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Abstract
Given that nearly half of the Indian labor force is employed in agriculture, extreme weather
events may harm most of the country’s population. By exploiting annual variation within
Indian districts, I test whether greater temperature fluctuations significantly decrease the
output value of 13 major crops. I find that a 1°C deviation above the annual mean tem-
perature leads to a 21.3 percentage point decline in output value for a given year, indicating
substantial losses from large fluctuations in temperature. I also find evidence that propor-
tion of crop area irrigated and fertilizer usage mitigates the negative impacts of tempera-
ture shocks.
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Introduction

Climate change is detrimental to economic development, with estimates indicating that
warming has cost the US and the EU at least 4 trillion dollars (Burke and Tanutama
2019). Early work in the climate-economy literature applies cross-sectional methods to
study the relationship between climate and economic variables. Gallup, Sachs, and
Mellinger (1999) find that countries in the tropics are around 50% poorer per capita than
countries not in the tropics in 1950. Although a clear negative relationship exists between
temperature and income across countries, this relationship does not capture the causal
effect of temperature on income. Acemoglu, Johnson, and Robinson (2001) argue that this
correlation is driven by characteristics such as institutional quality, as warmer countries
tend to be poorer and have more extractive institutions. To address the issue of spurious
correlation, more recent papers apply panel methods that exploit temporal variation in
climate and economic variables (Burke and Tanutama 2019; Dell, Jones, and Olken
2012; Hsiang 2010).

My paper builds on top of the panel methods to investigate the efficacy of weather
shock mitigation mechanisms in India. Agriculture constituted 43% of the total share
of employment in India in 2018 (World Bank 2018), and the livelihoods of a large share
of the Indian population depend on agriculture. Given that nearly half of the Indian labor

© The Author(s), 2022. Published by Cambridge University Press on behalf of the Northeastern Agricultural and Resource
Economics Association. This is an Open Access article, distributed under the terms of the Creative Commons Attribution
licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction,
provided the original article is properly cited.

Agricultural and Resource Economics Review (2022), 51, 499–516
doi:10.1017/age.2022.20

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

02
2.

20
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://orcid.org/0000-0002-3611-1007
mailto:pmanoha2@u.rochester.edu
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/age.2022.20
https://doi.org/10.1017/age.2022.20


force is employed in agriculture and that weather is a significant input into agricultural
production, understanding the effectiveness of mitigation mechanisms is important in
countering the negative impacts of weather shocks. By exploiting year-to-year variation
in climate and economic variables, I identify the effects of irrigated area and fertilizer usage
in mitigating heat shocks. This is because year-to-year fluctuations in weather are presum-
ably random from the perspective of farmers (Dell, Jones, and Olken 2014).

This paper contributes to the literature on weather shock mitigation mechanisms and
agricultural output in India. Prior studies have investigated the impacts of climate change
on agricultural output in India, using panel methods that control for time-invariant char-
acteristics across administrative regions (Auffhammer, Ramanathan, and Vincent 2012;
Auffhammer and Carleton 2018; Blakeslee and Fishman 2018; Birthal et al. 2014;
Burgess et al. 2014; Carleton 2017). Auffhammer and Carleton (2018) examined whether
crop diversity is associated with higher farm revenues in years of drought, and they find
that districts with higher diversity in their crop mixes partially mitigate the presence of
droughts – additionally, this effect is concentrated in districts with a smaller proportion
of irrigated area. Blakeslee and Fishman (2018) studied the effect of weather shocks on
crime and crop yields, as well as if irrigation mitigates the effect of negative rainfall shocks
on crime. Carleton (2017) analyzed the relationship between suicide rates and weather and
found that rainfall may mitigate suicide rates through an agricultural channel. Birthal et al.
(2014), the paper that is most closely related to mine, studied the direct effects of weather
on specific crops in India. They also evaluated whether irrigation was effective in mitigat-
ing the negative impacts of a rise in maximum and minimum temperatures on the yields of
specific crops. However, it is not clear if this effect captures intercrop substitution, that is
farmers substituting away from one crop to another crop that is more heat-resistant. In
contrast to their study, my key outcome variable is crop output value, which is the sum of
the revenues of each crop. Therefore, my estimates may be more likely to take intercrop
substitution into account. I also examine whether there are differential effects of tempera-
ture shocks on output value by district fertilizer usage and proportion of area irrigated,
which will indicate whether fertilizer usage and irrigation are effective mitigation mech-
anisms against heat shocks. The expansion of irrigated area may reduce soil temperatures,
promoting crop growth (Dong et al., 2016; Wang et al. 2000), and increased fertilizer usage
may not be as effective under higher temperatures that leads to hotter soil temperature
(Bijoor et al. 2008).

I find that a 1°C deviation above the annual mean temperature leads to a 21.3 percent-
age point decline in output value within a state for a given year, which is qualitatively simi-
lar to what other studies in India find. Carleton (2017) concludes that annual yields fall by
1.3% for every growing season day above 20°C and that yields do not respond to nongrow-
ing season heat. Using a Monte Carlo Simulation, Auffhammer, Ramanathan, and Vincent
(2012) observe that the cumulative harvest of rice, India’s most cultivated crop, would have
been 5.67%, or 75 million tons, higher in the absence of climate change, where the absence
of climate change is defined as no change in drought frequency as well as no warming of
nights and lessening of rainfall at the end of the growing season. Burgess et al. (2014) find
that agricultural yields fall by 12.6% in response to a one standard deviation increase in
high-temperature days within a year. Blakeslee and Fishman (2018) find that temperature
shocks lead to a crop production loss of 8.4%. Birthal et al. (2014) examine crops during
the Kharif and Rabi seasons and find negative effects of maximum temperature on all the
crops they study.

