NILPOTENCY INDICES OF THE RADICALS OF *p*-GROUP ALGEBRAS

by YASUSHI NINOMIYA

(Received 3rd March 1993)

Dedicated to Professor Kazuo Kishimoto on his 60th birthday

Let k be a field of characteristic p>0. We classify all finite p-groups G satisfying the inequality $p^{-2}|G| \leq t(G)$ $< p^{-1}|G|$, where t(G) is the nilpotency index of the Jacobson radical of k[G].

1991 Mathematics subject classification: 20C05, 16S34.

1. Introduction

Let p be a prime number, G a finite p-group of order p^m and k a field of characteristic p. Denote by t(G) the nilpotency index of the Jacobson radical of k[G], the group algebra of G over k.

It is well known (see [8], for example) that

(A) $t(G) \leq p^{m}$. Moreover $t(G) = p^{m}$ if and only if G is cyclic.

Let us assume that G is noncyclic and denote by $\exp G$ the exponent of G. Then $t(G) < p^m$ and it is known, by a result of Koshitani [6], that

(B) $p^{m-1} < t(G) < p^m$ if and only if $\exp G = p^{m-1}$. Moreover in this case $t(G) = p^{m-1} + p - 1$.

We know also, by a result of Motose [7], that

(C) $t(G) = p^{m-1}$ if and only if G is either an elementary abelian 2-group of order 2³ or M(3), the nonabelian 3-group of order 3³ and exponent 3.

The purpose of this note is to classify all finite *p*-groups *G* satisfying the inequality $p^{m-2} \le t(G) < p^{m-1}$. In a recent paper [10], Shalev showed that if $p \ge 7$, then $t(G) \ge p^{m-2}$ if and only if exp $G \ge p^{m-2}$. Therefore:

(D) If $p \ge 7$, then $p^{m-2} < t(G) < p^{m-1}$ if and only if $\exp G = p^{m-2}$.

Now we are interested in the case when p < 7. We know that in this case there exist

five non-isomorphic groups G with $\exp G < p^{m-2}$ and $p^{m-2} < t(G) < p^{m-1}$. One of them is an elementary abelian 2-group of order 2⁴. All the nonabelian p-groups of order p^4 are given by Burnside [1]. We know, by his result, that if $p \neq 2$ then two of them, which we denote by P and Q, are of exponent p:

 $P = M(p) \times C_p$ (where M(p) is the nonabelian *p*-group of order p^3 and exponent *p*, and C_p is a cyclic group of order *p*);

$$Q = \langle a, b, c, d \rangle, p \ge 5$$
, where $a^p = b^p = c^p = d^p = 1$, $[a, b] = [a, c] = [a, d] = [b, c] = 1$, $[c, d] = b$,
 $[b, d] = a$.

Then t(P) = 5(p-1) + 1, t(Q) = 7(p-1) + 1, and we see that

510

$$3^2 < t\langle P \rangle = 11 < 3^3$$
 (for $p = 3$),
 $5^2 < t(Q) = 29 < 5^3$ (for $p = 5$).

All the non-isomorphic 2-groups of order 2^5 are given by Hall and Senior [2]. We know, by their description, that all such groups of exponent 4 generated by two elements satisfy our condition. We have only two such groups, which we denote by R and S:

$$R = \langle a, b, c \rangle, \ a^{2} = b^{4} = c^{4} = 1, \ [a, b] = [a, c] = 1, \ [b, c] = a;$$

$$S = \langle a, b, c, d, e \rangle, \ a^{2} = b^{2} = c^{2} = d^{2} = 1, \ e^{2} = c, \qquad [a, b] = [a, c] = [a, d] = [a, e] = [b, c] = [b, d]$$

$$= 1, \ [b, e] = [c, d] = a, \ [d, e] = b.$$

It is not difficult to see that t(R) = 9 and t(S) = 10. In this note, we shall show that the above five groups are all the *p*-groups such that $\exp G < p^{m-2}$ and $p^{m-2} < t(G) < p^{m-1}$. More precisely, we shall prove the following theorem.

