ON THE DIOPHANTINE EQUATION $(8 n)^{x}+(15 n)^{y}=(17 n)^{z}$

ZHI-JUAN YANG and MIN TANG ${ }^{\boxtimes}$

(Received 10 November 2011)

Abstract

Let a, b, c be relatively prime positive integers such that $a^{2}+b^{2}=c^{2}$. Half a century ago, Jeśmanowicz ['Several remarks on Pythagorean numbers', Wiadom. Mat. 1 (1955/56), 196-202] conjectured that for any given positive integer n the only solution of $(a n)^{x}+(b n)^{y}=(c n)^{z}$ in positive integers is $(x, y, z)=$ $(2,2,2)$. In this paper, we show that $(8 n)^{x}+(15 n)^{y}=(17 n)^{z}$ has no solution in positive integers other than $(x, y, z)=(2,2,2)$.

2010 Mathematics subject classification: primary 11D61.
Keywords and phrases: Jeśmanowicz's conjecture, Diophantine equation.

1. Introduction

Let n be a positive integer and let (a, b, c) be a primitive Pythagorean triple such that $a^{2}+b^{2}=c^{2},(a, b, c)=1$, and $2 \mid b$. It is well known that $a=u^{2}-v^{2}, b=2 u v$, $c=u^{2}+v^{2}$ with $u>v>0,2 \mid u v$ and $(u, v)=1$. Clearly, the Diophantine equation

$$
\begin{equation*}
(n a)^{x}+(n b)^{y}=(n c)^{z} \tag{1.1}
\end{equation*}
$$

has the solution $(x, y, z)=(2,2,2)$. In 1956, Sierpiński [7] showed there were no other solutions when $n=1$ and $(a, b, c)=(3,4,5)$, and Jeśmanowicz [2] proved that when $n=1$ and $(a, b, c)=(5,12,13),(7,24,25),(9,40,41)$ or $(11,60,61)$, then (1.1) has only the solution $(x, y, x)=(2,2,2)$. Moreover, he conjectured that (1.1) has no positive integer solutions for any n other than $(x, y, z)=(2,2,2)$.

In 1998, Deng and Cohen [1] proved the following two theorems.
Theorem A. Let $a=2 k+1, \quad b=2 k(k+1), \quad c=2 k(k+1)+1$, for some positive integer k. Suppose that a is a prime power, and that the positive integer n is such that either $C(b) \mid n$ or $C(n) \nmid b$, where $C(n)$ is the product of distinct primes of n. Then the only solution of the Diophantine equation $(n a)^{x}+(n b)^{y}=(n c)^{z}$ is $x=y=z=2$.

[^0]Theorem B. For each of the Pythagorean triples $(a, b, c)=(3,4,5),(5,12,13)$, $(7,24,25),(9,40,41)$ and $(11,60,61)$, and for any positive integer n, the only solution of the Diophantine equation $(n a)^{x}+(n b)^{y}=(n c)^{z}$ is $x=y=z=2$.

In 1999, Le Maohua [5] obtained certain conditions for (1.1) to have positive integer solutions (x, y, z) with $(x, y, z) \neq(2,2,2)$. For other related problems, see $[3,4,6,8]$.

In this paper, we consider (1.1) with $(a, b, c)=(8,15,17)$ and obtain the following result.

Theorem. For any positive integer n, the only solution of the Diophantine equation

$$
\begin{equation*}
(8 n)^{x}+(15 n)^{y}=(17 n)^{z} \tag{1.2}
\end{equation*}
$$

is $(x, y, z)=(2,2,2)$.

2. Proofs

Lemma 1 [1, Lemma 2]. If $z \geq \max \{x, y\}$, then the Diophantine equation $a^{x}+b^{y}=c^{z}$, where a, b and c are any positive integers (not necessarily relatively prime) such that $a^{2}+b^{2}=c^{2}$, has no solution other than $(x, y, z)=(2,2,2)$.
Lemma 2 [9]. The only solution of the Diophantine equation $\left(4 n^{2}-1\right)^{x}+(4 n)^{y}=$ $\left(4 n^{2}+1\right)^{z}$ is $(x, y, z)=(2,2,2)$.
Proof of Theorem. By Lemma 2, we know that the Diophantine equation $8^{x}+15^{y}=$ 17^{z} has the single solution $(x, y, z)=(2,2,2)$. Suppose that (1.2) has solutions other than $x=y=z=2$, and $n \geq 2$. By Lemma 1 we have $z<\max \{x, y\}$.
Case 1. $x>y$.
Subcase $1.1 z \leq y<x$. Then

$$
\begin{equation*}
n^{y-z}\left(8^{x} n^{x-y}+15^{y}\right)=17^{z} \tag{2.1}
\end{equation*}
$$

