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A statistically stationary homogeneous isotropic turbulent flow modified by 64
small fixed non-Stokesian spherical particles is considered. The particle diameter is
approximately twice the Kolmogorov length scale, while the particle volume fraction
is 0.001. The Taylor Reynolds number of the corresponding unladen flow is 32.
The particle-laden flow has been obtained by a direct numerical simulation based
on a discretization of the incompressible Navier–Stokes equations on 64 spherical
grids overset on a Cartesian grid. The global (space- and time-averaged) turbulence
kinetic energy is attenuated by approximately 9 %, which is less than expected. The
turbulence dissipation rate on the surfaces of the particles is enhanced by two orders
of magnitude. More than 5 % of the total dissipation occurs in only 0.1 % of the
flow domain. The budget of the turbulence kinetic energy has been computed, as
a function of the distance to the nearest particle centre. The budget illustrates how
energy relatively far away from particles is transported towards the surfaces of the
particles, where it is dissipated by the (locally enhanced) turbulence dissipation rate.
The energy flux towards the particles is dominated by turbulent transport relatively
far away from particles, by viscous diffusion very close to the particles, and by
pressure diffusion in a significant region in between. The skewness and flatness
factors of the pressure, velocity and velocity gradient have also been computed. The
global flatness factor of the longitudinal velocity gradient, which characterizes the
intermittency of small scales, is enhanced by a factor of six. In addition, several
point-particle simulations based on the Schiller–Naumann drag correlation have been
performed. A posteriori tests of the point-particle simulations, comparisons in which
the particle-resolved results are regarded as the standard, show that, in this case, the
point-particle model captures both the turbulence attenuation and the fraction of the
turbulence dissipation rate due to particles reasonably well, provided the (arbitrary)
size of the fluid volume over which each particle force is distributed is suitably
chosen.
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1. Introduction
It is intriguing that a low volume fraction of small particles with a high Stokes

number is able to dampen turbulence significantly (Tsuji, Morikawa & Shiomi
1984; Gore & Crowe 1989; Hetseroni 1989). The phenomenon has been observed
experimentally in pipe flows (Tsuji et al. 1984), channel flows (Kulick, Fessler &
Eaton 1994; Kussin & Sommerfeld 2002) and stationary homogeneous turbulence
(Hwang & Eaton 2006; Tanaka & Eaton 2010). These works clearly show that the
turbulence kinetic energy of the carrier phase of a turbulent flow laden with small
particles is lower than in the corresponding unladen flow. Compared to the amount
of experimental data on macroscopic turbulence modification, there are only a few
experimental results on the modification of the small-scale turbulence. High-resolution
experiments of turbulent air flow laden with small solid particles were performed by
Tanaka & Eaton (2010), who refined the experiments performed by Hwang & Eaton
(2006), and observed that the turbulence dissipation rate was augmented in a roughly
spherical region around the particles. The experiments reported in these two papers
were performed for stationary homogeneous isotropic turbulence, forced by synthetic
jet actuators (woofers) driven with sine waves with random frequencies.

A popular method to simulate particle-laden flows is the point-particle technique.
In this approach, the scales in the direct vicinity of the particles are not resolved,
but a simplified expression, such as Stokes’ law or the Schiller–Naumann correlation,
models the forces exerted on the particles. The point-particle method or a related
method has also been applied in simulations of particle-laden isotropic turbulence (see
e.g. Squires & Eaton 1990; Elghobashi & Truesdell 1993; Ferrante & Elghobashi
2003). These simulations confirmed that small particles with large Stokes number
tend to attenuate the turbulence. The attenuation was attributed to the particle-induced
dissipation term, a sink term that appears explicitly in the equation of the turbulence
kinetic energy derived from the point-particle or related formulation. In particle-laden
pipe and channel flows, the turbulence attenuation can be further enhanced by a
second effect, which is non-uniformity of the mean particle force (Vreman 2007,
2015).

In order to gain a more fundamental understanding of multiphase flows, the recently
emerged particle-resolved direct numerical simulation technique (PR-DNS) looks very
promising (Balachandar & Eaton 2010; Tryggvason, Scardovelli & Zaleski 2011;
Prosperetti 2015). Bagchi & Balachandar (2003) and Burton & Eaton (2005) used
PR-DNS to compute the force on a single fixed particle in decaying homogeneous
isotropic turbulence. In both works, a body-fitted spherical grid was used, while in
the latter work the body-fitted grid was overset on a Cartesian grid. Burton & Eaton
(2005) included results for the local turbulence dissipation rate around a particle
of dp ≈ 2η, where dp is the particle diameter and η the Kolmogorov length scale.
However, since the particle volume fraction α was negligible (approximately 10−7),
no significant modifications of the global turbulence kinetic energy (K) and global
turbulence dissipation rate (ε) were found.

