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1. Introduction

Let p be a prime number, G a finite p-group of order pm and k a field of characteristic
p. Denote by t(G) the nilpotency index of the Jacobson radical of k[G], the group
algebra of G over k.

It is well known (see [8], for example) that

(A) t(G)^pm. Moreover t(G) = pm if and only if G is cyclic.

Let us assume that G is noncyclic and denote by expG the exponent of G. Then
t(G)<pm and it is known, by a result of Koshitani [6], that

(B) pm'1<t(G)<pm if and only if expG = pm~1. Moreover in this case t(G)=pm~l

+ P - 1 .

We know also, by a result of Motose [7], that

(C) t(G)=pm~l if and only if G is either an elementary abelian 2-group of order 23 or
M(3), the nonabelian 3-group of order 33 and exponent 3.

The purpose of this note is to classify all finite p-groups G satisfying the inequality
pm~2^t(G)<pm~1. In a recent paper [10], Shalev showed that if p^7, then r(G)^pm~2

if and only if exp G^.pm~2. Therefore:

(D) If p^7 , then pm"2 <t(G)<pm~l if and only if exp G = pm~2.

Now we are interested in the case when p<7. We know that in this case there exist
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five non-isomorphic groups G with expG<pm~2 and pm~2<t(G)<pm~l. One of them is
an elementary abelian 2-group of order 24. All the nonabelian p-groups of order p4 are
given by Burnside [1]. We know, by his result, that if p#2 then two of them, which we
denote by P and Q, are of exponent p:

P = M(p) x Cp (where M(p) is the nonabelian p-group of order p3 and exponent p, and
Cp is a cyclic group of order p);

Q = {a,b,c,d},p^5, where a* = b> = c> = d'=l, [a,*] = [a,c] = [a,d] = [6,c] = 1, [c,d\ = b,
\b,d] = a.

Then t(P) = 5(p-l) + 1, t (0 = 7(p-1)+1, and we see that

= H<33(forp=3),

= 29<53(forp = 5).

All the non-isomorphic 2-groups of order 2 s are given by Hall and Senior [2]. We
know, by their description, that all such groups of exponent 4 generated by two
elements satisfy our condition. We have only two such groups, which we denote by R
and S:

= (a,b,c,d,e),a2 = b2 = c2 = d2=l,e2 = c, {a,V\ = [a, c] = [a, d] = [a, e] = [6, c] = [*, d]

It is not difficult to see that t(R) = 9 and t(S) = 10. In this note, we shall show that the
above five groups are all the p-groups such that expG<pm"2 and pm~2<t(G)<pm~l.
More precisely, we shall prove the following theorem.

Theorem 1. Let G be a finite p-group of order pm, where m ^ 3 . Then pm 2<t(G)<
p"1"1 if and only if one of the following seven cases holds:

(1) p#2,

(2) p = 3, m = 4,G^

(3) p = 5, m = 4 ,G^e ;

(4) p = 2, m^4,
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(5) p = 2, m=4, G=rC2 x C2 x C2 x C2;

(6) p = 2, m = 5, G i R ;

(7) p = 2, m = 5, G^S.

Moreover, we shall give all the finite p-groups G with t(G) = pm"2. Denote by <D(G)
the Frattini subgroup of G.

Theorem 2. Let G be a finite p-group of order pm, where m^3 . Then t(G) = pm~2 if
and only if

(1) p = 3,m = 4,G^C3xC3xC3xC3;or

(2) p = 2, m = 5, expG = 22 and |G/O(G)| = 23.

Let us note that if a group G satisfies condition (2) of Theorem 2, then G is either an
abelian 2-group of type (2,2,1) or one of the fourteen nonabelian groups described in
Section 3 (See Remark).

2. Preliminaries

To compute the nilpotency index of the Jacobson radical of the modular p-group
algebra, Jennings' formula given in [4, Theorem 3.7] (see also [5]) is very useful. Let us
recall this formula.

Let {y,{G)} be the lower central series of G, that is, y,{G) is defined inductively by

] for i £ l .

