
J. Fluid Mech. (2021), vol. 926, A25, doi:10.1017/jfm.2021.612

Developed liquid film passing a smoothed and
wedge-shaped trailing edge: small-scale analysis
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Recently, the authors considered a thin steady developed viscous free-surface flow
passing the sharp trailing edge of a horizontally aligned flat plate under surface tension
and the weak action of gravity, acting vertically, in the asymptotic slender-layer limit
(J. Fluid Mech., vol. 850, 2018, pp. 924–953). We revisit the capillarity-driven short-scale
viscous–inviscid interaction, on account of the inherent upstream influence, immediately
downstream of the edge and scrutinise flow detachment on all smaller scales. We adhere to
the assumption of a Froude number so large that choking at the plate edge is insignificant
but envisage the variation of the relevant Weber number of O(1). The main focus, tackled
essentially analytically, is the continuation of the structure of the flow towards scales much
smaller than the interactive ones and where it no longer can be treated as slender. As
a remarkable phenomenon, this analysis predicts harmonic capillary ripples of Rayleigh
type, prevalent on the free surface upstream of the trailing edge. They exhibit an increase
of both the wavelength and amplitude as the characteristic Weber number decreases.
Finally, the theory clarifies the actual detachment process, within a rational description of
flow separation. At this stage, the wetting properties of the fluid and the microscopically
wedge-shaped edge, viewed as infinitely thin on the larger scales, come into play. As this
geometry typically models the exit of a spout, the predicted wetting of the wedge is related
to what in the literature is referred to as the teapot effect.
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1. Introduction

We continue to analyse a flow problem of fundamental importance as started in our
forerunner study (Scheichl, Bowles & Pasias (2018), hereafter referenced as SBP18).

Let a nominally steady and two-dimensional, developed, slender stream of a Newtonian
liquid having uniform properties and at constant flow rate in an inertial frame of reference
detach from a horizontal, solid, impenetrable, perfectly smooth plate with a trailing edge
that is initially considered as abrupt and sharp. Downstream, the resulting fluid jet divides
its gaseous environment, fully at rest and under constant pressures, into two parts. Here this
picture is relaxed insofar as the upper one still defines the zero pressure level but we allow
for a non-zero, constant support pressure prescribed at the downside of the detached layer.
The body and interface forces crucially at play are the constant gravitational acceleration
acting vertically towards the wetted side of the plate and surface tension. Based on the
principle of least degeneration, our rigorous theoretical description of the detaching thin
film under the assumption of very supercritical flow adopts a specific distinguished limit
where the relevant Reynolds and Froude numbers are taken as asymptotically large but the
corresponding Weber number as of O(1). Hence, the details accompanying the detachment
process are governed by a strong viscous–inviscid, shortened-scale interaction at the outset
of our present study.

Subsequently, we refer to the sketch in figure 1 throughout, illustrating the different flow
regions considered when viewed on the global vertical scale defined by the height of the
detaching layer. Specific interest is aroused by the so-called ‘teapot effect’, here observed
in the flow in the immediate vicinity of the trailing edge and thus strongly affected by its
microscopic geometrical resolution. As a start, we critically review the prevailing, rather
phenomenological view on this effect and its previous modelling.

1.1. The teapot effect: a digression
The frequently observed, at a first glance spontaneous (and often undesired) tendency of
a liquid pouring from a spout to instead stick to its underside was originally reported and
explained phenomenologically by Reiner (1956, also see the references therein) and later
by Walker (1984); see figure 2(a). More precisely, Reiner (1956) coined the notion ‘teapot
effect’ for pouring liquid along a rigid convex wall with a marked corner and adjoining to
another (even liquid) fluid. He untangled the riddle of its occurrence experimentally: his
observations ruled out the hitherto widely held belief that the wetting properties in terms of
short-range inter-molecular adhesion forces, promoted by wetting agents, are its essential
cause. However, his various experiments demonstrated that ‘adhesion’ as the reaction force
on the fluid flowing over a solid phase as well as surface tension at its common interface
with the surrounding fluid play a decisive role. A recent survey of the various treatments of
this scenario presented by Jambon-Puillet et al. (2019, see the references therein) spans the
rigorous approach within the framework of classical fluid mechanics, outlined below, to the
nowadays more common but less stringent approach. This proposes that the pivotal cause
for the fluid sticking lies in the hydrophilic tendency of the liquid/wall pairing rather than
the mechanisms of the pouring. The latter authors provide new insight by coupling these
ideas with classical arguments resorting to the first principles of continuum mechanics.
Notably, Duez et al. (2010) indicate a significant reduction of the effect via the application
of superhydrophobic substrates.

We advocate continuum mechanics for providing a satisfactory, rational unravelling
of the effect. In agreement with the above mentioned early observations, we interpret
it as a subtle interplay of inertia, capillarity and gravity in a two-dimensional setting.
This is crucially tied in with the breakdown of viscous–inviscid interaction and, thus,
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Figure 1. Global view on detaching film (not to scale, variables introduced in § 2.1): viscous sublayer (VSL),
interactive flow comprising the main deck (MD) and the lower deck (LD), flow on smaller scales captured by
green-shaded region, near wake of Hakkinen–Rott type (HRW).

(b)(a)

Liquid film

Virtual tip

Detachment point

α

Figure 2. (a) Different realisations of the teapot effect for a low-momentum liquid film typically strongly
subject to gravity, described in and reprinted with permission from Duez et al. (2010) (© the American Physical
Society); (b) its current abstraction for a planar, horizontal high-momentum liquid film in fact passing a rounded
wedge of angle α, detailing the flow around the trailing edge in figure 1, typical no slip on the plate and free
slip along the free streamlines; blue: free and internal streamlines and detachment point, red: plate and original
(virtual) tip in figure 1.

the slender-layer approximation made on larger scales due to the assumed largeness of
the globally defined Reynolds number of the oncoming attached flow. The significance
of capillarity and inertia lies also in its proper adjustment immediately upstream of
detachment. Our asymptotic theory proposes a fully rational account of the onset of this
phenomenon in the realistic situation of a developed incident flow. As a specific ingredient,
the trailing edge is replaced by a tip, i.e. a wedge formed by an acute cut-back angle or
lip: this ‘attracts’ the liquid film such that it clings to it before the liquid sheet breaks away
from it as a whole from its underside. This phenomenon of free rather than forced gross
separation from a convex rigid surface, consequently referred to as the teapot effect from
here onwards, does not yet have a satisfactorily rigorous and complete description. Duez
et al. (2010) previously considered this ‘inertial-capillary’ mechanism, investigated here
in depth and breadth, as a crucial step towards a breakthrough in the explanation of the
effect.

An initial self-consistent clarification of the effect benefited from the quite restrictive
assumption of irrotational free-surface flow of a weightless ideal fluid and the neglect
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of surface tension past a horizontal plate, terminated by the aforementioned lip:
remaining firmly attached both with the neglect of gravity (Keller 1957) and under
gravity (Vanden-Broeck & Keller 1986); detaching grossly from the underside at zero
gravity (Vanden-Broeck & Keller 1989). In these investigations, the flow is stipulated
to cling to the wall and, due to the absence of viscosity, the position of detachment
is also prescribed (Vanden-Broeck & Keller 1989). However, then the well-known
Brioullin–Villat condition, met for vanishingly small effects of capillarity (and viscosity),
fixes the physically admissible detachment point.

Rather little is known when it comes to the rigorous inclusion of viscosity in this flow
picture. At least, the passage of a layer over an asymptotically small convex wall corner
(and in related situations) considered by Gajjar (1987) (and the refined numerical results
by Yapalparvi 2012) is relevant. Specifically, there the unperturbed oncoming flow is fully
developed (so as to model a real situation), as being already inclined towards gravity, and
viscous–inviscid interaction of the double-layer structure in the high-Reynolds-number
limit, adopted here, negotiates the slender obstacle which the corner forms. However,
the counteracting impact of surface tension in the resulting combined hypersonic- and
wall-jet-type interaction law (cf. Bowles & Smith 1992) is ignored in the analysis although
mentioned. Although the interactive flow considered by Gajjar (1987) is assumed to remain
grossly attached, it is certainly interesting that the numerical solutions predict a closed
separation bubble beyond the mild wedge for both sufficiently large turning angles and
Froude numbers.

A seminal reference for the teapot effect in a realistic, i.e. developed, flow is the
numerical and partially analytical investigation of the full Navier–Stokes problem by
Kistler & Scriven (1994). They unambiguously highlighted its viscous and capillary, i.e.
hydrodynamic, nature as underpinned by experimental evidence. This prompted them to
conclude that ‘the teapot effect is more than merely an issue of wetting’. Most remarkably,
they pointed out how the restrictions of the microscopic wedge-type geometry of what is
on larger scales viewed as an ‘infinitely sharp’ edge implies a contact-angle hysteresis,
associated with non-unique flow states, but the point of flow detachment becomes the
apex of the wedge when the jet Reynolds number, i.e. the momentum it carries, becomes
sufficiently large. The present asymptotic analysis corroborates this finding, where we deal
with a horizontal oncoming flow past a wedge originally represented by a cut-back angle
α (0 < α < π), using equal horizontal and vertical scales. However, here the wedge is no
longer necessarily sharp as we allow for its tip being realistically rounded; see the sketch
in figure 2(b).

1.2. Studied phenomena and open questions
Our current concern is with the analytical/numerical challenges arising in the analysis
of the free jet with particular emphasis placed on the description of its detachment at
the abrupt plate edge on the smallest scales and the freely interacting flow immediately
downstream of the trailing edge. As a key observation in SBP18, the free layer is strongly
dependent on its history and, therefore, of the no-slip condition satisfied upstream of
its detachment. Since the interaction mechanism is not alone capable of smoothing the
flow quantities at the sharp edge, coping with this demand addresses the flow on still
smaller and down to the smallest scales discernible and eventually the wetting properties
of the plate as well as the detailed geometry forming its edge. The following threefold
conclusions drawn from such an analysis attempt to shed light on some unsettled questions
of fundamental interest.
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Figure 3. Essential flow regions, shaded details zoomed-in consecutively clockwise from (a) to ( f ) (not to
scale, scales in relation to global ones x and y, denotations provided in the course of the analysis): flow
detachment viewed on interactive down to smallest scales, where the detached streamline is no longer elongated
and the flow no longer slender; MD, LD, the inner and outer Rayleigh stages (RSs), HRW in (b) as sublayer
of LD (dashed boundary); slip layer (SL) at bottom of LD below outer RS, Navier–Stokes (NS) regime; blue:
free and internal streamlines and detachment point, red: plate and original tip, coinciding with origin and
detachment point in (a–e), all disparate in resolved situation ( f ) (§ 4.3).

(i) As a first cornerstone, it reveals the existence of (stationary) undamped capillary
Rayleigh modes upstream of its break-away from the plate.

(ii) The multi-layer slenderness of the flow, given the largeness of the Reynolds number,
prevents its separation upstream of the trailing edge, which confirms the initially
made assumption of detachment ‘at the edge’ considered on larger scales.

(iii) As a second highlight, the implied wetting of the edge suggests a novel, rational
explanation of the teapot effect observed in a high-momentum liquid layer when
a convex corner provides – in a most simple but nevertheless sufficiently complex
manner – the non-degenerate geometry modelling the plate edge.

1.3. Organisation of the paper, used notation and numerical software
The process of asymptotic scale separation, starting with the largest global scale down
to the smallest ones where the teapot effect is at play, guides the structure of our study.
Visualising this in figure 3 serves to illustrate and accompany the subsequent analysis
of the individual flow regimes governed by those spatial scales. Hence, figure 3( f )
recovers the linkage to the teapot effect as in figure 2. From here onwards, we adopt the
abbreviations of the flow regions as introduced in figures 1 and 3.

The remainder of this study is organised as follows.
Section 2: We first pose the problem based on first principles in full. Our basic scaling

arguments (§ 2.1 and Appendix A) justify the use of asymptotic analysis as the means of
choice to study the flow, initiated by completing the formulation of the interaction problem,
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originally posed in SBP18. It then governs the continuation of the freely interacting jet
downstream of the edge in a rigorous manner as long as the value of the appropriately
rescaled Weber number does not fall below a certain threshold, so avoiding the onset of
nonlinear stationary capillary waves even above the plate (§ 2.2 and Appendix B). Over
the interactive streamwise scale, this brings into play the splitting of the film into the MD
and the LD, this initiated by a VSL adjacent to the plate.

Section 3: A multi-structured small-scale flow, essentially controlled by capillarity
only (§ 3.1), supersedes locally the two-tiered interactive one. The HRW forming at the
base of the LD just downstream of the plate (§ 3.2) is central for understanding the
multi-structured small-scale flow locally superseding the two-tiered interactive one. Its
thorough investigation reveals two nested square Euler regions (§ 3.3). These outer and
inner RSs govern weak perturbations around the flow at detachment. The exterior one
extends vertically across most of the layer and is the source of phenomenon (i) above
on the top free surface. Simultaneously, a viscous (passive) SL forms at the base of the
predominantly inviscid flow.

Section 4: This essentially inviscid description of flow detachment paves the way for a
full NS regime detected on even smaller streamwise and vertical scales, where the flow
structure of § 3 collapses. (§ 4.1). Its analytical study leads to the implication (ii) above
(§ 4.2). As a pivotal finding, achievement (iii), we also identify one or two interlaced Stokes
regions resolving the smallest scales and the actual wedge-type resolution of the plate end
(§ 4.3, figure 3 f ), until now seen as infinitely thin. Consequently, it is this flow regime
where the break-away of the film, interacting with the larger-scale flow through the NS
region, is finally controlled by both the effective edge geometry and the static wetting
angle. Thereby, an awareness of the close relationship of this situation to the teapot effect
is gained.

Section 5: Surveying the current results and anticipating the inclusion of, for example,
unsteadiness and the aforementioned capillary undulations in our ongoing research
completes the study.

So as not to distract attention away from the main arguments and their physical
impact, the detailed steps of the asymptotic analysis, together with further technical
side aspects, potentially of interest for the more mathematically orientated readership,
are put forward as the accompanying ‘Other supplementary material’ available at
https://doi.org/10.1017/jfm.2021.612. It consists of the individual supplements A–E.
Cross-references between these, its numbered subsections and the main document are
conveniently employed. We add citations exclusively in the supplement to the list of
references.

