NILPOTENCY INDICES OF THE RADICALS OF p-GROUP ALGEBRAS

by YASUSHI NINOMIYA

(Received 3rd March 1993)
Dedicated to Professor Kazuo Kishimoto on his 60th birthday

Let k be a field of characteristic $p>0$. We classify all finite p-groups G satisfying the inequality $p^{-2}|G| \leqq t(G)$ $<p^{-1}|G|$, where $t(G)$ is the nilpotency index of the Jacobson radical of $k[G]$.

1991 Mathematics subject classification: 20C05, 16 S34.

1. Introduction

Let p be a prime number, G a finite p-group of order p^{m} and k a field of characteristic p. Denote by $t(G)$ the nilpotency index of the Jacobson radical of $k[G]$, the group algebra of G over k.

It is well known (see [8], for example) that
(A) $t(G) \leqq p^{m}$. Moreover $t(G)=p^{m}$ if and only if G is cyclic.

Let us assume that G is noncyclic and denote by $\exp G$ the exponent of G. Then $t(G)<p^{m}$ and it is known, by a result of Koshitani [6], that
(B) $p^{m-1}<t(G)<p^{m}$ if and only if $\exp G=p^{m-1}$. Moreover in this case $t(G)=p^{m-1}$ $+p-1$.

We know also, by a result of Motose [7], that
(C) $t(G)=p^{m-1}$ if and only if G is either an elementary abelian 2-group of order 2^{3} or $M(3)$, the nonabelian 3 -group of order 3^{3} and exponent 3 .

The purpose of this note is to classify all finite p-groups G satisfying the inequality $p^{m-2} \leqq t(G)<p^{m-1}$. In a recent paper [10], Shalev showed that if $p \geqq 7$, then $t(G) \geqq p^{m-2}$ if and only if $\exp G \geqq p^{m-2}$. Therefore:
(D) If $p \geqq 7$, then $p^{m-2}<t(G)<p^{m-1}$ if and only if $\exp G=p^{m-2}$.

Now we are interested in the case when $p<7$. We know that in this case there exist
five non-isomorphic groups G with $\exp G<p^{m-2}$ and $p^{m-2}<t(G)<p^{m-1}$. One of them is an elementary abelian 2 -group of order 2^{4}. All the nonabelian p-groups of order p^{4} are given by Burnside [1]. We know, by his result, that if $p \neq 2$ then two of them, which we denote by P and Q, are of exponent p :
$P=M(p) \times C_{p}$ (where $M(p)$ is the nonabelian p-group of order p^{3} and exponent p, and C_{p} is a cyclic group of order p);

$$
\begin{gathered}
Q=\langle a, b, c, d\rangle, p \geqq 5, \text { where } a^{p}=b^{p}=c^{p}=d^{p}=1,[a, b]=[a, c]=[a, d]=[b, c]=1,[c, d]=b, \\
{[b, d]=a .}
\end{gathered}
$$

Then $t(P)=5(p-1)+1, t(Q)=7(p-1)+1$, and we see that

$$
\begin{aligned}
& 3^{2}<t\langle P\rangle=11<3^{3}(\text { for } p=3) \\
& 5^{2}<t(Q)=29<5^{3}(\text { for } p=5)
\end{aligned}
$$

All the non-isomorphic 2-groups of order 2^{5} are given by Hall and Senior [2]. We know, by their description, that all such groups of exponent 4 generated by two elements satisfy our condition. We have only two such groups, which we denote by R and S :
$R=\langle a, b, c\rangle, a^{2}=b^{4}=c^{4}=1,[a, b]=[a, c]=1,[b, c]=a ;$
$S=\langle a, b, c, d, e\rangle, a^{2}=b^{2}=c^{2}=d^{2}=1, e^{2}=c, \quad[a, b]=[a, c]=[a, d]=[a, e]=[b, c]=[b, d]$

$$
=1, \quad[b, e]=[c, d]=a,[d, e]=b .
$$

It is not difficult to see that $t(R)=9$ and $t(S)=10$. In this note, we shall show that the above five groups are all the p-groups such that $\exp G<p^{m-2}$ and $p^{m-2}<t(G)<p^{m-1}$. More precisely, we shall prove the following theorem.