If $(n, 17)=1$, then by (2.1) and $n \geq 2$ we have $y=z$. Thus

$$
\begin{equation*}
8^{x} n^{x-y}+15^{y}=17^{y} . \tag{2.2}
\end{equation*}
$$

We have $(-1)^{y} \equiv 1(\bmod 4)$, so y is even. Write $y=2 y_{1}$. By (2.2),

$$
8^{x} n^{x-y}=\left(17^{y_{1}}-15^{y_{1}}\right)\left(17^{y_{1}}+15^{y_{1}}\right) .
$$

Noting that $\left(17^{y_{1}}-15^{y_{1}}, 17^{y_{1}}+15^{y_{1}}\right)=2$, then

$$
\begin{equation*}
2^{3 x-1}\left|17^{y_{1}}-15^{y_{1}}, \quad 2\right| 17^{y_{1}}+15^{y_{1}}, \tag{2.3}
\end{equation*}
$$

or

$$
\begin{equation*}
2\left|17^{y_{1}}-15^{y_{1}}, \quad 2^{3 x-1}\right| 17^{y_{1}}+15^{y_{1}} . \tag{2.4}
\end{equation*}
$$

However,

$$
2^{3 x-1}>2^{3 y-1}=2^{6 y_{1}-1}>2^{5 y_{1}}=(17+15)^{y_{1}}>17^{y_{1}}+15^{y_{1}}>17^{y_{1}}-15^{y_{1}}
$$

which contradicts both (2.3) and (2.4).
If $(n, 17)=17$, then write $n=17^{r} n_{1}$, where $r \geq 1$ and $17 \nmid n_{1}$. By (2.1),

$$
n_{1}^{y-z} 17^{r(y-z)}\left(8^{x} n_{1}^{x-y} 17^{r(x-y)}+15^{y}\right)=17^{z} .
$$

Noting that $\left(17, n_{1}\right)=1$ and $\left(8^{x} n_{1}^{x-y} 17^{r(x-y)}+15^{y}, 17\right)=1$, we know that $r(y-z)=z$. Thus $n_{1}^{y-z}\left(8^{x} n_{1}^{x-y} 17^{r(x-y)}+15^{y}\right)=1$. This is impossible.

Subcase 1.2. $y<z<x$. Then

$$
\begin{equation*}
15^{y}=n^{z-y}\left(17^{z}-8^{x} n^{x-z}\right) . \tag{2.5}
\end{equation*}
$$

If $(n, 15)=1$, then by (2.5) and $n \geq 2$ we have $y=z$, a contradiction.
If $(n, 15)>1$, then write $n=3^{r} 5^{q} n_{1}$, where $\left(15, n_{1}\right)=1$ and $r+q \geq 1$. By (2.5),

$$
\begin{equation*}
15^{y}=3^{r(z-y)} 5^{q(z-y)} n_{1}^{z-y}\left(17^{z}-8^{x} 3^{r(x-z)} 5^{q(x-z)} n_{1}^{x-z}\right) \tag{2.6}
\end{equation*}
$$

Thus $r(z-y)=q(z-y)=y$. Hence $r=q$. By (2.6),

$$
1=n_{1}^{z-y}\left(17^{z}-8^{x} 15^{r(x-z)} n_{1}^{x-z}\right)
$$

Thus $n_{1}=1$ and $17^{z}-8^{x} 15^{r(x-z)}=1$. Then $2^{z} \equiv 1(\bmod 3)$ and $z \equiv 0(\bmod 2)$. Write $z=2 z_{1}$. We have

$$
2^{3 x} 15^{r(x-z)}=\left(17^{z_{1}}-1\right)\left(17^{z_{1}}+1\right)
$$

Noting that $\left(17^{z_{1}}-1,17^{z_{1}}+1\right)=2$, then

$$
\begin{equation*}
2^{3 x-1}\left|17^{z_{1}}-1, \quad 2\right| 17^{z_{1}}+1, \tag{2.7}
\end{equation*}
$$

or

$$
\begin{equation*}
2\left|17^{z_{1}}-1, \quad 2^{3 x-1}\right| 17^{z_{1}}+1 \tag{2.8}
\end{equation*}
$$