In addition to assessing the aggregate damages caused by temperature shocks on output
value, I also observe that irrigation, measured as the proportion of crop area irrigated, mit-
igates the negative impact of temperature shocks on output value (although the estimated
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effect is imprecisely estimated), while fertilizer usage is significantly effective in mitigation
(and the effect is statistically significant). Birthal et al. (2014), the only other study that
directly evaluates the effectiveness of irrigation as a mitigation mechanism to protect agri-
cultural output, find that irrigation counterbalances the negative effect of temperature on
rice, groundnut, wheat, and rapeseed-mustard. As far as I am aware, no other studies on
India evaluate whether fertilizer usage is effective in mitigating the negative impact of tem-
perature shocks.

The rest of the paper proceeds as follows. Section 2 motivates the hypotheses of the
study. Then, Section 3 provides the theoretical background that motivates the empirical
specification. Section 4 presents the data source, construction, and summary statistics.
Section 5 explains the empirical approach and estimation strategy, while Section 6 explains
the estimation results. Section 7 concludes.

Setting

India provides rich within-district variation to study the impact of temperature
on agriculture
The data I use to investigate how temperature shocks affect output value span half a cen-
tury, as the district-year observations begin in 1966 and end in 2015. This large span of
time provides me with rich within-district variation, especially in a country such as India
that has developed tremendously over the course of the past fifty to sixty years. Notably,
the Green Revolution steadily increased crop yields and boosted crop production across
the world beginning in the 1950s (Schlenker 2019).

In addition to the large number of years that the data provides, there are also a very
large number of districts across the country. The data I use have around 313 apportioned
districts; essentially, these districts follow 1966 boundaries, and the data for the new dis-
tricts are apportioned back to the parent districts. Both the large number of years and the
large number of districts provide me with rich within-district variation to study the impact
of temperature shocks on agriculture.

Figure 1 depicts the change in temperature, rainfall, and rice yields from 1966 to 2015
for districts across the country. It appears that the majority of the districts have had an
increase in temperature from 1966 to 2015, which is expected given global warming.
However, a sizable amount of districts have had a decrease in temperature from 1966
to 2015. This is not necessarily surprising, however, because this map captures the raw
difference in temperature between the years 2015 and 1966. It does not capture the trend
in temperature over time. Therefore, districts where temperature decreased from 1966 to
2015 could still have an increasing trend in temperature.

Figure 1. Change in temperature, rainfall, and log output value, 1966–2015.
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In contrast to the change in temperature, the change in rainfall from 1966 to 2015 fol-
lows less of a clear pattern. Some districts appear to have had an increase in rainfall from
1966 to 2015, while other districts appear to have had a decrease in rainfall in the same
time span. Once again, there is a distinction between the trend in rainfall and the raw
difference in rainfall from 1966 to 2015; this map captures the latter. Nevertheless, it is
not clear whether rainfall is trending upward or downward over time. This suggests that
the change in rainfall from 1966 to 2015 is highly location-varying.

The change in log output value from 1966 to 2015 follows a relatively clear pattern:
most districts have experienced an increase – although not all districts. Over the past fifty
to sixty years, agricultural technology has drastically improved, especially in developing
countries such as India. The Green Revolution in the 1950s and 1960s in particular is what
spurred large boosts in crop yields (Schlenker 2019). From the figure, it is clear that output
value has trended upward over time.

Temperature is trending upward over time
One of the features of global warming is that land surface temperatures are increasing over
time, and estimates indicate that global land surface temperatures have increased by
around 0.9°C over the past fifty years (Rohde and Hausfather 2020).

Figure 2 depicts the temperature trend line for twenty states. The solid line represents
the actual annual average temperature in degrees Celsius, and the dotted line represents the
trend line of temperature in degrees Celsius. The trend line was constructed by taking the
moving average of temperature over the past 5 years.

From examining the moving average line for each state, it is indeed the case that tem-
perature is trending over time. However, some states have experienced faster warming
than other states. For instance, states such as Tamil Nadu, Uttarakhand, and Bihar display
a clear upward trend in temperature, while states such as Orissa, Jharkhand, and Madhya
Pradesh display a weaker (although still increasing) trend in temperature. The takeaway is
that state-level temperature trends seem to be universally increasing, with some states
experiencing greater warming than others.

How does climate change make farmers worse off?
My hypothesis for how climate change makes farmers worse off is depicted below:

climate change ) greater temperature fluctuations ) higher probability of negative
income shock for farmers

The first part of the proposed mechanism is that climate change leads to greater fluc-
tuations in average temperature. Climate patterns are rapidly shifting across the world due
to climate change. Moreover, climate scientists claim that extreme weather events, such as
storms and heat waves, may occur more often in the future as a result of climate change
(Coumou and Rahmstorf 2012; Katz and Brown 1992; Rahmstorf and Coumou 2011;
Schär et al. 2004). This implies that not only will the average temperature level rise over
time but the average temperature level will become more volatile over time. Nonetheless,
there is mixed evidence of this. Huntingford et al. (2013) find that there is significant geo-
graphic variation in annual temperature fluctuations over the past few decades, but the
time-evolving standard deviation of globally averaged temperature has remained fairly
constant. On the other hand, Bathiany et al. (2018) show that climate models consistently
predict that temperature variability will increase in the coming decades, particularly in
tropical countries, and that this is driven by large increases in the time-evolving standard
deviation over tropical land in the summer season.