Theorem 1. Let G be a finite p-group of order p^{m}, where $m \geqq 3$. Then $p^{m-2}<t(G)<$ p^{m-1} if and only if one of the following seven cases holds:
(1) $p \neq 2, \exp G=p^{m-2}, G \not \approx M(3)$;
(2) $p=3, m=4, G \simeq M(3) \times C_{3}$;
(3) $p=5, m=4, G \simeq Q$;
(4) $p=2, m \geqq 4, \exp G=2^{m-2}$;
(5) $p=2, m=4, G \simeq C_{2} \times C_{2} \times C_{2} \times C_{2}$;
(6) $p=2, m=5, G \simeq R$;
(7) $p=2, m=5, G \simeq S$.

Moreover, we shall give all the finite p-groups G with $t(G)=p^{m-2}$. Denote by $\Phi(G)$ the Frattini subgroup of G.

Theorem 2. Let G be a finite p-group of order p^{m}, where $m \geqq 3$. Then $t(G)=p^{m-2}$ if and only if
(1) $p=3, m=4, G \simeq C_{3} \times C_{3} \times C_{3} \times C_{3}$; or
(2) $p=2, m=5, \exp G=2^{2}$ and $|G / \Phi(G)|=2^{3}$.

Let us note that if a group G satisfies condition (2) of Theorem 2, then G is either an abelian 2-group of type ($2,2,1$) or one of the fourteen nonabelian groups described in Section 3 (See Remark).

2. Preliminaries

To compute the nilpotency index of the Jacobson radical of the modular p-group algebra, Jennings' formula given in [4, Theorem 3.7] (see also [5]) is very useful. Let us recall this formula.

Let $\left\{\gamma_{i}(G)\right\}$ be the lower central series of G, that is, $\gamma_{i}(G)$ is defined inductively by

$$
\gamma_{1}(G)=G, \gamma_{i+1}(G)=\left[\gamma_{i}(G), G\right] \quad \text { for } \quad i \geqq 1 .
$$

Denote by $G^{p^{i}}$ the subgroup of G generated by $\left\{g^{p^{i}} \mid g \in G\right\}$, and let $\left\{\kappa_{n}(G)\right\}$ be the sequence defined by

$$
\kappa_{n}(G)=\prod_{i p^{\prime} \geq n} \gamma_{i}(G)^{p^{J}} .
$$

Moreover, let $l(G)$ be the smallest integer such that $\kappa_{l(G)+1}(G)=\{1\}$ and put $\left|\kappa_{n}(G) / \kappa_{n+1}(G)\right|=p^{e_{n}}, 1 \leqq n \leqq l(G)$. Jennings' formula for $t(G)$ is as follows:

$$
t(G)=1+(p-1) \sum_{n=1}^{l(G)} n e_{n} .
$$

Now let G be a finite p-group of order p^{m}. Suppose that $\exp G=p^{m-2}$. If G is abelian then G is either of type ($m-2,2$) or of type ($m-2,1,1$), and correspondingly $t(G)=p^{m-2}+p^{2}-1$ or $p^{m-2}+2(p-1)$. Now we assume that G is nonabelian. If G is metacyclic then $t(G)=p^{m-2}+p^{2}-1$ (see [6,7]). In [9], we classified all the finite p-groups of order p^{m} and exponent p^{m-2}. This result implies that $|G / \Phi(G)|=p^{2}$ or p^{3}. Applying the above Jennings' formula to each group listed in [9, Theorems 1 and 2], we
have $t(G)=p^{m-2}+3(p-1)$ if $|G / \Phi(G)|=p^{2}$ and G is nonmetacyclic; and $t(G)=p^{m-2}+$ $2(p-1)$ if $|G / \Phi(G)|=p^{3}$. So we have the following:

Proposition 1. Suppose that G is a finite p-group of order p^{m} and exponent p^{m-2}, where $m \geqq 3$.
(1) If G is metacyclic, then $t(G)=p^{m-2}+p^{2}-1$.
(2) If G is not metacyclic, but $|G / \Phi(G)|=p^{2}$, then $t(G)=p^{m-2}+3(p-1)$.
(3) If $|G / \Phi(G)|=p^{3}$, then $t(G)=p^{m-2}+2(p-1)$.