More recently, PR-DNS studies of turbulent flows with multiple solid fixed and
moving spherical particles have occurred in the literature: studies of turbulent channel
flow (Uhlmann 2008; Picano, Breugem & Brandt 2015) and homogeneous isotropic
turbulence (Lucci, Ferrante & Elghobashi 2010; Mehrabadi et al. 2015). In all these
cases, the flow was not dilute (α> 0.01) and the particle diameter was relatively large
(approximately 10 wall units in the turbulent channel flows and at least 5η in the
homogeneous isotropic cases). Furthermore, in all these cases the immersed boundary
method was used, in which the no-slip boundary conditions on the surfaces of the
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42 A. W. Vreman

particles were approximated on a uniform Cartesian grid, which did not conform to
the particle bodies. This method is powerful; Picano et al. (2015) used it to simulate
turbulence attenuation in plane channel flow with 10 000 moving neutrally buoyant
spheres. Another method in which the grid is Cartesian and does not conform to
the particle bodies is the lattice Boltzmann method, which has also been applied to
particle-laden homogeneous isotropic turbulence (ten Cate et al. 2004), for α > 0.02
and dp ≈ 8η. Both the lattice Boltzmann method and the immersed boundary method
have also been used to validate or improve drag and heat transfer correlations (Hill,
Koch & Ladd 2001; Tenneti, Garg & Subramaniam 2011; Deen et al. 2012; Tang
et al. 2014). Finally, the PHYSALIS method is mentioned, in which local analytical
representations are used for the flow in the regions between particles and adjacent
nodes of the Cartesian grid (Takagi, Oguz & Prosperetti 2003). This method has
been used to simulate the flow around nine fixed particles with dp ≈ 8η in decaying
homogeneous isotropic turbulence (Botto & Prosperetti 2012).

According to the literature, there is a strong indication that point-particle models
underpredict turbulence attenuation (Hwang & Eaton 2006; Eaton 2009; Balachandar
& Eaton 2010). Hwang & Eaton (2006) concluded that the extra dissipation caused by
particles with dp≈ η was greatly underestimated by conventional models. Furthermore,
Burton & Eaton (2005) found that the instantaneous error of the modelled particle
force varied between 15 and 30 % for dp ≈ 2η. Indeed, point-particle models are
formally not justified if the condition that the particle diameter dp � η is not
satisfied (Lucci et al. 2010). Nonetheless, point-particle methods are frequently used
to simulate particle-laden flows for dp > η. Because of the documented discrepancies
between simulated and experimentally observed turbulence attenuation, Eaton (2009)
remarked that ‘it is incumbent on the developers of these codes to prove that the
models are valid, either through fully resolved simulations, or direct comparison to
experiments’. The present paper shows such a validation, for one specific case.

The objective of the present work is to perform a study of stationary homogeneous
isotropic turbulence modified by small solid particles (dp ≈ 2η) at low volume
fraction (α ≈ 0.001), based on simulations in which all relevant scales of the flow
are well resolved. This objective prompts several research questions. (1) How are
basic quantities such as turbulence kinetic energy and the turbulence dissipation
rate modified as a function of the distance to the nearest particle centre? (2) How
much attenuation of the global (space- and time-averaged) turbulence kinetic energy
is predicted by a particle-resolved simulation, and is the degree of attenuation
comparable to what is known from experiments in the literature? (3) What does
the budget of turbulence kinetic energy as a function of the distance to the nearest
particle look like, and what does it teach us about the mechanics of turbulence
attenuation? (4) How do small particles modify the statistical properties of the
small-scale turbulence, for example, the skewness and flatness (intermittency) factors
of individual velocity derivatives? (5) Is the point-particle model based on the
Schiller–Naumann correlation able to predict the turbulence attenuation and the extra
dissipation produced by particles?

In view of the objective and related research questions, it is necessary to perform
a direct numerical simulation (DNS) that resolves the sub-Kolmogorov structures
near small particles in a dilute flow. This means that the smallest grid size needs
to be much smaller than the Kolmogorov length scale (approximately 13 times
smaller in the present case). The immersed boundary method, as described above,
is an efficient tool for particle-resolved simulation of turbulent flows with relatively
large particles at relatively high particle volume fraction. The uniform Cartesian grid
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(in combination with at least two periodic directions) brings the advantage that the
pressure Poisson equation and implicit discretizations of the viscous terms can be
solved directly using fast Fourier transforms, which are much more efficient than
iterative procedures. This advantage cannot be exploited for the present investigation
since sub-Kolmogorov scales near particles need to be resolved in a flow with a low
particle volume fraction. For such a case, the use of a uniform grid would become
a heavy burden, since it would dramatically increase the number of grid points
required. Therefore, the immersed boundary method is not chosen for the present
investigation. Instead, the overset grid approach used by Burton & Eaton (2005)
is adopted and extended to multiple particles: around each particle, a body-fitted
(spherical) staggered non-uniform mesh is used, overset on a staggered Cartesian
mesh. A finite difference technique that uses multiple overset curvilinear meshes
has also been called a composite mesh difference technique (Starius 1977), a
chimera grid-embedding technique (Benek, Buning & Steger 1985) and a composite
overlapping grid technique (Chesshire & Henshaw 1990; Henshaw 1994). With
the overset technique, not only can the number of grid points be limited, but also
its body-fitted property facilitates a straightforward computation of the turbulent
dissipation rate on the particle surfaces. A drawback is that the pressure Poisson
equation can only be solved by iterative techniques, which are computationally
much more expensive than fast direct techniques. It is remarked that, owing to the
requirement of a locally high spatial resolution, the temporal resolution needs to be
high as well or one has to resort to fully implicit methods.

