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ON MAJOR AND MINOR BRANCHES OF ROOTED 
TREES 

A. MEIR AND J. W. MOON 

1. Introduction. Let ^ denote a rooted tree with n nodes. (For 
definitions not given here, see, e.g. [4] ). For any node v of ^ , let B(v) 
denote the subtree of 3T determined by v and all nodes u such that v 
is between u and the root of 3^\ node v serves as the root of B(v). 
The branches of 3^ are the subtrees B(v) such that node v is joined 
to the root of 3Tn. A branch B with i nodes is a primary branch of 3T if 
n/2 ^ i'^ n — 1; if 3^ has a primary branch B with / nodes, then a branch 
C withy nodes is a secondary branch if (n — i)/2 ^ j ^ n — 1 — /"; if ^ 
has a primary branch B with i nodes and a secondary branch C with j 
nodes, then a branch D with h nodes is a tertiary branch if 

(n — i — j)/2 = h ^ n — 1 — i — j . 

A branch is a major branch if it is a primary, secondary or tertiary branch; 
otherwise it is a minor branch. Our main object here is to establish some 
results on the existence, sizes, and heights of the major and minor 
branches of trees in certain families ^ of rooted trees. 

In Section 2 we define the families J*" of rooted trees we shall consider 
and we give some lemmas on the asymptotic behaviour of the coefficients 
in certain generating functions. Our main results are in the remaining 
sections. In Section 3 we show that the probability that a tree ^ in IF does 
not have a primary branch is 0(n~ ) and in Section 4 we show, among 
other things, that the expected number of nodes of ^ that do not belong to 
a primary branch is equal to 0(nxn). In the later sections we show that the 
probabilities that a tree ^ has a secondary branch, a tertiary branch, or 
some minor branches all tend to a limit as n —» oo. We find that the 
expected number of nodes in a secondary branch of J^is equal to 0(nl/ ) 
and the expected number in a tertiary branch is equal to 0(log n). These 
major branches are, in a sense, the only significant branches, for the 
expected number of nodes in all the minor branches tends to a constant as 
n —» oo. We also appeal to a result of Flajolet and Odlyzko [3] to show that 
the expected heights of the primary and secondary branches of 3T are 
0(n]/2) and 0(log n), respectively, and that the expected value of the sum 
of the heights of all the remaining branches is 0(1). 
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2. Preliminaries. Let yn denote the number of trees ^ in a given family 
jFof rooted trees; if there are weights associated with trees inJ^ then each 
tree is counted according to its weight in these definitions. The family fF is 
a simply generated family if the generating function Y = 2 yf1x

n satisfies a 
relation of the type 

(2.1) Y = x<KY) 

where 

4>(Y) = 1 + cxY + c2Y
2 + . . . 

is a power series in Y with non-negative coefficients. This implies that the 
trivial tree $[ is in ,F and that any non-trivial tree ^ in J^ can be con­
structed from an ordered collection of smaller trees in J^ by joining their 
roots to a new node that serves as the root of 3Ç. The factor x in (2.1) takes 
the new root-node into account and the coefficients ci determine weights 
associated with trees in J*T If the tree ^ has Dt{^) nodes incident with i 
edges leading away from the root, then the weight uÇ%) of ̂ i s defined by 
the formula 

«Œ) = n c w 
where we adopt the convention that cQ = 1. Relation (2.1) implies that 

y„ = 2 aW) 

where the sum is over all trees ^ in IF. Two familiar examples of simply 
generated families are the plane trees and the labelled trees, for which 
cl = 1 and ci = 1//!, respectively, for / ^ 1. 

In what follows we let %}{f{x) } denote the coefficient of x11 in the 
power series f{x)\ and, in all statements involving asymptotic or limit 
relations, it is to be understood that the relation holds as the appropriate 
parameter (usually n) tends to infinity. We assume henceforth that ,F is 
some given simply generated family of rooted trees and that the function § 
in (2.1) satisfies the hypothesis of the following result. 

LEMMA 1. Suppose 

<K0 = 1 + cxt + c2t
2 + . . . 

is a regular function of t for \t\ < R ^ oo, and let 

Y = Y(x) = JC + y2x
2 + . . . 

denote the unique solution of Y(x) = xcf>(Y(x) ) in the neighbourhood of 
x = 0. / / 

(i)c,- ^ Ofori ^ 1, 
(ii) CjCj > 0 for some distinct i and j such that gcd(/,y) = 1, and 

(iii) T<£'(T) = <j)(r)for some T, where 0 < r <C R, then 
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(2.2) yn ~ cp~"n-3/2 

where 

p = T / « T ) and c = T(2<ÏÏPTCJ)"(T) )~ 1 / 2 . 

Furthermore, if K is any fixed positive integer, then 

(2.3) %{x4k\Y)} ~ (4k + %)y„ 

and 

(2.4) <gn{Yk(x))~kS-xyn. 