3. Proofs of Theorems $\mathbf{1}$ and 2

We see, by Shalev's result (D), that if $p \geqq 7$ then Theorem 1 holds. In our proof of Theorem 1, we shall not use this fact. First we prove Theorems 1 and 2 in the case where G is abelian. For this aim we need the following lemma.

Lemma 1. Let G be an abelian p-group of order p^{m} and exponent p^{m-3}, where $m \geqq 5$ provided $p=2$. Then $t(G) \leqq p^{m-2}$. Moreover $t(G)=p^{m-2}$ if and only if G is either an elementary abelian 3-group of order 3^{4} or an abelian 2-group of type $(2,2,1)$.

Proof. Assume that $p \neq 2$ and let A be a cyclic subgroup of G of order p^{m-3}. If G / A is cyclic then $t(G)=p^{m-3}+p^{3}-1<p^{m-2}$. If G / A is of type $(2,1)$ then

$$
t(G)=p^{m-3}+p^{2}+p-2<p^{m-2}
$$

If G / A is elementary abelian then $t(G)=p^{m-3}+3(p-1) \leqq p^{m-2}$. In the last case, we see that if $t(G)=p^{m-2}$ then $p=3$ and $m=4$. Therefore our lemma is proved for the case $p \neq 2$. When $p=2$ we use a similar argument.

Now we are able to prove Theorem 1 in the case where G is abelian.
Proposition 2. Let G be an abelian p-group of order p^{m}, where $m \geqq 3$. Then the following properties are equivalent:
(1) $p^{m-2}<t(G)<p^{m-1}$.
(2) (i) $\exp G=p^{m-2}$ and $m \geqq 4$ if $p=2$; or
(ii) $G \simeq C_{2} \times C_{2} \times C_{2} \times C_{2}$.

Proof. The implication (2) $\Rightarrow(1)$ is obvious. Assume now that (1) holds. Then by (A) and (B), $\exp G \leqq p^{m-2}$. Let $p=2$. If $m=3$ then G is elementary abelian and $t(G)=4$, but it is not our case. If $m=4$, then $\exp G \leqq 2^{2}$, so we see that (2) holds. Therefore we must show that if either $p \neq 2, m \geqq 3$, or $p=2, m \geqq 5$, then $\exp G=p^{m-2}$. For this aim, we use induction on m. If $p \neq 2$ and $m=3$ then $\exp G=p$. So assume $p=2$ and $m=5$. If \exp $G \leqq 2^{2}$ then it is easy to see that $t(G) \leqq 2^{3}$. This shows that $\exp G=2^{3}$. Suppose that

NILPOTENCY INDICES OF THE RADICALS OF p-GROUP ALGEBRAS

$m \geqq 4$ if $p \neq 2$, and $m \geqq 6$ if $p=2$. Let z be an element of G of order p. Then by [11, Theorem 2.4], $p \cdot t(G /\langle z\rangle) \geqq t(G)>p^{m-2}$, and consequently $t(G /(z\rangle)>p^{m-3}$. Moreover, $t(G /\langle z\rangle)<t(G)<p^{m-1}$. So we have $p^{m-3}<t(G /\langle z\rangle)<p^{m-1}$. Assume now that $\left.t(G /\langle z\rangle)\right\rangle$ p^{m-2}. Then (because $|G /\langle z\rangle|=p^{m-1}$), $\exp G /\langle z\rangle=p^{m-2}$ by (B), and so $\exp G=p^{m-2}$. Since $t(G /\langle z\rangle) \neq p^{m-2}$ by (C), it is enough to prove that if $p^{m-3}<t(G /\langle z\rangle)<p^{m-2}$ then $\exp G=p^{m-2}$. In this case, by the induction hypothesis, we have $\exp G /\langle z\rangle=p^{m-3}$, which implies $\exp G \geqq p^{m-3}$. Hence, by Lemma 1, we obtain $\exp G=p^{m-2}$. This completes the proof.