To alleviate the burdens of technical complexity and computational cost to some
extent, the Taylor Reynolds number is limited to 32, the number of particles is
limited to 64, and the particles are fixed and ordered in a cubic pattern. Thus
we consider stationary homogeneous isotropic turbulence modified by an array of
stagnant spherical particles, solved by means of body-fitted PR-DNS. This flow case
lies in the gap between, on the one hand, body-fitted PR-DNS of turbulent flow
around a single fixed small particle (Bagchi & Balachandar 2003; Burton & Eaton
2005) and, on the other, immersed boundary PR-DNS of turbulent flow around many
freely moving coarser particles (Uhlmann 2008; Lucci et al. 2010; Mehrabadi et al.
2015; Picano et al. 2015). Burton & Eaton (2005) remarked that the use of fixed
particles in homogeneous turbulence could be justified as relevant for turbulence
modification by heavy moving particles or particles in microgravity. Tanaka & Eaton
(2010) concluded that the small heavy particles in their experiments of stationary
homogeneous turbulence behaved as localized dampers of the fluid motion, like grids
act in turbulence. From this perspective, it is a logical choice to perform a DNS of
the idealized flow of homogeneous spatially periodic turbulence modified by an array
of fixed spherical particles, in order to investigate in further detail how turbulence is
modified by these spherical dampers. Thus, the present purpose is not to reproduce a
practical flow as accurately as possible, but to obtain a numerically accurate solution
of the Navier–Stokes equations that describes turbulent flow around small particles,
a solution that provides fundamental understanding of the mechanics and small-scale
behaviour of turbulent flow around small heavy spherical particles at low volume
fractions.

The structure of the present paper is as follows. The governing equations and
numerical method are described in § 2 and appendix A. The simulation cases are
defined in § 3. The simulation results are shown in § 4, which has five subsections, one
for each research question formulated above. Finally, the conclusions are summarized
in § 5.
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44 A. W. Vreman

2. Particle-resolved simulation method

The numerical method used to simulate the flow around the spherical particles is
a second-order staggered overset grid method, inspired by and similar to the method
used by Burton & Eaton (2002, 2005) to simulate turbulent flow around a single
spherical particle. However, the details are not the same. An important difference is
that in the present method the pressure Poisson equations for the different domains
are assembled into one large matrix that is iteratively solved, while a block-matrix
technique was used in the references just mentioned. Another difference is that the
communication among the Poisson equations is arranged via interpolation of the
pressure instead of the pressure gradient. These two choices make the method more
convenient for multiple particles. Furthermore, we use an alternative mathematically
equivalent formulation of the viscous terms in spherical coordinates, which leads to
a different spatial discretization. The treatment of the apparent singularities in the
spherical frames of reference is also different. Finally, we use a new procedure to
accurately compute integrals over the entire flow domain for variables that are defined
on overlapping grids. Thus, in order to make the results of this paper reproducible, a
complete specification of the numerical method is required.

The coordinate systems and required relations are introduced in § 2.1. The form of
the Navier–Stokes equations used is defined in § 2.2. The overlapping grids are defined
in § 2.3. The details of the staggered second-order discretization and third-order
interpolation method are presented in appendix A. Definitions and implementations
of the statistical averaging operators are presented in § 2.4. The results of four test
cases are presented in § 2.5.

The summation convention over repeated indices is assumed, except when
mentioned otherwise and except when the index is t, r, θ or φ. Partial derivatives
are denoted using the comma notation, for example uj,i = ∂uj/∂xi, uj,t = ∂uj/∂t and
uθ,r = ∂uθ/∂r.

2.1. Coordinate systems
The Cartesian base vectors are e1, e2 and e3. The Cartesian position vector is x =
[x1, x2, x3]T, and the Cartesian velocity vector is u= [u1, u2, u3]T. We consider a rigid
spherical particle, centred at position xp. The particle velocity, denoted by up, is zero
in the simulations, but, to make the formulation more general, the particle velocity is
carried into the equations. The spherical coordinates around the particle are given by

r= |x− xp|, θ = arccos
(

x3 − xp
3

r

)
, φ = atan2(x2 − xp

2, x1 − xp
1), (2.1a−c)

where atan2(y, x) is the function that provides the argument of the complex number
with real part x and complex part y, such that −π<φ6π. Here r denotes the radial,
θ the polar and φ the azimuthal coordinate. The inverse transformation is

x= xp +
r sin θ cos φ

r sin θ sin φ
r cos θ

 . (2.2)

The standard base vectors of the spherical coordinate system are er, eθ and eφ , while
the spherical velocity components are denoted by ur, uθ and uφ .

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

22
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.228


Particle-resolved DNS of homogeneous isotropic turbulence 45

The base vector relations for an orthogonal coordinate transformation from the basis
{e1, e2, e3} to the basis {ẽ1, ẽ2, ẽ3} are given by

ẽi = Aijej, ei = Ajiẽj, (2.3a,b)

where A is an orthogonal matrix. The transformation to the spherical coordinate
system is obtained by defining ẽ1 = er, ẽ2 = eθ and ẽ3 = eφ , specified by

A= [er, eθ , eφ]T =
sin θ cos φ sin θ sin φ cos θ

cos θ cos φ cos θ sin φ −sin θ
−sin φ cos φ 0

 . (2.4)

The inverse of the coordinate transformation (2.1) becomes xj = xp
j + rA1j.