Theorem 1. Let G be a finite p-group of order p^m , where $m \ge 3$. Then $p^{m-2} < t(G) < p^{m-1}$ if and only if one of the following seven cases holds:

- (1) $p \neq 2$, $\exp G = p^{m-2}$, $G \neq M(3)$;
- (2) $p=3, m=4, G \simeq M(3) \times C_3;$
- (3) $p = 5, m = 4, G \simeq Q;$
- (4) $p=2, m \ge 4, \exp G = 2^{m-2};$

- (5) $p=2, m=4, G \simeq C_2 \times C_2 \times C_2 \times C_2$;
- (6) $p = 2, m = 5, G \simeq R;$
- (7) $p = 2, m = 5, G \simeq S$.

Moreover, we shall give all the finite p-groups G with $t(G) = p^{m-2}$. Denote by $\Phi(G)$ the Frattini subgroup of G.

Theorem 2. Let G be a finite p-group of order p^m , where $m \ge 3$. Then $t(G) = p^{m-2}$ if and only if

(1) $p=3, m=4, G \simeq C_3 \times C_3 \times C_3 \times C_3$; or (2) $p=2, m=5, \exp G = 2^2$ and $|G/\Phi(G)| = 2^3$.

Let us note that if a group G satisfies condition (2) of Theorem 2, then G is either an abelian 2-group of type (2,2,1) or one of the fourteen nonabelian groups described in Section 3 (See Remark).

2. Preliminaries

To compute the nilpotency index of the Jacobson radical of the modular p-group algebra, Jennings' formula given in [4, Theorem 3.7] (see also [5]) is very useful. Let us recall this formula.

Let $\{\gamma_i(G)\}\$ be the lower central series of G, that is, $\gamma_i(G)$ is defined inductively by

$$\gamma_1(G) = G, \ \gamma_{i+1}(G) = [\gamma_i(G), G] \text{ for } i \ge 1.$$

Denote by G^{p^i} the subgroup of G generated by $\{g^{p^i} | g \in G\}$, and let $\{\kappa_n(G)\}$ be the sequence defined by

$$\kappa_n(G) = \prod_{i \neq j \geq n} \gamma_i(G)^{p^j}.$$

Moreover, let l(G) be the smallest integer such that $\kappa_{l(G)+1}(G) = \{1\}$ and put $|\kappa_n(G)/\kappa_{n+1}(G)| = p^{e_n}, 1 \le n \le l(G)$. Jennings' formula for t(G) is as follows:

$$t(G) = 1 + (p-1) \sum_{n=1}^{l(G)} ne_n.$$

Now let G be a finite p-group of order p^m . Suppose that $\exp G = p^{m-2}$. If G is abelian then G is either of type (m-2, 2) or of type (m-2, 1, 1), and correspondingly $t(G) = p^{m-2} + p^2 - 1$ or $p^{m-2} + 2(p-1)$. Now we assume that G is nonabelian. If G is metacyclic then $t(G) = p^{m-2} + p^2 - 1$ (see [6,7]). In [9], we classified all the finite p-groups of order p^m and exponent p^{m-2} . This result implies that $|G/\Phi(G)| = p^2$ or p^3 . Applying the above Jennings' formula to each group listed in [9, Theorems 1 and 2], we

have $t(G) = p^{m-2} + 3(p-1)$ if $|G/\Phi(G)| = p^2$ and G is nonmetacyclic; and $t(G) = p^{m-2} + 2(p-1)$ if $|G/\Phi(G)| = p^3$. So we have the following:

Proposition 1. Suppose that G is a finite p-group of order p^m and exponent p^{m-2} , where $m \ge 3$.

- (1) If G is metacyclic, then $t(G) = p^{m-2} + p^2 1$.
- (2) If G is not metacyclic, but $|G/\Phi(G)| = p^2$, then $t(G) = p^{m-2} + 3(p-1)$.
- (3) If $|G/\Phi(G)| = p^3$, then $t(G) = p^{m-2} + 2(p-1)$.

3. Proofs of Theorems 1 and 2

We see, by Shalev's result (D), that if $p \ge 7$ then Theorem 1 holds. In our proof of Theorem 1, we shall not use this fact. First we prove Theorems 1 and 2 in the case where G is abelian. For this aim we need the following lemma.

Lemma 1. Let G be an abelian p-group of order p^m and exponent p^{m-3} , where $m \ge 5$ provided p=2. Then $t(G) \le p^{m-2}$. Moreover $t(G) = p^{m-2}$ if and only if G is either an elementary abelian 3-group of order 3^4 or an abelian 2-group of type (2, 2, 1).