In addition to the usual conventions for mathematical expressions, we adopt the
following usage of accents and sub- and superscripts (cf. figure 1). Indices typically
indicate orders in asymptotic expansions and partial derivatives unambiguously, and
lowered ‘−’ and ‘+’ refer to respectively the lower and upper boundaries of the liquid
layer (e.g. h− and h+) or the states of the flow infinitely far upstream (‘−’) and downstream
(‘+’). We endow dimensional quantities with tildes. Furthermore, we attempt a systematic
as possible denotation of the dependent and independent O(1)-variables characteristic
of the individual regimes: lowercase for the MD (e.g. x), capitalised for the LD (X),
capitalised with overbars for the outer RS (X̄), capitalised with hats for the inner RS (X̂),
lowercase with overbars for the full NS region (x̄), lowercase with hats for the Stokes
regions (x̂).

All our numerical calculations used the widely used, proprietary programming
language and numerical-computing environment MATLAB (The MathWork Inc 2020),
supplemented with the NAG Toolbox (The Numerical Algorithms Group (NAG) 2020).
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Developed liquid film past a trailing edge: ‘teapot effect’

In particular, the computations benefit from its convenient handling of complex arithmetic
and the, in principle, built-in arbitrarily high accuracy and precision.

2. Statement of the extended problem

It proves expedient to first reappraise the fundamental assumptions and the problem in full
before revisiting the interactive limit.

2.1. Non-dimensional groups and governing equations
The problem has the following central ingredients. The slender layer of density ρ̃

and kinematic viscosity ν̃ and experiencing a tensile surface stress τ̃ and gravitational
acceleration g̃ carries a volume flow rate per lateral unit width Q̃. It adjusts to a developed
state over some sufficiently large distance L̃, serving as the basic length scale and measured
along the plate from its trailing edge in the upstream direction. Simultaneously, L̃ is
required to be so short that the vertical layer height has not grown sufficiently to allow
for a significant impact of the hydrostatic pressure on streamwise convection. Then a layer
height H̃ = L̃ν̃/Q̃ and flow speed Ũ = Q̃2/(ν̃L̃) representative of this near-supercritical
film follow from conservation of the flow rate and the streamwise momentum, here
expressed by the balance between convection and the shear stress gradient, respectively,

Q̃ = ŨH̃, Ũ2/L̃ = ν̃Ũ/H̃2. (2.1a,b)

In many applications, the vertical height and, accordingly, the speed of the layer have
respectively increased and decreased so markedly over L̃ that it has almost attained its
well-known perfectly supercritical, fully developed or self-preserving state discovered by
Watson (1964): for related discussions, see Bowles & Smith (1992), Higuera (1994) and,
in the context of an axisymmetric and rotatory layer generated by vertical jet impingement,
Scheichl & Kluwick (2019).

The flow is then controlled by the slenderness parameter or reciprocal Reynolds number
ε and corresponding reciprocal Froude and Weber numbers g and τ ,

ε := H̃

L̃
= ν̃

ŨH̃
� 1, g := g̃H̃

Ũ2
= O(ε4/7), τ := τ̃

ρ̃Ũ2H̃
= O(1). (2.2a)

Regarding the distinguished limit involving g, a locally strong viscous–inviscid interaction
describes the abrupt transformation of the wall-bounded flow on crossing the lip towards
the free liquid jet in a least-degenerate, self-consistent and sufficiently smooth manner. We
remark that the conventionally defined capillary number

Ca := ρ̃ν̃Ũ/τ̃ = ε/τ � 1 (2.2b)

or the alternative Ohnesorge number, here ε/
√
τ � 1, provide different albeit less

preferable measures of the surface tension for a layer of slenderness expressed by ε: since
the streamline curvature scales with H̃/L̃2 = ε2/H̃, the ratio of the viscous (deviatoric)
stress, normal to a free surface and scaling with ρ̃ν̃Ũ/L̃ = ρ̃Ũ2ε2, to the capillary hoop
pressure measured by τ̃ H̃/L̃2 = τε2ρ̃Ũ2 is expressed by the augmented capillary number
Ca/ε = 1/τ = O(1), taking into account the aspect ratio of the flow. This indicates that
in the limit provided by (2.2a) the surface jump of the total normal stress is fully retained
in the dynamic boundary conditions (BCs) below.
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Order-of-magnitude arguments considering realistic flow situations support the above
asymptotic scaling and demonstrate its applicability to the teapot phenomenon in typical
settings; see Appendix A.

We introduce Cartesian coordinates x and y pointing respectively horizontally from
the trailing edge and vertically towards the flow, the streamfunction ψ and the
pressure p, non-dimensional with L̃, H̃, Q̃ and ρ̃Ũ2, respectively. Then u := ψy is the
horizontal and v := −εψx the vertical flow component made dimensionless with Ũ. These
O(1)-quantities satisfy the NS equations in the form

ψyψyx − ψxψyy = −px + (ε2∂xx + ∂yy)ψy, (2.3a)

ε2(ψxψyx − ψyψxx) = −py − (ε2∂xx + ∂yy)(ε
2ψx)− g. (2.3b)

Here and hereafter, the subscripts − and + indicate the evaluation along the lower and
the uppermost free streamline, respectively. Accordingly, y = h−(x) (≡ 0 for x ≤ 0) and
y = h+(x) denote their positions; hence, h(x) := h+ − h− the vertical film thickness and
p± the given pressure levels along the free streamlines. Adopting the Heaviside step
function θ then gives the kinematic boundary conditions including the conventional
requirements of no slip at and no penetration through the plate as

y = h−(x) : ψ = ψyθ(−x) = 0, y = h+(x) : ψ = 1. (2.3c)

The dynamic BCs express vanishing tangential stresses and total normal stresses equal to
the capillary pressure jumps on the free surfaces of curvatures κ±(x) and subject to the
Young–Laplace equilibrium. Therefore, at

y = h−(x) if x > 0, y = h+(x) :

(1 − ε2h′2
±)(ψyy − ε2ψxx)− 4ε2h′

±ψyx = 0, (2.3d)

2ε2[ψyx(1 − ε2h′2±)+ h′±(ψyy − ε2ψxx)]/(1 + ε2h′2±)+ p − p±=τκ±,

p+=0, κ±= ∓ ε2h′′±/(1 + ε2h′2±)3/2.

}
(2.3e)

This completes the problem (2.3) as proper up- and downstream conditions will be
condensed into requirements of continuity holding at the trailing edge x = 0.

2.2. Free interaction across the trailing edge
The governing equations (2.3) and (2.2a) immediately give rise to regular expansions valid
for the flow above the plate on the original large streamwise scale, i.e. for 1 + x = O(1),
0 > x = O(1),

[ψ, h, p/g] ∼ [ψ0(x, y), h0(x), h0(x)− y] + O(g) (ε → 0), (2.4a)

[ψ0, h0] ∼ [ψ0( y), h0] + O(x) (x → 0−). (2.4b)

In the leading order of this non-interactive limit, the classical parabolic shallow-water
approximation of (2.3) is recovered, predicting a pressure-free base flow described by ψ0

and h0. These quantities approach regularly some valuesψ0 and h0 at the trailing edge. The
higher-order contributions in (2.4a) control the modification by the hydrostatic pressure
distributions and non-parallel-flow effects, the latter predominantly due to streamline
curvature, capillary action and the viscous normal stresses ±ε2ψyx, in the following
iterative manner. At each level of improvement, the obtained approximation for ψ feeds

926 A25-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

61
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.612


Developed liquid film past a trailing edge: ‘teapot effect’

into (2.3b) subject to (2.3e). The resulting pressure correction then forces a problem
that emerges from expanding (2.3a) subject to (2.3c) and (2.3e) and governs a further
correction for ψ , and so on.

Following SBP18, this hierarchy is singularly perturbed by weak irregular disturbances
exhibiting exponential growth over a short streamwise scale measured by ε6/7. Thus,
they are active in the VSL adjacent to the plate. Hence, subject to free viscous–inviscid
interaction governed by streamline curvature, not accounted for in the classical
shallow-water limit, they describe the intrinsic upstream influence in the film caused by
both gravity and capillarity. Finally, the growth of these two effects renders the above
hierarchy invalid around the trailing edge where x = O(ε6/7) and they provoke a locally
strong interaction over that scale in the limits (2.2a). This typically involves a nonlinear
distortion of the strongly viscosity-affected slow flow in the LD, here originating from the
VSL, adjacent to the lowermost streamline where y = O(ε2/7). The latter exerts a linear
response in the MD that comprises the bulk of the layer, beneath the upper free streamline.

The background flow enters the interactive scalings at leading order solely through two
quantities condensing its upstream history: the momentum flux J at the trailing edge and
the shear stress λ exerted on it:

J :=
∫ h0

0
ψ ′2

0 ( y) dy, λ := ψ ′′
0 (0) as ψ0 ∼ λy

2

2
+ λωy5

60
+ O( y8) ( y → 0).

(2.5a,b)
The coefficient ω is only relevant in the small-scale analysis of § 3.3.2. We also note (2.3c)
and the free-slip condition resulting from (2.3e),

ψ0(h0) = 1, ψ ′′
0 (h0) = 0. (2.6a,b)

Usually, H̃ is definitely larger than the height of the film immediately downstream of its
origin (as given by jet impingement) and where the flow starts to become developed; see
table 1 in Appendix A. This prompts us to assume that the base flow is already described
by Watson’s (1964) self-similar solution and thus to neglect the small deviations from this
due to the flow history, as in SBP18 and without any substantial loss of generality. In this
idealisation, h0 = π(x − xv)/

√
3 provided some x = xv < 0 indicates the virtual origin

of the fully developed flow and ψ0 is a universal function of y/h0(x). At x = 0, ψ0 then
satisfies

ψ ′2
0 ( y) = xvψ ′′′

0 ( y) (2.7)

and has an exact representation given by Scheichl & Kluwick (2019): writing
u+

0 := ψ ′
0(h0) from here on, this implies the important canonical results

h0/|xv| = π/
√

3 
 1.8138, |xv|u+
0 =
[
�
(

1
3

)
/�
(

5
6

)]2
/(2π) 
 0.89644,

x2
vλ = |xv|J = √

2/3
(|xv|u+

0
)3/2 
 0.69301.

⎫⎬
⎭
(2.8)

The interaction process itself is parametrised by suitably redefined reciprocal Froude and
Weber numbers G and T and the rescaled support pressure P−, all of O(1). Specifically,
T is formed with the local momentum flux and thus measures the influence of capillarity
relative to fluid inertia. We thus introduce

(G,P−) := (gh0, p−)/(M2λ6ε4)1/7, T := τ/J, M := |T − 1|J = |τ − J|. (2.9a–c)

The above propositions enable us to reconsider the interaction problem, at first under the
assumption that T is not too close to unity. For the details of its numerical treatment by
specifying ψ0 as Watson’s flow profile and marching downstream, we refer to SBP18.
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B. Scheichl, R.I. Bowles and G. Pasias

The given adjustment length L̃ serves to define H̃ and Ũ via (2.1a,b). Hence, for a given
flow, we note the invariance of (2.1a,b) and thus of ε, ψ , (2.3) and G, T , P− under the
affine transformation(

L̃, H̃, Ũ, x, y, h±, p, g, τ, J, λ
)

�→
(

aL̃, aH̃,
Ũ
a
,

x
a
,

y
a
,

h±
a
, a2p, a3g, aτ, aJ, a2λ

)
(2.10)

with a > 0 being an arbitrary scaling factor. This confirms the independence to H̃ of the
canonical formulation of the interaction problem below and, thus, on the specific choice
of the streamwise length scale L̃ (for a sufficiently small ε = H̃/L̃). In particular, its
solution downstream of the edge does not depend on the scaling of the attached flow
and, specifically, the position of the aforementioned virtual origin. For any subsequent
numerical evaluation involving ψ0 and h0, however, we not only assume the flow as being
fully developed but also adopt the natural standardisation xv = −1 from here on, i.e. we
specify L̃ to be the full development length.

2.2.1. Main deck
Since the MD describes a predominantly inviscid flow in the long-wave limit, the central
local expansion reads as[
ψ, h, h−, h+

] ∼ [ψ0(z), h0, 0, h0] + ε2/7m
[
A(X) ψ ′

0(z),−A(X),H−(X),H+(X)
]

+ O(ε4/7), H+ := H− − A, m := (M/λ4)1/7, z := y − h−(x),
(2.11)

and p = O(ε4/7). The local streamwise variable X = O(1) is defined in (2.13a–c) below.
The expansion (2.11) induces the following hierarchy of equations resulting from the
Euler operator in (2.3a,b). The dominant viscous displacement exerted by the LD,
−A(X), generates typically the dominant perturbation of ψ about ψ0 in terms of the
pressure-free eigensolution of the linearised streamwise momentum equation (2.3a),
where we have conveniently introduced the Prandtl transposition. Entering (2.3b), this
O(ε2/7)-contribution to ψ governs streamline curvature and, by virtue of integration
with respect to y, supplements the hydrostatic portion of p with the convective one,
also of O(ε4/7). The disturbances described so far account for the role of the MD for
the interactive mechanism. The O(ε4/7)-contributions to p and to ψ , the latter induced
subsequently by the streamwise pressure gradient, are specified in SBP18.

2.2.2. Lower deck
In the LD the expansion

[ψ, p]/ε4/7 ∼
[
(M2/λ)1/7 Ψ (X, Z), (M2λ6)1/7P(X)

]
+ O(ε6/7) (2.12)

employs the stretched coordinates

X := xl/ε6/7, (Y, Z) := ( y, z)/(ε2/7m), l := (λ5/M3)1/7. (2.13a–c)

To describe the flow up- and downstream of the plate edge, the variable Z is preferred over
Y in the slender LD. In turn, (2.3a,b) reduce locally to the boundary layer equation

ΨZΨZX − ΨXΨZZ = −P′ + ΨZZZ, (2.14a)
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Developed liquid film past a trailing edge: ‘teapot effect’

and (2.3c,d) to the mixed BCs expressing the downstream passage from no- to free-slip
along

Z = 0: Ψ = ΨZθ(−X) = ΨZZθ(X) = 0. (2.14b)

To match (2.12) and (2.11) subject to (2.5a,b), we require that for

Z → ∞ : Ψ ∼ [Z + A(X)]2/2 + [P(X)− G + TST]. (2.14c)

The rightmost bracketed contribution herein is a consequence of (2.14a) and that the
interactive flow branches off the unperturbed state given by [Ψ,P] ≡ [Z2/2,G] infinitely
far upstream; TST means transcendentally small terms.