Corollary 1. Let G be an abelian p-group of order p^{m}, where $m \geqq 3$. Then the following properties are equivalent:
(1) $t(G)=p^{m-2}$.
(2)
(i) $G \simeq C_{3} \times C_{3} \times C_{3} \times C_{3}$; or
(ii) $G \simeq C_{4} \times C_{4} \times C_{2}$.

Proof. It suffices to prove that (1) implies (2). Suppose first $p \neq 2$. Then we have $\exp G<t(G)=p^{m-2}$, and so $m \geqq 4$. If $m=4$, then $p^{2}=t(G)=4(p-1)+1$, because G is elementary abelian, which forces p to be 3 , and (i) follows. Therefore we must prove that if $m \geqq 5$ then $t(G) \neq p^{m-2}$. We proceed by induction on m. If $m=5$, then $\exp G \leqq p^{2}$ and so

$$
t(G)=2 p^{2}+p-2 \text { or } p^{2}+3(p-1) \text { or } 5(p-1)+1
$$

Hence $t(G) \neq p^{3}$. Now let $m>5$ and assume that $t(H) \neq p^{m-3}$ for any abelian group H of order p^{m-1}. Suppose by way of contradiction that there exists an abelian group G of order p^{m} such that $t(G)=p^{m-2}$. Choose an element z of order p in G. Then we have $p^{m-3} \leqq t(G /\langle z\rangle)<p^{m-2}$ and by the induction hypothesis $t(G /\langle z\rangle) \neq p^{m-3}$. Hence by Proposition 2, $\exp G /\langle z\rangle=p^{m-3}$, which yields $\exp G=p^{m-3}$ because $\exp G \leqq p^{m-3}$, and so $t(G)<p^{m-2}$ by Lemma 1, a contradiction. Thus the corollary is proved for the case p odd. When $p=2$, we use a similar argument.

In the rest of the paper, we denote by $c l(G)$ the class of G, and by $Z(G)$ the centre of G. Now, using the classification of finite p-groups of order $\leqq p^{6}$ (Hall and Senior [2] and James [3]), we shall prove the following three lemmas.

Lemma 2. Let G be a 2-group of order 2^{5} and exponent at most 2^{2}. Then the following hold:
(1) If $\exp G=2$ then $t(G)=6$.
(2) If $\exp G=2^{2}$ then

$$
t(G)=\left\{\begin{array}{ll}
7 & \text { if }|G / \Phi(G)|=2^{4}, \\
8 & \text { if }|G / \Phi(G)|=2^{3},
\end{array}\right. \text { and }
$$

$$
t(G)=\left\{\begin{array}{lll}
9 & \text { if } & |G / \Phi(G)|=2^{2}, \\
10 & \text { if } l(G)=2 \\
|G / \Phi(G)|=2^{2}, & c l(G)=3
\end{array}\right.
$$

Lemma 3. Let G be a 2-group of order 2^{6} and exponent at most 2^{3}. Then $t(G)<2^{4}$.
Lemma 4. Let $p \neq 2$, and G a p-group of order p^{5} and exponent at most p^{2}. Then $t(G)<p^{3}$.