Proof. Assume that $p \neq 2$ and let A be a cyclic subgroup of G of order p^{m-3} . If G/A is cyclic then $t(G) = p^{m-3} + p^3 - 1 < p^{m-2}$. If G/A is of type (2, 1) then

$$t(G) = p^{m-3} + p^2 + p - 2 < p^{m-2}.$$

If G/A is elementary abelian then $t(G) = p^{m-3} + 3(p-1) \le p^{m-2}$. In the last case, we see that if $t(G) = p^{m-2}$ then p=3 and m=4. Therefore our lemma is proved for the case $p \ne 2$. When p=2 we use a similar argument.

Now we are able to prove Theorem 1 in the case where G is abelian.

Proposition 2. Let G be an abelian p-group of order p^m , where $m \ge 3$. Then the following properties are equivalent:

- (1) $p^{m-2} < t(G) < p^{m-1}$.
- (2) (i) $\exp G = p^{m-2}$ and $m \ge 4$ if p = 2; or (ii) $G \simeq C_2 \times C_2 \times C_2 \times C_2$.

Proof. The implication $(2) \Rightarrow (1)$ is obvious. Assume now that (1) holds. Then by (A) and (B), $\exp G \leq p^{m-2}$. Let p=2. If m=3 then G is elementary abelian and t(G)=4, but it is not our case. If m=4, then $\exp G \leq 2^2$, so we see that (2) holds. Therefore we must show that if either $p \neq 2$, $m \geq 3$, or p=2, $m \geq 5$, then $\exp G = p^{m-2}$. For this aim, we use induction on m. If $p \neq 2$ and m=3 then $\exp G = p$. So assume p=2 and m=5. If $\exp G \leq 2^2$ then it is easy to see that $t(G) \leq 2^3$. This shows that $\exp G = 2^3$. Suppose that

512

NILPOTENCY INDICES OF THE RADICALS OF p-GROUP ALGEBRAS 513

 $m \ge 4$ if $p \ne 2$, and $m \ge 6$ if p=2. Let z be an element of G of order p. Then by [11, Theorem 2.4], $p \cdot t(G/\langle z \rangle) \ge t(G) > p^{m-2}$, and consequently $t(G/\langle z \rangle) > p^{m-3}$. Moreover, $t(G/\langle z \rangle) < t(G) < p^{m-1}$. So we have $p^{m-3} < t(G/\langle z \rangle) < p^{m-1}$. Assume now that $t(G/\langle z \rangle) > p^{m-2}$. Then (because $|G/\langle z \rangle| = p^{m-1}$), $\exp G/\langle z \rangle = p^{m-2}$ by (B), and so $\exp G = p^{m-2}$. Since $t(G/\langle z \rangle) \ne p^{m-2}$ by (C), it is enough to prove that if $p^{m-3} < t(G/\langle z \rangle) < p^{m-2}$ then $\exp G = p^{m-2}$. In this case, by the induction hypothesis, we have $\exp G/\langle z \rangle = p^{m-3}$, which implies $\exp G \ge p^{m-3}$. Hence, by Lemma 1, we obtain $\exp G = p^{m-2}$. This completes the proof.

Corollary 1. Let G be an abelian p-group of order p^m , where $m \ge 3$. Then the following properties are equivalent:

- (1) $t(G) = p^{m-2}$.
- (2) (i) $G \simeq C_3 \times C_3 \times C_3 \times C_3$; or
 - (ii) $G \simeq C_4 \times C_4 \times C_2$.

Proof. It suffices to prove that (1) implies (2). Suppose first $p \neq 2$. Then we have $\exp G < t(G) = p^{m-2}$, and so $m \ge 4$. If m=4, then $p^2 = t(G) = 4(p-1)+1$, because G is elementary abelian, which forces p to be 3, and (i) follows. Therefore we must prove that if $m \ge 5$ then $t(G) \ne p^{m-2}$. We proceed by induction on m. If m=5, then $\exp G \le p^2$ and so

$$t(G) = 2p^2 + p - 2$$
 or $p^2 + 3(p-1)$ or $5(p-1) + 1$.