For the velocity components in the spherical coordinate system, we define the vector
ũ = [ũ1, ũ2, ũ3]T = [ur, uθ , uφ]T. Since u = uiei = up + ũiẽi, we obtain the velocity
transformations

ũj = Aji(ui − up
i ), uj = up

j + Aijũi. (2.5a,b)

The gradient of the velocity is the tensor

∇u= uj,ieiej =Gklẽkẽl, (2.6)

where uj,i = ∂uj/∂xi and

G=


ur,r uθ,r uφ,r

ur,θ

r
− uθ

r
uθ,θ

r
+ ur

r
uφ,θ

r
ur,φ

r sin θ
− uφ

r
uθ,φ

r sin θ
− uφ cot θ

r
uφ,φ

r sin θ
+ ur

r
+ uθ cot θ

r

 (2.7)

(Phan-Thien 2013). Equation (2.6) implies a useful expression for the spatial velocity
derivatives

uj,i =GklAkiAlj. (2.8)

2.2. Governing equations
The Navier–Stokes equations read

∇ · u= 0, (2.9)
u,t +∇ · (uu)=−∇p+ ν∇2u+ f , (2.10)

where t denotes time, p the pressure divided by the constant density ρ, ν the kinematic
viscosity and f the forcing vector, which is a function of time and space. This is the
form of the Navier–Stokes equations used in the Cartesian domain.

The form of the Navier–Stokes equations used in the spherical frame of reference
of a particle is given by

∇̃ · ũ = (r
2ur),r

r2
+ (uθ sin θ),θ

r sin θ
+ uφ,φ

r sin θ
= 0, (2.11)

ur,t + (r
2urur),r

r2
+ (uruθ sin θ),θ

r sin θ
+ (uruφ),φ

r sin θ
− u2

θ + u2
φ

r

=−p,r + ν
(
∇̃2ur + 2

ur

r2
+ 2

ur,r

r

)
− A1ju

p
j,t + A1j fj, (2.12)
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46 A. W. Vreman

uθ,t + (r
2uθur),r

r2
+ (uθuθ sin θ),θ

r sin θ
+ (uθuφ),φ

r sin θ
+ uθur − u2

φ cot θ
r

=−p,θ
r
+ ν

(
∇̃2uθ + 2

ur,θ

r2
− uθ + 2uφ,φ cos θ

r2 sin2 θ

)
− A2ju

p
j,t + A2j fj, (2.13)

uφ,t + (r
2uφur),r

r2
+ (uφuθ sin θ),θ

r sin θ
+ (uφuφ),φ

r sin θ
+ uφur + uφuθ cot θ

r

=− p,φ
r sin θ

+ ν
(
∇̃2uφ + 2ur,φ sin θ + 2uθ,φ cos θ − uφ

r2 sin2 θ

)
− A3ju

p
j,t + A3j fj. (2.14)

In these equations, the Laplace operator in spherical coordinates appears. Applied to
a scalar v, it is defined by

∇̃2v = (r
2v,r),r

r2
+ (v,θ sin θ),θ

r2 sin θ
+ v,φφ

r2 sin2 θ
. (2.15)

The divergence operator in spherical coordinates, denoted by ∇̃·, is specified in (2.11).
We denote the particle radius by r0= dp/2, the particle surface by Sp and the outward
normal vector by n. The particle force divided by the fluid density is defined by

Fp
j =
∫

Sp

n · (−pej + νuj,iei) dS. (2.16)

After substituting n = er = ẽ1 = A1mem, equation (2.8), em · ei = δmi and A1iAki = δ1k
into (2.16), where δ is the Kronecker delta, we find

Fp
j =

d2
p

4

∫ 2π

0

∫ π

0
(−pA1j + νG1iAij) sin θ dθ dφ

= d2
p

4

∫ 2π

0

∫ π

0
(−pA1j + ν(ur,rA1j + uθ,rA2j + uφ,rA3j)) sin θ dθ dφ. (2.17)

The boundary conditions on the surfaces of the particles follow from impermeability
and no slip. If each spherical coordinate system moves and rotates with the
same translative and angular velocities as the corresponding particle, the boundary
conditions are that ur, uθ and uφ are zero on particle surfaces. Then (2.11) implies
ur,r= 0 on particle surfaces. For moving particles, the system is closed by an ordinary
differential equation for the particle velocity vector (based on a force balance which
contains Fp) and an ordinary differential equation for the particle angular velocity
vector (based on a torque balance). In the present paper, we will consider stagnant
non-rotating particles only. Thus we define up= 0, and we define ur = uθ = uφ = 0 on
particle surfaces, while ur,r in (2.17) is replaced by zero.

2.3. Overlapping grids
The entire flow domain is denoted by Ω . It excludes the regions inside the particles.
The flow domain is a cube with length L and spherical holes of diameter dp = 2r0.
Periodic boundary conditions are applied in each direction.

