Equal Sums of Like Powers
By E. M. WrIGHT
(Received 6th March, 1948, Read Tth May, 1948.)

1. In this note all small latin letters denote rational integers.
We write k = 1, s = 1 and consider the simultaneous equations

i J Y
p xnh: z xi2h= .= X xi," (1 é hé k). (1)
1=1 i=1 i=1

A solution of these equations is said to be non-trivial if no set
{x;,} is a permutation of another set {z;,}. In 1851 Prouhet! con-
structed a non-trivial solution of these equations with j =s* and
Lehmer ? has recently found a parametric solution for the same j.
Here I give two alternative elementary proofs of Lehmer’s result.
Lehmer’s own proof depends on the ideas of generating functions,
exponentials, differentiation, matrices, and complex roots of unity,
though all at a fairly simple level. One of my proofs requires only
the factor theorem for a polynomial and the other only the multi-
nomial theorem for a positive integral index.

I also show how to construct solutions for general ¥ and any
s < 2™ with j = m2F. This result is an advance on Prouhet’s, since
my value of j is in general less than his value s*. My method is
almost trivial.

Many authors® have found solutions of (1) for particular values
of k, s and j (especially s = 2) and Gloden* has shown how to con-
struct solutions for k = 2,3 or 5, any s and j=k + 1. So far as I
know, only Prouhet and Lehmer have considered the problem for
general k and s. Elsewhere® I have shown that solutions exist for

1 Comptes Rendus (Paris), 33 (1851), 225,
2 Scripta Math. 13 (1947), 37-41.

3 Dickson’s History of the Theory of Numbers II, chap. 24, lists 65 articles on this
topic between 1878 and 1920.

4 Mehrgradige Gleichungen (Groningen 1944), 71-90.
5 Bull. Amer. Math. Soc. 54 (1948), 755-757.
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general k and s when
j=3(k+k+2) (keven), j=3(k+3) (kodd),

values of j; which are much less than Prouhet’s s* or my m2* and
"which are, in fact, independent of s. But the method proves only
the existence of solutions and cannot be adapted to construct a
solution.

2. The Prouhet-Lehmer Theorem. We take n = 2 and suppose the
numbersa; (1 < ¢ < n) to satisfy 0< a; < s—1. Anyset(a,,...., a,)
such that

a+a,+ ....+a,=r (mod s) (2)
is called an (n,r) set. If r =t (mod s), every (n, r) set is an (n, t).8et
and conversely. If ¢ = ¢ (ay,..., a,), we say that Z¢, the sum of ¢

(n, 1)

over all (n, 7) sets, is independent of r if

Tp=2p=....= Z¢.

n,0 (@1 (n,8 -1
We may enumerate all the (n, r) sets by lettihg each of a,,...., a0, 4
take independently the values 0 to s — 1 and choosing a, for each
set so that (2) is satisfied. From this it follows that there are just
s* =1 (different (n, r) sets and also that, if ¢ does not depend on
a,, 2¢ is independent of . More generally

n, 1)

Lemma 1. If ¢ does not depend on one of the a;, the sum I is
(n,1)
tndependent of r.

Lehmer’s result is as follows.

TaroreMm 1. If u,,...., u, are any numbers and

E=aypt+ Gpp+.. ..+ Gy,
then & & is independent of r for 1 S h <n —1.

(n, 7)

If we put n=%k+1 and p,, ...., p, any non-zero integers,
Theorem 1 provides us with a solution of the equations (1). Prouhet’s
result is the particular case of Theorem 1 in which y; =51 (1 <[ <n),
so that the ¢ corresponding to the (n, r) sets are just those integers
between 0 and s**!—1 inclusive, the sum of whose digits in the
scale of s is congruent to » (mod s). This solution is obviously non-
trivial. The case s = 2 of Theorem 1 is due to Escott.!