Hence $t(G) \neq p^3$. Now let m > 5 and assume that $t(H) \neq p^{m-3}$ for any abelian group H of order p^{m-1} . Suppose by way of contradiction that there exists an abelian group G of order p^m such that $t(G) = p^{m-2}$. Choose an element z of order p in G. Then we have $p^{m-3} \leq t(G/\langle z \rangle) < p^{m-2}$ and by the induction hypothesis $t(G/\langle z \rangle) \neq p^{m-3}$. Hence by Proposition 2, $\exp G/\langle z \rangle = p^{m-3}$, which yields $\exp G = p^{m-3}$ because $\exp G \leq p^{m-3}$, and so $t(G) < p^{m-2}$ by Lemma 1, a contradiction. Thus the corollary is proved for the case p odd. When p = 2, we use a similar argument.

In the rest of the paper, we denote by cl(G) the class of G, and by Z(G) the centre of G. Now, using the classification of finite p-groups of order $\leq p^6$ (Hall and Senior [2] and James [3]), we shall prove the following three lemmas.

Lemma 2. Let G be a 2-group of order 2^5 and exponent at most 2^2 . Then the following hold:

- (1) If $\exp G = 2$ then t(G) = 6.
- (2) If $\exp G = 2^2$ then

$$t(G) = \begin{cases} 7 & \text{if } |G/\Phi(G)| = 2^4, \\ 8 & \text{if } |G/\Phi(G)| = 2^3, & \text{and} \end{cases}$$

$$t(G) = \begin{cases} 9 & \text{if } |G/\Phi(G)| = 2^2, \quad cl(G) = 2, \\ 10 & \text{if } |G/\Phi(G)| = 2^2, \quad cl(G) = 3. \end{cases}$$

Lemma 3. Let G be a 2-group of order 2^6 and exponent at most 2^3 . Then $t(G) < 2^4$.

Lemma 4. Let $p \neq 2$, and G a p-group of order p^5 and exponent at most p^2 . Then $t(G) < p^3$.

Proof of Lemma 2. If exp G=2, G is elementary abelian, and so t(G)=6. Assume that exp $G=2^2$. Since $\kappa_2(G) = \Phi(G)$, we have $2^{e_1} = |G/\Phi(G)|$, and so if G is abelian then $e_1=4$ or 3, and correspondingly t(G)=7 or 8. Hence the lemma holds for abelian groups. Now let G be nonabelian. Then G belongs to one of the families: Γ_2 , Γ_4 , Γ_5 , Γ_7 (see [2]). If G belongs to Γ_2 , Γ_4 or Γ_5 then cl(G)=2 and $\gamma_2(G)^2=\{1\}$. Therefore l(G)=2 and $(e_1, e_2)=(4, 1)$ or (3, 2) or (2, 3); and correspondingly t(G)=7 or 8 or 9. On the other hand, in the family Γ_7 , there is only one group G of order 2^5 and exponent 2^2 . For this group, $e_1=2$, and t(G)=10, and we know that cl(G)=3. This completes the proof of Lemma 2.

Remark. There are twenty-one types of nonabelian 2-groups of order 2^5 and exponent 2^2 . Five of them given below satisfy t(G) = 7:

$$32\Gamma_2a_1, 32\Gamma_2a_2, 32\Gamma_2b, 32\Gamma_5a_1, 32\Gamma_5a_2.$$

The following fourteen groups satisfy t(G) = 8:

$$32\Gamma_{2}c_{1}, 32\Gamma_{2}c_{2}, 32\Gamma_{2}e_{1}, 32\Gamma_{2}e_{2}, 32\Gamma_{2}f, 32\Gamma_{4}a_{1}, 32\Gamma_{4}a_{2}, \\32\Gamma_{4}a_{3}, 32\Gamma_{4}b_{1}, 32\Gamma_{4}b_{2}, 32\Gamma_{4}c_{1}, 32\Gamma_{4}c_{2}, 32\Gamma_{4}c_{3}, 32\Gamma_{4}d.$$

The last two are the groups we presented in Section 1: $R = 32\Gamma_2 h$ with t(R) = 9 and $S = 32\Gamma_7 a_1$ with t(S) = 10.