Staggered grids are used to discretize the equations on the different meshes. Thus
the pressure is defined at cell centres, and the velocity components are defined at
cell faces (faces of p-cells). The Cartesian grid is uniform on the cubic domain of
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FIGURE 1. (Colour online) Illustration of the concentric spheres, r= ra, r= re (defined in
§ 2.4) and r= rb, drawn on the overlapping grids used to mesh the region around one of
the 64 particles in simulation L128 introduced in § 3. Part of the plane x3 = 4 is shown.

size L3
1 and contains N3

1 cubic cells of size h1. However, not each cell appears in
the equations; the Cartesian grid contains spherical holes centred at particle locations.
Indicator functions are used to cut out each cell whose centre lies within a distance
ra from a particle. The cells that remain are called the interior Cartesian cells. The
faces shared by these cells and the cells cut out of the grid are called the Cartesian
boundary faces. The non-interior cells with one or more Cartesian boundary faces are
called virtual Cartesian cells. For virtual Cartesian cells, the pressure at the centre
and the velocity components at the faces (including the Cartesian boundary faces) are
obtained by interpolation from the corresponding spherical grid.

Around each particle, a spherical domain is defined, meshed by a grid of Nr×Nθ ×
Nφ interior spherical cells. The boundaries in the radial direction are located at the
radii r0= dp/2 and rb. The faces at radius rb are called spherical boundary faces. For
each particle, there is a layer of virtual spherical cells, exterior cells with one face
located at radius rb. The pressure at the centre and the velocity components at the
faces of each spherical virtual cell (including the spherical boundary face) are obtained
by interpolation from the Cartesian grid. To limit the complexity of the discretization
method to some extent, spherical grids do not overlap each other. Each spherical grid
has its own distinct overlap with the Cartesian grid, the overlap region being the
region between ra and rb (ra = 3rb/5 in the PR-DNS and the Stokes flow test case,
while ra = (r0 + rb)/2 in the other test cases in § 2.5). The grid sizes are 1r and
1θ =1φ =π/Nθ (Nφ = 2Nθ ). The grid is stretched in the radial direction. We define
rs

j = r0 exp( jπ/Nθ) for the locations of ur ( j = 0, 1, . . . , Nr) and rc
j = r0 exp(( j −

1/2)1θ) for the locations of p, uθ and uφ ( j = 0, 1, . . . , Nr + 1). The superscripts
s and c refer to staggered and cell-centre locations, respectively. The stretching is
such that at each radial location the cell size in the wall-normal direction and the
maximum cell sizes in the tangential direction are approximately the same: 1r ≈
r1θ = r1φ. See figure 1 for an illustration of the overlapping grids. The discretization
schemes on these grids and the interpolations from one grid to another are specified
in appendix A.
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2.4. Statistical operators
For a given quantity q we introduce two means: (1) the global mean q, obtained by
averaging over time and the entire flow domain Ω , and (2) the radial mean 〈q〉 =
〈q〉(r), which is a function of r and obtained by averaging over time and all points
with distance r to the nearest particle centre. The corresponding standard deviations or
root-mean-square values are defined by RMS(q)= q2 − q2 and RMS(q)= 〈q2〉 − 〈q〉2.
Owing to the nature of isotropic turbulence, different variables can be statistically
equivalent, for example 〈u2

1〉 = 〈u2
2〉 = 〈u2

3〉. This feature has been exploited in the
computation of the statistics by averaging over components with equivalent statistical
behaviour. Thus, by definition, statistically equivalent quantities are the same, also
numerically.

Radial mean quantities were computed only for r< rb≈ 7r0, except when indicated
otherwise. The evaluation of the global mean causes complications, due to the integral
over Ω involved. For the approximation of the latter integral, radii r−e , re and r+e are
defined, such that ra < r−e < re < r+e < rb. More specifically re = rs

Nr−2 (rs
i is defined in

§ 2.3), r−e = re− h1

√
3 and r+e = re+ h1

√
3 (h1 is the Cartesian grid size). The domain

Ω is split into three disjoint parts: Ω1, Ω2 and Ω3. The set Ω1 contains all points that
have a distance larger than r0 but smaller than r−e from the centre of a particle. The set
Ω3 is composed of all Cartesian cells whose centre has a distance larger than r+e from
each particle. The set Ω2 is defined by Ω\(Ω1∪Ω3). The integral of a quantity q over
Ω1 is obtained by numerical integration in spherical coordinates, using the spherical
grid cells. The integral of a quantity q over Ω3 is obtained by numerical integration
in Cartesian coordinates, using the Cartesian grid cells. To integrate q over Ω2, Ω2
is meshed by small cubic cells of size h1/5. All centres of the small cubic cells are
inside Ω2. The small cubic cells do not overlap Ω3. The discrete values of q in Ω2
are based on the solution in the spherical domains. Owing to the approximation of Ω2
by cubic cells, the integral over Ω2 is only first-order accurate, but, since the size of
these cells is five times smaller than h1, the error in the approximation is sufficiently
small.