However,

$$
2^{3 x-1}>2^{3 z-1}=2^{6 z_{1}-1}>2^{5 z_{1}}>(17+1)^{z_{1}}>17^{z_{1}}+1^{z_{1}}>17^{z_{1}}-1^{z_{1}}
$$

which contradicts both (2.7) and (2.8).
Case 2. $x=y$. Then

$$
\begin{equation*}
n^{x-z}\left(8^{x}+15^{x}\right)=17^{z} \tag{2.9}
\end{equation*}
$$

If $(n, 17)=1$, then by (2.9) and $n \geq 2$ we have $x=z$, a contradiction.
If $(n, 17)=17$, then write $n=17^{r} n_{1}$, where $r \geq 1$ and $17 \nmid n_{1}$. By (2.9),

$$
\begin{equation*}
17^{r(x-z)} n_{1}^{x-z}\left(8^{x}+15^{x}\right)=17^{z} . \tag{2.10}
\end{equation*}
$$

It follows that $n_{1}^{x-z} \mid 17^{z}$, so $n_{1}=1$. By (2.10),

$$
8^{x}+15^{x}=17^{z-r(x-z)} .
$$

By Lemma 2, $x=z-r(x-z)=2$ which implies that $x=z=2$, a contradiction.

Case 3. $x<y$.
Subcase 3.1. $z<x<y$. Then

$$
\begin{equation*}
n^{x-z}\left(8^{x}+15^{y} n^{y-x}\right)=17^{z} \tag{2.11}
\end{equation*}
$$

If $(n, 17)=1$, then by (2.11) and $n \geq 2$ we have $x=z$, a contradiction.
If $(n, 17)=17$, then write $n=17^{r} n_{1}$, where $r \geq 1$ and $17 \nmid n_{1}$. By (2.11),

$$
\begin{equation*}
17^{r(x-z)} n_{1}^{x-z}\left(8^{x}+15^{y} 17^{r(y-x)} n_{1}^{y-x}\right)=17^{z} \tag{2.12}
\end{equation*}
$$

It follows that $n_{1}^{x-z} \mid 17^{z}$, so $n_{1}=1$. By (2.12),

$$
17^{r(x-z)}\left(8^{x}+15^{y} 17^{r(y-x)}\right)=17^{z}
$$

Then $r(x-z)<z$ and $8^{x}+15^{y} 17^{r(y-x)}=17^{z-r(x-z)}$. Thus $17 \mid 8^{x}$, a contradiction.
Subcase 3.2. $x \leq z<y$. Then

$$
\begin{equation*}
2^{3 x}+15^{y} n^{y-x}=17^{z} n^{z-x} \tag{2.13}
\end{equation*}
$$

If $(n, 2)=1$, then by (2.13) and $n \geq 2$ we have $x=z<y$. Thus

$$
\begin{equation*}
8^{x}+15^{y} n^{y-x}=17^{x} . \tag{2.14}
\end{equation*}
$$

Then $3^{x} \equiv 2^{x}(\bmod 5)$, so $x \equiv 0(\bmod 2)$. Write $x=2 x_{1}$. By (2.14),

$$
3^{y} 5^{y} n^{y-x}=\left(17^{x_{1}}-8^{x_{1}}\right)\left(17^{x_{1}}+8^{x_{1}}\right) .
$$

Noting that $\left(17^{x_{1}}-8^{x_{1}}, 17^{x_{1}}+8^{x_{1}}\right)=1$, we have $5^{y} \mid 17^{x_{1}}-8^{x_{1}}$ or $5^{y} \mid 17^{x_{1}}+8^{x_{1}}$.
However,

$$
5^{y}>5^{x}=5^{2 x_{1}}=25^{x_{1}}=(17+8)^{x_{1}}>17^{x_{1}}+8^{x_{1}}>17^{x_{1}}-8^{x_{1}}
$$

a contradiction.
If $(n, 2)=2$, write $n=2^{r} n_{1}$, where $r \geq 1$ and $2 \nmid n_{1}$. By (2.13),

$$
2^{3 x}=n^{z-x}\left(17^{z}-15^{y} n^{y-z}\right)=2^{r(z-x)} n_{1}^{z-x}\left(17^{z}-15^{y} 2^{r(y-z)} n_{1}^{y-z}\right)
$$