1 Quart. Jour. of Math., 41 (1910), 145.

https://doi.org/10.1017/50013091500002698 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500002698

140 E. M. WrigHT

Lehmer also proves

THEOREM 2. If puy pg....pua==0, then X £" 4s not independent of r.

n, r)

3. First Proof. By the multinomial theorem we have

z a,‘n...a,,"‘}’

" h! ; .
Y ¢= z rarmamre S T SN T M
(n, )

(n,7) tid ooy =n bt ty!

where ¢,, ¢,...,1, are all non-negative and 0! =1 as usual. Let us
consider the coefficient of a particular p...pt. If b <n, at least
one of the {; must be zero, a," ... . q,”» does not depend on one of the
a; and so the coefficient of pu,*....u,'» is independent-of r by
Lemma 1. Theorem 1 follows.

If h=n, the same argument shows that every term is inde-
pendent of 7 except that in u,....u, Hence Theorem 2 follows from

LevmMa 2. The sum
Q(n,r)= Z a,....a,
(n,r)
is not independent of r.

If @ (n, r) is independent of r, we have for every r
0=Q(n,r+1)—Q(n,r)

8 —1 §~1

= X anQ(n—l:r+1—an)_ z anQ(n—l’r’—a’n)
an=1 a,=1

§—2 g —1

=2 (@+1Qn—-1,r—a)— T aQ(n—1,7r—a)
a=0 a=1
§—2

=X Qn—-Lr—a)y—(s—1)¢g(n—1,r—s+1)
a=90
§—1

= X Qnrn—-—1,r—a)—sQ(n—1,r+1).
a=0

If a runs through a complete set of residues (mod s) so does r — a.

Hence
s=—1 8 —-1 s§—-1
2 Qn—1,r—a)= X .... ¥ @a,...8,_7=1{s(e— 1)1
a=0 a, =0 a,_;=0
and so

Qn—1,r+4+1) =2l-rgi~2(g — ])r~1

is independent of r. Repeating this argument (n—1) times we
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find that
Q(l,r)=r o=rss-—1)

is independent of r. This is absurd and so Lemma 2 is true.

4. Second proof. The expression

Sr,t)= X - Z &
(n,n (n,
is a homogeneous form of degree A in u,;, py, ...., p,. If one of the
i, 88y u,, is zero, £ does not depend on ¢, and so, by Lemma 1,
S(r, t)=0. Hence p, is a factor of S(r, t) and similarly for
Kire-+os bp_1; that is, S (r, t) has the factor u,p,....p,. If h<n,
this is impossible unless S (r, t) vanishes identically. This is Theorem 1.

If h = n, we have

S(r,t) =Cpuyps....pay
and so!

E O =F (py,e.eesptn) + 0! opyooip, @, 1),

n, )

where F is independent of . Theorem 2 follows from Lemma 2
as before.

5. TaEOREM 3. If we have a non-trivial solution of (1) for s = 2 and
j =J, we can construct a non-irivial solution for the same k, s = 2™ and
J =mJ, where m is any positive whole number.

Let us suppose that

J J
2= 3 ¢ (1<h<k),

where the b are not a permutation of the c. By a simple use of the
binomial theorem it follows that

J J
L (t+b)= T (t+c) (1=h=k) - (3)
i=1 i=1
for every ¢t. Hence we may suppose every b and every c¢ positive,
We choose

d>max (by, ..., by, €y, .., Cy).

1 Here again we use the multinomial theorem, so that the two proofs of Theorem 2
do not differ greatly.
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We now consider a set of m J numbers divided into m sub-sets,
The u-th sub-set consists either of the J numbers (u—1)d + b,
(1 =:¢=<J)or of the J numbers (u — 1) d+¢; (1 ¢ =< J). We have
thus two choices of each sub-set and so 2" choices of the set itself, no
two of which lead to the same set of numbers., By applying (3) to
each corresponding pair of sub-sets we see that the sum of the A-th
powers of the numbers of each set is the same, provided that
1£h< k.

6. If we use the particular case s = 2 of Theorem 1, we can thus
construct a solution for general s with j = m 2%, provided s < 27,
For particular k, solutions with smaller j can, of course, be constructed
from known solutions for s = 2.
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