Relation (2.2) was proved in [7] and a closely related result was proved 
earlier in [12]. Relation (2.3) may be proved in a similar way, as was 
pointed out in [8] when k = 1 (we shall use (2.3) only when k ^ 3 here). 
Relation (2.4) was proved in [10]. We remark that (2.3) and (2.4) are 
special cases of a more general result proved in [11; Lemma 4]. 

In the following lemmas, which we shall need later, an and bn denote 
non-negative functions of n and a, b, and p denote positive constants; the 
function^ is defined by the relation 

fn = 2 ' b„_fli 

where the sum is over / such that 1 = i = n/2. 

LEMMA 2. If 

(i) bn~bp-nn-t 

for some constant ft, and if 

oo 

(ii) 0 < A = 2 anp
n < oo 

l 

then 

(2.5) f„ ~ Ab„. 

Proof For any given c > 0, let TV = N€ denote the least integer such 
that 

N 

8N = A — 2 atp
l < e. 

l 

It follows readily from (i) that if 1 = / ^ n/2 then 

*„_,. = p''0(ft„) 

as n —> oo and that if 1 ^ / ^ N then 
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as n —» oo, where the error terms depend only on n (and e in the second 
case). Hence, 

N nil 

X = 2 bn_fli + 2 bn-fli 
7 = 1 / = W + 1 

= 0 + o(i))M^ - M + o(SNbn) 

= (i + o(i)M*„ + o(«A) 
as « —» oo. This suffices to prove the required result since SN < e. 

(We remark that the conclusion of Lemma 2 still holds if condition (i) is 
replaced by the conditions that 

(hi) bn_xlbn —> p as n —> oo and 

there exists a constant K such that 

(iv) bn_l/bn ^ Kpl for 1 ^ / ^ /i/2. 

If only two of the conditions (ii), (hi), and (iv) are assumed to hold, then 
the conclusion does not necessarily follow). 

LEMMA 3. Suppose that bn ~ bp~fln~~3/2. 
(0 Ifan ~ ap~"n~\ then fn ~ a log n • bn. 

(ii) / /û w ~ ap'nn~l/\ thenfn ~ 2anl/2bn. 

These results follow readily upon approximating the appropriate sums 
by an integral and then passing to the limit; we shall omit the details. 

3. Trees with a primary branch. Let Nn denote the number of trees ^ in 
3P that do not have a primary branch. We begin by deriving an expression 
for the number Pn of trees ^ in fF that have a primary branch. (We adopt 
the convention that an empty sum equals zero.) 

THEOREM I. P„ = 2 yn-i%{x4>'(Y)}. 

Proof. The generating function ckx Y enumerates those trees in J*" that 
have k branches, for k = 0, 1, . . . . It follows, therefore, that the number 
of trees £T with k branches one of which is a primary branch with n — / 
nodes is equal to 

yn^,{xkckY
k-x), 

for / ^ / ^ n/2. When we sum this over the admissible values of k and /, 
we obtain the required expression for Pn. 

Sometimes it is possible to deduce from Theorem 1 an explicit formula 
for Pn or, equivalently, for N = y — P The following are two examples 
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of such results; we shall omit the details of their derivation other than to 
point out that the result for labelled trees is an immediate consequence of 
Jordan's result [2] on centroids in trees. (We adopt the convention that ym 

equals zero if m is not a positive integer.) 

COROLLARY 1.1. If 3F is the family of rooted labelled trees, then 

(3.1) N„=-y„-]-yl/2 
n 2 

where 

n"-] 

yn = ——• 

If & is the family of plane trees, then 

(3-2) N„ = ——y» - JV2JV2+1 - -y2(n+\)a 
n + 1 2 

where 

1 (in - 2\ 
y " = - \ n - \ ) -

When we apply relation (2.2) and Lemma 2 to the expression for Pn in 
Theorem 1, we find that 

Pn/yn -> p*'(r) = 1 

or, equivalently, that 

N„/y„ -> 0. 

One might suspect, in view of (3.1) and (3.2), that Nn/yn ~ kn~ , k 
constant, for all simply generated families. We now show that this is 
indeed the case. 

THEOREM 2. lim (nNn/y„) = T<J/"(T)/4>"(T). 
n—*oo 

Proof For each integer n ^ 2, let 

Sn = S„(x) = 2 ytx
l. 