Relating the displacement function A to P closes the interactive feedback loop and
the weakly elliptic free-interaction problem. For X < 0, that relationship is given by
the jet-type interaction law P − G = sgn(T − 1)(A′′ − H′′−), typically provoked by the
streamline curvature in the MD (as introduced by Smith (1977), Smith & Duck (1977)
and, for an unconfined wall jet passing an abrupt edge, Smith 1978) and the (counteracting)
capillary pressure jump across the uppermost streamline. For X > 0, one eliminates H−
from the interaction law via the representation of P in terms of the pressure jump across
the lowermost streamline to which (2.3e) reduces,

ΔPθ(X) = TH′′
−/|T − 1|, ΔP := P − P−. (2.14d)

(in SBP18 only the case P− = 0 was considered). We thus arrive at the P/A law in the
form

ΔP = C(T)(G + SA′′ − P−), S := sgn(T − 1), (2.14e)

C(T) :=
{

1 (X ≤ 0),
T/(2T − 1) (X > 0).

(2.14f )

We furthermore introduce D(T) = 1 − C(T). The upstream case (X ≤ 0) is included in
this interaction law for the sake of completeness and clarity. Downstream of the edge, it
accounts for a subtle interplay of capillarity with inertia; the functions C and D plotted
in figure 4 are consulted tacitly from here on. The pole of C points to an interesting local
increase of the capillary action for T ∼ 1/2. The passage of T over this threshold (where
surface tension exactly compensates the streamwise momentum of the pressure-free base
flow) is associated with an unbounded increase of P and H over A and implies the onset of
condensed interaction, which causes a breakdown of the existing flow description for the
free jet. This requires the introduction of a streamwise scale relatively short as compared
with the stretched interactive one and can be interpreted as choking of a capillary wave.
A second critical value T = 1 (S = 0) describes the cancelling of the counteracting effects
of streamline curvature and capillarity on the transverse momentum transfer. Both are
subsumed by A′′ and, thus, actually originate in the viscous forcing of the LD. The absence
of their net influence hampers the interaction pressure from becoming effective, where H−
remains unspecified according to (2.14d), unless A grows significantly to allow for a proper
regularisation over a suitably shortened scale. Both exceptional situations are skated over
below (§ 2.2.3) and still the subject of ongoing investigations.

The rescaled shear stress exerted at the plate, Λ(X) := ΨZZ(X, 0), plays a crucial role
for the (unambiguous) formulation of the initial conditions (ICs) imposed at the plate
edge X = 0 by SBP18 for the detached flow, controlling its upstream influence on the
plate-bounded flow in a unique manner. The detailed rationale underlying these deserves
to be clarified in terms of the following three steps.
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(i) The two original demands on the interaction mechanism were the simultaneous
continuous approach of the overall pressure jump across the layer towards −P− and
of Λ towards zero in the limit X → 0−, but only the first of these typical edge
conditions can be met.

(ii) If
ε12/7 � T < 1 (S = −1, T /= 1/2), (2.14g)

which is the case pursued here, the conditions the flow has to meet at the edge can
then be formulated without resorting to the analysis of smaller regions enclosing the
edge.

(iii) Then a least-degenerate flow description that allows for a smooth gradual transition
from attachment to detachment of the flow quantities on smaller streamwise scales
requires continuity of Ψ and A′ above the edge.

The sought quantities Ψ and P satisfy the, with respect to X, first- and second-order
equations (2.14a) and (2.14e). In turn, three ICs are required to continue marching over the
edge,

Ψ0 := Ψ (0+, Z) = Ψ (0−, Z) (Z > 0), T[A′(0+)− A′(0−)] = 0, P(0) = P−
(2.14h)

(or, equivalently, A′′(0) = −SG). These complete the interaction problem (2.14) for the
free jet. Here the flow profile at detachment Ψ (0−, Z) and A′(0−) are taken as obtained
by the preceding sweep of numerical marching towards the edge. It is stressed that Ψ , P
behave regularly as X → 0−. Moreover, these quantities are continuous across the edge
except for the shear stress ΨZZ on Z = 0, owing to (2.14b).

We also recall the behaviour, inferred from (2.14a,b), for

Z → 0: Ψ ∼
{
Λ(X)Z2/2 + P′(X)Z3/6 + O(Z5) (X ≤ 0),

Us(X)Z + [P′ + UsUs
′](X)Z3/6 + O(Z5) (X > 0).

(2.15)

Hence, the finite slip emerging along the lower free streamline, Us, supersedes the finite
plate stress Λ upstream of the edge. We note that (2.15) first implies that

Ψ0 ∼ Λ0Z2/2 + P′(0−)Z3/6 + O(Z5) (Z → 0), Λ0(G, T) := Λ(0−). (2.16a,b)

The apparent non-uniformity of (2.16a,b) for X = 0+ is the topic of § 3.2 below. The
parameters G and P−, representing the freely chosen support pressure, enter the solution
of the interaction problem only via (2.14h), i.e. G in terms of the imposed momentum
flux, and subsequent integration of P′(X) found in the course of the marching procedure.
The decoupled calculation of H− is finally provided by (2.14d). Eliminating P with the aid
of (2.14e) gives the alternative relation

H−(X) = D(T)
[
A(X)− A(0−)− A′(0−)X + (G − P−)SX2/2

]
, (2.17)

i.e. H−(0) = H′−(0) = 0. Evidently, the support pressure behaves as a body force
counteracting gravity.

2.2.3. Some important aspects
To achieve the last requirement in (2.14h), the interaction is initiated in the limit X → −∞
by a controlled branching from the oncoming base flow, here maintained as the trivial
solution Ψ ≡ Z for X ≤ 0 if G = P− ≥ 0. Hence, the case G > P− requires branching
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Developed liquid film past a trailing edge: ‘teapot effect’

of expansive type as scrutinised by SBP18 (where P− = 0 throughout) and the opposite
one 0 ≤ G < P− compressive branching (unconsidered so far). However, since A′′(X) is
the streamline curvature in the interactive limit, it becomes evident from (2.14e) that the
interactive feedback loop triggers stationary capillary waves iff SC > 0. Here this implies
0 < T < 1/2 or T > 1; see the preceding studies by Bowles & Smith (1992) and SBP18
and the preliminary presentation of these interactive undulations by Scheichl, Bowles
& Pasias (2019). Their revealing linkage to unsteady linear capillary waves is given in
Appendix B.

Moreover, SBP18 demonstrated how the phenomenon of stationary waves up- and
downstream of the edge for T > 1 is associated with pre-detachment and severely violates
the considerations (i)–(iii) and the notion of expansive branching. They finally disclosed
non-uniqueness of the solutions due to an arbitrary phase shift far upstream, presumed
fixed by an as yet missing further downstream condition. We are therefore still left with
the two constraints (2.14g) in our consistent description of the flow continued downstream
of the edge by dint of (2.14). The first states that not only A(X) but also A′(X) is continuous
at X = 0, so that we henceforth omit the signs in the arguments 0− and 0+ of A, expressing
one-sided limits. The second guarantees strictly forward interacting flow upstream of the
edge, thus, Λ0 > 0 in (2.16a,b). Since realistic values of τ and J by (2.8) yields T � 10,
assuming T < 1 seems acceptable; see table 1 and the last comment in Appendix A.

However, A becomes discontinuous at the edge in the limit T → 0 in (2.14e) and
(2.14h), implying the absence of interaction (P′ ≡ 0) for X > 0. Here the possibility of
free interaction exists but the conditions at X = 0 do not provoke it even upstream of the
edge in the formal limit G − P− = T = 0. Then the classical Goldstein wake (Goldstein
1930) is recovered immediately downstream as the trivial solution [Ψ,P] ≡ [Z2/2,G],
representing the oncoming base flow, applies upstream of it.

3. Inviscid detachment at smaller scales

As emphasised in more detail below, the interactive flow structure leaves us with a still
singular transition from no- to free-slip. It therefore initiates its own breakdown on scales
much smaller than the interactive ones. The bottom line of the subsequent analysis is
that of demonstrating self-consistency of the interaction theory and a required smooth
behaviour of all flow quantities at the edge demands a thorough analysis of the smaller
scales (figure 3b–d). This will also highlight the strikingly different characteristics of the
gross break-away of the film, i.e. the formation of a free streamline at the solid wall, in the
present situation and (well-understood) steady internal separation. In the first, the flow
quantities appear to undergo weak algebraic singularities, whereas in the second their
behaviour is well known to be regular at separation (Goldstein 1930).

3.1. The influence of capillarity
To advance further in completing the description of flow detachment, it proves useful to
first summarise the analysis in SBP18 of the interplay of surface tension and the Goldstein
wake in the non-interactive limit x → 0+. Here the latter exerts a displacement −ax1/3

with some constant a > 0 (a 
 1.0079 if ψ0 is given by Watson’s profile on top of
the wake), so that ψ ∼ ψ0(z)+ ax1/3ψ ′

0(z)+ O(x2/3). Accordingly, (2.3c), (2.6a,b) and
the Prandtl shift in (2.11) yield [h−, h+] ∼ [a−, a− − a]x1/3 + O(x2/3) with some sought
constant a−, and (2.3b) states that py + g ∼ ε2(a − a−)(x1/3)′′ψ ′2

0 ( y). By integration
across the unperturbed layer, from y = 0 to y = h0, we finally obtain from (2.3e)
the limiting overall capillary pressure jump in the form (a − a−)x1/3 ∼ −T(h− + h+),
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i.e. T(2a− − a) = a− − a. This implies [h−, h+] ∼ ax1/3[D,−C](T), cf. (2.14f ). One
draws the important conclusion that h−(x) is required to be regularised on the interactive
and again on smaller scales even for T ≥ 0, whereas h′+(x) (> 0) remains continuous at
x = 0 for T = 0 as the inverse Prandtl shift produces additional irregular terms in the core
region for x → 0+ and a cuspidal distortion of h+(x) exists for T > 0 only. Even then,
however, the complete regularisation of h+(x) is left to higher orders over the interactive
x-scale, where it is accomplished by the introduction of a thin shear layer adjacent to the
upper free surface in order to satisfy (2.3e) (cf. SBP18, § 3.3.4).

It is noteworthy to highlight the difference to the related classical situation of the gravity-
and capillarity-free axisymmetric flow exiting a pipe (Tillett 1968). There symmetry
cancels the leading-order displacement in the core region but the vorticity gradient of the
Hagen–Poiseuille profile (as opposed to streamline curvature) provokes an higher-order
displacement and vertical pressure, requiring a regularisation similar to that discussed
below.

Keeping in mind the above preliminary considerations operating for arbitrarily small
values of T , we consider the precise regularisation of h± for finite values of T . To this end,
we first reappraise the interaction under the first of the restrictions (2.14g). The details
of the detached flow in the close vicinity of the edge as reported by SBP18 provide an
insight into how the full interactive structure is recovered for ε9/14 � X = O(T3/8). In
general, the so-called near-near wake, replacing the pressure-free Goldstein near wake,
emerges as a subregion split off the main portion of the LD to absorb the nonlinearity of
the interaction immediately downstream of the trailing edge. Most importantly, it dictates
the onset of free slip according to (2.14b).

3.2. Extended Hakkinen–Rott wake
As the second of the ICs (2.14h) requires A − A(0) = O(X) (X → 0), the near-near
wake must suppress any larger contribution to A, hence transferred passively through the
core of the LD. As a consequence of this leading-order analysis, this wake itself then
provides an example of condensed interaction through an interesting, capillarity-controlled
specification of the pressure-driven Hakkinen–Rott wake (HRW, Hakkinen & Rott 1965):
P vanishes as X → 0 in an irregular manner such that the wake exerts zero displacement.
Since the canonical pressure gradient in the HRW turns out to be adverse, the capillary
pressure jump (2.14d) enforces the lower free streamline to be convex immediately
downstream of detachment in X = 0 (where it is curvature-free). It thus bends vertically
upwards as X grows. The strong pressure rise provokes an enhanced streamline curvature,
and this in turn the aforementioned breakdown and required smoothing of the interaction
theory for sufficiently small values of X, as already indicated in figure 1. In the LD this
behaviour may be fully understood if one considers only the behaviour of the leading-order
quantities Ψ and P, i.e. under the neglect of the vertical pressure variations.

The flow profile in the HRW matches that at detachment at its upper extent in its limiting
form given by (2.16a,b). As a result, the self-preserving flow in the HRW discerned for
X → 0+ resolves the non-uniformity of (2.16a,b). It is expressed as the inner limit[

Ψ

Λ
1/3
0 X2/3

,
ΔP

Λ
4/3
0 X2/3

,
H−

Λ
4/3
0 X8/3

]
∼
[

fHR(η), pHR,
9pHR

40
1 − T

T

]
, η := Λ

1/3
0 Z

X1/3 ,

(3.1a,b)
with the pressure difference ΔP introduced in (2.14d). Here the universal wake function
fHR satisfying fHR

′2 − 2fHRfHR
′′ = −2pHR + 3fHR

′′′, fHR(0) = fHR
′′(0) and the matching

condition fHR
′ ∼ η + TST as η → ∞ is recalled. The absence of a constant displacement
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term determines the eigenvalue pHR and prevents A from being of O(X1/3) as X → 0+
and enforces continuity of A′ as required by (2.14h). Our refined numerical study yields
pHR 
 0.61334 and a rescaled free slip fHR

′(0) 
 0.89915 obtained with ax(η) = 50 (cf.
Hakkinen & Rott (1965), SBP18). This gives Us ∼ fHR

′(0)X1/3 (X → 0+) in (2.15) when
rewritten in the limit η → 0.

Next, we propose the regular/singular upstream/downstream behaviour including higher
orders

ΔP ∼
{

P′(0−)X + P′′(0−)X2/2 + O(X3) (X → 0−),
pHRΛ

4/3
0 X2/3 + c1X ln X + c2X + O

(
X4/3(ln X)2

)
(X → 0+)

(3.2)

with the logarithmic variations and the constants c1, c2 to be determined through a
higher-order analysis of the HRW. Accordingly, from (2.14e–g) or (2.17),

A − A(0) ∼ A′(0)X + (G − P−)
X2

2
+

⎧⎪⎨
⎪⎩

O(X3),

−9pHRΛ
4/3
0

40C(T)
X8/3 + O(X3 ln X).

(3.3)

Our expectation of a more nonlinear theory superseding the current one when T crosses
1/2, at the pole of C(T), complies with the sign change of the singular contribution to A
provided by the HRW. That weak downstream irregularity is also transferred to H+, cf.
(2.11), as

H+∼−A(0)− A′(0)X − (G − P−)
X2

2
+

⎧⎪⎨
⎪⎩

O(X3),

9pHRΛ
4/3
0

40
X8/3 + O(X3 ln X).

(3.4)

By the expansive type of interaction for S = −1, A(X) bends convexly but P(X) concavely
throughout (SBP18). That is, we can expect here A(0) > 0, A′(0) > 0, but P′(0−) < 0.

