Heat Kernels of Lorentz Cones

Hongming Ding

Abstract

We obtain an explicit formula for heat kernels of Lorentz cones, a family of classical symmetric cones. By this formula, the heat kernel of a Lorentz cone is expressed by a function of timet and two eigenvalues of an element in the cone. We obtain also upper and lower bounds for the heat kernels of Lorentz cones.

Theirreduciblesymmetric cones, or equivalently the corresponding simpleformally real Jordan algebras, were classified in 1934 by Jordan, von Neumann, and Wigner [7] into four families of classical cones together with a single exceptional cone. They are $\Pi_{r}(R), \Pi_{r}(C)$, $\Pi_{r}(H)$, the cones of all $r \times r$ positive definite matrices over R, C, H, the Lorentz cones Λ_{n}, and $\Pi_{3}(\mathrm{O})$, the cone of all 3×3 positive definite matrices over the algebra O of octonions (cf. [4] or [3]). As summarized in a comprehensiveresearch monograph [4], oneimportant analysis problem on symmetric cones is to construct various kernels, among which the heat kernels provide important analytic and geometric informations of these cones.
[8] and [13] give an explicit formula for heat kernels of symmetric cones $\Pi_{r}(C)$. [12] gives an explicit formula for heat kernels of $\Pi_{r}(\mathrm{H})$. [9] gives an explicit formula for heat kernels of $\Pi_{r}(R)$. [10] and [11] prove the Anker's conjecture [1] about the growth of the heat kernels on symmetric spaces of noncompact type for $\Pi_{r}(\mathrm{H}), \Pi_{3}(\mathrm{O})$ and $\Pi_{r}(\mathrm{R})$. To complete this study, we give in this note an explicit formula for heat kernels of Lorentz cones Λ_{n}, another family of classical symmetric cones mentioned in the first paragraph, and prove the Anker's conjecture for these cones.

As well known (cf. [4]), the Lorentz cone Λ_{n} is defined by

$$
\begin{equation*}
\Lambda_{n}=\left\{x \in R^{n}: x_{1}^{2}-x_{2}^{2}-\cdots-x_{n}^{2}>0, x_{1}>0\right\} \tag{1}
\end{equation*}
$$

wheren $\geq 2 . \mathrm{G}=\mathrm{R}_{+} \times \mathrm{SO}_{0}(1, \mathrm{n}-1)$ is the automorphism group of Λ_{n} and $K=\mathrm{SO}(\mathrm{n}-1)$ is the maximal compact subgroup of G. Let $p=\left(p_{1}, \ldots, p_{n}\right) \in \Lambda_{n}, x=\left(x_{1}, \ldots, x_{n}\right) \in \Lambda_{n}$. Since G acts on Λ_{n} transitively, there is $g \in G$ such that $g p=1=(1,0, \ldots, 0)$. Denote $z=g x$. Since the rank of Λ_{n} is $2, z$ has a spectral decomposition $z=\lambda_{1} C_{1}+\lambda_{2} C_{2}$, where the eigenvalues λ_{1} and λ_{2} of z depend only on $p, x \in \Lambda_{n}$ and are independent of choices of $g \in G$. Setting $\lambda_{1}=\exp r_{1}$ and $\lambda_{2}=\exp r_{2}, r_{1}=r_{1}(p, x)$ and $r_{2}=r_{2}(p, x)$ are unique in the sense $r_{1} \geq r_{2}$.

Recall that the heat kernel of Λ_{n} is a function $H: R \times R \times R_{+} \rightarrow R$ which satisfies the following conditions:

[^0]$\left(\mathrm{H}_{1}\right) \mathrm{H}$ is continuous in all three variables, is of class C^{2} in the first two variables, and is of class C^{1} in the third variable.
$\left(\mathrm{H}_{2}\right)$
(2)
$$
\frac{\partial \mathrm{H}}{\partial \mathrm{t}}=\mathrm{LH}
$$
where L is the radial part of the Laplace-Beltrami operator
\[

$$
\begin{equation*}
\mathrm{LH}=\frac{1}{\omega^{\mathrm{d}}}\left\{\frac{\partial}{\partial \mathrm{r}_{1}}\left(\omega^{\mathrm{d}} \frac{\partial \mathrm{H}}{\partial \mathrm{r}_{1}}\right)+\frac{\partial}{\partial \mathrm{r}_{2}}\left(\omega^{\mathrm{d}} \frac{\partial \mathrm{H}}{\partial \mathrm{r}_{2}}\right)\right\} \tag{3}
\end{equation*}
$$