Proof of Lemma 2. If $\exp G=2, G$ is elementary abelian, and so $t(G)=6$. Assume that $\exp G=2^{2}$. Since $\kappa_{2}(G)=\Phi(G)$, we have $2^{e_{1}}=|G / \Phi(G)|$, and so if G is abelian then $e_{1}=4$ or 3 , and correspondingly $t(G)=7$ or 8 . Hence the lemma holds for abelian groups. Now let G be nonabelian. Then G belongs to one of the families: $\Gamma_{2}, \Gamma_{4}, \Gamma_{5}, \Gamma_{7}$ (see [2]). If G belongs to Γ_{2}, Γ_{4} or Γ_{5} then $c l(G)=2$ and $\gamma_{2}(G)^{2}=\{1\}$. Therefore $l(G)=2$ and $\left(e_{1}, e_{2}\right)=(4,1)$ or $(3,2)$ or $(2,3)$; and correspondingly $t(G)=7$ or 8 or 9 . On the other hand, in the family Γ_{7}, there is only one group G of order 2^{5} and exponent 2^{2}. For this group, $e_{1}=2$, and $t(G)=10$, and we know that $c l(G)=3$. This completes the proof of Lemma 2.

Remark. There are twenty-one types of nonabelian 2-groups of order 2^{5} and exponent 2^{2}. Five of them given below satisfy $t(G)=7$:

$$
32 \Gamma_{2} a_{1}, 32 \Gamma_{2} a_{2}, 32 \Gamma_{2} b, 32 \Gamma_{5} a_{1}, 32 \Gamma_{5} a_{2}
$$

The following fourteen groups satisfy $t(G)=8$:

$$
\begin{aligned}
& 32 \Gamma_{2} c_{1}, 32 \Gamma_{2} c_{2}, 32 \Gamma_{2} e_{1}, 32 \Gamma_{2} e_{2}, 32 \Gamma_{2} f, 32 \Gamma_{4} a_{1}, 32 \Gamma_{4} a_{2}, \\
& 32 \Gamma_{4} a_{3}, 32 \Gamma_{4} b_{1}, 32 \Gamma_{4} b_{2}, 32 \Gamma_{4} c_{1}, 32 \Gamma_{4} c_{2}, 32 \Gamma_{4} c_{3}, 32 \Gamma_{4} d .
\end{aligned}
$$

The last two are the groups we presented in Section 1: $R=32 \Gamma_{2} h$ with $t(R)=9$ and $S=32 \Gamma_{7} a_{1}$ with $t(S)=10$.

Proof of Lemma 3. If $\exp G=2, G$ is elementary abelian, and so $t(G)=7$. Suppose next that $\exp G=2^{2}$. If G is abelian then G is of type $(2,2,2)$ or $(2,2,1,1)$ or $(2,1,1,1,1)$, and we see that $t(G) \leqq 10$. Suppose G is nonabelian. Then G belongs to one of the families: $\Gamma_{2}, \Gamma_{4}, \Gamma_{5}, \Gamma_{7}, \Gamma_{9}, \Gamma_{10}, \Gamma_{11}, \Gamma_{13}, \Gamma_{23}, \Gamma_{25}$. If G belongs to a family other than Γ_{23}, then $\operatorname{cl}(G) \leqq 3, \gamma_{2}(G)^{2}=\{1\}$ and $\left|\gamma_{3}(G)\right| \leqq 2$. Hence $\kappa_{3}(G)=\{1\}$ if $c l(G)=2$; and $\kappa_{3}(G) \simeq C_{2}, \kappa_{4}(G)=\{1\}$ if $\mathrm{cl}(G)=3$. So it follows that $t(G)<2^{4}$. If G belongs to Γ_{23} then $\left|\kappa_{2}(G)\right|=2^{4}$ and $\kappa_{3}(G)=\gamma_{3}(G) \simeq C_{2} \times C_{2}, \kappa_{4}(G)=\gamma_{4}(G) \simeq C_{2}, \kappa_{5}(G)=\{1\}$, and so $t(G)=14$. Therefore the lemma holds if $\exp G \leqq 2^{2}$. Finally, consider the case $\exp G=2^{3}$. If G is abelian then G is of type $(3,3)$ or $(3,2,1)$ or $(3,1,1,1)$, and so $t(G) \leqq 15$. So assume G is nonabelian. Then G belongs to one of the families: $\Gamma_{2}, \ldots, \Gamma_{7}, \Gamma_{12}, \Gamma_{14}, \ldots, \Gamma_{18}, \Gamma_{22}$, $\Gamma_{23}, \Gamma_{24}, \Gamma_{26}$, and so $c l(G) \leqq 4, \gamma_{2}(G)^{4}=\gamma_{3}(G)^{2}=\{1\}$. This shows that $l(G)=4$. Because,
$e_{2} \neq 0$, and $e_{4}=1$ if $e_{2}=1$ ([10, Corollary 1.5 , Theorem 1.12(ii)]), noting that $e_{1}=2,3$ or 4 , we have the following possibilities:

$$
\left(e_{1}, e_{2}, e_{3} . e_{4}\right)=(2,1,2,1) \text { or }(2,2,1,1) \text { or }(2,2,0,2) \text { or }(3,1,1,1) \text { or }(3,2,0,1) \text { or }(4,1,0,1)
$$

This implies that $t(G)<2^{4}$ and Lemma 3 is proved.
Proof of Lemma 4. If G is abelian, then it is easy to see that

$$
t(G) \leqq t\left(C_{p^{2}} \times C_{p^{2}} \times C_{p}\right)=2 p^{2}+p-2<p^{3}
$$

Assume G is nonabelian. Then G belongs to one of the families: $\Phi_{2}, \ldots, \Phi_{7}, \Phi_{9}, \Phi_{10}$ (see [3]). If G belongs to a family other than Φ_{9} and Φ_{10} then $c l(G) \leqq 3$ and $\gamma_{2}(G)^{p}=\{1\}$. So we see that $l(G) \leqq p$, and by Jennings' formula, we conclude that

$$
t(G) \leqq(1 \cdot 2+p \cdot 3)(p-1)+1<p^{3} .
$$

If G belongs to Φ_{9} or Φ_{10} then $\operatorname{cl}(G)=4$ and $\gamma_{2}(G)^{p}=\{1\}$. Therefore, if $p>3$ then $l(G) \leqq p$, so $t(G)<p^{3}$ again; while if $p=3$ then $l(G)=4, \kappa_{4}(G) \simeq C_{3}$, and we have

$$
t(G) \leqq(1 \cdot 2+3 \cdot 2+4 \cdot 1)(3-1)+1=25<3^{3}
$$

Thus Lemma 4 is proved.
Lemma 5. Let G be a nonabelian p-group of order p^{m}, and let z be an element of order p lying in $Z(G) \cap \kappa_{l(G)}(G)$. Assume $\exp G /\langle z\rangle=p^{m-3}$.
(1) If $m \geqq 7$ then $\exp G=p^{m-2}$.
(2) If $m=6, p \neq 2$ and $t(G) \geqq p^{4}$ then $\exp G=p^{4}$.

Proof. (1) Suppose the result is false. Then there exists a p-group G of order p^{m} with $m \geqq 7$ such that $\exp G=\exp G /\langle z\rangle=p^{m-3}$. Since $G /\langle z\rangle$ is of order p^{m-1}, it is either an abelian group of type ($m-3,2$) or ($m-3,1,1$), or isomorphic to one of the groups listed in [9, Theorems 1 and 2]. Because $m \geqq 7$, in either case, we have $\kappa_{p^{2}+1}(G)=G^{p^{3}}=\left\langle a^{p^{3}}\right\rangle$, where a is an element of G such that $a\langle z\rangle(\epsilon G /\langle z\rangle)$ is of order p^{m-3}. But, because $\exp G=p^{m-3},\langle a\rangle$ does not contain z, and so $\kappa_{p^{2}+1}(G) \nexists z$, which contradicts the choice of z. Thus (1) is proved.
(2) Suppose the result is false. Then $\exp G=p^{3}$ and $G /\langle z\rangle$ is either an abelian group of type (3,2) or $(3,1,1)$; or isomorphic to one of the groups: $G_{1}, G_{2}, \ldots, G_{9}$ given in [9 , Theorem 1]. Hence it follows that $c l(G) \leqq 4$ and $\gamma_{2}(G)^{p^{2}}=\gamma_{3}(G)^{p}=\{1\}$, and so $l(G)=p^{2}$. Because $e_{p} \neq 0$, and $e_{p^{2}}=1$ if $e_{p}=1([10])$, noting that $e_{1}=2$ or 3 , we have the following possibilities:

$$
\left(e_{1}, e_{p}, e_{p^{2}}\right)=(2,1,1) \text { or }(2,2,1) \text { or }(2,2,2) \text { or }(2,3,1) \text { or }(3,1,1) \text { or }(3,2,1) .
$$

This together with Jennings' formula implies that $t(G)$ does not exceed $\left(1 \cdot 2+p \cdot 1+p^{2} \cdot 3\right)(p-1)+1<p^{4}$. This contradicts our assumption. Thus (2) is proved.

The next proposition is our Theorem 1 in the case when G is nonabelian.
Proposition 3. Let G be a nonabelian p-group of order p^{m}, where $m \geqq 3$. Then the following properties are equivalent:
(1) $p^{m-2}<t(G)<p^{m-1}$.
(2) One of the following holds:
(i) $\exp G=p^{m-2}$, where $(p, m) \neq(3,3)$;
(ii) $p=3, m=4, G \simeq M(3) \times C_{3}$;
(iii) $p=5, m=4, G \simeq Q$;
(iv) $p=2, m=5, G \simeq R$;
(v) $p=2, m=5, G \simeq S$.

Proof. Obviously (2) implies (1). Suppose (1) holds. Then $\exp G \leqq p^{m-2}$. Therefore, if $m=3$ then $\exp G=p$, and so, as G is nonabelian, p is odd and $G \simeq M(p)$. But then $t(G)=4 p-3$. Hence the inequality $p^{2}>t(G)$ yields $p \neq 3$. Assume $m=4$. Then $\exp G \leqq p^{2}$ and we already know that (i), (ii) or (iii) holds in this case. Further if $p=2$ and $m=5$, by Proposition 1 and Lemma 2 (see also Remark), (i), (iv) or (v) holds. Therefore it suffices to prove that if either $p \neq 2, m \geqq 5$; or $p=2, m \geqq 6$, then $\exp G=p^{m-2}$. We proceed by induction on m. By Lemmas 3 and 4, the cases $p \neq 2, m=5$ and $p=2, m=6$ are done. Suppose $m>5$ if $p \neq 2$, and $m>6$ if $p=2$, and let z be an element of order p lying in $Z(G) \cap \kappa_{l(G)}(G)$. Then

$$
p \cdot t(G /\langle z\rangle) \geqq t(G)>p^{m-2}, \quad t(G /\langle z\rangle)<t(G)<p^{m-1},
$$

and so $p^{m-3}<t(G /\langle z\rangle)<p^{m-1}$. If $t(G /\langle z\rangle)>p^{m-2}$, then $\exp G /\langle z\rangle=p^{m-2}$ by (B), and so $\exp G=p^{m-2}$ as desired. Since $t(G /\langle z\rangle) \neq p^{m-2}$ by (C), it remains only to show that if $p^{m-3}<t(G /\langle z\rangle)<p^{m-2}$ then $\exp G=p^{m-2}$. In this case, we have $\exp (G /\langle z\rangle)=p^{m-3}$; because if $G /\langle z\rangle$ is abelian, this follows from Proposition 2, and if $G /\langle z\rangle$ is nonabelian, this follows from the induction hypothesis. Therefore $\exp G=\boldsymbol{p}^{m-2}$ by Lemma 5, and Proposition 3 is proved.

Corollary 2. Let G be a nonabelian p-group of order p^{m}. Then the following properties are equivalent:
(1) $t(G)=p^{m-2}$.
(2) $|G|=2^{5}, \exp G=2^{2},|G / \Phi(G)|=2^{3}$.