For each pair of integers n and k where 2 ^ k ^ n — 1, let 

Since Nn is the number of trees ^ in which each branch has at most 
(n — l)/2 nodes, it follows that 
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n-\ 

(3.3) Nn = 2 ckLnk 

for n ^ 3. To prove the theorem we shall first show that 

(3.4) lim nhnk/yn = k(k - \)(k - 2 ) / " 2 / ^ ' ( T ) 

for each fixed integer k = 2. 
It is not difficult to see that 

A , 2 = J & - i ) / 2 = 0(n-y2yn), 
so (3.4) certainly holds if k = 2. Consider now any fixed integer k ~ 3 and 
suppose that n ^ k. We observe that 

(3-5) Ln + U = l£yir..ylk 

where the sum is over all integers z'l5 . . . , ik such that 

/ , + . . . + /* = * 

and l ^ i ^ w/2 for 1 ^ j ^ k. Let us temporarily assume that « is odd. 
For each term in the sum in (3.5), let p denote the largest integer such 
that 

z'i + . . . + ip < n/2; 

let r = il + . . . + i 9 s = ip + x, and / = ip+2 + . . . + /*. Since 
ij ^ n/2 for all j and « is odd, it follows that I ^ p ^ k — 2 and 
1 ^ r, s, t < n/2. Relation (3.5) may therefore be rewritten as 

Ln+XJk = 2 2 * %{sp
n) • %{sn) • %{sk

n-l~p} 

where the sum 2 is over all integers r, s, and t such that r H- s + / = /? 
and 1 ^ r, s, t < n/2. But 

%{S%) = %{Ym) Xh^n/2; 

hence, 

k-2 

(3.6) Lw + U = 2 2 * tfr{Y*} ' Ys • Vt{Yk
n-

1-»}. 
P = \ 

Now consider the inner sum 2 * in the right hand side for any fixed 
value of p. We recall that relation (2.4) and (2.2) imply that 

(3.7) %{Ym) ~ mrm~xyh ~ cmTm~X
9~

hh'V1 

for any fixed integer m, as h —> oo. If we apply relation (3.7) to the terms in 
2 * , multiply by n/yn and then approximate this sum by an integral, we 
find that for every fixed p 
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(3.8) lim (n/yn) T = c2rk~3p(k - 1 - p)I, \myn) A = 
n—*oo 

where 
r i /2 

/ : / : / = / n / , / 2 - x ^ ^ 1 ~ X ~ Z))-V2dzdx. 

One way to evaluate / is to let x 4- z = w and x — z = v; then integrate 
with respect to v and let 

u = (1 + cos2»)"1. 

This gives 

7 = 8 / ! / 2 w ~ 2 ( ( 1 " "><2tt - V)~U2d» 

(Till 

= 16 J 0 (1 + cos20)d6 = 12TT. 

Thus it follows from (3.6)-(3.8) that 
A: — 2 

lim ( H L w + 1 y ^ ) = 1 2 T C V ~ 3 2 />(* - 1 - / > ) 

- 2T7C2£(£ - 1)(A: - 2 ) r ^ 3 

for each fixed integer k. This establishes (3.4) since 

2T7C2 = <XT)/<J>"(T) and ynlyn + \ -* p = T/<J>(T). 

(See Lemma 1.) 
It was shown in [10, Lemma 3] that there exists an absolute constant Kx 

such that 

(3.9) %{Ym} ë KxT
m~xp-\m/h)vl 

for all positive integers m and h. If we apply this inequality to the terms in 
the inner sum 2 * in (3.6) for any fixed value of p, we find that there exists 
a constant K2 such that 

(n/y„) T =§ K2r
k(p(k - 1 - p)f2 ^ K2k\k 

for all ny k, and p and hence 

nLn+u/yn ^ K2k\k 

for all n and k. Since yn/yn + ] is bounded, there exists a constant AT3 such 
that 

nLnJc/yn = K3k\k 

for all n and &. Since <#>(/) is analytic in |/| < R and T < R, the series 
2 ckk

ATk converges; so by appealing to Tannery's theorem [1; p. 136] we 
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may interchange the order of limit and summation in the second 
expression below and conclude that 

oo 

lim (nNn/yn) = lim 2 cknLnklyn 

oo 

= 2 q lim (nLnk/yn) 

k=2 n-*oo 

oo 

= 2 ckk(k - \)(k - 2 ) T * - 2 / * " ( T ) 
k = 2 

on using (3.4). This proves Theorem 2, since the last sum equals 
T<f/"(T)/<f>"(T). 

In the foregoing argument we assumed that n was odd. When n is even 
we find that some additional terms should be included in formula (3.7): 
namely, (i) terms in which s = nil in the inner sum, and (ii) terms of the 
form 

%,/2{yP} • %/2{Yk~p} for 1 S p S k - 1. 

It is not difficult to see that the contribution of these terms is negligible 
with respect to the contribution of the terms we have already considered. 
Thus the required result also holds when n is even. 

A slight modification of the preceding argument shows that if 

n 

(3.10) H„ = 2 kckLnM_x, 

then 

(3 .11) nHu/yu^T^lv\r)/^\T). 

