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Volume electron microscopy (vEM) is transforming cell biology by generating high-resolution 3D 

reconstructions of large biological samples. However, segmentation of specific features such as 

mitochondria from highly heterogenous image volumes remains a bottleneck – even powerful deep 

learning (DL) approaches reveal various limitations and artifacts [1]. Within vEM technologies, focused 

ion beam scanning electron microscopy (FIB-SEM) can yield isotropic-voxel data where information in 

orthogonal planes (xy, xz, yz) is essentially interchangeable; here, we exploit this to develop a two-step 

DL algorithm for segmentation. First, we train a DL model to segment specific features in 2D image slices. 

Crucially, to incorporate 3D context into the predicted segmentation of a target volume, we run inference 

over xy, xz and yz planes, and average the results at each voxel, a procedure we call “ortho-plane 

inference”. In the second step, we use the target volume and predicted segmentation to train a new 2D 

model in a weakly supervised setting with “bootstrapping”. Bootstrapping enforces prediction consistency 

between adjacent voxels of the same object regardless of viewing orientation. This two-step algorithm 

results in a 23% increase in Intersection-over-Union (IoU) over the best case scenarios for ortho-plane 

inference without bootstrapping and a 35% IoU increase over “2D stack” inference (Fig 2). Sampling 3D 

volumes while staying in a 2D regime makes this approach nimble and thus well suited to vEM researchers 

with limited image and compute resources. 

In DL, 2D models are the most memory and data efficient option for 3D image segmentation. A volume 

containing 100 cubic voxels that would be a single example for a 3D model generates 300 examples for a 

2D model after slicing along the principal axes. This 2D model would also have roughly 3x fewer 

parameters and could readily be initialized with weights pretrained on ImageNet. To address the chief 

disadvantage of working in 2D, i.e. the loss of valuable 3D context, we incorporate 3D information 

through ortho-plane inference. This inference strategy results in improved performance but is diminished 

by two key weaknesses in the model: a susceptibility to small changes in object appearance between 

adjacent image slices and to larger changes between orthogonal slices. Common examples of these errors 

are the “stacked pancake” artifact, familiar to researchers in the vEM field, and “cross-hatching” patterns, 

shown in Figure 2. In this advance, we train a second dataset-specific neural network to learn the noise 

patterns associated with these errors and eliminate them. 

During training of this second neural network we modify our target labels to be a combination of the 

model’s hardened predictions (0s or 1s) and the noisy labelmap created by ortho-plane inference. This 

application of bootstrapping enforces prediction consistency, which, in turn, amplifies the signal present 

in noisy labels [2]. The value of generated labels is given by: 

 

Where yi and pi are the noisy label and model prediction at pixel i, respectively, and β is a hyperparameter 

with value between 0 and 1, following [2] we set β=0.8. Our training criterion is then the dice loss between 

the generated labels and the model’s soft prediction confidence [3]. This particular learning setting is 

considered weakly supervised. 
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We evaluate our method by applying a supervised model, previously trained on segmented mitochondria 

from a small labeled FIB-SEM sub-volume, to a large target volume from a separate experiment and a 

substantially different cell sample. The supervised model was trained on a manually annotated 224 voxel 

cube (672 slices along orthogonal axes). We trained a DeepLabV3 model with ResNet34 backbone, 

pretrained on ImageNet, for 10000 iterations using dice loss and the OneCycle learning rate policy with 

Adam optimizer, learning rate 0.001, batch size of 64, and dropout of 0.5 after the atrous spatial pyramid 

pooling module [4][5]. To alleviate overfitting, we froze the weights in the model backbone below the 

fourth ResNet block. Data augmentations included random resized crops, horizontal and vertical flips, 

brightness and contrast adjustment, and Gaussian noise. To create the noisy labelmap for the bootstrapping 

step, we ran ortho-plane inference on the target volume and set the confidence threshold at 0.1. For the 

weakly supervised step, we used the same architecture, hyperparameters, and inference strategy but with 

the confidence threshold set at 0.5. The workflow is shown in Figure 1. 

The noisy and final segmentation results are shown in Figure 2. We compute each prediction’s IoU with 

a manually labeled ground truth. Running inference strictly on the imaging plane stack, which is a common 

approach, reaches a best case IoU of 0.48. By accessing orthogonal views with our ortho-plane inference, 

we achieve a best case IoU of 0.53 (a 9% increase). Critically, by further incorporating bootstrapping on 

top of ortho-plane inference, we boost the IoU by an additional 23%, achieving scores of up to 0.65. We 

also observe more consistent performance over a range of confidence thresholds, which indicates better 

agreement between predictions made on orthogonal planes. Although the results are promising, it should 

be noted that this approach cannot fix systematic errors; vesicles and lipid bodies labeled incorrectly, but 

consistently, in the original prediction will be retained. Additional postprocessing before bootstrapping 

could help to further boost performance. Application of this method to other vEM datasets that do not 

yield isotropic voxels is possible but may require more training data as learned features are unlikely to 

transfer as well across different image planes. Overall, the simplicity, effectiveness and low cost of our 

method makes it a useful tool for use as it is and a template for further improvements in addressing the 

vEM segmentation bottleneck. 

 
Figure 1. Schematic of our workflow enforcing prediction consistency across orthogonal planes. We train 

a supervised model on a small labeled 3D ROI from a FIB-SEM reconstruction and run ortho-plane 

inferences (ortho-inf) on larger, unrelated target volumes. The initial noisy outputs of these inferences are 

then used to train weakly supervised models (WSM) for each target volume with a process called 

bootstrapping. The resulting dedicated WSMs show significantly improved performances and can be run 

on any number of FIB-SEM datasets. 
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Figure 2. (a) Results from mitochondrial segmentation from running ortho-plane inference without (top) 

and with (bottom) bootstrapping. Arbitrary slices along three principal axes from a FIB-SEM cellular 

volume reconstruction are shown, with examples of the “cross-hatching” error indicated (arrowheads). 

Scale bar, 1 μm (b) Quantitative evaluation of IoU metric from this dataset and volume rendering of a 

representative mitochondrion after our advance (ortho-plane inference and bootstrapping, blue) as 

compared to no bootstrapping (red) and 2D stack inference (black). 
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