502 Pramod Manohar

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/a

ge
.2

02
2.

20
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/age.2022.20


To check whether average annual temperature is indeed becoming more volatile over
time, I compute the state-level rolling standard deviation. This computation is done by
taking the moving average of the standard deviation of temperature over the past five
years. After plotting the rolling standard deviation over time (the results of which can
be checked in Figure A1 in the appendix), the trend in the standard deviation of average
annual temperature appears to be mixed. Some states exhibit an increase in the standard
deviation of temperature, while others exhibit a decrease or no trend at all. States such as
West Bengal have an upward trend in temperature volatility, while states such as Kerala
have a downward trend in temperature volatility. States like Telangana and Karnataka
have no discernible trend. Overall, the trend in temperature volatility is mixed.

The second part of the proposed mechanism is that greater temperature fluctuations
lead to a higher probability that farmers face a negative income shock. Crops are not fully
resistant to large fluctuations in temperature, so increases in temperature fluctuation

Figure 2. State-level temperature trends (�C).
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would directly decrease crop output (Schlenker and Roberts 2009). In addition, weather is
stochastic in the short-run from the perspective of farmers, and they thus find it difficult to
anticipate the timing and intensity of temperature fluctuations (Dell, Jones, and Olkens
2014). Moreover, given that India is a country with scarce formal insurance networks
in rural areas, it is difficult for farmers to fully insure themselves against the risk of an
unexpected heat shock or low rainfall (Aditya and Kishore 2018). Taraz (2018) finds that
higher yields significantly harm yields in all Indian districts; for example, an additional day
in the 27–30°C range reduces yields by 0.99%, relative to a day in the 12–15°C range. Even
after taking adaptation into account, farmers are only able to recover a small portion of
their lost profits, no more than 9% (Taraz 2017). Other studies find qualitative similar
results, although the magnitude of their estimates differs. Guiteras (2009) predicts that
the yields of crops in India would fall by 25 percent in the long-run (2070–2099), in
the absence of adaptation. Birthal et al. (2014) conclude long-run (2100) impacts of a
16 percent fall in yields. Blakeslee and Fishman (2018) estimate that positive temperature
shocks are associated with nearly a 5% fall in wages during the monsoon season, and
Burgess et al. (2014) find that one standard deviation increase in high-temperature days
within a given year reduces wages by 9.8%. This suggests the presence of direct tempera-
ture impacts on wages – in addition to direct temperature impacts on yields.

Theoretical background

Growth and level effects
The literature on the impact of weather shocks on aggregate output makes the distinction
between growth effects and level effects (Burke, Hsiang, and Miguel 2015; Burke and
Tanutama, 2019; Dell, Jones, and Olken 2012). The “level effects” of weather shocks on
output represent instances where the shock affects output solely in the initial period; that
is, the effect is transitory and reverses itself. On the other hand, the “growth effects” of
weather shocks on output represent instances where the shock affects output both in
the initial period and in future periods. This distinction is important because the presence
of these effects depends on the channel through which the weather shock affects aggregate
output. Growth and level effects on output are present when temperature shocks impact
institutional quality, which is linked to productivity growth (Dell, Jones, and Olken 2012).
However, only level effects on output are present when temperature shocks reduce agri-
cultural yields (Dell, Jones, and Olken 2012).

My study focuses solely on the agricultural channel, so I am only concerned with level
effects on output. Prior studies that investigate the effect of weather shocks on aggregate
output estimate distributed lag models to capture level and growth effects on output
(Burke, Hsiang, and Miguel 2015; Burke and Tanutama 2019; Dell, Jones, and Olken
2012). Contrarily, the main dependent variable in my study is crop output value, and
weather shocks only affect crop yields in the same period; that is, there are no growth
effects present. This motivates me to construct my main estimating equation closely to
the production function of Burke and Tanutama (2019), where the temperature and rain-
fall terms in time t only affect crop output value in time t.

Determinants of agricultural production
Temperature and rainfall are indirect, albeit significant, inputs in the production of crops
(Auffhammer, Ramanathan, and Vincent 2012; Lobell and Burke 2008; Schlenker and
Roberts 2009). Moreover, temperature has nonlinear effects on crop production, with the
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hottest days driving the majority of the negative effect on output (Burgess et al. 2014; Guiteras
2009; Moore and Lobell 2015; Schlenker and Lobell 2010; Schlenker and Roberts 2009). Prior
studies show that temperature impacts outweigh rainfall impacts, yet very high and low levels
of rainfall indeed damage yields (Fishman 2016; Schlenker and Roberts 2009), and that this
effect is driven primarily by rainfall patterns in the growing season.