We shall use this result later. 
We conclude this section by pointing out that if d(n) denotes the 

expected number of nodes v in a random tree£T such that the subtree Z?(v) 
has a primary branch, then 

d(n)ln -> P(p)/r where P(x) = 2 />,-*'; 

the argument is similar to an argument applied to a different problem in 
[9; Corollary 2.2]. It follows from (3.1) and (3.2) that 

i i °° / .JI — 1 0 0 / „n - 1 \2 

? ( V«-) P(p)/r = - +-2, \ — r e ) = - 5 8 . . . 

for the family of rooted labelled trees, and that 
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P(p)/r = 12 2 ' ( ( 2 " " 2 ) 4 - " ) 2 = - 4 2 . . . 
T n(n 4- 1) V V » - l / / 

for the family of plane trees. Much of the difference between these values 
arises from the fact that the expected fraction of nodes that are end-nodes 
in a random tree ^ tends to e~] for labelled trees and to 1/2 for plane 
trees, and these end nodes contribute nothing to d(n). 

4. The size of the principal branch. In this section we obtain some 
results on the distribution of the number of nodes in a primary branch of a 
tree. For convenience we shall formulate these results in terms of the 
number q(3~fl) of nodes of the tree 3^ that do not belong to a principal 
branch of ̂ . 

It follows readily from the definition of a principal branch and the 
argument used to prove Theorem 1, that 

(4,, P^>-,)•*-{*;<• ww>• ;;,'f;.s"/2; 

If we apply relations (2.2) and (2.3) to the first formula, we find that 

lim Pr{?(^ ) = i} = p'qWÇY)} 
n—^oo 

for each fixed integer /', and that 

(4.2) Pr{q(%) = /} ~ CP*"(TX/(1 " ifn))~V1 

if /' ^ nil as z, n —» oo. The following result implies that almost all trees 5^ 
have a primary branch that contains at least (1 — e)n nodes for any fixed 
€ > 0. 

THEOREM 3. Let y denote a constant such that 0 = y < 1/2. Ifi/n —» y as 
i, n —> oo, then 

Pr{q(%) > i} ~ 2C(XJ>"(T)(Ï - 2y)( (1 - y ) / ) - " 2 -

Proof. We first observe that relations (4.1) and (4.2) and Theorem 2 
imply that 

(4.3) Pr{q(^) > i} ~ CP4>"(T) 2 ' (*(1 - kin) y v l + 0 ( « " ' ) 

as i, n —» oo, where the sum is over k such that i < k = nil. If iln —» 0, 
then 

Px{q(2Tn) > /} ~ cp<i>"(T) 2 ' £~3 / 2(l + 0(k/n)) + 0(ny] 

~ cM>"(T)(2i~l/2 + o(i~u2) + 0 ( M ~ , / 2 ) ) 

~ 2 C P 4 » " ( T ) Z - 1 / 2 , 

as required in this case. 
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Now suppose that i/n —» y where 0 < y < 1/2. If we multiply both 
sides of relation (4.3) by ixn ~ (y«)1/2 and approximate the sum 2 ' by an 
integral, we find that 

i]/2Pr{q(^) > /} -> cp<t>"(r)yU2 f " (x(l ~ x))-y2dx 

= 2cp<t>"(T)(l - 2y)(l - y)" 1 7 2 , 

and this completes the proof of the theorem. 

If g(^) denotes some parameter defined on trees ^ , we shall let 

gn = 2 <2T) • g(%) 

where the sum is over all trees ^ in ^ and where co(^) denotes the weight 
function defined in Section 2; we shall refer to gn simply as the sum of the 
numbers g(^) without explicitly mentioning the weights each time. 
Notice that gnlyn is the expected value of g ( ^ ) over all trees Ĵ "; in 
particular, qnlyn is the expected value of qÇ3Ç) over all trees ^. 

THEOREM 4. qnlyn ~ 2cp4>"(r)nl/2. 

Proof. It follows from (4.1) that 

(4.4) qn = 2 yn_t • i%{x4>'(Y) } + nLn. 

Now nLn = 0(yn) by Theorem 2, and 

by (2.3). Hence we may apply Lemma 3 (ii) to the sum and conclude 
that 

qn ~ 2cp<$>"(T)nx/\ 

as required. 
It can be shown by a similar argument that the variance of q(^) over all 

trees J% is asymptotic to (2 — 7T/2)P0"(T)« 3 / 2 . 

We remark that a weaker version of Theorem 2 can be proved by 
making use of a second expression for qn, namely, 

(4.5) qn = yn + 2 iy. • %,.,{x<j>'(Y) } . 
i<n/2 

The isolated term yn records the contribution of the roots of all trees 
^ to qn and the sum records the contribution of all nodes belonging to 
non-primary branches. Hence, 

nLn = yn + 2 i - 2 i 

where 2 ] and 22 denote the sums in expressions (4.5) and (4.4), 
respectively. But both 2 j and 2 2 are asymptotically equal to 
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2cp4>»(T)nl/2yn9 

by Lemma 3 (ii); consequently, 

nL„ = o(nxnyn) or N„/y„ = o(«~1 /2). 