2.5. Results of test cases
In this subsection, we present the results of four validation studies for steady flows
past one or multiple fixed spheres. In each case dp= 1 and ν= 1. The forcing function
was zero and the particle Reynolds number Rep was based on the particle diameter
and the velocity at infinity (U∞), except in the fourth validation. The Cartesian grid
was uniform and cubic, except in the third validation. The polar axis of each spherical
grid was parallel to the x3-direction, while the radial stretching function was the one
described in § 2.3. The ratio dp/h represents the number of grid points by which the
diameter was resolved. In the overset simulations, h=πdp/Nφ (which is the minimum
grid size in the plane θ = π/2), such that dp/h= Nφ/π. In each grid refinement, the
resolution was doubled in each direction. Each test was run until the steady state was
achieved.

First, the solver was validated against the analytical solution for steady Stokes flow
past a single spherical particle in an infinite domain (|U∞| = 1). Numerically, the
particle was placed at the centre of a cubic domain with length 16. Thus one stretched
spherical grid was overset on a uniform Cartesian grid. The analytical velocity vector
was prescribed on the faces of the cube, and the convective terms were multiplied
by zero. Tests were performed for U∞ pointing in the x1-direction, the x2-direction
and the x3-direction, respectively. Since the differences between the results of the first
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Direction U∞ dp/h max|u− uexact| Fp,pres/3π Fp,visc/3π

x1 15 0.0139 0.3289 0.6749
x1 31 0.0044 0.3326 0.6697
x1 61 0.0012 0.3332 0.6675
x3 15 0.0182 0.3319 0.6776
x3 31 0.0066 0.3337 0.6711
x3 61 0.0017 0.3334 0.6678

TABLE 1. Simulation results for steady Stokes flow past a sphere in an infinite domain.

two cases were negligible, only the first and third case are shown in table 1. Three
resolutions were used. The coarsest resolution was given by Nr= 15, Nθ = 24, Nφ = 48
and N1= 32 (dp/h= 15). Table 1 shows the maximum norm of the difference between
the numerical and analytical velocity vectors. It also shows the drag force Fp on
the particle, decomposed into a pressure part Fp,pres and a viscous part Fp,visc. The
deviations from the analytical values are small (less than 2 % for the coarse grid) and
converge to zero upon grid refinement.

As a second validation, the drag coefficient CD of a non-Stokesian particle in
an infinite domain was computed for three resolutions and compared to the value
computed by Bagchi & Balachandar (2002), who used a spectral method. In this
case Rep = 100, which is significantly higher than the maximum particle Reynolds
number occurring in the turbulent flow considered in this paper. The velocity at
infinity was pointing in the x3-direction and prescribed as an inflow condition at one
face of the cube. On the other five faces, outflow conditions were prescribed (the
pressure and the first-order velocity derivatives were set to zero). The sphere was
placed in the centre of a cubic domain with length 30. The coarsest resolution was
given by Nr = 21, Nθ = 24, Nφ = 48 and N1 = 30 (dp/h = 15). For this resolution
CD= 1.16 was obtained. After one grid refinement (dp/h= 31) CD= 1.096 was found,
while after two grid refinements (dp/h= 61) CD= 1.091 was obtained. The latter two
values of the drag coefficient are within 1 % of 1.09, the value reported by Bagchi
& Balachandar (2002). In immersed boundary simulations of this flow in a smaller
computational domain, CD = 1.178 (Tang et al. 2014) and CD = 1.175 (Baltussen
2015) were found, both for dp/h= 20.

As a third validation, the drag CD and lift CL coefficients of a particle near a moving
flat wall were computed and compared to the values reported by Zeng, Balachandar
& Fischer (2005), who used a spectral element method. In this case Rep = 10, and
the wall, located at x3= 0, was moving with constant velocity in the x1-direction. The
computational domain size was 24 × 14 × 8 and the centre of the particle was put
at position x1 = 8, x2 = 7 and x3 = 1. The flow was simulated for two resolutions;
the coarsest one was given by Nr = 4, Nθ = 24, Nφ = 48, N1 = 88, N2 = 68 and
N3= 45 (dp/h= 15). In this case the Cartesian grid was also stretched. For the coarse
resolution, CD = 4.64 and CL = 0.342; while after one grid refinement (dp/h = 31)
CD= 4.70 and CL= 0.348 were obtained. The latter two values are within 1 % of the
values reported by Zeng et al. (2005), CD = 4.72 and CL = 0.351.

As a fourth validation, the pressure and viscous parts of the drag force on a sphere
in the flow past a structured array of spheres were computed and compared to results
obtained by Tenneti et al. (2011). These authors used an immersed boundary method
(second-order accurate direct forcing embedded into a pseudo-spectral computation;
the same method was recently used by Mehrabadi et al. (2015)). It is remarked
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FIGURE 2. (Colour online) Comparison between overset method (circles) and an immersed
boundary method (triangles). Convergence characteristics of the pressure part (open
symbols) and viscous part (filled symbols) of the drag force for a face-centred cubic
arrangement of particles in a periodic domain (Rep = 40 and α= 0.2). The results of the
immersed boundary method were taken from figure 4(a) in Tenneti et al. (2011), where
they were also denoted by triangles.