Agricultural production is broadly a function of weather, quality of the land, farmer
technologies, capital, and labor. Two significant inputs in agricultural production include
irrigated area and fertilizer use (Birthal et al. 2014; Deschênes and Greenstone 2007).
Fertilizer mixtures are often a combination of nitrogen, phosphate, and potash.
Irrigation systems vary across India, although most irrigation in India is groundwater well
based, serving around 60% of irrigated agriculture (Jain et al. 2021), where water pumps
are used to extract groundwater for irrigation. Soil quality and soil characteristics, such as
temperature, pH, and depth, are also important inputs that promote crop growth, as well
as elevation of the farm location (Birthal et al. 2014; Deschênes and Greenstone 2007). Of
course, seeds are needed to plant the crops as well, in addition to pesticides and insecticides
to protect the crops from invasive organisms. Technologies such as tractors are inputs
which farmers have direct control over, and which affect crop production – these technol-
ogies are part of the stock of capital inputs, which include machinery that are central to the
farm’s operations. Agricultural laborers perform numerous tasks related to cultivating
crops, and they work out on the fields (Barton and Cooper 1948) – a larger number of
laborers may increase crop production. The total population within a district may also
affect crop production, as a larger population demands higher food consumption.

Data

Data source
The data sets I use to conduct my analysis come from the District-Level Database for Indian
Agriculture and Allied Sectors. This database was constructed by the Tata-Cornell Institute
and the International Crops Research Institute for the Semi-Arid Tropics, with the intent to
provide access to agriculture and nutrition data in India. Before the release of this database,
there was no single platform that contained this India-specific data.

This database contains data on nearly thirty crops, spans the years 1966 to 2015, and
covers 313 apportioned districts; that is, the districts follow 1966 boundaries but the data
for the new districts are apportioned back to the parent districts. Moreover, it contains all
the agriculture and climate-related data I need to carry out my analysis, including yields,
prices, temperature, and rainfall. The data for all the variables (excluding temperature) are
structured annually at the district level. Thus, each observation represents a unique
district-year combination.

Data construction
In the database, temperature is recorded monthly. And the temperature data consist of
only two variables: the monthly maximum and the monthly minimum temperature. To
construct the annual temperature variable, I first compute the monthly average tempera-
ture by averaging the monthly maximum and the monthly minimum temperature. Then, I
average over the monthly average temperatures within a particular year to obtain the aver-
age annual temperature for that year.

The database does not have variables for the crop revenues or the amount of crops sold,
so I construct revenue estimates for thirteen out of the thirty crops. These 13 crops include
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rice, wheat, sorghum, pearl millet, maize, finger millet, barley, chickpea, pigeon pea,
groundnut, sesamum, linseed, and sugarcane. I focus the analysis solely on these crops,
as they are major staple crops both in India and across the globe. To construct revenue
estimates, I first adjust the crop prices at harvest for inflation using the India Consumer
Price Index. Then, I take the product of crop price and crop production to obtain the esti-
mated crop revenue. The main assumption here is that all crops that were produced within
district d in year t were sold at the harvest price. To compute the output value of the thir-
teen crops, I simply sum over the revenues of each crop.

One of the shortcomings with the database is that about half of the crop price data is
missing. To address this, I adopt an imputation strategy to fill in the missing crop price
observations. In particular, I employ predictive mean matching using crop-specific vari-
ables to fill in the missing crop price observations. I also employ a similar imputation strat-
egy for control variables, including fertilizer usage and the average proportion of crop area
irrigated to increase the statistical power and accuracy of my estimates. I explain in greater
detail the imputation strategy as well as the data construction steps in the appendix.

Summary statistics
Table 1 shows the number of observations, mean, and standard deviation for each of the
variables used in the main estimation, over the course of the entire sampling period. Panel
A displays the summary statistics for the key explanatory and outcome variables, including
annual average temperature, annual rainfall, and total output value. Each observation rep-
resents a unique district-year combination. The mean of annual average temperature is
25.06°C, and the standard deviation is 4.05°C. The mean of annual rainfall (in 1000
mm/year) is 1.3, and the standard deviation is 0.72. And the mean of total output value
(measured in 10,000,000 Indian Rupees), which is a composite variable constructed from
13 crops1, is 1,364.10, and the standard deviation is 1,263.62. As indicated by the standard
deviation, there is significant variation in total output value.

Panel B displays the summary statistics for the control variables. The mean of fertilizer
usage (measured in 100,000 tons) is 0.40, and the standard deviation is 0.49. Additionally,
the mean of average proportion of area irrigated is 0.31 while the standard deviation is
0.19. Other controls employed in the analysis include total population, agricultural
laborers, the area of operational holdings within districts, and the area of source-wise irri-
gation. Source-wise irrigation serves as a proxy for the stock of capital inputs, and the area
of operational holdings proxies for characteristics of the land and the wealth of districts.

Empirical approach

Estimating the trend in temperature over time
To quantify the aggregate trend in average annual temperature at the district level, I esti-
mate the following equation using OLS:

Tdt � β0yeart � εdt (1)

On the left-hand side of the equation is Tdt , which is the average annual temperature at
district d in year t. On the right-hand side of the equation is yeart , which spans from 1966

1Refer to Table A1 in the Appendix to examine the summary statistics for the 13 crops that constitute
output value.
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to 2015. Assuming a statistically significant estimate, β̂0 > 0 would imply that average
annual temperature is increasing over time at the district level.

From Table A2, the estimated coefficient is β̂0 � 0:013. Because the sampling period
ranges from 1966 to 2015, the average annual temperature has trended upward by approx-
imately 0.64°C within this span of time. This is a little lower than the estimates that indi-
cate that land surface temperatures have increased by around 0.9°C over the past fifty years
(Rohde and Hausfather 2020). Nevertheless, this estimated trend is still significantly posi-
tive and suggests that the temperature level has increased over time.