\]

with $d=n-2$, and

$$
\begin{equation*}
\omega=\sinh \frac{1}{2}\left(r_{1}-r_{2}\right) \tag{4}
\end{equation*}
$$

$\left(\mathrm{H}_{3}\right)$ For any continuous function f on Λ_{n} with compact support,
(5) $\lim _{t \rightarrow 0^{+}} c \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} H\left(r_{1}(I, x), r_{2}(I, x), t\right) f\left(r_{1}, r_{2}\right)|\omega|^{d} d r_{1} d r_{2}=f(0,0)$,
wherec $=\frac{2^{n-3} \pi^{\frac{n}{2}-1} \Gamma\left(\frac{n}{2}\right)}{(n-2)!}$ (cf. [4, Sect. VI. 2 and Exercise VI.3]).
The following lemma gives a heat kernel formula for a real hyperbolic space, and can be found in Section 5.7 of [2], or Theorem 1 and its corollary of [6].

Lemma Thefunction $\mathrm{H}: \mathrm{R} \times \mathrm{R} \times \mathrm{R}_{+} \rightarrow \mathrm{R}$ given by

$$
\begin{equation*}
H(x, y, t)=(2 \pi)^{-m} \exp \left(-m^{2} t\right)\left(-\frac{1}{\sinh r} \frac{\partial}{\partial r}\right)^{m}\left((4 \pi t)^{-\frac{1}{2}} \exp \left(-\frac{r^{2}}{4 t}\right)\right) \tag{6}
\end{equation*}
$$

for $d=2 m$ or

$$
\begin{equation*}
H(x, y, t)=(2 \pi)^{-m} \exp \left(-\left(m-\frac{1}{2}\right)^{2} t\right) 2 \sqrt{2}\left(-\frac{1}{\sinh r} \frac{\partial}{\partial r}\right)^{m} \tag{7}
\end{equation*}
$$

$$
\int_{0}^{\infty}\left((4 \pi t)^{-\frac{1}{2}} \exp \left(-\frac{s^{2}}{4 t}\right)\right)_{\cosh s=\cosh r+u^{2}} d u
$$

for $d=2 m-1$ satisfies the differential equation

$$
\begin{equation*}
\frac{\partial u(r, t)}{\partial t}=\frac{1}{\sinh ^{d} r} \frac{\partial}{\partial r}\left(\sinh ^{d} r \frac{\partial u(r, t)}{\partial r}\right) \tag{8}
\end{equation*}
$$

wherer $=x-y$ in (6) and (7). M oreover,

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \int_{-\infty}^{\infty} H(x, y, t) f(y)\left|\sinh ^{d} y\right| d y=f(x) \tag{9}
\end{equation*}
$$

We now state and prove the heat kernel formula for Lorentz cones.
Theorem 1 The heat kernel of the Lorentz cone Λ_{n} is

$$
\begin{align*}
H(p, x, t)= & \frac{1}{c}(2 \pi)^{-m}(4 \pi t)^{-1} \exp \left(-\frac{1}{2} m^{2} t\right) \exp \left(-\frac{\left(r_{1}+r_{2}\right)^{2}}{8 t}\right) \\
& \times\left(-\frac{1}{\sinh \frac{1}{2}\left(r_{1}-r_{2}\right)}\left(\frac{\partial}{\partial r_{1}}-\frac{\partial}{\partial r_{2}}\right)\right)^{m}\left(\exp \left(-\frac{\left(r_{1}-r_{2}\right)^{2}}{8 t}\right)\right) \tag{10}
\end{align*}
$$

for $n=2 m+2$ or

$$
\begin{align*}
H(p, x, t)= & \frac{1}{c}(2 \pi)^{-m}(4 \pi t)^{-1} \exp \left(-\frac{1}{2}\left(m-\frac{1}{2}\right)^{2} t\right) \\
& \times \exp \left(-\frac{\left(r_{1}+r_{2}\right)^{2}}{8 t}\right) 2 \sqrt{2}\left(-\frac{1}{\sinh \frac{1}{2}\left(r_{1}-r_{2}\right)}\left(\frac{\partial}{\partial r_{1}}-\frac{\partial}{\partial r_{2}}\right)\right)^{m} \tag{11}\\
& \int_{0}^{\infty} \exp \left(-\frac{y^{2}}{2 t}\right)_{\cosh y=\cosh \frac{1}{2}\left(r_{1}-r_{2}\right)+u^{2}}^{d u}
\end{align*}
$$