that many variants of immersed boundary methods exist and have been validated
for flows past multiple particles – see also, for example, Uhlmann (2005), Mark
& van Wachem (2008) and Breugem (2012). In the test presented by Tenneti et al.
(2011), a face-centred cubic (FCC) array of particles was used with a particle volume
fraction α = 0.2. To simulate this case with the present method, four particles were
placed in the FCC pattern in a cubic periodic domain of length (10π/3)1/3. The flow
was driven by a time-dependent uniform forcing in the x1-direction, chosen such
that the flow converged to a steady state in which U1, the volume average of the u1

velocity, was 40, such that Rep based on U1 was also 40. Simulations were performed
for three resolutions; the coarsest one was given by Nr = 3, Nθ = 24, Nφ = 48 and
N1= 24 (dp/h= 15). The pressure and viscous parts of the drag force, normalized by
3πνdpU1(1 − α), are shown in figure 2. The pressure part of the normalized force
on the three consecutive grids was 3.363, 3.541 and 3.573, respectively. The viscous
part of the normalized force on the three consecutive grids was 5.715, 5.817 and
5.846, respectively. Apparently the errors in the two components of the drag force
are approximately 1 % if the present numerical method is used for dp/h = 31 and
Rep = 40. According to figure 2, the slopes of the curves for the overset method are
nearly horizontal for dp/h > 30, while this is clearly not the case for the immersed
boundary method. According to this and the second validation, the overset method is
apparently at least as accurate as some immersed boundary methods.

3. Definition of the direct numerical simulations

We consider two flow cases: an unladen statistically stationary homogeneous
isotropic turbulent flow, and the same flow laden with fine solid fixed particles. In
the following three subsections, the stochastic forcing of the stationary turbulence is
defined, the simulation cases are specified, and the accuracy of the simulations is
discussed.
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3.1. Stochastic forcing
The forcing in the experiments by Hwang & Eaton (2006) and Tanaka & Eaton (2010)
was caused by jet actuators driven by sine waves at random frequencies. In view
of these experiments, it is a logical step to simulate (particle-laden) homogeneous
isotropic turbulence forced by a number of Fourier modes at random frequencies.
The stochastic forcing is applied to the large spatial (and temporal) scales only, such
that the energy is not injected into scales that correspond to strong velocity gradients
(scales where most of the dissipation due to turbulence and particles occurs). Thus the
small spatial and temporal scales in the flow are generated by the turbulence cascade
process and the particles, and not by the stochastic forcing, at least not directly.
Nonetheless, the statistical results of forced homogeneous isotropic turbulence for
given Reλ are expected to depend on the specific forcing, at least to some extent.
However, the statistical state of decaying homogeneous isotropic turbulence is also
not unique; the power-law exponent depends on the initial condition in a simulation
or the upstream condition in an experiment (Djenidi & Antonia 2015).

The procedure used for the stochastic forcing is similar to the one used by Yeung
& Pope (1989) in their simulations of homogeneous isotropic turbulence. More
specifically, the forcing function f is defined by

f (x, t)=
∫ t

0

(
1
tfil

e−(t−t′)/tfil

18∑
j=1

[
gj(t
′)− (gj(t

′) · kj)kj

|kj|2
]

e
√−1 kj·x

)
dt′ (3.1)

(the summation convention is not used). For each j, the symbol kj refers to one of
the 18 three-dimensional wavevectors that satisfy 0 < |k| 6 √2(2π/L1) and fit into
the periodic domain. Forcing based on a larger number of modes requires a larger
computational box to achieve the same Reλ for given η. It was not feasible to simulate
the particle-resolved case in a larger domain without making compromises on the
numerical and statistical accuracy of the results. In some of the simulations reported
by Yeung & Pope (1989), forcing was applied to the same 18 modes.

The expression within square brackets in (3.1) represents the projection on the
space of divergence-free periodic functions, such that ∇ · f = 0. For each j, each
one of the three components of gj(t), say X(t), is an independent stochastic process
with the same properties. More specifically, X(t) is an Ornstein–Uhlenbeck process,
with parameters chosen such that the mean of X(t) is zero, the standard deviation
of X(t) is σ , and the correlation between X(t) and X(t + t′) is exp(−t′/tOU). The
Ornstein–Uhlenbeck process was first applied to the forcing of homogeneous isotropic
turbulence by Eswaran & Pope (1988), and since then by many others. It is the only
stochastic process that is stationary, continuous, Gaussian and Markovian. However,
the Ornstein–Uhlenbeck process is not differentiable and may therefore introduce
unphysical effects at small time scales. Yeung & Pope (1989) mention that for this
reason they replaced the Ornstein–Uhlenbeck by an integrated Ornstein–Uhlenbeck
process to obtain a continuously differentiable X(t). The exponential filter applied
in (3.1) has the same effect: it also makes f continuously differentiable in time. It
can be proven that, despite the filtering, each component of f (x, t) is a stationary
Gaussian process for each x. The Markov property means that, at time t, future states
(at times larger than t) depend only on the present state (at time t) and not on the
past states (at times smaller than t). The consequence of filtering is that f is formally
not Markovian; however, it can be considered as approximately Markovian for time
scales larger than tfil. The simulations were performed for σ = 0.60, tOU = 2 and
tfil = 0.50.
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Case α N1 Nr Nθ Nφ 1t

U128 0 128 — — — 0.0001
L128 0.001 128 30 48 96 0.0001
U64 0 64 — — — 0.0004
L64 0.001 64 15 24 48 0.0004

TABLE 2. Unladen and laden DNS. Particle volume fraction α, grid parameters (N1, Nr,
Nθ and Nφ) and time step 1t.