5. Heights and the primary path length. The length of a path is the 
number of edges it contains and the height h(ZT) of a rooted tree ^ is 
the length of any longest path starting at the root of 3~n. Flajolet and 
Odlyzko [3] have shown that hn, the sum of the heights h(^), satisfies the 
relation 

(5.1) hn ~ (cpV'(T)TWnyn ~ W{T))-xp-nn-\ 

Let irÇ%) denote the height of the primary branch of ̂  and let <nn 

denote the sum of the heights TT^). (If 3Tn does not have a primary branch 
then TT(^) is understood to equal zero, and we adopt a similar convention 
elsewhere.) Since, as we have shown, almost all trees ^ have a primary 
branch that contains a very large majority of all the nodes of 3~n, the 
following result is not surprising. 

THEOREM 5. 7rn ~ hn. 

Proof. It follows readily from the definition of mn and the same type of 
argument as was used to prove Theorem 1, that 

This sum satisfies the hypothesis of Lemma 2 in view of (5.1). Hence we 
may conclude that 

<nn ~ p<t>'(r)hn = hn, 

as required. 

We define the primary path of ̂  to be the unique maximal path in 
3~n of the form (v0, vl5 . . . , vm) where v0 is the root of ^ and £(vy) is a 
primary branch of the subtree B(vJ_]) for 1 ^ j ^ m. Let 1(3^) denote the 
length of the primary path of 3^. If 3~n has a primary branch B, then 
l(*T) = l + 1(B); if not, then / ( ^ ) = 0. Hence, if /„ denotes the sum of 
the primary path lengths / ( ^ ) , then 

(5.2) 1„=P„+ 2 ln-,%{xW)}-
i^n/2 

For, the term Pn records the contribution of the 1 from ail trees ^ with a 
primary branch and the sum records the contribution from the primary 
branches of these trees. Now / ( ^ ) = hÇ%) for any tree ^ , so 

l„/y„£h„/y„~(cp4,"(T))-W2. 
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On the other hand, it can be deduced from (5.2) that there exists a positive 
constant a such that lnlyn > anx/ for all sufficiently large n. We suspect 
that n~l/ lnlyn tends to a limit as n —» oo, but the following result is all we 
can prove in this direction. 

THEOREM 6. If there exist constants X and K such that 

(5.3) lnlyn = \nvl + K + o(\) 

as n —> oo, then 

x = A(cp^>"(T)y] 

where 

A = (23 /2 - log(3 4- 2 3 / 2 ) ) _ 1 = .93836 . . . . 

Proof. If each number lm in formula (5.2) is expressed in terms of ym, in 
accordance with relation (5.3), then the resulting equation can be rewritten 
as 

(\nvl + K + o(l) )Nn 

= Pn - A 2 /(/i1/2 + (n - i ) 1 ' 2 ) " 1 - y^&ixVCV) }, 

upon appealing to Theorem 1 and the identity 

( l I - 0 l / 2 = n l / 2 _ / ( M l / 2 + ( w _ I - ) l / 2 ) - l . 

Now P„/y„ —» 1 and Nn/yn = 0(n~l)y by Theorem 2, so 

(5.4) À 2 i(*1 / 2 + (* - / ) 1 / 2 ) " , ( ^ - / / ^ ) ^ { ^ , ( ^ ) } = 1 + o(l) 

as n —» oo. It follows from (2.2) and (2.3) that 

{yn-i'yn)%{x*XY)) = (i + O (1 ) )CP*" (TX/ ! / ( / ( » - 0 ) ) 3 / 2 

as /, « —* oo. Thus if we approximate the sum in (5.4) by an integral and 
take the limit as n —» oo, we find that 

\crt>"(r)J = 1, 

where 

y /

1/2 

(1 - xf'\\ + (1 - x)1/2) 

r^/4 i _ c o s ^ 
= 2 / o ' 2a"~2~de = 2 " Z " l o §( 3 + 2 J / /)" 

•/ u rrw H cm 
cos 0 sin 0 

This implies the required result. 
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Some values of the numbers gn = n~ ln/yn for the family of plane 
trees and labelled trees are given in the following table (truncated after 
two digits). In the case of plane trees X = 1.66 . . . while for labelled trees 
X = 2.35 . . . ; so it would seem that if gn does tend to a limit, the rate of 
convergence is rather slow. 

n I 2 3 4 5 10 50 100 500 1000 2000 
gn (plane) .70 .57 .80 .67 .82 1.02 1.11 1.29 1.36 1.41 
gn (labelled) I .70 .76 1.03 1.00 1.28 1.65 1.77 2.00 2.07 2.13 

TABLE. Values of gn for plane trees and labelled trees. 