Denote by Gpl the subgroup of G generated by {gp'\geG}, and let {>cn(G)} be the
sequence defined by

Moreover, let /(G) be the smallest integer such that K, ( C ) + 1 (G) = {1} and put
\ / K n + i{G)\=pe", 1 ^n^/(G). Jennings' formula for t{G) is as follows:

/(C)

) £ nen.

Now let G be a finite p-group of order pm. Suppose that expG=pm~2. If G is abelian
then G is either of type (m — 2, 2) or of type (m—2, 1, 1), and correspondingly
t(G) = p" 1 ~ 2 +p 2 - l or pm"2 + 2(p- l ) . Now we assume that G is nonabelian. If G is
metacyclic then t(G) = p m " 2 + p 2 - l (see [6,7]). In [9], we classified all the finite
p-groups of order pm and exponent p"1"2. This result implies that |G/<I>(G)| = p2 or p3.
Applying the above Jennings' formula to each group listed in [9, Theorems 1 and 2], we
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have r(G) = pm~2 + 3(p- l ) if |G/<D(G)|=p2 and G is nonmetacyclic; and
2(p- 1) if |G/<t(G)| = p3. So we have the following:

Proposition 1. Suppose that G is a finite p-group of order pm and exponent pm~2,
where m ̂  3.

(1) IfGis metacyclic, then t(G) = pm~2+p2-l.

(2) IfG is not metacyclic, but |G/<5(G)| = p2, then t(G) = pm~2 + 3(p-\).

(3) //|G/<D(G)| = p3, then t(G) = pm-2 + 2(p-l).

3. Proofs of Theorems 1 and 2

We see, by Shalev's result (D), that if p ^ 7 then Theorem 1 holds. In our proof of
Theorem 1, we shall not use this fact. First we prove Theorems 1 and 2 in the case
where G is abelian. For this aim we need the following lemma.

Lemma 1. Let G be an abelian p-group of order pm and exponent pm~3, where m^.5
provided p = 2. Then t(G)^pm~2. Moreover t(G) = pm~2 if and only if G is either an
elementary abelian 3-group of order 3 4 or an abelian 2-group of type (2,2,1).

Proof. Assume that p^2 and let A be a cyclic subgroup of G of order pm~3. If G/A
is cyclic then t(G) = pm'3+p3- 1 <pm~2. If G/A is of type (2,1) then

If G/A is elementary abelian then r(G) = pm~3 + 3 ( p - l)Spm~2. In the last case, we see
that if r(G) = pm~2 then p = 3 and m = 4. Therefore our lemma is proved for the case
p,*2. When p = 2 we use a similar argument.

Now we are able to prove Theorem 1 in the case where G is abelian.

Proposition 2. Let G be an abelian p-group of order pm, where m ̂  3. Then the
following properties are equivalent:

(1) pm-2<t(G)<pm-1.

(2) (i) expG = pm~2 and m^4 if p = 2; or

(ii) G^C2xC2xC2xC2.

Proof. The implication (2)=-(l) is obvious. Assume now that (1) holds. Then by (A)
and (B), expG^p"1"2. Let p = 2. If m = 3 then G is elementary abelian and t(G) = 4, but it
is not our case. If m = 4, then expG^22, so we see that (2) holds. Therefore we must
show that if either p#2, m jg3, or p = 2, m ^ 5 , then expG = pm"2. For this aim, we use
induction on m. If p # 2 and m = 3 then expG = p. So assume p = 2 and m = 5. If exp
G^2 2 then it is easy to see that t(G)^23. This shows that expG = 23. Suppose that
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m^4 if p / 2 , and m^6 if p = 2. Let z be an element of G of order p. Then by [11,
Theorem 2.4], pt(G/(zy)^t(G)>pm~2, and consequently r(G/(z»>pm~3. Moreover,
t{G/(z))<t(G) <pra~'*. So we have pm~3<t(G/<z»<pm"1. Assume now that t(G/(z})>
pm~2. Then (because |G/<z>|=pm-1), expG/<z>=pm-2 by (B), and so expG = p m - 2 .
Since t(G/<.z})jtpm-2 by (C), it is enough to prove that if pm"3<t(G/<z»<pin"2 then
expG = pm"2. In this case, by the induction hypothesis, we have expG/<z> = pra~3, which
implies expG^p"1"3. Hence, by Lemma 1, we obtain exp G = pm~2. This completes the
proof.