Proof. The implication (2) \Rightarrow (1) follows from Lemma 2. Suppose (1) holds. Since $\exp G<t(G)=p^{m-2}$ and G is nonabelian, we see that $m \geqq 4$ if $p \neq 2$, and $m \geqq 5$ if $p=2$. Let $p=2$. If $m=5$; (2) follows from Lemma 2. Further, if $m=6$ then $t(G) \neq 2^{4}$ by Lemma 3. We next assume that $p \neq 2$. If $m=4$ then $\exp G=p$ and $G \simeq M(p) \times C_{p}$ or Q. We already

NILPOTENCY INDICES OF THE RADICALS OF p-GROUP ALGEBRAS

know that $t(G) \neq p^{2}$ in either case. If $m=5$ then $t(G) \neq p^{3}$ by Lemma 4. Therefore it suffices to prove that if either $p=2$ and $m \geqq 7$, or $p \neq 2$ and $m \geqq 6$, then $t(G) \neq p^{m-2}$. Suppose that it is false and let G be a nonabelian p-group of minimal order satisfying $t(G)=p^{m-2}$. Let z be an element of order p lying in $Z(G) \cap \kappa_{l(G)}(G)$. Then by $p^{m-2}=t(G) \leqq p \cdot t(G /\langle z\rangle)$, we get $p^{m-3} \leqq t(G /\langle z\rangle)$. Suppose now $t(G /\langle z\rangle)=p^{m-3}$. Then by Lemmas 3 and 4 , we have $p=2, m>7$ or $p \neq 2, m>6$, and $G /\langle z\rangle$ is abelian by the minimality of G. But, by Corollary 1 , this is impossible. Hence $p^{m-3}<t(G /\langle z\rangle)$. Now the inequality $t(G /\langle z\rangle)<t(G)=p^{m-2}$ implies $p^{m-3}<t(G /\langle z\rangle)<p^{m-2}$. Therefore by Propositions 2 and $3, \exp G /\langle z\rangle=p^{m-3}$, and so $\exp G=p^{m-2}$ by Lemma 5, a contradiction. Thus the corollary is proved.

Theorem 1 now follows from Propositions 2 and 3; and Theorem 2 follows from Corollaries 1 and 2.

REFERENCES

1. W. Burnside, Theory of Groups of Finite Order, 2nd edition (Cambridge Univ. Press, Cambridge, 1911).
2. M. Hall and J. K. Senior, The Groups of Order 2^{n} ($n \leqq 6$) (Macmillan, New York, 1964).
3. R. James, The groups of order p^{6} (p an odd prime), Math. Comp. 34 (1980), 613-637.
4. S. A. Jennings, The structure of the group ring of a p-group over a modular field, Trans. Amer. Math. Soc. 50 (1941), 175-185.
5. G. Karpilovsky, The Jacobson Radical of Group Algebras (North-Holland, Amsterdam, 1987).
6. S. Koshitan, On the nilpotency indices of the radicals of group algebras of p-groups which have cyclic subgroups of index p, Tsukuba J. Math. 1 (1977), 137-148.
7. K. Motose, On a theorem of S. Koshitani, Math. J. Okayama Univ. 20 (1978), 59-65.
8. K. Motose and Y. Ninomiya, On the nilpotency index of the radical of a group algebra, Hokkaido Math. J. 4 (1975), 261-264.
9. Y. Ninomiya, Finite p-groups with cyclic subgroups of index p^{2}, Math. J. Okayama Univ., to appear.
10. A. Shalev, Dimension subgroups, nilpotency indices, and the number of generators of ideals in p-group algebras, J. Algebra 129 (1990), 412-438.
11. D. A. R. Wallace, Lower bounds for the radical of the group algebra of a finite p-soluble group, Proc. Edinburgh Math. Soc. 16 (1968/69), 127-134.

Department of Mathematics
Faculty of Liberal Arts
Shinshu University
Matsumoto 390
Japan