Proof of Lemma 3. If $\exp G = 2$, G is elementary abelian, and so t(G) = 7. Suppose next that $\exp G = 2^2$. If G is abelian then G is of type (2, 2, 2) or (2, 2, 1, 1) or (2, 1, 1, 1, 1), and we see that $t(G) \leq 10$. Suppose G is nonabelian. Then G belongs to one of the families: Γ_2 , Γ_4 , Γ_5 , Γ_7 , Γ_9 , Γ_{10} , Γ_{11} , Γ_{13} , Γ_{23} , Γ_{25} . If G belongs to a family other than Γ_{23} , then $cl(G) \leq 3$, $\gamma_2(G)^2 = \{1\}$ and $|\gamma_3(G)| \leq 2$. Hence $\kappa_3(G) = \{1\}$ if cl(G) = 2; and $\kappa_3(G) \simeq C_2$, $\kappa_4(G) = \{1\}$ if cl(G) = 3. So it follows that $t(G) < 2^4$. If G belongs to Γ_{23} then $|\kappa_2(G)| = 2^4$ and $\kappa_3(G) = \gamma_3(G) \simeq C_2 \times C_2$, $\kappa_4(G) = \gamma_4(G) \simeq C_2$, $\kappa_5(G) = \{1\}$, and so t(G) = 14. Therefore the lemma holds if $\exp G \leq 2^2$. Finally, consider the case $\exp G = 2^3$. If G is abelian then G is of type (3,3) or (3,2,1) or (3,1,1,1), and so $t(G) \leq 15$. So assume G is nonabelian. Then G belongs to one of the families: $\Gamma_2, \ldots, \Gamma_7, \Gamma_{12}, \Gamma_{14}, \ldots, \Gamma_{18}, \Gamma_{22}, \Gamma_{23}, \Gamma_{24}, \Gamma_{26}$, and so $cl(G) \leq 4$, $\gamma_2(G)^4 = \gamma_3(G)^2 = \{1\}$. This shows that l(G) = 4. Because,

514

 $e_2 \neq 0$, and $e_4 = 1$ if $e_2 = 1$ ([10, Corollary 1.5, Theorem 1.12(ii)]), noting that $e_1 = 2$, 3 or 4, we have the following possibilities:

 $(e_1, e_2, e_3, e_4) = (2, 1, 2, 1)$ or (2, 2, 1, 1) or (2, 2, 0, 2) or (3, 1, 1, 1) or (3, 2, 0, 1) or (4, 1, 0, 1).

This implies that $t(G) < 2^4$ and Lemma 3 is proved.

Proof of Lemma 4. If G is abelian, then it is easy to see that

$$t(G) \leq t(C_{p^2} \times C_{p^2} \times C_p) = 2p^2 + p - 2 < p^3.$$

Assume G is nonabelian. Then G belongs to one of the families: $\Phi_2, \ldots, \Phi_7, \Phi_9, \Phi_{10}$ (see [3]). If G belongs to a family other than Φ_9 and Φ_{10} then $cl(G) \leq 3$ and $\gamma_2(G)^p = \{1\}$. So we see that $l(G) \leq p$, and by Jennings' formula, we conclude that

$$t(G) \leq (1 \cdot 2 + p \cdot 3)(p-1) + 1 < p^3$$
.

If G belongs to Φ_9 or Φ_{10} then cl(G) = 4 and $\gamma_2(G)^p = \{1\}$. Therefore, if p > 3 then $l(G) \le p$, so $t(G) < p^3$ again; while if p = 3 then l(G) = 4, $\kappa_4(G) \simeq C_3$, and we have

$$t(G) \leq (1 \cdot 2 + 3 \cdot 2 + 4 \cdot 1)(3 - 1) + 1 = 25 < 3^3.$$

Thus Lemma 4 is proved.

Lemma 5. Let G be a nonabelian p-group of order p^m , and let z be an element of order p lying in $Z(G) \cap \kappa_{l(G)}(G)$. Assume $\exp G/\langle z \rangle = p^{m-3}$.

- (1) If $m \ge 7$ then $\exp G = p^{m-2}$.
- (2) If m=6, $p \neq 2$ and $t(G) \ge p^4$ then $\exp G = p^4$.