Corollary 1. Let G be an abelian p-group of order pm, where m ^ 3 . Then the following
properties are equivalent:

(1) t(G)=pm~2.

(2) (i) G^C3xC3xC3x C3; or

(ii) G^C4xC4xC2.

Proof. It suffices to prove that (1) implies (2). Suppose first p#2. Then we have
expG<t(G) = pm"2, and so m^4. If m=4, then p2 = t(G) = 4(p-1) +1, because G is
elementary abelian, which forces p to be 3, and (i) follows. Therefore we must prove that
if m^.5 then t(G)#pm~2. We proceed by induction on m. If m = 5, then expG^p2 and
so

(G) 2p2 + p - 2 or p2 + 3(p-l) or 5(p

Hence t(G)^p3. Now let m>5 and assume that !(//)#pm~3 for any abelian group H of
order pm~l. Suppose by way of contradiction that there exists an abelian group G of
order pm such that t(G) = pm~2. Choose an element z of order p in G. Then we have
pm"3gt(G/<z»<pm"2 and by the induction hypothesis t(G/<z»#pm"3. Hence by
Proposition 2, expG/<z> = pm"3, which yields expG = pm"3 because expG^p1""3, and so
t(G)<pm"2 by Lemma 1, a contradiction. Thus the corollary is proved for the case p
odd. When p = 2, we use a similar argument.

In the rest of the paper, we denote by cl(G) the class of G, and by Z(G) the centre of
G. Now, using the classification of finite p-groups of order ^ p 6 (Hall and Senior [2]
and James [3]), we shall prove the following three lemmas.

Lemma 2. Let G be a 2-group of order 2s and exponent at most 22. Then the
following hold:

(1) //expG =
(2) 7/expG = 22 then

8 if |G/<D(G)| = 23, and
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\9 if |G/«D(G)| = 22, c/(G) = 2,t(G)=l
llO if G/d>(G)| = 22, c/(G) = 3.

Lemma 3. Let G be a 2-group of order 26 and exponent at most 23. Then t(G)<24.

Lemma 4. Let p#2, and G a p-group of order p5 and exponent at most p2. Then
t(G)<p\

Proof of Lemma 2. If exp G = 2, G is elementary abelian, and so t(G) = 6. Assume
that expG = 22. Since K2(G) = <D(G), we have 2e' = |G/4>(G)|, and so if G is abelian then
e ,=4 or 3, and correspondingly t(G) = 7 or 8. Hence the lemma holds for abelian
groups. Now let G be nonabelian. Then G belongs to one of the families: F2, F4, F5, F7

(see [2]). If G belongs to F2, F 4 or F5 then c/(G) = 2 and y2(G)2 = {l}. Therefore /(G) = 2
and (el,e2) = (4,1) or (3,2) or (2,3); and correspondingly t(G) = l or 8 or 9. On the other
hand, in the family F7, there is only one group G of order 25 and exponent 22. For this
group, eY=2, and t(G) = 10, and we know that c/(G) = 3. This completes the proof of
Lemma 2.

Remark. There are twenty-one types of nonabelian 2-groups of order 25 and
exponent 22. Five of them given below satisfy t(G) = 7:

32F2a1; 32F2a2,32F2b, 32F5a1,32F5a2.

The following fourteen groups satisfy t(G) = 8:

32F2Cl, 32F2c2,32F2gl, 32r2e2,32F2/, 32F4a1; 32F4a2,

32F4a3,32F4fc1; 32F4b2,32r4C!, 32F4 c2,32F4c3,32F4d.

The last two are the groups we presented in Section 1: R = 32F2h with t(R) = 9 and
S = 32F7aj with t(S) = 10.