It follows that $n_{1}^{z-x} \mid 2^{3 x}$, so that $n_{1}=1$ or $x=z$.
If $n_{1}=1$, then

$$
2^{3 x}=2^{r(z-x)}\left(17^{z}-15^{y} 2^{r(y-z)}\right)
$$

It follows that $r(z-x)=3 x$ and $17^{z}-15^{y} 2^{r(y-z)}=1$. Then $2^{z} \equiv 1(\bmod 3)$, so $z \equiv$ $0(\bmod 2)$. Write $z=2 z_{1}$. Then

$$
15^{y} 2^{r(y-z)}=\left(17^{z_{1}}-1\right)\left(17^{z_{1}}+1\right) .
$$

Noting that $\left(17^{z_{1}}-1,17^{z_{1}}+1\right)=2$, we have $5^{y} \mid 17^{z_{1}}-1$ or $5^{y} \mid 17^{z_{1}}+1$.

However,

$$
5^{y}>5^{z}=5^{2 z_{1}}=25^{z_{1}}>(17+1)^{z_{1}}>17^{z_{1}}+1>17^{z_{1}}-1,
$$

a contradiction.
If $x=z$, then $8^{x}+15^{y} n^{y-x}=17^{x}$. Thus $3^{x} \equiv 2^{x}(\bmod 5)$, so $x \equiv 0(\bmod 2)$. Write $x=2 x_{1}$. Then

$$
3^{y} 5^{y} n^{y-x}=\left(17^{x_{1}}-8^{x_{1}}\right)\left(17^{x_{1}}+8^{x_{1}}\right) .
$$

Noting that $\left(17^{x_{1}}-8^{x_{1}}, 17^{x_{1}}+8^{x_{1}}\right)=1$, we have $5^{y} \mid 17^{x_{1}}-8^{x_{1}}$ or $5^{y} \mid 17^{x_{1}}+8^{x_{1}}$.
However,

$$
5^{y}>5^{x}=5^{2 x_{1}}=25^{x_{1}}=(17+8)^{x_{1}}>17^{x_{1}}+8^{x_{1}}>17^{x_{1}}-8^{x_{1}},
$$

a contradiction.
This completes the proof of the theorem.

References

[1] M. Deng and G. L. Cohen, 'On the conjecture of Jeśmanowicz concerning Pythagorean triples', Bull. Aust. Math. Soc. 57 (1998), 515-524.
[2] L. Jeśmanowicz, 'Several remarks on Pythagorean numbers', Wiadom. Mat. 1 (1955/56), 196-202.
[3] L. Maohua, 'A note on Jeśmanowicz' conjecture', Colloq. Math. 69 (1995), 47-51.
[4] L. Maohua, 'On Jeśmanowicz' conjecture concerning Pythagorean triples', Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 97-98.
[5] L. Maohua, 'A note on Jeśmanowicz' conjecture concerning Pythagorean triples', Bull. Aust. Math. Soc. 59 (1999), 477-480.
[6] L. Maohua, 'A note on Jeśmanowicz' conjecture concerning primitive Pythagorean triples', Acta Arith. 138 (2009), 137-144.
[7] W. Sierpiński, 'On the equation $3^{x}+4^{y}=5^{z}$, Wiadom. Mat. 1 (1955/56), 194-195.
[8] K. Takakuwa, 'A remark on Jeśmanowicz' conjecture’, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 109-110.
[9] L. Wenduan, 'On the Pythagorean numbers $4 n^{2}-1,4 n$ and $4 n^{2}+1$ ', Acta Sci. Natur. Univ. Szechuan 2 (1959), 39-42.

ZHI-JUAN YANG, Department of Mathematics, Anhui Normal University, Wuhu 241000, China

MIN TANG, Department of Mathematics, Anhui Normal University, Wuhu 241000, China
e-mail: tmzzz2000@163.com

[^0]: This work was supported by the National Natural Science Foundation of China, Grant No 10901002.
 (C) 2012 Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

