωd

∂

∂s2

(
ωd ∂

∂s2

)
,(12)

where ω = sinh s2. By a well known formula for the heat kernel of R, the Lemma, and a
variable change, the function H : R × R × R+ → R given by

H(s1, s2, t) =
1

2c
(2π)−m(2πt)−

1
2 exp

(
−

1

2
m2t

)
exp

(
−

s2
1

2t

)

×

(
−

1

sinh s2

∂

∂s2

)m(
(2πt)−

1
2 exp

(
−

s2
2

2t

))(13)

for n = 2m + 2 or

H(s1, s2, t) =
1

2c
(2π)−m(2πt)−

1
2 exp

(
−

1

2

(
m−

1

2

)2

t

)

× exp

(
−

s2
1

2t

)
2
√

2

(
−

1

sinh s2

∂

∂s2

)m

∫ ∞
0

(
(2πt)−

1
2 exp

(
−

y2

2t

))
cosh y=cosh s2+u2

du

(14)
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for n = 2m + 1 satisfies the differential equation

∂H

∂t
= LH =

1

2

∂2H

∂s2
1

+
1

2ωd

∂

∂s2

(
ωd ∂H

∂s2

)
.(15)

Substituting back to r1 and r2, we obtain that the function H given by (10) or (11) satis-
fies (2).

Similarily, (5) follows from (9) and the proof of the theorem is completed.

Remark I would like to thank the referee for the following simplifying observation: Any
symmetric cone V is a direct product as a Riemannian space of R and the subspace V1 =
{x ∈ V, det x = 1}. (One has to write x = es1 x1 with s1 ∈ R, x1 ∈ V1.) In the case of
the Lorentz cone V1 is a real hyperbolic space; so the equation (12) is easily understood in

that way. In (12), the term 1
2
∂2

∂s2
1

is the component due to R and the term 1
2ωd

∂
∂s2

(
ωd ∂
∂s2

)
the contribution from the hyperbolic space. Because of (12) or (15), the heat kernel of Λn

given by (10) or (11) is the product of heat kernels of R and of a real hyperbolic space.

In [1], J.-Ph. Anker gives an upper bound formula for the heat kernels of the symmetric
spaces U(p, q)/U(p) × U(q). Anker then conjecture that this upper bound holds for all
symmetric spaces of noncompact type. As pointed out in the Remark above, a symmetric
cone is a direct product of R and a symmetric space of non-compact type. The following
theorem follows from Theorem 1 above and Theorem 5.7.2 of [2] directly, and implies the
Anker’s conjecture for Lorentz cones.

Theorem 2 For all n ≥ 2, there exists a positive constant cn such that

c−1
n hn(r1, r2, t) ≤ H(p, x, t) ≤ cnhn(r1, r2, t),(16)

for all t > 0, where H(p, x, t) is the heat kernel of the Lorentz cone Λn given by (10) or (11),
r1 = r1(p, x) and r2 = r2(p, x) are discussed above, and

hn(r1, r2, t) = (4πt)−n/2 exp
(
−(n− 2)2t/4− (n− 2)(r1 − r2)/(2

√
2)− (r2

1 + r2
2)/(4t)

)
×
(
1 + (r1 − r2)/

√
2 + t

)n/2−2
(1 + (r1 − r2)/

√
2).

(17)
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