Proof of Lemma 3. If expG = 2, G is elementary abelian, and so t(G) = 7. Suppose
next that expG = 22. If G is abelian then G is of type (2,2,2) or (2,2,1,1) or (2,1,1,1,1),
and we see that t(G)^10. Suppose G is nonabelian. Then G belongs to one of the
families: F2, F4, F5) F7, F9, F1 0, r n , F1 3 ) F23, F25. If G belongs to a family other than
F23, then c/(G)^3, y2(G)2 = {l} and |y3(G)|^2. Hence K3(G) = {1} if c/(G) = 2; and
K 3 ( G ) ^ C 2 , K4(G) = {1} if c/(G) = 3. So it follows that t(G)<2*. If G belongs to F23 then
|K2(G)| = 2 4 and K3(G) = y3(G)^C2xC2, K4(G)=y4(G)^C2) »c5(G) = {l}, and so t(G) = 14.
Therefore the lemma holds if expG^22. Finally, consider the case expG = 23. If G is
abelian then G is of type (3,3) or (3,2,1) or (3,1,1,1), and so t(G)^15. So assume G is
nonabelian. Then G belongs to one of the families: F2, . . . ,F7, F12, F1 4 , . . . ,F1 8 , F2 2,
T23, F 2 4 , F 2 6 , and so c/(G)^4, y2(G)4 = y3(G)2 = {l}. This shows that /(G)=4. Because,
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e 2 #0 , and e 4 = l if e2=l ([10, Corollary 1.5, Theorem 1.12(ii)]), noting that e ,=2 , 3 or
4, we have the following possibilities:

(eue2,e3.e^=(2,1,2,1) or (2,2,1,1) or (2,2,0,2) or (3,1,1,1) or (3,2,0,1) or (4,1,0,1).

This implies that t(G)<24 and Lemma 3 is proved.

Proof of Lemma 4. If G is abelian, then it is easy to see that

t(G) g t(Cp2 x Cp2 x Cp) = 2p2 + p - 2 < p3.

Assume G is nonabelian. Then G belongs to one of the families: <J>2,...,<!>7, O9,<D10 (see
[3]). If G belongs to a family other than d>9 and <J>l0 then c/(G)^3 and y2(G)" = {l}. So
we see that l(G)^p, and by Jennings' formula, we conclude that

If G belongs to 4>9 or O1 0 then c/(G) = 4 and y2(G)" = {l}. Therefore, if p > 3 then
)^p, so t(G)<p3 again; while if p = 3 then /(G) = 4, K4{G)^C3, and we have

Thus Lemma 4 is proved.

Lemma 5. Let G be a nonabelian p-group of order pm, and let z be an element of order
p lying in Z(G) n K,(G)(G). Assume exp G/(z}=pm~3.

(1) Ifm^lthenexpG = pm-2.

(2) Ifm = 6, p / 2 and t(G)^p4 then expG = p4.

Proof. (1) Suppose the result is false. Then there exists a p-group G of order pm with
m^l such that expG = expG/<z> = p m " 3 . Since G/(z) is of order pm~\ it is either an
abelian group of type (m —3,2) or (m —3,1,1), or isomorphic to one of the groups listed
in [9, Theorems 1 and 2]. Because m^.1, in either case, we have Kp2 + 1(G) = Gp3 = <ap3>,
where a is an element of G such that a(z) (eG/^z}) is of order p"1"3. But, because
expG = pm~3, <a> does not contain z, and so KP2 + 1 ( G ) ^ Z , which contradicts the choice
of z. Thus (1) is proved.

(2) Suppose the result is false. Then expG = p3 and G/(z} is either an abelian group
of type (3,2) or (3,1,1); or isomorphic to one of the groups: Gl,G2,...,G9 given in [9,
Theorem 1]. Hence it follows that c/(G)^4 and y2(G)p2 = y3(G)'' = {l}) and so l(G) = p2.
Because e p / 0 , and e p 2 = l if e p = l ([10]), noting that el = 2 or 3, we have the following
possibilities:

(e,,ep,ep2)=(2) 1,1) or (2,2,1) or (2,2,2) or (2,3,1) or (3,1,1) or (3,2,1).
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This together with Jennings' formula implies that t{G) does not exceed
(1 • 2 + p • 1 + p2 • 3)(p — 1) + 1 < p4. This contradicts our assumption. Thus (2) is proved.