Estimating the effect of temperature on output value
To estimate the effect of temperature on output value, I use the annual mean temperature
and rainfall within each district to compute simple differences, or deviations, from the
mean. That is, I specify weather shocks as deviations from the annual, district-specific
mean. The annual mean temperature is the average temperature over all the years within
a particular district (annual mean rainfall is computed in a similar fashion), and the rest of
the variables represent their respective annual values. To quantify the effect of temperature

Table 1. Summary statistics, 1966–2015

Observations Mean
Std.
dev.

Panel A. Key explanatory/outcome variables annual average
temperature (°C)

14,884 25.06 4.05

Annual rainfall (1000 mm/year) 14,850 1.13 0.72

Total output value (10,000,000 Rs.; base year 2015) 14,430 1,364.10 1,263.62

Panel B. control variables

Fertilizer usage (100,000 tons) 14,542 0.40 0.49

Average proportion of area irrigated 13,435 0.31 0.19

Total population (1,000s) 14,850 2,505.51 1,701.16

Agricultural laborers (1,000s) 14,850 262.71 274.44

Marginal area operational holding (1,000 ha) 14,850 71.57 72.69

Small area operational holding (1,000 ha) 14,850 80.51 64.47

Semi-medium area operational holding (1,000 ha) 14,850 104.69 79.06

Medium area operational holding (1,000 ha) 14,850 124.49 117.47

Large area operational holding (1,000 ha) 14,850 92.01 180.15

Canals Area (1,000 ha) 14,850 45.97 89.33

Tanks area (1,000 ha) 14,850 10.90 23.57

Tube wells area (1,000 ha) 14,850 53.42 89.06

Other wells area (1,000 ha) 14,850 31.67 48.65

Other water sources area (1,000 ha) 14,850 7.20 18.81

Note: The estimation is based on 313 districts and 49 years, and the table only includes district-year observations where
the average yearly temperature variable is not missing.
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shocks on output value, I estimate the following equation using OLS:

lnydt � β1Tdt � β2T2
dt � γ1Pdt � γ2P2

dt � ρXdt�1 � αs � δt � εdt (2)

The outcome variable is lnydt , or log output value at district d in year t. Output value is a
composite variable, as it is the sum of the revenue of 13 crops. Formally, output value is
expressed as follows: ydt �

P
c2C productioncdt × pricecdt , where c represents the crop and

C is the set of all 13 crops. Production is measured in quintals, and the harvest price is
measured in rupees per quintal (thus output value is measured in rupees). On the
right-hand side of the equation are Tdt and T2

dt , which represent the deviation from the
annual mean in temperature and the deviation from the annual mean in temperature
squared, respectively. Likewise, Pdt and P2

dt represent the deviation from the annual mean
in rainfall and the deviation from the annual mean in rainfall squared. The interpretation
of my estimates is that a 1�C deviation above the annual mean temperature leads to a
�β1 � 2β2�% change in output value. αs and δt represent state fixed effects and year fixed
effects, respectively. By employing state fixed effects, I control for the time-invariant char-
acteristics within states that affect output value (such as the persistence of institutions, soil
characteristics, and elevation). Moreover, employing state fixed effects permits me to esti-
mate the within-state effect. By employing year fixed effects, I control for time-varying
characteristics that are common across all districts. Lastly, Xdt�1 is a vector of time-varying
characteristics that are plausibly correlated with weather shocks and output value. Using
the prior year, values of the variables in this vector mitigates reverse causality.

Estimating the efficacy of mitigation mechanisms
The effect of temperature deviations from the annual mean on output value is likely vary-
ing according to the amount of irrigation and fertilizer usage within a district. I hypothe-
size that heat shocks decrease output value more in districts with less irrigation and
fertilizer usage relative to districts with more of these two. To test this hypothesis, I esti-
mate the following equation (separately for irrigation and fertilizer usage) using OLS:

lnydt � β1Tdt � β2T
2
dt � φ1�1�MitigationMechanism < x�dt�1	 (3)

� φ2�Tdt × 1�MitigationMechanism < x�dt�1	

� φ3�T2
dt × 1�MitigationMechanism < x�dt�1	

� γ1Pdt � γ2P2
dt � αs � δt � εdt

My outcome of interest is once again log output value in district d in year t, and I once
again include Tdt , Pdt , and their quadratic terms. To capture the differential effect of heat
shocks on output value, I include interaction terms between the deviation from the annual
mean in temperature at district d in year t and an indicator for if the amount of a mitiga-
tion mechanism is less than some threshold x at district d in year t � 1. I use the prior year
value of the mitigation mechanism to mitigate reverse causality, as it could be the case that
farmers respond to poor harvests by employing more of a certain mitigation mechanism.
The interpretation of the estimates here is that a 1�C deviation above the annual mean in
districts below the threshold leads to a �φ2 � 2φ3�% change in output value, relative to
districts above the threshold.
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Results

Estimated effect of temperature on output value
Table 2 displays the estimation results for the effects of weather shocks on output value,
and the estimation results do indeed indicate that weather shocks significantly impact out-
put value. In column (1), regressing log output value on temperature (and controlling for
rainfall, irrigation, fertilizer usage, and labor) yields an effect size of −0.655. This indicates
that a 1°C deviation in temperature above the annual mean decreases crop output value by
65.5%. After adding in extra controls and state and year fixed effects, the effect size
decreases. In column (3), a 1°C deviation in temperature above the annual mean decreases
output value by a total of 21.3 percentage points. This is indicative of substantial losses in
output value from large temperature fluctuations. On the contrary, a 1°C deviation in tem-
perature below the annual mean increases output value by 16.3 percentage points. The
estimated effect is statistically significant at the 5% level, after jointly testing whether
the temperature and temperature squared terms are zero.