for $n=2 m+1$, where $r_{1}=r_{1}(p, x)$ and $r_{2}=r_{2}(p, x)$ are discussed above.
Proof It is clear that the function H given by (10) or (11) satisfies condition $\left(\mathrm{H}_{1}\right)$. Let $s_{1}=\frac{1}{2}\left(r_{1}+r_{2}\right), s_{2}=\frac{1}{2}\left(r_{1}-r_{2}\right)$. It follows from (3) that

$$
\begin{equation*}
\mathrm{L}=\frac{1}{2} \frac{\partial^{2}}{\partial \mathrm{~s}_{1}^{2}}+\frac{1}{2 \omega^{\mathrm{d}}} \frac{\partial}{\partial \mathrm{~s}_{2}}\left(\omega^{\mathrm{d}} \frac{\partial}{\partial \mathrm{~s}_{2}}\right), \tag{12}
\end{equation*}
$$

where $\omega=\sinh \mathrm{s}_{2}$. By a well known formula for the heat kernel of R , the Lemma, and a variable change, the function $H: R \times R \times R_{+} \rightarrow R$ given by

$$
\begin{align*}
H\left(s_{1}, s_{2}, t\right)= & \frac{1}{2 c}(2 \pi)^{-m}(2 \pi t)^{-\frac{1}{2}} \exp \left(-\frac{1}{2} m^{2} t\right) \exp \left(-\frac{s_{1}^{2}}{2 t}\right) \\
& \times\left(-\frac{1}{\sinh s_{2}} \frac{\partial}{\partial s_{2}}\right)^{m}\left((2 \pi t)^{-\frac{1}{2}} \exp \left(-\frac{s_{2}^{2}}{2 t}\right)\right) \tag{13}
\end{align*}
$$

for $n=2 m+2$ or

$$
\begin{align*}
H\left(s_{1}, s_{2}, t\right)= & \frac{1}{2 c}(2 \pi)^{-m}(2 \pi t)^{-\frac{1}{2}} \exp \left(-\frac{1}{2}\left(m-\frac{1}{2}\right)^{2} t\right) \\
& \times \exp \left(-\frac{s_{1}^{2}}{2 t}\right) 2 \sqrt{2}\left(-\frac{1}{\sinh s_{2}} \frac{\partial}{\partial s_{2}}\right)^{m} \tag{14}\\
& \int_{0}^{\infty}\left((2 \pi t)^{-\frac{1}{2}} \exp \left(-\frac{y^{2}}{2 t}\right)\right)_{\cosh y=\cosh s_{2}+u^{2}} d u
\end{align*}
$$

for $n=2 m+1$ satisfies the differential equation

$$
\begin{equation*}
\frac{\partial H}{\partial \mathrm{t}}=\mathrm{LH}=\frac{1}{2} \frac{\partial^{2} \mathrm{H}}{\partial s_{1}^{2}}+\frac{1}{2 \omega^{\mathrm{d}}} \frac{\partial}{\partial s_{2}}\left(\omega^{\mathrm{d}} \frac{\partial \mathrm{H}}{\partial s_{2}}\right) . \tag{15}
\end{equation*}
$$

Substituting back to r_{1} and r_{2}, we obtain that the function H given by (10) or (11) satisfies (2).

Similarily, (5) follows from (9) and the proof of the theorem is completed.
Remark I would like to thank the referee for the following simplifying observation: Any symmetric cone V is a direct product as a Riemannian space of R and the subspace $V_{1}=$ $\{x \in V$, $\operatorname{det} x=1\}$. (One has to write $x=e^{s_{1}} x_{1}$ with $s_{1} \in R, x_{1} \in V_{1}$.) In the case of the Lorentz cone V_{1} is a real hyperbolic space; so the equation (12) is easily understood in that way. In (12), the term $\frac{1}{2} \frac{\partial^{2}}{s_{1}^{2}}$ is the component due to R and the term $\frac{1}{2 \omega^{\mathrm{d}}} \frac{\partial}{\partial s_{2}}\left(\omega^{\mathrm{d}} \frac{\partial}{\partial s_{2}}\right)$ the contribution from the hyperbolic space. Because of (12) or (15), the heat kernel of Λ_{n} given by (10) or (11) is the product of heat kernels of R and of a real hyperbolic space.