Proof. (1) Suppose the result is false. Then there exists a p-group G of order p^m with $m \ge 7$ such that $\exp G = \exp G/\langle z \rangle = p^{m-3}$. Since $G/\langle z \rangle$ is of order p^{m-1} , it is either an abelian group of type (m-3,2) or (m-3,1,1), or isomorphic to one of the groups listed in [9, Theorems 1 and 2]. Because $m \ge 7$, in either case, we have $\kappa_{p^2+1}(G) = G^{p^3} = \langle a^{p^3} \rangle$, where a is an element of G such that $a\langle z \rangle (\in G/\langle z \rangle)$ is of order p^{m-3} . But, because $\exp G = p^{m-3}$, $\langle a \rangle$ does not contain z, and so $\kappa_{p^2+1}(G) \not\ni z$, which contradicts the choice of z. Thus (1) is proved.

(2) Suppose the result is false. Then $\exp G = p^3$ and $G/\langle z \rangle$ is either an abelian group of type (3, 2) or (3, 1, 1); or isomorphic to one of the groups: G_1, G_2, \ldots, G_9 given in [9, Theorem 1]. Hence it follows that $cl(G) \leq 4$ and $\gamma_2(G)^{p^2} = \gamma_3(G)^p = \{1\}$, and so $l(G) = p^2$. Because $e_p \neq 0$, and $e_{p^2} = 1$ if $e_p = 1$ ([10]), noting that $e_1 = 2$ or 3, we have the following possibilities:

$$(e_1, e_p, e_{p^2}) = (2, 1, 1)$$
 or $(2, 2, 1)$ or $(2, 2, 2)$ or $(2, 3, 1)$ or $(3, 1, 1)$ or $(3, 2, 1)$.

This together with Jennings' formula implies that t(G) does not exceed $(1 \cdot 2 + p \cdot 1 + p^2 \cdot 3)(p-1) + 1 < p^4$. This contradicts our assumption. Thus (2) is proved.

The next proposition is our Theorem 1 in the case when G is nonabelian.

Proposition 3. Let G be a nonabelian p-group of order p^m , where $m \ge 3$. Then the following properties are equivalent:

- (1) $p^{m-2} < t(G) < p^{m-1}$.
- (2) One of the following holds:
 - (i) $\exp G = p^{m-2}$, where $(p, m) \neq (3, 3)$;
 - (ii) $p = 3, m = 4, G \simeq M(3) \times C_3;$
 - (iii) $p = 5, m = 4, G \simeq Q;$
 - (iv) $p = 2, m = 5, G \simeq R;$
 - (v) $p = 2, m = 5, G \simeq S$.

Proof. Obviously (2) implies (1). Suppose (1) holds. Then $\exp G \leq p^{m-2}$. Therefore, if m=3 then $\exp G = p$, and so, as G is nonabelian, p is odd and $G \simeq M(p)$. But then t(G) = 4p-3. Hence the inequality $p^2 > t(G)$ yields $p \neq 3$. Assume m=4. Then $\exp G \leq p^2$ and we already know that (i), (ii) or (iii) holds in this case. Further if p=2 and m=5, by Proposition 1 and Lemma 2 (see also Remark), (i), (iv) or (v) holds. Therefore it suffices to prove that if either $p \neq 2$, $m \geq 5$; or p=2, $m \geq 6$, then $\exp G = p^{m-2}$. We proceed by induction on m. By Lemmas 3 and 4, the cases $p \neq 2$, m=5 and p=2, m=6 are done. Suppose m>5 if $p \neq 2$, and m>6 if p=2, and let z be an element of order p lying in $Z(G) \cap \kappa_{l(G)}(G)$. Then

$$p \cdot t(G/\langle z \rangle) \ge t(G) > p^{m-2}, \quad t(G/\langle z \rangle) < t(G) < p^{m-1},$$

and so $p^{m-3} < t(G/\langle z \rangle) < p^{m-1}$. If $t(G/\langle z \rangle) > p^{m-2}$, then $\exp G/\langle z \rangle = p^{m-2}$ by (B), and so $\exp G = p^{m-2}$ as desired. Since $t(G/\langle z \rangle) \neq p^{m-2}$ by (C), it remains only to show that if $p^{m-3} < t(G/\langle z \rangle) < p^{m-2}$ then $\exp G = p^{m-2}$. In this case, we have $\exp(G/\langle z \rangle) = p^{m-3}$; because if $G/\langle z \rangle$ is abelian, this follows from Proposition 2, and if $G/\langle z \rangle$ is nonabelian, this follows from the induction hypothesis. Therefore $\exp G = p^{m-2}$ by Lemma 5, and Proposition 3 is proved.