As expected, the point estimate on rainfall is positive while the point estimate on rain-
fall squared is negative. This means that greater rainfall does indeed lead to higher output
value, but for further increases in rainfall the magnitude of the increase in output value
decreases. Thus, output value responds concavely to rainfall. The point estimate on prior
year fertilizer usage is positive, so increases in fertilizer usage are associated with higher
output value. The magnitudes of the point estimates for temperature and rainfall suggest
that climate variables are important inputs in agriculture. In particular, unexpected heat
shocks have significant negative effects on output value, while unexpected excess rainfall
has significant positive effects on output value. This indicates that output value is highly
sensitive to unexpected weather events.

Table 2. Effect of temperature on output value

(1) (2) (3)

Temperature −0.381*** −0.317*** −0.025

(0.022) (0.020) (0.028)

Temperature squared −0.137*** −0.168*** −0.094**

(0.032) (0.030) (0.038)

Rainfall 0.188*** 0.164*** 0.111***

(0.032) (0.028) (0.024)

Rainfall squared −0.118*** −0.063*** −0.030

(0.027) (0.022) (0.016)

Effect size −0.655 −0.653 −0.213

P-value from F-Test 0.000*** 0.000*** 0.041**

Observations 13,045 13,045 13,045

R-squared 0.365 0.487 0.674

Note: The temperature and rainfall terms represent the deviation from the annual mean. Columns (1)-(2) do not include
state fixed effects and year fixed effects. Column (1) includes controls for irrigation, fertilizer usage, and labor, while
Columns (2) and (3) include the full set of controls for labor, land, and capital, all of which are lagged by one year.
Robust standard errors are reported. ***denotes 1% significance, **5% significance, *10% significance.
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Although prior year fertilizer usage may not be a perfectly accurate indicator of the
current year’s fertilizer usage (as current year fertilizer usage depends on current weather
and crop conditions), I control for prior year fertilizer usage to mitigate reverse causality. It
could be the case that farmers adjust their current fertilizer usage in response to changes in
output value within the concurrent year. To observe whether controlling for current fer-
tilizer usage rather than prior year fertilizer usage changes the estimates, I rerun the esti-
mating equation from Table 2 with current fertilizer usage (and the rest of the controls
remain lagged by one year). Table A3 displays the estimation results for the main panel
specification with current fertilizer usage. The estimated effect sizes between the two tables
are very similar, with an effect size of −0.655 in column (1) in Table 2 and an effect size of
−0.673 in the corresponding column of Table A3. Likewise, the estimated effect size in
column (2) in Table 2 is −0.653, while the estimated effect size in the corresponding col-
umn of Table A3 is −0.672, so the estimated effects are quite similar after using current
year fertilizer usage. For the main column (Column (3)), the estimated effect size is −0.213
in Table 2 and −0.189 in Column (3) of Table A3.

Mitigation mechanism #1: irrigation
Table 3 shows the estimation results for the differential effect of temperature according to
the irrigation thresholds, and the magnitudes suggest that irrigation mitigates the negative
impact of temperature shocks on output value, although irrigation has no statistically sig-
nificant effects on output value. I test three thresholds of the average proportion of crop
area irrigated: 40%, 50%, and 60%. For all three of these thresholds, I do not obtain signifi-
cant point estimates on the interaction terms. The interpretation for the 40% threshold
case (in column (1)) is that the negative effect of a 1°C deviation in temperature (above
the annual mean line) is 3 percentage points lesser for districts with the proportion of area
irrigated below 40% than the districts with irrigation above or equal to 40%. The interpre-
tation for the 50% threshold case is that the negative effect of a 1°C deviation in tempera-
ture is 16.9 percentage points greater for districts with the proportion of area irrigated
below 50% than the districts with irrigation above or equal to 50%. And the interpretation
for the 60% threshold case is that the negative effect of a 1°C deviation in temperature is
30.4 percentage points greater for districts with the proportion of area irrigated below 60%
than the districts with irrigation above or equal to 60%.

Heterogeneous effects of irrigation on output value by temperature
It may be the case that irrigation is more effective in mitigation in warmer districts than in
cooler districts, or vice versa. To test whether the effectiveness of irrigation differs accord-
ing to temperature, I run the differential irrigation effects model, conditional on whether
the average temperature at district d in year t is less than 26�C or greater than or equal to
26�C. I use the 26�C threshold to classify hotter districts and colder districts. If the districts
above the threshold are similar among observables to districts below the threshold, then
the difference in the temperature estimates between hotter and colder districts can be
attributed solely to the temperature threshold. This is of interest because farmers may
respond differently to temperature fluctuations in hotter districts than in lower temper-
atures via adaptation, affecting crop output value (Taraz 2018). To check whether hotter
and colder districts are similar, I run a balance check between hot and cold districts to see if
they are similar among observables, the results of which are located in Table A4. It appears
that all the observables used in the estimation are significantly different at the 5% level
between hot and cold districts, suggesting that heterogeneous effects, if there are any,
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are not primarily driven by the temperature threshold. Table A5 in the appendix displays
the estimation results for the heterogeneous effects of irrigation by temperature. In column
(1), which trims the sample to district-year observations where < 26�C, the negative effect
of a 1°C deviation in temperature is 38.4 percentage points larger for districts with the
proportion of area irrigated below 40% than the districts with irrigation above or equal
to 40%. In column (2), which trims the sample to district-year observations where
≥ 26�C, the negative effect of a 1°C deviation in temperature is 0.5 percentage points
greater for districts with the proportion of area irrigated below 40% than the districts with
irrigation above or equal to 40%. These estimates suggest that irrigation has the opposite of
its intended effect in “cold” districts and has little to no effect in “hot” districts. And for the
other two thresholds, the results are qualitatively different – irrigation has the opposite of
its intended effect in “hot” districts but has its intended effect in “cold” districts. Given the