The next proposition is our Theorem 1 in the case when G is nonabelian.

Proposition 3. Let G be a nonabelian p-group of order pm, where m ̂  3. Then the
following properties are equivalent:

(1) pm-

(2) One of the following holds:

(i) expG = p m - 2 , where (p,m)^(3,3);

(ii) p = 3, m = 4, G^M(3)xC3;
(iii) p = 5, m = 4, G~Q;
(iv) p = 2, m = 5, G^R;
(v) p = 2, m = 5, G^S.

Proof. Obviously (2) implies (1). Suppose (1) holds. Then expG^p"1"2. Therefore, if
m = 3 then expG = p, and so, as G is nonabelian, p is odd and G^M(p). But then
f(G) = 4p —3. Hence the inequality p2>t(G) yields p#3. Assume m = 4. Then expG^p2

and we already know that (i), (ii) or (iii) holds in this case. Further if p = 2 and m = 5, by
Proposition 1 and Lemma 2 (see also Remark), (i), (iv) or (v) holds. Therefore it suffices
to prove that if either p#2 , m^.5; or p = 2, w^6, then expG = pm~2. We proceed by
induction on m. By Lemmas 3 and 4, the cases p#2, m = 5 and p = 2, m = 6 are done.
Suppose » J > 5 if p#2, and m>6 if p = 2, and let z be an element of order p lying in
Z(G) n K/(G)(G). Then

and so pm-3<t(G/<z»<pm-1 . If t(G/<z»>pm-2, then expG/<z> = pm"2 by (B), and so
expG = pm"2 as desired. Since t(G/(z})^pm~2 by (C), it remains only to show that if
pm"3<t(G/<z»<pm"2 then expG = pm"2. In this case, we have exp(G/<z» = pm"3;
because if G/(z} is abelian, this follows from Proposition 2, and if G/(z} is nonabelian,
this follows from the induction hypothesis. Therefore expG=pm"2 by Lemma 5, and
Proposition 3 is proved.

Corollary 2. Let G be a nonabelian p-group of order pm. Then the following properties
are equivalent:

(1)
(2) \G\ = 25, exp G = 22, |G/<D(G)| = 23.

Proof. The implication (2)=*(1) follows from Lemma 2. Suppose (1) holds. Since
expG<t(G) = p"1"2 and G is nonabelian, we see that m^.4 if p#2, and m^5 if p = 2. Let
p = 2. If m = 5j (2) follows from Lemma 2. Further, if m = 6 then t(G)#24 by Lemma 3.
We next assume that p ̂  2. If m = 4 then exp G = p and G ̂  M(p) x Cp or Q. We already
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know that t{G)^=p2 in either case. If m = 5 then t(G)^p3 by Lemma 4. Therefore it
suffices to prove that if either p = 2 and m^7, or p#2 and m^.6, then t(G)#pm~2.
Suppose that it is false and let G be a nonabelian p-group of minimal order satisfying
l(G) = pm~2. Let 2 be an element of order p lying in Z(G) n K,(G)(G). Then by
pm-2 = t(G)<,p-t(G/(z}), we get pm-3^t{G/(z}). Suppose now t(G/(z» = pm-\ Then by
Lemmas 3 and 4, we have p = 2, m>l or p#2, m>6, and G/(z} is abelian by the
minimality of G. But, by Corollary 1, this is impossible. Hence pm"3<t(G/<z». Now the
inequality t(G/<z»<r(G) = pm~2 implies pm~3<t{G/(z})<pm~2. Therefore by Proposi-
tions 2 and 3, expG/<z> = pm~3, and so expG = pm"2 by Lemma 5, a contradiction.
Thus the corollary is proved.

Theorem 1 now follows from Propositions 2 and 3; and Theorem 2 follows from
Corollaries 1 and 2.
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