One infers from (2.14c) that the ith (i = 1, 2, . . .) contribution to the expansion for
Ψ − Ψ0 as X → 0 attains the form di(X)Z + ei(X)+ TST as Z → ∞ where the series
of gauge functions di and ei are determined by the expansions (3.2) and (3.3) and add up
to respectively A(X)− A(0) and [A(X)2 − A(0)2]/2 + P(X). Typically, ei(X)Ψ ′

0(Z) are the
eigensolutions of the linearised convective operator in (2.14a). By matching Ψ in the LD
and the MD, the solution of the inviscid version of (2.14a) indeed yields the accordingly
refined form of the expansion for Ψ given by SBP18 (as (3.2), correctly including the
logarithmic terms). So, with ΔP expanded as in (3.2), we have for

X → 0± : Ψ − Ψ0 − A′(0)X Ψ ′
0(Z) ∼ ΔPΨ ′

0

∫ ∞

Z

dt

ψ ′2
0 (t)

∼ ΔP
{

1 (Z → ∞),

1/Λ0 (Z → 0).
(3.5)

A detailed higher-order analysis of the HRW demonstrates self-consistency of the
interactive asymptotic structure for X → 0. Amongst other aspects, it fixes the dependence
of the coefficients c1, c2 in (3.2) on the parameters characterising the LD flow in the limit
X → 0−. Here we refer the interested reader to supplement A.

The breakdown and so a required regularisation of the interactive flow structure for
sufficiently small values of X is due to an unbounded vertical flow component and
vertical pressure gradient evoked by the O(X2/3)-term in (3.2) and (3.5) and the associated
O(X3/8)-term in (3.3). As a crucial observation, even then the pressure gradient in the
HRW stays imposed by the flow on its top and must vary such that a potential singular
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displacement varying with X1/3 is suppressed. Since the self-similar structure of the HRW
already absorbs this type of condensed interaction and is recovered at its origin closer to
the trailing edge, (3.1a,b) prevails even over an x-scale much smaller than the interactive
one. As a result, h− is still given by (3.1a,b) in § 3.3 below.

3.3. Outer and inner Euler regions
We here consider the two nested square outer and inner vortical-flow regions (when
measured by the equally scaled global horizontal and vertical coordinates x and εy) that
supersede locally the MD (outer) and the LD (inner) but where ψ ∼ ψ0 and Ψ ∼ Ψ0 still
govern the flow at leading order. The associated linearised Euler stages (outer and inner
RS) account for the small-scale upstream influence, within that on the interactive scale, and
serve to regularise the singular behaviour predicted in § 3.2; most importantly, h+(x) by
virtue of H+ (outer). It is furthermore noted that the aforementioned large-Z representation
of the expansion (3.5) accompanies a passive re-ordering of its hierarchy, so as to match
the small-X limit of (2.11) provided by (3.3). Accordingly, the last expansion enforces a
contribution of O(X3/8) to (3.5) and this in turn a pressure-driven one of O(X2/3) to the
non-interactive disturbance of O(ε4/7) in (2.11).

3.3.1. Preliminaries
Introductory considerations lay the foundation for the outer and inner mechanisms for the
further regularisation of the HRW, as follows.

(a) The interactive u- and p-variations, on account of streamline curvature via the
vertical pressure variation in (2.3b), are of respectively O(ε2/7X8/3) and O(ε4/7X2/3)
as X → 0+. They and the non-interactive u-perturbation in (2.11), provoked by the
streamwise pressure variation through (2.3a), all become of O(ε2/3) in the outer RS
(§ 3.3.2) where, cf. (2.13a–c),

X̄ := x/ε = X/(lε1/7) = O(1). (3.6)

(b) Conversely, v of O(ε5/7X−1/3) grows significantly to become comparable in size to
the u-perturbation of ε2/7X2/3 across most of the LD for X = O(ε3/7), i.e. in the
inner RS (§ 3.3.5) where

X̂ := x/(mε9/7) = X/(lm ε3/7) = O(1). (3.7)

However, as p and ψ of O(ε2/3) at its base and downstream of the edge are still
prescribed by the HRW, the inner RS cannot regularise the associated singularity
expressed by (3.2) and (3.5). Therefore, the analysis of the inner RS is of only
subordinate importance compared with that of the outer one.

(c) A quick justification of the expansions of the flow quantities below for both square
regions relies on the relevant inviscid-flow approximation of the elliptic vorticity
transport equation, obtained from elimination of the pressure in (2.3a,b),

ψyy + ε2ψxx ∼ −Ω(ψ) := ψ ′′
0

(
ψ−1

0 (ψ)
)
. (3.8)

To express Ω as the vorticity conserved along the streamlines, we use ψ−1
0 to

symbolise the inversion of the corresponding leading-order relationshipψ ∼ ψ0( y).
As a consequence, the contributions to those expansions are triggered by the
vorticity imposed by the surrounding interactive flow and, in addition, the vorticity
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Developed liquid film past a trailing edge: ‘teapot effect’

produced by the HRW and entering via non-trivial matching or BCs. These are
provided by (3.5) with (3.2) for Z → ∞ at the base of the outer RS and on top
of the inner RS and by matching (3.5) for Z → 0 and (3.1a,b) at the base of the
latter. Consequently, eigensolutions of the linearised operator in (3.8) are absent.

It is noteworthy that Stewartson (1968) discovered the generic advent of a linearised
Euler or Rayleigh stage when he solved the (non-rigorous) Oseen approximation of the
NS problem governing the unconfined flow in a small region around a trailing edge, and
prior to the far-reaching rigorous appreciation of viscous–inviscid interaction on larger
scales (Stewartson 1969; Messiter 1970).

3.3.2. Outer Rayleigh stage: main deck
In the outer square region, p is, as in the surrounding MD, of O(ε4/7), and the viscous
terms in (2.3a,b) become formally of O(ε) as all remaining ones can be scaled to O(1).
Following the comments (a) and (c) above, substitution of (3.3) into (2.11) suggests, in this
domain, the expansion ψ ∼ ψ0( y)+ ε2/7ψ1( y)+ ε3/7ψ2( y)+ ε4/7ψ3( y)+ O(ε4/6).
The sought functions ψ1,2,3 satisfy the hierarchy of Rayleigh equations

(∂yy + ∂X̄X̄ − ψ ′′′
0 /ψ

′
0)ψ1,2 = 0, (∂yy + ∂X̄X̄ − ψ ′′′

0 /ψ
′
0)ψ3 = ψ2

1 (ψ
′′′
0 /ψ

′
0)

′/(2ψ ′
0)

(3.9a,b)
resulting from expanding (3.8). According to the considerations following (3.8) and
the regularity of (2.11) upstream of the trailing edge, ψ1,2 consist just of the
pressure-free disturbances given by the Taylor series of A(X) up to second order, where
A′′(0−) = G − P− from (2.14e) subject to (2.14h). This and the inhomogeneity in the
last equation in (3.9a,b), caused by the inertia-based nonlinearities, require an additional
y-dependent component of ψ3.

Specifying these findings gives[
ψ, h+
] ∼ [ψ0( y), h0

]
+ m
[
ε2/7A(0)+ ε3/7A′(0)lX̄ + ε4/7(G − P−)(lX̄)2/2

] [
ψ ′

0( y),−1
]

+ ε4/7m
[
ψ∗( y),−ψ∗(h0)/u+

0
]+ ε4/6 [Ψ̄ (X̄, y), H̄(X̄)

]+ O(ε5/7). (3.10)

Hence, ψ∗ denotes the limiting value of the corresponding O(ε4/7)-contribution to
the expansion (2.11) of ψ in X = 0. That quantity satisfies ψ ′′∗ − (ψ ′′′

0 /ψ
′
0)ψ∗ =

(ψ ′′′
0 /ψ

′
0)

′A(0)2/2 − A′′(0−)ψ ′
0, where the last inhomogeneity reflects the action of the

streamwise pressure gradient. We furthermore expand

p ∼ ε4/7ml2
[
(G − P−)

∫ y

0
ψ ′2

0 (t) dt − M
(

Gy
h0

− P−
)]

+ ε4/6P̄(X̄, y)+ O(ε5/7).

(3.11)
The X-independent leading-order term in (3.11) is again just the dominant contribution
to p in the MD up- and downstream of the trailing edge (cf. SBP18) evaluated at X = 0
and rewritten with the aid of (2.9a–c). Here the irregular terms in (3.3) play no role.
It follows from inserting (3.10) into (2.3b) and integrating its thereby reduced form
py ∼ ε4/7ml2ψ ′2

0 − g subject to p ∼ p− as y → 0, to match p in the LD. Moreover,
(3.10) fulfils (2.3c) supplemented with (2.6a,b) and, together with (3.11), complies
with the capillary pressure jump at y = h+ in (2.3e) up to O(ε4/7) for X̄ = O(1). The
O(ε4/6)-contributions to (3.10), (3.11) serve to regularise the flow quantities in the MD.
As the subsequent analysis of Ψ̄ , H̄, P̄ makes clear, those expansions do not contain
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lower-order eigenfunctions having sufficiently strong decay for |X̄| → ∞, consistent with
(2.11).

Invoking the inverse Prandtl shift in (3.10) gives ψ0( y) ∼ ψ0(z)+ h−ψ ′
0(z) for

h− = O(ε2/3), see (3.4), and brings to mind matching ψ up to O(ε2/3) in (2.11) and also
in the LD, according to (3.5) and (3.2). Furthermore, Ψ̄ , P̄ are seen to satisfy the linearised
Euler equations

ψ ′′
0 Ψ̄X̄ − ψ ′

0Ψ̄yX̄ = P̄X̄, ψ ′
0Ψ̄X̄X̄ = P̄y. (3.12a,b)

To separate the influence of the shear stress at detachment, Λ0, effective in the LD and of
a potential X̄-independent contribution to Ψ̄ arising from integration of (3.12a,b) (i.e. no
O(ε2/3)-contribution toΩ , cf. (3.8), in the surrounding MD), we advantageously consider
the scaled vertical flow perturbation

V̄ := −Ψ̄X̄/Λ̄, Λ̄ := 2 pHR λ
1/3Λ

4/3
0 /3. (3.13a,b)

Equations (3.12a,b) yield the Rayleigh equation governing V̄ in accordance with (3.9a,b),
i.e.

(∂yy + ∂X̄X̄ − ψ ′′′
0 /ψ

′
0)V̄ = 0. (3.14a)

Matching ψ and p in the outer RS and the LD with the support of (2.12) and m, l given by
(2.11), (2.13a–c) requires for

y = 0: V̄ = −θ(X̄)X̄−1/3. (3.14b)

Furthermore, expanding (2.3c) and (2.3e) gives

H̄ = −Ψ̄ (X̄, h0)/u+
0 (3.14c)

and P̄(X̄, h0) = −τ H̄′′(X̄), respectively. By the same token, inspection of (3.12a,b) with
the help of (2.6a,b), (2.9a–c) and (3.14c) gives for

y = h0 : u+
0

2 V̄y = −TJV̄X̄X̄, (3.14d)

i.e. the explicit dependence of V̄ on T .
Also, matching (3.10), (3.11) with (2.11) and p in the MD subject to (3.3)

and (3.2) yields Ψ̄ → 0 and P̄ → 0, thus, V̄ → 0 and H̄ → 0 by (3.14c), as
X̄ → −∞. In contrast, ε2/3Ψ̄ for X̄ � 1 must match the dominant singular
behaviour of ψ − ψ0 ∼ ε2/7m(A − H−)(X)ψ ′

0( y) for X � 1 as inferred from (2.11).
The expansions (3.1a,b), (3.3) and ψ − ψ0 ∼ −(9 pHR/40)ε2/3mΛ4/3

0 (lX̄)8/3 imply
V̄/ψ ′

0( y) ∼ 9λX̄5/3/(10M)+ O(X̄−1/3) (X̄ → ∞). Likewise, (3.13a,b) and (3.14c) give
H̄/Λ̄ ∼ 27λX̄8/3/(80M)+ O(X̄2/3). This proves consistent with the interplay of the two
free surfaces in § 3.2.

It is illuminating to demonstrate that the up- and downstream asymptotes are
already intrinsic to the problem (3.14) governing Ψ̄ and H̄. To this end, we
consider the weakest admissible, i.e. first algebraic, decays of V̄ for X̄ → ±∞
with unknown dominant corresponding rates ā±(X̄), say. We obtain from (3.14a,b),
using (∂yy − ψ ′′′

0 /ψ
′
0)V̄ ≡ (ψ ′

0V̄y − ψ ′′
0 V̄)y/ψ ′

0 and standard methods and (2.5a,b), the
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long-wave approximation of V̄ ,

V̄
ψ ′

0( y)
∼ ā±+ā′′

±

[
b̄±−
∫ y

0

dt

ψ ′2
0 (t)

∫ t

0
ψ ′2

0 (s) ds

]

− λθ(X̄)
X̄1/3

∫ h0

y

dt

ψ ′2
0 (t)

+ O(ā′′′′
± , X̄−7/3), (3.15)

where ā± and the constants b̄± are determined by solvability conditions of the
inhomogeneous problems governing the O(ā′′±)-term and the O(ā′′′′± )-term, respectively.
The small-y behaviour ofψ0 in (2.5a,b) grants a corresponding regularity of the right-hand
side of (3.15). Substitution of (3.15) into (3.14d) using (2.5a,b) and (2.6a,b) gives, after
division by u+

0 , the solvability relation ā′′±J − λθ(X̄)X̄−1/3 ∼ ā′′±τ . In the upstream case
this statement can only be met in the limit T → 1−; cf. (2.9a–c). Consequently, ā− ≡ 0,
b̄− = 0, and the upstream decay is indeed exponential, although the limit of an undamped
(neutral or harmonic) oscillation may also be taken into consideration and an unbounded
increase of V̄ is expected for T → 1−. In contrast,

ā+=9λX̄5/3/[10J(1 − T)] (3.16)

confirms the aforementioned leading-order asymptote involving M defined in (2.9a–c).
This shows that matching (3.10) and (2.11) requires T < 1.