Table 3. Differential effect of irrigation on output value

(1) (2) (3)

Threshold x � 0:4 x � 0:5 x � 0:6

Avg. Prop. irrigated below threshold 0.228 0.252 0.266

Avg. Prop. irrigated above threshold 0.582 0.688 0.773

Temperature −0.033 −0.001 0.025

(0.052) (0.066) (0.079)

Temperature squared −0.068 −0.012 0.047

(0.067) (0.084) (0.104)

1�Irrigationx� 0.261*** 0.458*** 0.647***

(0.027) (0.036) (0.046)

Temperature 
1�Irrigationx� 0.044 −0.003 −0.024

(0.046) (0.059) (0.073)

Temperature Squared 
1�Irrigationx� −0.007 −0.083 −0.140

(0.065) (0.080) (0.099)

Rainfall 0.081** 0.078** 0.081**

(0.030) (0.029) (0.029)

Rainfall squared −0.025 −0.023 −0.024

(0.020) (0.020) (0.020)

Differential effect 0.030 −0.169 −0.304

P-value from F-Test 0.629 0.560 0.311

Observations 13,967 13,967 13,967

R-squared 0.603 0.608 0.613

Note: All columns include state fixed effects and year fixed effects. Additional controls include controls for labor, land,
and capital. Here, x represents the average proportion of crop area irrigated across the 13 crops within a district. Robust
standard errors are reported. ***denotes 1% significance, **5% significance, *10% significance.
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mixed results, there is uncertainty as to whether there is significant heterogeneity by tem-
perature.

Mitigation mechanism #2: fertilizer usage
Table 4 shows the estimation results for the differential effect of temperature according to
fertilizer usage thresholds, and the estimation results suggest that fertilizer usage signifi-
cantly mitigates the negative impact of temperature shocks on output value. I test three
thresholds of average fertilizer usage: 25, 50, and 75 thousand tons, as shown in
Table 4. For two of these thresholds, I obtain statistically significant estimates after jointly
testing the coefficients for the Temperature × 1�Fertilizer < x� and Temperature Squared
× 1�Fertilizer < x� terms. The interpretation for the 25 thousand tons threshold case is
that the negative effect of a 1°C deviation in temperature (above the annual mean line) is
24.2 percentage points greater for districts with fertilizer usage below 25 thousand tons

Table 4. Differential effect of fertilizer usage on output value

(1) (2) (3)

Threshold x � 0:25 x � 0:50 x � 0:75

Avg. fert. usage below threshold 0.085 0.157 0.215

Avg. fert. usage above threshold 0.744 1.003 1.254

Temperature −0.007 0.099 0.262

(0.028) (0.063) (0.135)

Temperature squared −0.069 −0.173 −0.219

(0.040) (0.091) (0.210)

1�Fertilizerx� −0.240*** 0.125*** 0.461***

(0.019) (0.034) (0.070)

Temperature 
1�Fertilizerx� −0.058 −0.163** −0.317*

(0.037) (0.060) (0.133)

Temperature squared 
1�Fertilizerx� −0.092 0.087 0.127

(0.059) (0.089) (0.208)

Rainfall 0.108*** 0.111*** 0.110***

(0.024) (0.024) (0.024)

Rainfall squared −0.028 −0.029 −0.029

(0.016) (0.016) (0.016)

Differential effect −0.242 0.011 −0.063

P-value from F-Test 0.118 0.023** 0.059*

Observations 13,045 13,045 13,045

R-squared 0.675 0.671 0.674

Note: All columns include state fixed effects and year fixed effects. Additional controls include controls for labor, land,
and capital. Here, x represents the fertilizer usage (in 1,000 tons) within a district. Robust standard errors are reported.
***denotes 1% significance, **5% significance, *10% significance.
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than districts with fertilizer usage above or equal to 25 thousand tons. The interpretation
for the 50 thousand tons threshold case is that the negative effect of a 1°C deviation in
temperature is 1.1 percentage points lesser for districts with fertilizer usage below 50 thou-
sand tons than districts with fertilizer usage above or equal to 50 thousand tons. And the
interpretation for the 75 thousand tons threshold case is that the negative effect of a 1°C
deviation in temperature is 6.3 percentage points greater for districts with fertilizer usage
below 75 thousand tons than districts with fertilizer usage above or equal to the threshold.