6. The secondary branch. In this section we determine the number Sn of 
trees ^ that have a secondary branch and we determine the expected size 
and height of a secondary branch. The derivations of the results in this 
section and the next are straightforward extensions of the derivations of 
the analogous results for the primary branch, so we shall omit some of the 
details. 

THEOREM 7. Let 

oo 

R(x) = 2 Ri*\ 
i 

where 

R,= 2 yi-jVjWçr)}. 

Then 

s» ~ R(p)yn-

Proof. The number of trees ̂  with k branches one of which is a primary 
branch with n — i nodes and one of which is a secondary branch with 
i — j nodes is equal to 

y^M-fiixkik - l)ckY«-2}, 

for any integers /', j , and k such that 1 ^ i: ^ w/2, 1 ^j^i/2, and k ^ 0; 
hence, 

(6.1) Sn = S yn-t 2 yt-fiixWY)} 
i^n/2 J^n/2 

= 2 yn-iRi-
i^i/2 

Now Rj — p4>"(r)yi9 by (2.3) and Lemma 2, so the series for R(p) 
converges. Hence we may apply Lemma 2 to the last expression for Sn and 
conclude that Sn ~ R(p)yn, as required. 
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If 3F is the family of labelled trees, then Y = xeY, p = e \ and 
yn = n"~]/n\. In this case Ri = Pt and it can be shown that 

1 1 °° 
R(P) = - + - 2 (ynPn)2 - .58. . . . 

1 2 i 

If J^is the family of plane trees, then Y = x(l — Y)~\ p = 1/4, and , =U2n~2) 
" „ \ B - 1 /• 

In this case, 

^•{jc*"(y) } = Vj(2x~2Y*} = Vj{2x~2(Y - xY - x) } 

and 

Hence, 

2 J ) / - 2/W. 

R(P) = 2 2 ^/-y^-Wmip'' 
/=1 y^/72 

oo 

= 2 «{^"(y)}py 2 V 

oo - 2 / 0 • -, x 

y=i (7 + 1)(7 + 2 ) V ' ' 

This series converges rather slowly; and it can be shown by a more 
complicated argument, the details of which we omit, that 

oo 

14 I 4 , , i 0 + 1)0 + 2 ) " ^ 

for the family of plane trees. 
Let s(3Ç) denote the number of nodes of ^ that belong to a secondary 

branch and let sn denote the sum of the secondary branch sizes s(3%). 

THEOREM 8. snlyn ~ 2cp<$>"(r)nx/1. 

Proof. It is not difficult to see, in view of formula (6.1), that 

s„= 2 y„-i 2 d-M-tfWiY)}. 
iSn/2 y'S/72 
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Now 

2 (i - nx-fiWiY) } ~ P4>"(T)iyi 
7 = ' / 2 

as / —> oo, by Lemma 2. Hence we may apply Lemma 3 (ii) to the formula 
for sn and conclude that 

sn ~ 2cf*t>''(T)nU2yn, 

as required. 

Notice that it follows from Theorem 4 and 8 that the expected number 
of nodes in a tree &~n that belong neither to a principal branch nor to a 
secondary branch is equal to o(n ). We shall obtain stronger versions of 
this observation in the next two sections. 

Let a(^) denote the height of the secondary branch of ^ and let on 

denote the sum of the heights o(3T). 

THEOREM 9. on/yn ~ log n. 

Proof. It follows readily from the definition of an that 

°„ = 2 y„-i 2 hM«j{x*»(y)}. 

Now 

as i —» oo, by Lemma 2 and (5.1). Hence we may apply Lemma 3 (i) to the 
formula for on and conclude that an ~ log n • yn, as required. 

We remark that sn/yn and on/yn are the expected values of s(3T) and 
a ( ^ ) over all trees 5^\ to obtain the expected values over those trees ^ 
that actually have a secondary branch one should multiply by 

yn/sn~(R(p)rl. 

7. The tertiary branch. In this section we determine the number Tn 

of trees ^ that have a tertiary branch and we determine the average size 
and height of a tertiary branch; we assume there that <î>'"(T) ^ 0? f° r if 
<i>'"(j) = 0 then trees in J^could not have a tertiary branch. 

THEOREM 10. Let 

CO 

U(x) = 2 t/,oc' 

where 
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U,= 2 y,-j 2 yj-h«h{x4>'"(Y)}. 
j^i/2 h^j/2 

Then 

T„ ~ U(p)y„. 