As a further result, (3.12a,b) yields

P̄ = ψ ′′
0 Ψ̄ − ψ ′

0Ψ̄y, (3.17)

and P̄ ∼ 3λΛ̄X̄2/3/2 (X̄ → ∞) provides the match of p in the MD, according to (3.2), (3.5)
and (3.14b). This and P̄(X̄, 0) = 3λΛ̄ θ(X̄)X̄2/3/2 make evident how Ψ̄ and P̄ resort to
these behaviours originating in the HRW and why the inner RS is required to complete the
regularisation closer to the trailing edge. Since the coefficient ψ ′′′

0 /ψ
′
0 in (3.14a) becomes,

from (2.5a,b), ωy for y � 1, (3.14b) allows V̄ to attain an undesired potential-flow pole
in the origin, as described by the singular eigensolutions of the Laplacian r−N sin(Nϑ),
where

r :=
√

X̄2 + y2 → 0, 0 ≤ ϑ := arctan( y/X̄) ≤ π (3.18a,b)

and N > 0 is some integer (cf. Scheichl 2014). Its occurrence has to be avoided in
the further treatment of (3.14). Rather, (3.14b) and the vorticity term provoke a weaker
singularity as one readily finds that

V̄ ∼ V̄0 + c̄1y + c̄2xy + O(r8/3) (r → 0), V̄0 := 2r−1/3 sin(π/3 − ϑ/3)/
√

3,
(3.19a,b)

and (3.17) recovers the pressure induced by the HRW as P̄ = O(r2/3). The first three
contributions to V̄ in (3.19a,b) are of potential-flow type, and the coefficients c̄1,2 of the
homogeneous ones are determined by the overall solution for V̄ . The (lengthy expression
of the) O(r8/3)-term in (3.19a,b) solves the Poisson problem to which (3.14a) reduces, with
ψ ′′′

0 V̄/ψ ′
0 ∼ ωyV̄0 forming the inhomogeneity. The singularity described by V̄0 is pivotal

in § 3.3.5 where it comes to its regularisation by the inner RS.

926 A25-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

61
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.612


B. Scheichl, R.I. Bowles and G. Pasias

For what follows, we introduce the Fourier transform of a function f (X̄, y) for complex
wavenumbers k,

φ{ f }(k, y) = 1
2π

∫ ∞

−∞
f (X̄, y) e−ikX̄ dX̄. (3.20)

We first assume that V̄ decays exponentially far upstream. Since it grows with O(X̄5/3) as
X̄ becomes large, (3.20) defines φ{V̄} first in the open strip −u1(T) < Im k < 0, where
−u1 denotes the imaginary coordinate of the pole in the lower half-plane Im k ≤ 0 lying
closest to the real axis. The analytic continuation of V̄ into the entire k-plane excluding the
locations of singularities is provided by the convenient decomposition

φ{V̄}(k, y) = B(k)V(k, y), B(k) := φ
{
θ(X̄)X̄−1/3

}
(k) = 1/

[√
3�
(

1
3

)
(ik)2/3
]
.

(3.21a,b)
The last expression is understood in connection with a branch cut along the positive
imaginary k-axis. Absorbing (3.14b) and accommodating the non-integer growth with X̄
in (3.16), it captures the influence of the HRW and gives a non-trivial V̄ . Poles of V on the
real k-axis allow for relaxing the original assumption of exponential decay by the inclusion
of harmonic modes surviving far upstream. From (3.14) we deduce the Rayleigh equation

(∂yy − k2 − ψ ′′′
0 /ψ

′
0)V = 0 (3.22a)

subject to the then inhomogeneous lower and the homogeneous upper BC,

y = 0: V = −1, (3.22b)

y = h0 : ψ ′2
0 Vy = TJk2V; (3.22c)

cf. (2.5a,b). The solution of the two-point boundary value problem (3.22), parametrised
by k, facilitates the semi-analytical inversion of (3.20) so as to determine V̄ , parametrised
by ψ0( y) and T , in an elegant manner, avoiding the abovementioned Laplacian
eigensolutions; all the more, as our focus lies on H̄(X̄) given by (3.14c). For the numerical
implementation of (3.22), we recall that ψ0 is typically specified by Watson’s (1964) flow
profile. In turn, the properties (2.6a,b), (2.7) and the closed form of ψ0 in Scheichl &
Kluwick (2019) and the values for J = λ and u+

0 given by (2.8) are employed. Detailing
the properties of (3.22), especially the behaviours of V for k → 0 and |Re k| → ∞ and
the analysis of its poles, which select the discrete spectrum of V̄ out of the continuous one
(and where (3.22) does not have a solution but its homogeneous form does), is relegated
to supplement B. These findings enable the representation of V̄ in a most efficient manner
as envisaged next.

The poles of V lie symmetrically with respect to both the real and the imaginary k-axes.
There are a double pole at k = 0, exactly two real simple poles where k = ±ku(T) with
ku > 0 (§ B.1) and an infinite number of simple poles lying on k = ±iui(T) (i = 1, 2, . . .)
with ui > 0 (§ B.3). Since V(−k, y) ≡ V(k, y), Resk=−ku(V) = −Resk=ku(V) and real, and
Resk=−iui(V) = Resk=iui(V) and imaginary. We then have[

V̄,
Ψ̄

Λ̄

]
(X̄, y) =

∫
C
B(k)V(k, y) eikX̄

[
1,

i
k

]
dk, (3.23)

where all possible paths of integration C stretch from Re k = −∞ to Re k = +∞ and
originate from one another through a continuous deformation as they divide the k-plane in
two portions: the origin and all poles k = iui(T) lie in the upper and all poles k = −iui(T)
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Figure 4. Plots of C(T) (solid) and D(T) (dashed) by (2.14f ) (X > 0) with their asymptote and poles (all
dotted), fixed point and zeros (all as circles).

in the lower part. We furthermore anticipate that both real poles are located either in the
upper or the lower part to guarantee V̄ being real. Indeed, as will be argued below to render
V̄ unique, C must bypass both real poles such that they lie in the lower part. This situation
is sketched in figure 5 with the path C specified for the numerical calculation of H̄(X̄)
by means of (3.23) and (3.14c) for X̄ ≥ 0. There the branch cut prevents a more efficient
treatment of (3.23) using Cauchy’s residue formula: to avoid accuracy issues associated
with complex integration, we specified C to follow the real axis apart from small squares
of lengths 2ε with the midpoints k = ±ku and of length ε with the midpoint in the origin.
Consistency of the results is confirmed for values of ε ranging from 0.1 to 0.3. On the
other hand, applying Cauchy’s residue theorem to (3.23) yields with (3.21a,b), the fact
that Resk=−ku(V) = −Resk=ku(V) and Euler’s reflection formula after some algebra

Ψ̄

�
(

2
3

)
Λ̄

= 2Resk=ku(V)
cos(kuX̄ − π/3)

k5/3
u

+ i
∞∑

i=1

Resk=−iμi(V)
exp(μiX̄)

μ
5/3
i

(X̄ ≤ 0)

(3.24)
(cf. Tillett 1968). This series of residues converges (uniformly) for any X̄ < 0. The full
evaluation of (3.23) and smoothness of Ψ̄ for y > 0 in X̄ = 0 confirms that (3.24) holds
even there although the decay of the exponentials has disappeared.

Finally, H̄/Λ̄ for X̄ ≤ 0 follows from (3.14c) and directly from (3.24) in a convenient
manner. This approach allows us to check the accuracy of the full integration according to
(3.23). It is definitely preferred for resolving most accurately the novel discrete undamped
capillary Rayleigh modes, forming a wave crest upstream of the edge. These are revealed,
as arising from the real poles, with wavenumbers k = ku, found to strictly increase as T
decreases. Here we point to the classical dispersion relation of small-amplitude capillary
waves in a finite-depth layer of uniform parallel flow with uniform speed scaled to unity
over a flat bed (see Drazin & Reid 2004, p. 30 and Vanden-Broeck 2010, § 2.4.2 therein).
We can infer it directly from that of symmetric Squire modes (Squire 1953) as discussed
in Appendix B, note that k/2 therein is replaced by k here. Such stationary modes then
exist for the two wavenumbers k = ±ku satisfying 1 = Tku tanh ku. In the current setting
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Branch cut

−ku ku

Re k

Im k

C

−μi

−μ1

μ1

μi

2ε

ε
2ε

ε

Figure 5. Sketch of k-plane: double-symmetric singular points (circles), actual path C and direction of
integration.

we extract from (3.24) the neutral amplitude normalised with Λ̄,

āu := 2�
(

2
3

)
Resk=ku[V(k, h0)]/

(
u+

0 k5/3
u

)
. (3.25)

A linchpin of the analysis in supplement B is the asymptotic representation of ku and
Resk=ku(V) as ku vanishes and āu diverges for T → 1− (§ B.1) as well as the qualitatively
reciprocal behaviour for T → 0 (§ B.2). In combination with (2.8) (for xv = −1), this boils
down to the following, numerically valuable, finite limits obtained with high accuracy:

ku/
√

1 − T 
 1.8046, āu(1 − T)7/3 
 0.2805 (T → 1−), (3.26a)

kuT 
 1.1596, āuk2/3
u exp(kuh0) 
 6.0422 (T → 0). (3.26b)

To compute (3.23) (for y = h0), we restrict the numerical integration to the interval
|Re k| ≤ 20, which in view of the exponential large-k tails of V (§ B.2) gives satisfactorily
accurate results. Specifically, we find that V(k, h0) = O(exp[−|k|h0]/k). The evaluation
of the integrand employs a cubic-spline interpolation of the solution V of the Rayleigh
problem (3.22) for discrete values of k. We advantageously mitigated the singularity at
k = 0, circumvented at a small distance (see figure 5), by splitting off the first two terms in
the small-k expansion of V(k, h0) (§ B.1) and finally adding their inverse Fourier transform,
which results in the reciprocal large-X̄ representation of V̄ and H̄ via (3.23). We skip the
details of this alternative derivation of (3.15) in its more complete form, supplemented with
(3.16), also yielding the corresponding asymptote of H̄ by integration. To evaluate (3.24)
(for y = h0) and discrete X̄-values, the poles of V are detected as the roots k = kp, say, of
V−1(k, y). Since V ∼ Resk=kp(V)/(k − kp) as k → kp, the according residuals (given by
a homogeneous solution to (3.22), see above) are computed as 1/[∂kV−1(kp, y)] (y = h0).
For i > 7 and X̄ lying not too close to zero, the values of the exponentials in (3.24) have
already fallen below the round-off error; a few more modes calculated using the asymptotic
behaviour of the residuals (§ B.3) were, however, added.

The plots in figures 6 and 7 are also constructed by cubic-spline interpolation of the
pointwise data sets. Figure 7(a) displays the results obtained by summation of residuals.
As one expects, these are slightly more accurate for very negative values of X̄ and for small
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Figure 6. Wavenumber ku (solid) and amplitude āu (dashed), see (3.25), of the neutral capillary mode vs
inverse Weber number T , asymptotes for T → 1 (dotted) and T → 0 (dash–dotted) from (3.26).

values of T than those found by the direct evaluation of (3.23). The contributions of the
residua of imaginary poles in (3.24) become only marked when H̄ starts to set off from
its oscillating behaviour further upstream. Figure 7(b) indicates that excellent agreement
with the asymptotes found analytically can be achieved. It is seen that H̄ undergoes a
trough immediately downstream of the edge before it recovers to rapidly assume the
algebraic far-downstream growth governed by (3.15), (3.16) (see also § B.1). The second
result in (3.26b) corroborates the extremely rapid upstream decay of the Rayleigh modes
found numerically as T → 0. Even the maximum value of ku shown lies on the part of
C considered for the numerical integration, but the suppression of exponentially growing
terms in the calculation of V and the residuals becomes a numerically delicate task when
|k| becomes sufficiently large. In the long-wave limit ku → 0 as T → 1−, Ψ̄ diverges both
immediately upstream of the trailing edge, as āu grows like k−14/3

u , and for constant but
sufficiently large positive values of X̄. Also these findings compare favourably with the
curves in figure 7. The intriguing further implications of the long-wave limit are addressed
in § 5.

We complete the numerical analysis by pointing to the promising agreement between
the computed wavelengths λu := 2π/ku and oscillation amplitudes, see figure 7(a), and
those found from the leading-order asymptotes

H̄/Λ̄ ∼ −(āu/u+
0 ) cos(kuX̄ − π/3) (X̄ � −1), (3.27)

following from (3.24) and (3.14c). For T = 0.95, (3.26a) predicts λu 
 15.570 and
āu 
 339.741; for T = 0.8, (3.26a) still predicts the reasonably good approximation
λu 
 7.785. For T = 0.1, (3.26b) gives ku 
 11.5960 or λu 
 0.5418 and āu/u+

0 

9.655 × 10−10 (cf. § B.2), whereas ku 
 11.5570 or a slightly larger wavelength
λu 
 0.5437 is extracted from the numerical data. The details of this case displayed in
figure 8 give evidence of the capability of our numerical method to resolve even the rapid
oscillations of exponentially small amplitude for small T-values with surprisingly high
accuracy. In figure 8(b) the difference between the asymptotically and numerically found
wavenumbers explains a rather small cumulative phase shift of about 0.3895 between the
curve found numerically and its harmonic approximation provided by (3.27).
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Figure 7. Plots of H̄ vs X̄ and T (a) upstream, (b) downstream of trailing edge: labels indicate T-values;
multiples /= 1 of H̄ (in parentheses) shown for enhanced visibility; plot resolution of strongly augmented
oscillations for T = 0.1 discerned in (a); two-terms downstream asymptotes (dashed) from (3.15) with (3.16).

3.3.3. Why capillary undulations exist only upstream of the trailing edge
In fact, the decision whether the oscillatory capillary modes occur either up- or
downstream of the trailing edge, which depends on whether the real poles are within the
lower or upper part of the k-plane divided by C, cannot be left to the present steady-flow
analysis. In both cases, these small-scale Rayleigh waves are also manifest above the MD
of the interactive flow, modulating their amplitude over the interactive streamwise length
scale. We now return to a convincing (although not rigorous) argument restricting their
presence to upstream of the edge, as already anticipated in figure 1.

As inferred from the long-wave limit of (3.14a), the Rayleigh-type perturbation of
the streamfunction (ε2/3) in (3.10) morphs into the pressure-free one ε2/3Ψ̄y(X̄, 0)Ψ ′

0(Z)
in the LD. It exhibits a rapid (harmonic) streamwise variation, either far up- or
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Figure 8. Plots of H̄ vs X̄ for T = 0.1 far upstream over (a) several wavelengths, (b) approximately a single
wavelength: data points (circles) interpolated by cubic splines (solid) vs harmonic asymptote (dashed) in (b).

far downstream. Inspection of (2.3a) shows that typically a further VSL or SL (figure 3b)
where Z = O(ε1/21) is required on account of the no-slip BC. For very negative values of
X̄, this shear layer is of the type provoked by the rapid small-scale disturbances considered
in SBP18. For X̄ � ε1/7 (X � 1), it becomes absorbed into the HRW, there serving as
the viscous correction of the LD; for larger values of X̄, an additional perturbation in the
expansion of −ε2/3Ψ̄y(X̄, 0)Us(X) of h− serves to satisfy the free-slip condition ψzz ∼ 0
on z = 0 to which (2.3e) reduces; see (2.15).