In [1], J.-Ph. Anker gives an upper bound formula for the heat kernels of the symmetric spaces $U(p, q) / U(p) \times U(q)$. Anker then conjecture that this upper bound holds for all symmetric spaces of noncompact type. As pointed out in the Remark above, a symmetric cone is a direct product of R and a symmetric space of non-compact type. The following theorem follows from Theorem 1 above and Theorem 5.7.2 of [2] directly, and implies the Anker's conjecture for Lorentz cones.

Theorem 2 For all $n \geq 2$, there exists a positive constant c_{n} such that

$$
\begin{equation*}
c_{n}^{-1} h_{n}\left(r_{1}, r_{2}, t\right) \leq H(p, x, t) \leq c_{n} h_{n}\left(r_{1}, r_{2}, t\right) \tag{16}
\end{equation*}
$$

for all $t>0$, where $H(p, x, t)$ is the heat kernel of the Lorentz cone Λ_{n} given by (10) or (11), $r_{1}=r_{1}(p, x)$ and $r_{2}=r_{2}(p, x)$ are discussed above, and

$$
\begin{align*}
& h_{n}\left(r_{1}, r_{2}, t\right)=(4 \pi t)^{-n / 2} \exp \left(-(n-2)^{2} t / 4-(n-2)\left(r_{1}-r_{2}\right) /(2 \sqrt{2})-\left(r_{1}^{2}+r_{2}^{2}\right) /(4 t)\right) \tag{17}\\
& \times\left(1+\left(r_{1}-r_{2}\right) / \sqrt{2}+t\right)^{n / 2-2}\left(1+\left(r_{1}-r_{2}\right) / \sqrt{2}\right)
\end{align*}
$$

References

[1] J.-Ph. Anker, Lenoyau de la chaleur sur les espaces symétriques $U(p, q) / U(p) \times U(q)$. Lecture Notes in M ath. 1359, Springer-Verlag, New York, 1988, 60-82.
[2] E. B. Davies, Heat kernels and spectral theory. Cambridge University Press, 1989.
[3] H. Ding, K. Gross and D. Richards, Ramanujan's master theorem for symmetric cones. Pacific J. M ath. (2) 175(1996), 447-490.
[4] J. Faraut and A. Koranyi, Analysis on symmetric cones. Oxford Sci. Publ., 1994.
[5] S. Helgason, Groups and geometric analysis. Academic Press, 1984.
[6] Y. Hong, The heat kernels of some symmetric spaces. In: International Symposium in Memory of Hua Loo Keng, Vol. II (Beijing, 1988), Springer-Verlag, Berlin, 1991, 143-155.
[7] P. Jordan, J. von Neumann and E. P. Wigner, On algebraic generalizations of the quantum mechanical formalism. Ann. M ath. 36(1934), 29-64.
[8] Q. Lu, The heat kernels of symmetric spaces. In: Differential Geometry: Geometry in M athematical Physics and Related topics (Los Angeles, CA, 1990), Proc. Sympos. Pure M ath. 54(1993), Part 2, Amer. M ath. Soc., Providence, RI, 401-409.
[9] P. Sawyer, Theheat equation on the spaces of positive definitematrices. Canad. J. M ath. (3) 44(1992), 624-651.
[10] , On an upper bound for the heat kernel on $\mathrm{SU}^{*}(2 n) / \mathrm{Sp}(\mathrm{n})$. Canad. Bull. M ath. (3) 37(1994), 408418.
[11] __, Estimates for the heat kernel on SL(n, R)/ SO (n). Canad. J. M ath. (2) 49(1997), 359-372.
[12] A. P. Veselov and O. A. Chalykh, Explicit formulas for spherical functions on symmetric spaces of type All. Functional Anal. Appl. (1) 26(1992), 59-60.
[13] G. Wang and Y. Hong, The heat kernels on the symmetric spaces $\operatorname{Sp}(n)$ and $G L(n, C) / U(n)$. J. South China Univ. of Tech. (4) 20(1992), 324-341.

Department of M athematics and Computer Science
Saint Louis University
221 N orth Grand Blvd.
St. Louis, M O 63103
USA

[^0]: Received by the editors August 13, 1997; revised April 8, 1998.
 This research was supported in part by the USA National Science Foundation grant DM S-9500907.
 AM S subject classification: Primary: 35K 05, 43A85; secondary: 35K15, 80A20.
 Keywords: Lorentz cone, symmetric cone, Jordan algebra, heat kernel, heat equation, Laplace-Beltrami operator, eigenvalues.
 (C)Canadian M athematical Society 1999.