Heterogeneous effects of fertilizer usage on output value by temperature
To test whether the effectiveness of fertilizer usage differs according to temperature, I run
the fertilizer usage effects model, conditional on whether the average temperature at dis-
trict d in year t is less than 26�C or greater than or equal to 26�C. Once again, if the districts
above the threshold are similar among observables to districts below the threshold, then
the difference in the interaction term estimates between hotter and colder districts can be
attributed solely to the temperature threshold. Table A6 displays the balance check results
between hot and cold districts, and once again, all the observables used in the estimation
are significantly different at the 5% level between hot and cold districts, suggesting that
heterogeneous effects, if there are any, are not primarily driven by the temperature thresh-
old. The obtained means and P-values are slightly different from Table A4 because the
observations employed in Table A6 are where fertilizer usage is non-missing, while the
observations employed in Table A4 are where irrigation is non-missing. Table A7 in
the appendix displays the estimation results for the heterogeneous effects of fertilizer usage
by temperature. The estimated differential effect in columns (1), (2), and (6) is all statisti-
cally significant, while the estimated differential effect in columns (3), (4), and (5) is not
statistically significant. In column (1), which trims the sample to district-year observations
where < 26°C, the negative effect of a 1°C deviation in temperature is 74 percentage
points larger for districts with the fertilizer usage below 25,000 tons than the districts with
fertilizer usage above or equal to 25,000 tons. In column (2), which trims the sample to
district-year observations where ≥ 26°C, the negative effect of a 1°C deviation in tem-
perature is 36.4 percentage points greater for districts with fertilizer usage below 25,000
tons than the districts with fertilizer usage above or equal to 25,000 tons. These estimates
suggest that fertilizer usage has its intended effect in “cold” districts and has a smaller effect
in “hot” districts. And for the other two thresholds, fertilizer usage has its intended miti-
gation effect in “cold” districts but does not in “hot” districts. Overall, these results suggest
that fertilizer usage is more effective in mitigation in colder districts relative to hotter dis-
tricts.

Changing crop mixture as a potential mitigation mechanism
Another potential mitigation mechanism against weather shocks is changing crop mixture,
as some crops are more sensitive to heat than others (Arora et al. 2020; Auffhammer and
Carleton 2018; Birthal et al. 2021; Cho and McCarl 2017; Deines et al. 2020; Fei, McCarl,
and Thayer 2017; Mu et al. 2018; Park 2012; Piedra-Bonilla, da Cunha, and Braga 2020;
Tessema, Joerin, and Patt 2019; Zhang et al. 2018). For instance, increasing crop diversity
may serve as an adaptation response against climate change. In Brazilian municipalities,
the intensity of crop diversification tends to increase with higher climate variability
(Piedra-Bonilla, da Cunha, and Braga 2020). And in India, districts with greater crop
diversity experienced higher gross and net revenues than districts with less crop diversity,
which is partially explained by the benefits of diversification for yields (Auffhammer and
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Carleton 2018). The results from these studies indicate that perhaps in years with greater
temperature fluctuations, farmers’ crop mixes are more diversified than in years with little
to no fluctuations relative to the annual temperature mean. Moreover, increased crop
diversification may occur concurrently with increased irrigation in years where there
are large temperature fluctuations above the annual mean, as farmers could increase irri-
gation on their land in response to a heat shock.

Farmers may also adapt to climate change by changing their crop mixture across space.
Prior studies find that temperature and precipitation are drivers in shifting land use and the
location of crop production (Arora et al. 2020; Birthal et al. 2021; Cho and McCarl 2017;
Deines et al. 2020; Fei, McCarl, and Thayer 2017; Mu et al. 2018; Park 2012; Tessema, Joerin,
and Patt 2019; Zhang et al. 2018). Birthal et al. (2021) study how rising temperatures affect
land use in Indian agriculture, and under their projections, they conclude that there are no
significant intra- or inter-regional shifts in crop production. Hence, adaptation through
changing crop mixture and land use is limited in India, and other mitigation mechanism
strategies may be more effective against climate change, such as crop diversification.

Conclusion

In this paper, I exploit historical fluctuations in temperature and crop output value within
Indian districts to isolate for the effect of heat shocks on output value. And I find that a 1°C
deviation in temperature above the annual mean decreases output value by 21.3 percentage
points, which is qualitatively similar to what other studies find. In addition, I evaluate the
effectiveness of irrigation and fertilizer usage in mitigating the impact of a heat shock. I
find that while irrigation mitigates the negative impact of a temperature shock (and the
estimated effect is economically significant but not statistically significant), fertilizer usage
is effective at mitigation (and the effect is statistically significant).

My findings come from data in one country: India. This of course raises questions
about the external validity of my findings to other countries. It is certainly the case that
comparing poorer to richer countries may lead to different results – in particular, the effect
size of heat shocks may be smaller in richer countries versus poorer countries. This is
because richer countries have technologies that are better capable of mitigating the impact
of heat shocks on output. My study focuses on prior literature related to India, so external
validity is not an issue when interpreting the results within India.

These results have important implications that are of great importance to policy mak-
ers. The main results indicate that large, unexpected fluctuations in temperature lead to
substantial losses in crop output value. This leaves farmers’ incomes highly vulnerable to
weather events that are completely out of their control, and it may be the case that poorer
farmers are more vulnerable to these unanticipated shocks than relatively richer farmers.
Policies that increase the safety net of farmers, such as increasing the minimum support
price for crops, could be implemented to counteract this high vulnerability and uncertainty
associated with the weather. My findings on mitigation mechanisms may inform future
research by prompting researchers to investigate various mechanisms in greater detail.
For instance, while my paper measures irrigation as the proportion of crop area irrigated,
future research could take into account different irrigation technologies.

Supplementary material. For supplementary material accompanying this paper visit https://doi.org/10.
1017/age.2022.20

Data availability statement. All data is openly available and was pulled from the District Level Database
(DLD) for Indian agriculture and allied sectors: http://data.icrisat.org/dld/src/about-dld.html.
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