Proof. The number of trees $~n with a primary branch with n — / nodes, a 
secondary branch with / — j nodes, a tertiary branch with j — h nodes, 
and with k branches altogether, is equal to 

y^M-jyj-Mxkik - IX* " 2)ckY
k'3}, 

for any integers 7, j , h and k such that 1 ^ / ' ^ n/2, 1 ^ j = i/2, 
1 â h â y/2, and /: = 0; hence, 

(7.1) r„= 2 y„-, 2 *_,- 2 yj-h%{x*'"<Y)} 
i^n/2 j^i/2 h^j/2 

= 2 yn-,U, 
i^n/2 

If we appeal to (2.3) and apply Lemma 2 twice to the expression for Ui9 we 
find that Ui = 0(yt) as / —* oo and so the series for £/(p) converges. Hence 
we may apply Lemma 2 to the last expression for Tn and conclude that 

T„ ~ £ / (PK, 

as required. 

We remark that it can be shown that U(p) = .19 . . . for the family of 
labelled trees and that .237 < U(p) < .25 for the family of plane trees. 

Let /(^~) denote the number of nodes of 3Tx that belong to a tertiary 
branch and let tn denote the sum of the tertiary branch sizes t(3T). 

THEOREM 11. tnlyn ~ 2c2p0'"(T) l°g n-

Proof. It is not difficult to see, in view of formula (7.1), that 

(7.2) t„= 2 y„-, 2 y,-j 2 U - h)yj_Mx4>"'(Y)}. 
i^n/2 j^i/2 h^j/2 

It follows from Lemma 2 that the innermost sum in this expression is 
asymptotic to P0'"(T)/)} as j —» oo; and it then follows from Lemma 3 (ii) 
that the intermediate sum is asymptotic to 

2CP<Ê'"(T)/1/2>J as / ->oo. 

Hence we may apply Lemma 3 (i) to the outer sum and conclude that 

tn ~ 2 C W ( T ) log n • yn, 

as required. 
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Let r(3T) denote the height of the tertiary branch of ̂  and let rn denote 
the sum of the heights T ( ^ ) . 

THEOREM 12. Let 

oo 

V{x) = 2 V,x', 
i 

where 

^ = 2 X-j 2 hj_kVk{x*'"(Y)}. 
j^i/2 k^j/2 

Then 

T„ ~ V(P)V„. 

Proof. It follows readily from the definition of rn that 

r„= 2 yn-i 2 y,-j 2 h^MxV'iY)} 
i^n/2 j^i/2 k^j/2 

= 2 ^_ .̂ 
i^n/2 

If we appeal to (5.1) and apply Lemmas 2 and 3 (i) to the expression for Vi9 

we find that 

V; =• 0(log z • yt) as / —> oo 

and so the series for V(p) converges. Hence we may apply Lemma 2 to the 
last expression for rn and conclude that 

<•„ ~ V(p)yH, 

as required. 

8. The minor branches. In this section we determine the number Mn of 
trees ̂  that have at least one minor branch and we show that the expected 
number of nodes belonging to minor branches of 3T approaches a constant 
as n —> oo. 

oo 

THEOREM 13. Mn/yn —> 1 — p(c} + 2c2p + 3c3p
2) + 3c3p 2 (j/P*)2-

l 

Proof. There are four types of trees with at least one minor branch: all 
trees with at least four branches; trees with three branches in which one 
branch is a principal branch and the other two branches each have the 
same size; trees with three branches in which no branch is a principal 
branch; and trees with two branches each of which has the same size. 
When we count the trees of each type, we find that 
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Mn = yn ~ %\x{\ + cxY + c2Y
2 + c3Y

3) } 

+ 3c3p 2 ^ - ^ o - D / 2 + C3LM3 + .> i - l ) /2-

That Mnlyn tends to the limit stated above now follows upon applying 
(2.4), Lemma 2, (3.3) and (2.2), respectively, to the contributions from 
these four types of trees. 

We remark that it can be shown that 

oo 

M„/yn -> 1 - 5(2e)- ' + (2e"1) 2 (ylP'f = .11 . . . 
1 

for the family of labelled trees, and that 

5 3 °° 
Mn/yn~^- + - 2 U P 7 ) 2 = . 3 6 . . . 

16 4 i 
for the family of plane trees. Notice that most of the difference between 
these values arises from the fact that the limiting fraction of trees with 
four or more branches is considerably larger for the plane trees than for 
the labelled trees. 

Let m(^) denote the number of nodes of ^ that belong to a minor 
branch and let mn denote the sum of the numbers m(3T). 

THEOREM 14. There exists a constant C such that mnlyn —» C. 

Proof. Let 2 ; denote the contribution to mÇ%) from those trees ^ with 
exactly i major branches, for 0 ^ /*^ 3. It follows from the definition of 
2o and Theorem 2 that 

(8.1) 2o/H, = (« - W y „ -» T*" ' (T ) /*" (T) . 

Next, recall that in (3.10) we defined the numbers Hn by the relation 

n 

Hn = 2 kckL k_l9 
k = 3 

where L k _ x is the number of ordered collections of k — 1 trees from IF 
such that these trees have n — 1 nodes altogether and at most (n — l ) /2 
nodes each. It is not difficult to see that 

2 , = 2 yn-,d - i)Hf. 