These observations allow for the existence of the undular modes up- or downstream
of the edge, i.e. without preferring one of these alternatives. That is, a steady-flow
analysis cannot rule out one of these two possibilities. We therefore justify our choice
by making a recourse to the detection of capillary modes exclusively upstream of a
wall-mounted obstacle, serving as a compact forcing, by Bowles & Smith (1992) and
Rayleigh’s celebrated radiation principle, which exploits the anomalous dispersion relation
for small-amplitude capillarity waves. Acknowledging their essentially inviscid nature in
both situations (despite their amplitude of O(ε2/3) here), we consider this analogy as
reasonable.

As a serious objection, however, we have to admit that this principle applies strictly
only to a uniform (potential) background flow, where it was adopted by Cumberbatch
& Norbury (1979). The last authors also point to the rigorous justification of the above
observation by solving the signalling problem, following DePrima & Wu (1957). When
applied to the current situation (in a separate study), this demands the solution of the
unsteady extension of (3.14a) subject to an artificial, spontaneous introduction of the
trailing edge in the unperturbed flow described by ψ0. That is, one expects a pertinent
neutral mode for zero frequency in the long-time response in the spectrum, to occur
upstream rather than downstream of the edge. An easier modification of this ideal, rigorous
approach is the introduction of artificial viscosity and tracing that particular wavenumber
in the k-plane when the then complex frequency tends to zero (cf. Huerre & Monkewitz
(1990), § 3.4 therein). This plausibility argument serves to single out the mode upstream
as the physically meaningful alternative.

3.3.4. Diffusive overlayer
Expansion (3.10) accounts for the second dynamic BC (2.3e), requiring vanishing shear
stress on the top free surface, up to O(ε3/7), i.e. as long as (2.3e) reduces to ψyy ∼ 0
on y = h+. Moreover, it was indicated in SBP18 how (2.3e) alters the highest-order
contribution of O(ε4/7) to the inviscid flow described by (2.11) in a thin layer adjacent
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to the upper free streamline accounting for viscous diffusion of weak perturbations around
the base flow. From inspection of (2.3a), it penetrates to values of h+ − y measured by
the square root of its horizontal extent and thus of O(ε3/7). Since the flow therein itself
becomes inviscid over the shortened Rayleigh scale, a further diffusion layer of reduced
vertical depth arises where X̄ and ξ := ( y − h+)/ε1/2 are of O(1) and (2.3e) is formally
retained in full. A comprehensive completion of the present self-consistent theory requires
a brief examination of this overlayer meeting (2.3e); see supplement C.

3.3.5. Inner Rayleigh stage: lower deck
Following the outline (b) in the preliminaries, see § 3.3.1, the inner square region
regularises P by taking into account the transverse variation of p, which becomes of
O(ε6/7) according to (3.19a,b) and (3.18a,b) with (3.7). Then (3.10), (3.11) yield the
relevant expansion

[ψ, p − p−] ∼ ε4/7[(M2/λ)1/7Ψ0(Y), 0] + ε6/7[Ψ̂, P̂](X̂, Y)+ O(ε20/21), (3.28)

where we advantageously revert to the inverse Prandtl transposition in (2.13a–c). Again,
the quantities Ψ̂ , P̂ describe a linearised Euler flow, now with Ψ0 providing the base
profile. Therefore, V̂(X̂, Y) := −Ψ̂X̄ satisfies a Rayleigh problem of the type (3.22)
except for (3.14c), (3.14d) being replaced by the required decay for large values of
R := r/(m ε2/7) = (X̂2 + Y2)1/2, where the displacement of the HRW controls V̂ by virtue
of a R−1/3-variation matching (3.19a,b). Since the absence of a free surface at play
renders the Rayleigh operator here self-adjoint, all poles lie on the imaginary axis of the
corresponding wavenumber plane, which suppresses oscillations of wavenumbers much
smaller than those detected in § 3.3.2. Moreover, following the analysis leading to (3.19a,b)
recovers the far-field singularity also for R → 0.

This shows that the inner RS is unable to fulfil its original task of regularising the
pressure provoked by the HRW in the outer RS across the LD, and the associated
Rayleigh problem does not therefore merit a more detailed analysis as it proves physically
insignificant.

Since the scaled slip Ψ̄y(X̄, 0) exerted by the outer RS becomes of O(X̄1/3) as
X̄ → 0−, the vertical extent of the associated SL introduced in § 3.3.3 shrinks typically
to Y = O(ε1/21X̄1/3). It is continued as a sublayer covering the inner region where
Y = O(ε1/7) (figure 3c). There the driving slip is replaced by Ψ̂Y(X̂, 0), which again attains
an X̂1/3-behaviour as X̂1/3 → 0−. We are therefore driven to consider a collapse of the
inner RS, the SL and the HRW into a single region (figure 3d), addressed next.

4. Full Navier–Stokes and Stokes regions

As the conditions (2.14h) take into account the detachment of the lowermost streamline
but not the edge as a geometric restriction or even its micro-geometry on the length
scales considered so far, the prior analysis does not determine whether detachment occurs
actually at the edge or further upstream. Therefore, this question is taken up first through
an examination of even smaller scales, governing first a full NS regime. This ensues from
a breakdown of (3.28) initiated by the unresolved singularity of P̂, just discussed, and
the associated unbounded growth of the vertical flow component, −Ψ̂X̂ . The associated
growth of v evaluated in the HRW shows the emergence of the NS region. We will see
that it in turn contains at least one Stokes region around detachment so that the flow can
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accommodate the wetting properties controlling the emerging meniscus and defined by the
thermodynamic three-phase equilibrium holding in the detachment point.

4.1. Leading-order problem in an upper half-plane
The slender-flow approximation underlying (3.1a,b) ceases to be valid where
both u and v become of O(ε1/2) as (x̄, ȳ) := (x/ε3/2, y/ε1/2) and, see (3.18a,b),
r̄ := r/ε1/2 = (x̄2 + ȳ2)1/2 are of O(1). In this half-plane 0 ≤ ϑ ≤ π, we expand[

ψ/ε, ( p − p−+gy)/ε, h−/ε2
]

∼ [ψ̄(r̄, ϑ), p̄(r̄, ϑ), h̄(x̄)
]+ O(ε3/2) (4.1)

with the sought quantities ψ̄ , p̄, h̄ of O(1) as ε → 0. Due to the sufficiently smooth
variation of the detached streamline beneath the HRW, this remains slender in the present
NS region where

ȳ ∼ ε3/2h̄(x̄) or ϑ ∼ ε3/2h̄(x̄)/x̄. (4.2)

Consequently, ψ̄ , p̄ satisfy the full NS equations (2.3a,b) describing a perfectly
supercritical flow in the upper half-plane. This is subject to mixed, linear, homogeneous
BCs implied by (2.3c–e) and a far-field condition which accounts for the externally
imposed shear flow. From the reference capillary number in (2.2b), the reduced velocity
scale

√
ε Ũ and the relative flatness of the detaching streamline given in (4.2), the currently

relevant capillary number ε1/2 Ca/ε3/2 = 1/τ of O(1) implies the leading-order balance
2ε2ψyx + p − p− ∼ τκ− retained in (2.3e). However, here the normal-stress jump across
the fluid–gas interface evaluated at ȳ = 0 determines its small curvature κ− ∼ εh̄′′(x̄),
which then has only a passive, higher-order effect on the flow. Accordingly, the weak
vertical displacement of the former provokes the O(ε3/2)-correction in (4.1), for x̄ → ∞
matching the displacement by the HRW provided by the inverse Prandtl shift. The
neglected lower-order contributions to (4.1) consist of eigensolutions of the linearised NS
operator that exhibit asymptotic growth as r̄ → ∞ so as to match the O(ε5/7)-term in
(3.28) and higher-order terms apparent in the expansion of Ψ̂ , P̂ for R → 0.

With Δ̄ := r̄−1∂r̄(r̄∂r̄)+ r̄−2∂ϑϑ being the Laplacian, the leading-order NS problem
reads as

ψ̄ϑ(ψ̄ϑ/r̄)r̄ − ψ̄2
r̄ − ψ̄r̄ψ̄ϑϑ/r̄ = −r̄p̄r̄ + Δ̄ψ̄ϑ , (4.3a)

ψ̄r̄ψ̄r̄ϑ − (r̄ψ̄r̄)r̄ψ̄ϑ/r̄ = −p̄ϑ − r̄(Δ̄ψ̄)r̄, (4.3b)

supplemented with (2.3c–e) when evaluated for ȳ = ϑ = 0,

ϑ = 0: ψ̄ = 0, ψ̄ϑϑ = 0, 2(ψ̄ϑ/r̄)r̄ + p̄ = τ h̄′′, (4.3c)

ϑ = π : ψ̄ = ψ̄ϑ = 0. (4.3d)

Matching ψ and p in the NS and the surrounding inner Rayleigh region, i.e. (4.1) and
(3.28), completes the problem (4.3) governing ψ̄ , p̄ and h̄. We have for

r̄ → ∞ : ψ̄ ∼ (Λ0/2)(r̄ sinϑ)2 + o(r̄) (ϑ � r̄−2/3, π − ϑ � r̄−2/3), p̄ → 0.
(4.3e)

The smallness of the remainder term imposed on ψ̄ provides the required second kinematic
far-field BC. Since we are dealing with the full NS equations, (4.3) already captures the
inner Rayleigh region and its subregions both upstream (SL) and downstream (HRW,
ȳ ∼ r̄ϑ = O(r̄1/3) there) of detachment; cf. figure 3(d). That is, (4.3e) already implies that
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(ψ̄, p̄) = O(r̄2/3) and h̄ = O(r̄8/3) at the onset of the HRW. The BCs for ϑ = 0 in (4.3c)
describe zero tangential stress along the detached streamline and the net normal-stress
jump across it. Eventually, eliminating p̄ from (4.3a,b) yields the vorticity transport
equation

(ψ̄ϑ ∂r̄ − ψ̄r̄ ∂ϑ)Δ̄ψ̄ = r̄Δ̄2ψ̄, (4.4)

to be solved subject to the first two BCs in (4.3c) and (4.3d,e). Hence, ψ̄ is solely induced
and parametrised by the externally exerted shear rateΛ0. We recall that this is determined
by the solution of the viscous–inviscid interaction problem on a larger scale and accounts
for the upstream momentum flux, gravity and capillarity.

The variation of h̄ with r̄ is then found from integrating the capillary normal-stress jump
in (4.3c) and, given the identical match of h̄ and H− according to (3.1a,b), two ICs to be
imposed as r̄ → 0. Before tackling their determination, we first identify the flow topology
near detachment, solely based on the information extracted from the NS problem posed
above in the limit r̄ → 0. The importance of this insight by far outweighs the perspective
of obtaining the full numerical solution. Therefore, we have refrained from tackling this
considerable challenge. (The considerations below suggest spectral collocation in the
ϑ-direction as the method of choice.)

4.2. Flow close to detachment
As ψ̄ must satisfy four BCs in (4.3c,d), the viscous terms are retained in the limiting
forms of (4.3a,b) as r̄ → 0 and ϑ ∈ [0,π]. Requiring strict forward flow in the immediate
vicinity of detachment,

ψ̄ > 0 (r̄ → 0), (4.5)

is initially seen as a natural additional constraint. It is supported by the extensive numerical
investigation by Kistler & Scriven (1994) of the full NS problem for a flow passing a
wedge-shaped lip, see figures 2(b) and 3( f ): this predicts an eddy at its underside in some
situations associated with rather low to moderate Reynolds numbers but strictly forward
flow detaching at its tip in the present high-Reynolds-number limit. The analysis below,
however, demonstrates that (4.5) is only met in the least singular situation chosen from the
initial alternatives.

4.2.1. The full inertial–viscous limit
The convective–viscous balance in (4.4) is restored in full if ψ̄ varies essentially with ln r̄,

ψ̄ ∼ ḡ(ϑ)− Γ ln r̄/(2π) (r̄ → 0), Γ ḡ′′′/(2π)− 2ḡ′ḡ′′ = (4ḡ + ḡ′′)′′. (4.6a,b)

We are thus concerned with a spiralling extension of a special type of a radial
Jeffery–Hamel (JH) flow described by ḡ(ϑ) (see Fraenkel 1962), exhibiting the vorticity
−Δ̄ψ̄ = −ḡ′′/r̄2 and an outwards flow speed ḡ′(ϑ)/r̄ as collapsing in a line source
of strength ḡ′(ϑ), due to a superimposed potential vortex of some strength Γ . Here
the homogeneous BCs ḡ(0) = ḡ′′(0) = ḡ(π) = ḡ′(π) = 0 originating in (4.3c,d) require
Γ = 0, and ḡ represents an eigensolution of the full NS problem. Nevertheless, the case
Γ /= 0 and ḡ′′ �≡ 0, apparently unconsidered before now, might be of interest in a different
context. We also remark that for an inviscid flow, removing the Stokes operator in (4.6a,b),
ḡ(ϑ) varies sinusoidally in general but linearly in the case of a potential flow.

An analytical–numerical study shows that there exist two eigensolutions ḡ. Each
describes a distinctly different canonical flow topology as both exhibit a dividing
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Figure 9. (a) Eigensolutions of (4.4) referring to a JH flow given by (4.6a,b); (b) sketched flow patterns for
the two cases in (a): reversed-flow bubble upstream of detachment or dictating attachment of free streamline.

streamline ḡ = 0 for ϑ = ϑ0 
 1.12777 and, thus, violate the premise (4.5) and point
to the existence of a closed reversed-flow eddy. This is located either adjacent to the plate
(ḡ < 0 for ϑ0 < ϑ < π) or fully detached as bounded by the free streamline (ḡ < 0 for
0 < ϑ < ϑ0); see figure 9(a). In the first case, the flow undergoes pre-separation to reattach
in the origin r̄ = 0; in the second, the free streamline attaches rather than detaches there
from the plate. These flow pictures are the immediate consequence of including azimuthal
higher-order corrections to the purely radial JH flow and extending the streamline pattern
over the full NS scales; see figure 9(b). However, our scrutiny of the related literature does
not inform about what, at first sight, is a rather pathological situation. In particular, the
conception of a detached eddy with a stagnation point forming at the free and material
streamline, to which the fluid particles stay attached, raises serious concerns.