Corollary 2. Let G be a nonabelian p-group of order p^m . Then the following properties are equivalent:

(1) $t(G) = p^{m-2}$.

(2) $|G| = 2^5$, exp $G = 2^2$, $|G/\Phi(G)| = 2^3$.

Proof. The implication $(2) \Rightarrow (1)$ follows from Lemma 2. Suppose (1) holds. Since $\exp G < t(G) = p^{m-2}$ and G is nonabelian, we see that $m \ge 4$ if $p \ne 2$, and $m \ge 5$ if p=2. Let p=2. If m=5, (2) follows from Lemma 2. Further, if m=6 then $t(G) \ne 2^4$ by Lemma 3. We next assume that $p \ne 2$. If m=4 then $\exp G = p$ and $G \simeq M(p) \times C_p$ or Q. We already

516

NILPOTENCY INDICES OF THE RADICALS OF p-GROUP ALGEBRAS 517

know that $t(G) \neq p^2$ in either case. If m=5 then $t(G) \neq p^3$ by Lemma 4. Therefore it suffices to prove that if either p=2 and $m \ge 7$, or $p \ne 2$ and $m \ge 6$, then $t(G) \neq p^{m-2}$. Suppose that it is false and let G be a nonabelian p-group of minimal order satisfying $t(G) = p^{m-2}$. Let z be an element of order p lying in $Z(G) \cap \kappa_{l(G)}(G)$. Then by $p^{m-2} = t(G) \le p \cdot t(G/\langle z \rangle)$, we get $p^{m-3} \le t(G/\langle z \rangle)$. Suppose now $t(G/\langle z \rangle) = p^{m-3}$. Then by Lemmas 3 and 4, we have p=2, m>7 or $p \ne 2$, m>6, and $G/\langle z \rangle$ is abelian by the minimality of G. But, by Corollary 1, this is impossible. Hence $p^{m-3} < t(G/\langle z \rangle)$. Now the inequality $t(G/\langle z \rangle) < t(G) = p^{m-2}$ implies $p^{m-3} < t(G/\langle z \rangle) < p^{m-2}$. Therefore by Propositions 2 and 3, $\exp G/\langle z \rangle = p^{m-3}$, and so $\exp G = p^{m-2}$ by Lemma 5, a contradiction. Thus the corollary is proved.

Theorem 1 now follows from Propositions 2 and 3; and Theorem 2 follows from Corollaries 1 and 2.

REFERENCES

1. W. BURNSIDE, Theory of Groups of Finite Order, 2nd edition (Cambridge Univ. Press, Cambridge, 1911).

2. M. HALL and J. K. SENIOR, *The Groups of Order* 2^n ($n \le 6$) (Macmillan, New York, 1964).

3. R. JAMES, The groups of order p^6 (p an odd prime), Math. Comp. 34 (1980), 613–637.

4. S. A. JENNINGS, The structure of the group ring of a *p*-group over a modular field, *Trans. Amer. Math. Soc.* **50** (1941), 175–185.

5. G. KARPILOVSKY, The Jacobson Radical of Group Algebras (North-Holland, Amsterdam, 1987).

6. S. KOSHITANI, On the nilpotency indices of the radicals of group algebras of *p*-groups which have cyclic subgroups of index *p*, *Tsukuba J. Math.* **1** (1977), 137–148.

7. K. MOTOSE, On a theorem of S. Koshitani, Math. J. Okayama Univ. 20 (1978), 59-65.

8. K. MOTOSE and Y. NINOMIYA, On the nilpotency index of the radical of a group algebra, *Hokkaido Math. J.* 4 (1975), 261–264.

9. Y. NINOMIYA, Finite p-groups with cyclic subgroups of index p^2 , Math. J. Okayama Univ., to appear.

10. A. SHALEV, Dimension subgroups, nilpotency indices, and the number of generators of ideals in *p*-group algebras, J. Algebra 129 (1990), 412-438.

11. D. A. R. WALLACE, Lower bounds for the radical of the group algebra of a finite *p*-soluble group, *Proc. Edinburgh Math. Soc.* 16 (1968/69), 127-134.

DEPARTMENT OF MATHEMATICS FACULTY OF LIBERAL ARTS SHINSHU UNIVERSITY MATSUMOTO 390 JAPAN