Now (/ - \)Ht = 0{yt\ by (3.11), so the series 

H(p) = 2 (i - W 

converges. 
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Hence we may apply Lemma 2 to the formula for 2 j and conclude 
that 

(8-2) S i / ^ - ^ P ) . 

If a tree ^Tn has a primary branch with n — i nodes and a secondary 
branch with i — j nodes, where 1 ^ / ^ w/2 and 1 ^ j ^ //2, then any 
remaining branch with h nodes is a minor branch if h <j/2 irrespective of 
whether ^ has a tertiary branch. It follows, therefore, that 

2 2 + 2 3 = 2 >>„_,- 2 *-,• 2 ^-A{^'"(y)} • %, 
/^«/2 y^z/2 /z<y/2 " 

since the contribution of each minor branch is counted separately in the 
inner sum. Let Wt denote the intermediate sum in this formula so that 

2 2 + 2 3 = 2 yn-,w. 

If we appeal to (2.3) and apply Lemmas 3 (ii) and 3 (i) to the expression 
for Wt, we find that 

Wt = 0(log / • yt) as / —» oo, 

and so the series 

W(p) = 2 WlP
l 

converges. Hence we may apply Lemma 2 to the expression for 2 2 + 23 
and conclude that 

(8.3) ( 2 2 + ^3)/yn^W(p). 

The required result now follows from (8.1), (8.2), and (8.3). 

Let v(3T) denote the sum of the heights of the minor branches of ^ and 
let vn denote the sum of the numbers v(3T). Since vn ^ mn it follows from 
Theorem 14 that 

vnlyn = 0(1) as n -> oo; 

in fact, vnlyn tends to a limit, as one could expect, but we shall omit the 
proof of this. 

9. The product of the branch sizes. Beyond the results obtained in the 
earlier paragraphs, additional information can be provided concerning 
the distribution of branch sizes by considering the quantity 

K = 2 b(%) 

where b(3T) is the product of the number of nodes in the different 
branches of a tree ^ in J*T It follows readily from the definition of bn 

that 
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b„ = Vn{xUxY)). 

The asymptotic behaviour of bn seems to depend very strongly on the 
particular nature of the function <£. We shall content ourselves here with 
stating the behaviour of bn for three families 3F\ in the first case, <j>(t) is a 
polynomial; in the second case, <£(/) is an infinite series with a finite radius 
of convergence; and in the third case, <j>(t) is an infinite series that 
converges everywhere. 

Example 1. If & is a family such that 

k 

<t>(t) = 1 + 2 c/ 
1 

where ck ¥" 0, then 

V^~«(pè 2 /4 f - , ) / 2 -^ + l ) / 2 

as n —> oo, where 

a = p7rl/2ck/T(k/2) and pb2 = 2<J>(T)/^(T). 

Example 2. If J^"is the family of plane trees for which <£(/) = (1 — / ) ~ , 
then 

bnlyn ~ a8"„3/2 

as n —» oo, where 

a = 4 T 7 1 / 2 ( 9 . 5 " 1 / 2 - 4) and 8 = (2 + 51/2)/4. 

Example 3. If J^ is the family of labelled trees for which <£(7) = e', 
then 

V.H, — a • exp(«1/3/2) • «2 / 3 

for some constant a, as n —» oo. 

In the first example, it follows from a result in [7; Theorem 3.1] that 
x<t>(xYf) is regular when |JC| ^ p, JC ¥= p, and that in the neighbourhood of p 
it has an expansion of the form 

x<KxT) = pck(bp/2)k(P - x)~kn + b2(p - x ) - ( * - ' ) / 2 + . _ 

The conclusion then follows upon appealing to a result of Darboux [2]. 
In the second example, it is not difficult to show that 

x<j>(xY') = x{\ - Ax + x(\ - 4x)1/2}(l - 4JC - JC 2 ) - 1 , 

and the required conclusion follows readily upon expanding in par­
tial fractions. More generally, if 4>(t) has a finite radius of convergence R, 
then the equation xY\x) = R has a solution x = px where pl < p; since 
the radius of convergence of x(xY') is not larger than p b it follows that 
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bn > p2
n infinitely often for any p2 > p\. 

In the third example, we readily find that 

x<t>(xT) = x exp(7(l - Y)~]). 

In this case the conclusion follows by a rather intricate argument that 
makes use of Hayman's result [5] on admissible entire functions. 

Addendum. While preparing this manuscript we learned that recently 
J. Komlos and W. O. J. Moser (Almost all trees have tribe number at most 
three, submitted) have considered a related problem concerning the family 
of labelled trees. They have shown that for fixed, sufficiently small e, large 
n and for all nodes v of almost all of the nn~2 labelled trees 3T the 
following assertion holds: If ^ is rooted at v, then the three largest 
branches of 3T collectively contain more than (1 — t)n nodes. 
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