We therefore rule out the JH solution as the local limit of the full NS solution.
Notwithstanding its apparent shortcoming, however, we refer the interested reader to the
higher-order corrections and some of the further impact of this limit in supplement D.
These findings are not required for the core arguments at present but are potentially of
interest for pursuing the study of this flow structure in a related context.

4.2.2. An extended Stokes limit as the alternative
Discarding the possibility of a full inner NS problem, (4.6a,b), leaves us with the
degenerate situation of the dominant Stokes balances

0 ∼ Δ̄2ψ̄, p̄r̄ ∼ Δ̄ψ̄ϑ/r̄, p̄ϑ ∼ −r̄(Δ̄ψ̄)r̄ (4.7a,b)

and ψ̄ → 0 as the origin r̄ = 0 is approached along any path from within the flow.
We then expand ψ̄ into the eigensolutions ψ̄i of the biharmonic operator in (4.7a,b)
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when supplemented with the homogeneous BCs in (4.3c,d) found by separation in the
polar variables, following Moffatt (1964) and the references therein. However, here the
subordinate convective terms in (4.4) control their admissibility and, thus, the form of the
dominant eigensolution. This straightforward but long-winded selection process is detailed
in supplement E. As the most significant result, it predicts regular behaviours for r̄ → 0
towards a separating flow (ψ̄ȳȳ = 0),

ψ̄ ∼ −4a5ȳ3 + o(r̄3), p̄ − p̄0 ∼ −24a5x̄ + o(r̄) (a5 < 0, r̄ → 0), (4.8a)

h̄ ∼ h̄(0)+ h̄′(0)x̄ + p̄0x̄2/(2τ)− 4a5x̄3/τ + o(x̄3) (x̄ → 0+). (4.8b)

The constant a5 and the offset pressure p̄0 are part of the solution to the full NS problem,
in turn, forced by the value ofΛ0. Let us first indicate how to fix the unknown coefficients
h̄(0) and h̄′(0), governing the local elevation of the just detached streamline, and complete
our analysis at this stage, i.e. without taking into consideration any smaller length scale.

As an obvious geometrical requirement, h̄(0) = 0 then. In full agreement with the
current status of the theory, the position of flow detachment not only defines the origin
x = y = 0 but an arbitrary point of the upper side of the plate rather than necessarily
coinciding with the trailing edge, as a genuine geometrical constraint. Detachment further
upstream then requires the actual static wetting or contact angle, observed in the NS region,
as an input quantity being so close to π that it is approximated by π − ε3/2h̄′(0). This
determines a positive value of h̄′(0). However, and as an immediate consequence of the
slenderness of the lower free streamline, this thereby resulting distinguished limit refers to
the quite exceptional break-away of an almost perfectly hydrophobic liquid. Additionally,
such a scenario demands for the geometrical constraint h̄ > 0 for x̄ > 0, which admittedly
cannot be guaranteed as long as the numerical solution of the above NS problem is not
available. It is also not likely to occur in reality, where unavoidable (though here neglected)
surface imperfections already affect the flow described on the vertical NS scale. It is a
natural step, therefore, to identify the location of flow detachment indeed at the trailing
edge. However, then h̄′(0) remains undetermined as long as its microscopic shape remains
unresolved.

The outcome of these considerations is threefold. Firstly, we expect both h̄(0) and h̄′(0)
to be fixed by conditions of matching the full NS and a Stokes flow in a hidden region of
an extent much smaller than that of the encompassing NS region. Secondly, as we raised
in the introduction to § 4, the description of that creeping flow must take into account
the meniscus formed by the actual slope of the free streamline at its detachment point
of three-phase contact as a hitherto unconsidered physical input. And thirdly, that a new
length scale must resolve the microscopic contour of the plate with sufficient accuracy.

4.3. Distinguished Stokes limits and wetting properties
Although possibly not satisfied in a particular realisation of the flow, let us treat the surface
of the plate as locally chemically heterogeneous and ignore distributed roughness on
all scales for the sake of clarity. Then the so-called quasi-static apparent contact angle,
β, is observed between the wetted plate and the tangent to the free streamline at its
point of detachment and formation, where three phases (locally) at rest meet under the
Young–Dupré equilibrium: for its precise conceptual foundation, we refer to Teletzke,
Davies & Scriven (1988), Kistler & Scriven (1994), Whyman, Bormashenko & Stein
(2008) and Bonn et al. (2009). Since this macroscopic contact angle summarises all related
submicroscopic phenomena (see Kistler & Scriven (1994), and references therein) and
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Developed liquid film past a trailing edge: ‘teapot effect’

shall apply even to the smallest scales identified in the flow, we have consistently used the
notion ‘microscopic’ in the context of the resolved geometry of the trailing edge.

4.3.1. Nested Stokes problems
To progress further, we introduce the new length scale � � ε1/2, non-dimensional
with the nominal film thickness H̃. In the new flow region, [x̂, ŷ] := [x/(ε�), y/�] and
r̂ := r/� = (x̂2 + ŷ2)1/2, see (3.18a,b), are of O(1) as � → 0. Hence, supplementing
(4.1) with (4.8), the associated increase of p̄ − p̄0 and (4.8b) suggests the two-parameter
expansion[

ψ

�3 ε−1/2 ,
p − p−+gy − εp̄0

� ε1/2 ,
h−
�

]
∼
[
ψ̂(x̂, ŷ), p̂(x̂, ŷ), ĥ0(x̂)+ �

ε1/2 ĥ1(x̂)
]
. (4.9)

The O(1)-quantities ψ̂ , p̂, ĥ0 and the only first-order correction of interest ĥ1 are to
be found. The scaled elevation ĥ(x̂) := h−/� of the detaching streamline remains to
be determined by the capillary normal-stress jump in (2.3e). Since p̂ ∼ εp̄0 + O(�ε1/2)
and all viscous terms on its left side are found to be of O(�ε1/2), that becomes of
εp̄0 + O(�ε1/2) in the limit (4.9). However,

κ−∼�−1ĥ′′/(1 + ĥ′2)3/2, (4.10)

stating that the capillary number at play, �2ε1/2/τ , is small. This is also inferred from
reducing Ca in (2.2b) by the small relative velocity scale �2/ε1/2. In turn, ĥ′′ ≡ 0, and
matching (4.9) and (4.8b) shows that the lower free streamline remains horizontally
inclined under an angle no larger than of O(ε3/2). Accordingly,

ĥ0 = h̄(0)/Δ, ĥ1 = h̄′(0) (x̂ − x̂d)/Δ. (4.11a,b)

Here the parameter Δ measures the strength of the required distinguished limit,

� = Δε2, 0 < Δ = O(1), (4.12a,b)

and (x̂, ŷ) = (x̂d, ĥ0) denote the position of the actual detachment point, D, taken initially
to be known.

Let Σ denote the resolved surface of the plate. Inspection of (2.3) and the behaviour
(4.11a,b) confirm that the leading-order quantities ψ̂ , p̂ satisfy

Δ̂2ψ̂ = 0, p̂x̄ = Δ̂ψ̂ȳ, p̂ŷ = −Δ̂ψ̂x̂, Δ̂ := ∂x̂x̂ + ∂ŷŷ, (4.13a)

subject to mixed boundary conditions in the limit of zero capillary number as

r̂ → ∞ : ψ̂ ∼ −4a5ŷ3 + o(r̂5/2), (4.13b)

on Σ (x̂ < x̂d) : ψ̂ = ψ̂ŷ = 0, (4.13c)

ŷ = ĥ0 (x̂ ≥ x̂d) : ψ̂ = ψ̂ŷŷ = 0. (4.13d)

Once ψ̂ is found, one can calculate p̂ by integration, giving p̂ ∼ −24a5x̂ + O(1). This
matches identically the small-r̄ form of p in (4.8a) as the remainder term negotiates a
constant of integration found from the O(ε3/2)-contribution to (4.1). In accordance with
the above results and likewise, the neglected remainder term in (4.13b) expresses the
second necessary far-field condition and the absence of an eigensolution of the NS problem
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of O(ε3/4) that would enter the right-hand side of (4.1). This seems to be a natural choice,
as (3.28) would require it to die out for large values of r̂. Rather, (4.13d) enforces an
O(1)-correction a5ĝ(ϑ), say, in the large-r̂ form of ψ̂ . The function ĝ is then governed by

(4ĝ + ĝ′′)′′ = 0, ĝ(0) = −4a5ĥ3
0, ĝ′′(0) = −24a5ĥ0, ĝ(π) = ĝ′(π) = 0;

(4.14a–d)

cf. (4.6a,b). Eventually,

ψ̂

a5
∼ −4ŷ3 · · · + ĝ(ϑ)+ o(1), ĝ = −6ĥ0(sinϑ)2 − 4ĥ3

0

[
1 + sin(2ϑ)

2π
− ϑ

π

]
,

(4.15a,b)

where the dots indicate potential eigensolutions of o(r̂2). The behaviours in (4.15a,b)
provide the match of (4.9) with (4.1) supplemented with an O(ε9/2)-contribution, hence,
also excited by the displacement (4.2) of the interface. While that of O(ε3/2) is controlled
by the linearisation of ψ̄ as ȳ → 0, this is due to the corresponding third-order terms. As
these dominate as r̄ → 0 where ψ̄ ∼ 4a5ȳ3, evaluating ĝ for ϑ → 0 describes the feedback
of the displacement on the flow near detachment.

We note that the weak curvature of the detaching streamline is determined by the
higher-order approximation of (2.3e), following from (4.10) as

τ ĥ′′ ∼ ε�p̄0 + 2ε1/2�2ψ̂x̂ŷ (ŷ = ĥ0). (4.16)

The case of a perfectly flat surface associated with ĥ0 ≡ 0 and the trivial solution
ψ̂ = −4a5ŷ3 of (4.13) recovers the dominant Stokes limit of the full NS solution for r̄ → 0
and the aforementioned pathological case of fully hydrophobic dewetting with both xd and
� then remaining unspecified. This situation is therefore ruled out, and we are indeed
left with flow detachment in a vicinity of the originally sharp plate edge covered by the
Stokes region, where the microscopic resolution of the edge dictates the definition of �. We
henceforth refer to the sketch of the flow around the resolved edge in figure 10, detailing
figures 2(b) and 3( f ) on the new scale for various values of β (cf. Duez et al. 2010). As
previously discussed, the edge is, without substantial loss of generality, assumed to be
given by a smoothed but at first ideal wedge of cut-back angle α and with an apex lying at
the coordinate origin. Then the curvature radius typical of the rounded nose conveniently
defines �; the degenerate situation of a wedge still found sharp when viewed on the scale
ε2 is assumed in the limit Δ → 0. The case of specific relevance α = 0 can be interpreted
as a plate-type thin tip formed by a semi-circle and of local thickness 2� (figure 10b).
Although the film generated by Duez et al. (2010) is much thinner and thus the scales
different, we find the comparison of their experimental with our theoretical prediction
noteworthy (figure 10c).

Assuming Δ = 1 in (4.12a,b) and H̃ = 1 mm (table 1 in Appendix A) typically
gives a quite small physical scale �H̃ 
 0.01–0.04 μm. However, it is large enough to
consider the asymptotic theory applicable to curvature radii achieved in manufacturing
practice.

Completing our flow model at this stage is indeed possible for a non-degenerate,
smoothed wedge tip and a sufficiently large apparent wetting angle β as the wedge
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Developed liquid film past a trailing edge: ‘teapot effect’

β

x̂x̂

ŷŷ

1

D
D

D

ŷ ∼ ĥ0

ŷ ∼ ĥ0

β > α

α β < α

1

(b)(a) (c)

Σ

Inner region

Figure 10. Stokes flow around resolved smoothed trailing edge: (a) wedge-type (α > 0), inner region emerging
for β < α (green); (b) plate-type and semi-circular (α = 0), no inner region; (c) cut of liquid interfaces in
experiment, described in and reprinted with permission from Duez et al. (2010) (© the American Physical
Society).

geometry imposes a closure condition on (4.13). This fixes the location of D
on Σ : dŷ/dx̂ ∼ tanβ + o(ε3/2). (4.17)

This describes the general, non-degenerate case where h̄(0) is found in virtue of (4.11a,b).
Evidently, then also ĥ′(0) = 0 as the linear follow-up problem to (4.13) governing
disturbances of O(�/ε1/2) in (4.9) has the zero solution. Higher-order perturbations,
already affected by the curvature of the detached streamline, control the (physically
insignificant) remainder term in (4.17). Proceeding in this manner determines successively
the two ICs that each term arising in the expansion of h− in (4.1) has to meet as r̄ → 0.
This consideration confirms self-consistency of the proposed theoretical framework. As
a crucial result, the flow wets the underside of the wedge as ĥ0 represents a (strictly)
monotonic function of β, which decreases from 0 as β decreases from π. This justifies
our reference to the teapot effect. The pathological limit β → π− or (x̂d, ĥ0) → (0, 0),
however, leads to a non-trivial value of ĥ′(0). Here we only note that the above analysis
by inspection gives � = O(ε) in the degenerate case h̄(0) = 0, h̄′(0) > 0. On the other
extreme, D has reached the point on the nose where its curvature vanishes once β has
become as small as α. All together, we arrive at the geometrical constraint

π − ε3/2h̄′(0) ≥ β ≥ α. (4.18)

The variation of ĥ0 with β is more and more squeezed towards the edge as this gets
sharpened. Finally, D is seen as pinned to the edge as (4.18) is interpreted as the
well-known Gibbs inequality; see Oliver, Huh & Mason (1977), Dyson (1988) and Kistler
& Scriven (1994). In accordance with the last authors, we find that the distance of D from
the apex decreases with both increasing values of β and the Reynolds number.

The formidable task of solving the Stokes problem (4.13), parametrised by α and β,
has not yet been accomplished. Most importantly, in the situation sketched in figure 10(b),
mastering this challenge will establish a comprehensive flow description in the entire range
π > β > 0 of physical significance. If, however, β ≥ α, determining the actual position of
D requires the introduction of a further, inner Stokes region, as indicated in figure 10(a).
Contrasting with its counterpart (4.13), there the governing problem is of a non-degenerate
free-surface type, thus controlled by a capillary number of O(1), to accommodate to the
necessary local bending of the detaching streamline. We expect D to be found the further
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away from the apex the smaller is the value of β, with its position fixed by a constraint
arising of the interplay of these nested Stokes regions. This is a topic of our upcoming
activities. Adhering to the scalings of the outer region, however, and using (4.10) gives as
a first result for the approach to D,

ĥ′ → tan(α − β), κ−∼�−1[cos(α − β)]3ĥ′′ (x̂ → x̂d). (4.19a,b)

4.3.2. Static wetting angle
As the final step, we focus on the flow properties in the immediate vicinity of
detachment, specified either on conditions (4.18) or (4.19a,b). Here we again follow
Moffatt (1964) in his analysis of local eigensolutions of (4.13) varying algebraically
with distance from a singular point at a rigid wall. These suggest that the streamlines
are locally pushed away from the nose. Moffatt (1964, § 3.2) also showed that
a related class of eigensolutions controls the behaviour of ψ̂ at small distances
d̂ = [(x̂ − x̂d)

2 + (ŷ − ĥ0)
2]1/2 from the detachment point: using (4.13a,c,d) and reusing

the azimuthal angle, ϑ := arctan[(ŷ − ĥ0)/(x̂ − x̂d)], yields first for (4.18) and 0 ≤ ϑ ≤ β

in the limit

d̂ → 0:
ψ̂

âd̂ σ
∼
{

sin(σϑ) sin[(σ − 2)β] − sin(σβ) sin[(σ − 2)ϑ] + c.c. (σ /= 2),
sin(2ϑ)− ϑ/β (σ = 2).

(4.20)

The constant â is determined by the full solution to (4.13), and σ appears to be a (complex)
eigenvalue related to β by

(σ − 1) sin(2β) = sin[2β(σ − 1)] (σ /= 2), tan(2β) = 2β (σ = 2). (4.21a,b)

Thus, a continuous relationship requires β 
 128.727◦ for σ = 2. One readily confirms
that the eigensolutions considered in § 4.2.2 are recovered in the limit β → π. Equation
(4.21a,b) is symmetric with respect to Re σ − 1. However, physically admissible solutions
require the flow speed, of O(d̂ σ−1), to vanish and the shear and the normal stress (the
pressure), both of O(d̂ σ−2), on Σ being integrable as d̂ → 0 (and not to compromise the
validity of the Young–Dupré equilibrium). According to (4.16), ĥ′′ varies at the same rate.
Therefore, only values of σ having Re σ > 1 are permitted, anticipated by the requirement
ψ̂ = 0 and a finite slope ĥ′ at detachment in (4.13d) and, thus, the existence of a static
contact angle β. The plot of the real branches of (4.21a,b) in figure 11 illustrates the infinite
multiplicity of σ , not considered by Moffatt (1964), the asymptotes β → π/2, π as
Re σ → ∞ and the local extrema of β. There (4.21a,b) is continued to complex values of
σ , via (4.20) associated with Moffatt’s (1964) prominent and exceptional infinite sequence
of eddies. Hence, our flow model does not predict a single eddy as do the calculations
by Kistler & Scriven (1994) for moderately large Reynolds numbers. Rather, it predicts
this series of eddies if the value of β falls below its absolute minimum. Moffatt (1964)
predicted this well-established threshold as 
 78◦; here we recompute it as 
 79.557◦ for
σ 
 3.7818.

A more elaborate discussion of these details and their consequences requires the
yet pending full numerical solution of (4.13). Since (4.21a,b) is independent of the
choice of the coordinate system used, however, the above results remain valid in the
vicinity of the apex D of the wedge-shaped inner Stokes region if (4.18) is violated
(figure 10b). According to (4.19a,b), ĥ′′ is then again integrable. As a crucial finding, these
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Figure 11. Allowed contact angle β vs real σ , from (4.21a,b); existent for σ > 3/2, smooth for σ = 2 (full
circle) and having a local absolute minimum (empty circle).

local properties characterise in general the solution of a Stokes problem governing flow
detachment at some finite capillary number.

Moreover, as these results rely solely on the leading-order term of the Stokes expansion,
they even hold for a finite-Reynolds-number flow around a resolved top; cf. Silliman &
Scriven (1980) and Kistler & Scriven (1994).

5. Conclusions and further perspectives

As an unexpected extension of the interactive flow structure around flow detachment at
the free plate edge, we report neutral capillary Rayleigh modes on the upper free surface
solely and immediately upstream of the edge. Demonstrating this confidently calls for
solving a signalling problem where typically a compact forcing dividing the flow into an
upstream and a downstream part. Here this is provided by a delta functional describing the
transition of the vertical flow component over the geometric discontinuity formed by the
trailing edge but tied in with an additional non-compact excitation by the displacement of
the HRW, necessary to provoke the non-trivial Rayleigh state.

The small-scale/small-amplitude ripples differ markedly in their origin from those
already predicted by Bowles & Smith (1992) upstream of a wall-mounted obstacle over the
interactive length scale. Accordingly, they are separated by a streamwise extent of O(ε)
from those of much larger wavelength found in the solutions of the interaction problem
and set off by that wake in the downstream direction on both free surfaces in phase for
0 < T < 1/2 (Scheichl et al. 2019). On the other hand, since these rather long waves on the
upper free surface are observed even upstream of the trailing edge for T > 1 (Scheichl et al.
2018), they collapse there with the short Rayleigh modes when T ∼ 1, as the long-wave
limit of the latter indicates (figure 6). This heralds how the introduction of a reduced
streamwise length scale paves the way for a Euler stage to regularise the breakdown of
the viscous–inviscid interaction in a more general setting when the measure T − 1 of
the typical counteracting dispersive effects, namely capillary vs convective streamline
curvature, of classical Korteweg-de-Vries-type changes sign. Although already identified
in related studies (Gajjar 1987; Bowles & Smith 1992; Kluwick et al. 2010), this has
not been investigated in due detail so far. Having in mind the anomalous dispersion for
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classical linear capillary waves, we find it appropriate to speak of ‘choking’ when both
the wavelength and the amplitude of the capillary ripples, controlled by the dominant
eigensolution ψ ′

0( y) of the Rayleigh operator and triggered by the displacement of the
HRW, diverge for T → 1−. This consideration highlights the identical nature of the
threshold T = 1 in this long-wave limit as for the interactive flow. For the current state
of our research on the interactive stationary waves, we refer to Scheichl et al. (2019) and
Appendix B.

Neither the onset of the interactive, long waves above the plate for T → 1+ nor the
formulation of additional conditions imposed at the plate edge to account correctly for
the upstream influence that render them unique have yet been clarified satisfactorily (cf.
Scheichl et al. 2018). This and other exciting related phenomena attributed to the solution
of the interaction problem downstream of the edge, such as its sound regularisation
when T − 1/2 changes sign and attracting attention through (2.14d–f ) and (2.17), are
topics of our current research. A stability analysis of the detached interactive flow, where
unsteadiness of the streamwise momentum balance becomes typically explicit in the lower
deck, should clarify the analogy of the capillary waves with the classical linear Squire
modes (Squire 1953).

As a major conclusion of our analysis, the layer undergoes its break-away from the
trailing edge at its underside when this is geometrically resolved in a least degenerate but
most simple manner as a (cut-back) wedge having a rounded nose. As a rule of thumb, the
higher the wettability, the more the fluid ‘sticks’ on the underside and the more the point
of three-phase contact or detachment is remote from the plane wall on top. In the authors’
minds, the present analysis rationalises for the first time how a high-Reynolds-number
flow negotiates the formation of free streamline with due rigour. As the vital idea, any
physically viable flow always ‘feels’ a small reference length (the nose radius �) that
resolves the abstraction of geometrical perfection (the sharp trailing edge). This then
defines the smallest scales at play and, hence, controls the thereby arising Stokes limits
and local dewetting or film rupture. As an interesting aspect, the convective influence
and, thus, the flow profile stretching towards the upper free surface is only felt through
a single coefficient of the dominant eigensolution of the Stokes operator. Pinpointing the
flow on those smallest, geometrically induced length scales provides a self-consistent and
qualitatively reasonable explanation of the teapot effect observed in the detachment of a
high-momentum liquid layer. The underlying continuum hypothesis is admissible as long
as the smallest scales are so large that the liquid/gaseous interface can be taken as infinitely
thin. We hope that this appealing and promising approach stimulates future research in this
direction.

The Stokes problems governing the steady, capillarity-dominated free-surface flow
on the smallest scales constitute the central building block for completing the
rigorous examination of the teapot effect. This appears as an essentially hydrodynamic
phenomenon, but the adjustment of the flow to the three-phase equilibrium defining the
wetting properties in terms of the apparent contact angle represents the most salient
ingredient. More will be able to be said and further progress sparked once the inner Stokes
problem is established and the outstanding solutions of these core problems are available.

Last although not least, we feel an urgent need for careful and systematic laboratory
experiments, with the ultimate goal to corroborate the theoretical findings on all scales.
Here the values in tables 1 and 2 in Appendix A might be helpful.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.612.
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Appendix A. Orders of magnitudes and their physical relevance

Even though left unspecified here, a horizontal nozzle or the impingement of a vertical
jet represent the most likely methods of generating a flow configuration of engineering
concern and of the type considered here. The work then is certainly relevant for a variety
of physical scenarios. However, one might question the validity of the order-of-magnitude
requirements made in (2.2a) in a conceivable situation of industrial importance or even
of observations in daily life – such as the freely falling jet generated by wielding a
teapot. Such settings are characterised by feasible geometrical and flow conditions and an
aqueous, viscous fluid under the action of gravity and surface tension. Indeed, the chosen
largeness of the Froude number at a moderate Weber number deserves some comment.
The following arguments yield the values, presented in table 2, of the non-dimensional
groups in (2.2) and (2.2b), relevant to a film of pure water under standard conditions and
based on the reference values of the input quantities as well as H̃ and Ũ, following from
(2.1a,b), presented in table 1.

With τ̃ � 100 mN m−1 throughout (water as a polar liquid, and of potential interest, has
a comparatively high surface tension), an adequately small Bond number g/τ = g̃ρ̃H̃2/τ̃
(allowing the neglect of gravity over surface tension) is, however, definitely not smaller
than 105 m−2 × H̃2. This requires H̃ ≈ 1 mm; for much smaller film heights, effects
originating in technically unavoidable geometric imperfections of the plate surface might
no longer be negligible (but worthy of study). Likewise, g � 1 (allowing the neglect
of gravity over inertia) is achieved if Ũ � 0.1 m s−1. Given their rather narrow range
of physically acceptable values and prediction of an extremely thin and fast film, these
estimates have admittedly to be adopted with some caution. As an essential finding, the
Reynolds number ε−1 proves to be indeed large but not to the extent that laminar–turbulent
transition becomes an issue. However, the accompanying rather large value of τ alleviates
these doubts as it points to a numerically rather high sensitivity of the key parameters to
slight variations of the input data. Also, the requirement ε = O(g7/4) for, e.g., g = 0.1
implies a reference or effective plate length L̃ of about 5 to 6 cm, which seems sensible,
and ε ≈ 0.018. We may check the reliability of the last estimate on the basis of the second
relationship defining ε in (2.2a): the above estimate for Ũ predicts values for ε barely
smaller than 0.01. Given the potential variety of the input data, we achieve a satisfactorily
good agreement. Our prerequisites, summarised in (2.2a), can then be considered as
self-consistent.

Most critically, the validity and sensitiveness of the scalings originate in a sufficiently
small typical film height H̃ rather than in the values of the remaining physical parameters.
Nonetheless, the subsequent asymptotic analysis of (2.3) in the distinguished limits
provided by (2.2a) remains valuable even if the underlying order-of-magnitude estimates
should be interpreted with a greater flexibility. In particular, the actual value of τ is taken
as definitely smaller than its upper bound stated in table 2.
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ρ̃ (kg m−3) ν̃ (mm2 s−1) τ̃ (mN m−1) g̃ (m s−2) Q̃ (l min−1) L̃ (mm) H̃ (mm) Ũ (m s−1)

998.20 1.00 72.75 9.81 �6 ≈50–60 ≈1 >0.1

Table 1. Typical input data (water at standard conditions) and output H̃, Ũ.

ε g τ Ca Ca/ε

0.01–0.02 0.1 �7 �0.00137 0.0686–0.137

Table 2. Typical key parameters resulting from table 1.

Appendix B. Small-amplitude waves

For the following instructive analogy to (unconditionally stable) linear Squire modes,
perturbing weakly a planar, uniform jet having constant speed in the x-direction and two
free surfaces y = h− = 0 and y = h+ = h0, we refer the reader to Squire (1953), Drazin
& Reid (2004, p. 30) and Villermaux (2020, § A.4).

Let k denote their wavenumber, non-dimensional with H̃, and c the ratio of their phase
speed relative to the unperturbed jet speed. Using the definition of J in (2.5a,b) yields the
classical anomalous dispersion relation in the form

(c − 1)2 = Tk ×
{

coth(k/2) (skew-symmetric modes),
tanh(k/2) (symmetric modes).

(B 1)

Here the symmetry refers unambiguously to the u-perturbation with respect to the
centreline y = h0/2. Hence, the antisymmetric modes give the picture of a sinusoidally
meandering or flapping jet as h+ ∼ h0 + h− and h− are in phase. On the contrary,
they are in antiphase as h+ ∼ h0 − h− for the symmetric modes, producing a ‘varicose’
or symmetrically looking jet. These latter modes appear visually as the classical
axisymmetric Rayleigh–Plateau modes, thus forming their counterpart on a circular jet
(see Drazin & Reid (2004, p. 22 ff.) and Villermaux (2020, § A.5)). There exists a single
stationary, choked mode (c = 0) for each value of T in the symmetric case but only for
T < 1/2 in the antisymmetric one, where indeed T → 1/2− in the long-wave limit k → 0,
resembling the interactive limit. Moreover, our first numerical solutions of (2.14) predict
a sinusoidal modulation only of the detached jet if 0 < T < 1/2 and of the varicose kind
in the yet poorly understood case T > 1, where the onset of the waviness of the upper free
surface approaches the edge from upstream as T tends to 1 from above (see SBP18).

These results allow for the following interpretation. The undulations for 0 < T < 1/2
represent a nonlinear, viscosity-affected variation of their classical counterpart, also
strongly impacted by the background vorticity or the reduced fluid velocity at the lower
interface. Like the classical ones, these vanish only for vanishing capillarity. For T
sufficiently exceeding 1, the predominance of capillarity over both vorticity and the
symmetry-breaking displacement effect implements a nonlinear modification of steady
varicose modes. This analogy becomes evident from inspection of (2.11), (2.17) and
figure 4: for sufficiently large |A|, we have H+ ∼ (D − 1)H−; thus, sgn(H+) = sgn(H−)
for T < 1/2 and sgn(H+) = −sgn(H−) for T > 1/2, where the symmetry of the
varicose waves downstream of the plate allows also for their emergence above the
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plate; their failure occurring for T → 1+ is again associated with an unbounded LD
displacement −A.
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