3.2. Direct numerical simulation cases
The set-up of four DNS cases is described: two simulations of the unladen flow (U128
and U64), and two particle-resolved simulations of the laden flow (L128 and L64).
Here U and L denote unladen and laden. The number 128 or 64 refers to N1. The
main cases are the fine grid simulations (U128 and L128). The two coarser cases (U64
and L64) have been included to show the effect of the numerics when the grid is
coarsened.

The fluid viscosity and the length of the periodic cubic flow domain are ν = 1 and
L1 = 32 in each case, while the particle diameter and volume fraction in the laden
simulations are dp = 2r0 = 1 and α = 0.001. The outer boundaries of the spherical
domains are located at rb ≈ 7.124r0. The resolution and time step of each case
are listed in table 2. Since the turbulence enters the system through the stochastic
forcing term f , the initial condition of simulation U128 is equal to zero. All other
simulations were started at t = 18 from the velocity field of U128 at the same time.
The time interval for statistical averaging is defined by [t1, t2], where t1 = 20 and
t2 = 300, unless mentioned otherwise. The Taylor Reynolds number of the unladen
flow is approximately 32 and the Kolmogorov length scale η is approximately 0.46.
The integral length scale based on the three-dimensional energy spectrum (see e.g.
Jimenez et al. (1993) for a definition) is approximately 9. The eddy turnover time,
defined by the ratio of the integral length scale and the square root of two-thirds of
the turbulence kinetic energy, is approximately 1.4, such that the statistical averaging
time, t2 − t1, is approximately 200 eddy turnover times.

The laden flow contains Np = 64 fixed particles, arranged in a simple cubic array.
Denoting one of the corners of the cubic domain by the coordinates (0, 0, 0), the
centres of the particles are located at (4 + 8i, 4 + 8j, 4 + 8k), where i, j and k are
elements of {0, 1, 2, 3}. The particles were injected into the velocity field of U128
at t = 18. Since the number of time steps was large in each case and roughly 100
iterations per time step were needed to solve the pressure Poisson equation within
the prescribed tolerance, the simulations were computationally expensive. For example,
simulation L128 (3 million time steps, 11 million grid points) took around 200 days
(wall-clock time) on a single modern computer node with 20 threads (the code was
parallelized with OpenMP). Thus approximately 105 CPU hours in total were required
for this run. These numbers do not imply that the overset method is less efficient than
immersed boundary methods, which are typically used on uniform grids to allow the
pressure Poisson equation to be solved by a fast direct method. The number of grid
points of a uniform grid with the same resolution near particles (dp/h= 31) would be
approximately 109, approximately 90 times more than in case L128. Thus the local
grid refinement facilitated by the overset method can clearly be an advantage.
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FIGURE 3. (Colour online) Demonstration of the effect of resolution on the energy
spectra. (a) The three-dimensional energy spectrum as a function of k (the length of the
three-dimensional wavevector) is shown for U128 (solid line) and U64 (symbols). (b) The
energy spectrum as a function of the azimuthal wavenumber (kφ) at r = rb and θ = π/2
is shown for L128 (solid line) and L64 (symbols).

3.3. Accuracy of the direct numerical simulations
In case U128, the grid size h1 = L1/N1 = 0.25 and the Kolmogorov length scale
η = 0.46 are such that kmax = π/h1 = 5.8/η, where kmax = π/h1 is the maximum
wavenumber (the corresponding wave is exp(ikmaxx1)). For spectral methods, kmax=2/η
is commonly regarded to provide sufficient resolution to capture the velocity gradient
(and thus the turbulence dissipation rate) in isotropic turbulence (Yeung & Pope
1989; Jimenez et al. 1993; Ishihara et al. 2007). Although spectral simulations
using kmax = 2/η < π/η do not resolve η, they do resolve the small scales that
significantly contribute to the dissipation of the turbulence (Yeung & Pope 1989;
Jimenez et al. 1993; Ishihara et al. 2007). This indicates that the Kolmogorov scale
η tends to be a low estimate of the small-scale dynamics. It is remarked that the
accuracy of any simulation depends on which variable is looked at. If the fall
of a spectrum is exponential, then it is theoretically possible to find a high-order
quantity (derivative) which is not accurately represented in any simulation that
includes a finite number of wavenumbers (Vreman & Kuerten 2014b). Of course,
a second-order finite difference method will require a higher kmax than a spectral
method, but this is not necessarily an order of magnitude higher. For a staggered
method second-order accurate in wall-normal and fourth-order accurate in the other
directions, the small-scale turbulence of a turbulent channel flow was simulated with
similar accuracy as in a fully spectral simulation, while kmax was only 1.33 times
higher than in the spectral case (Vreman & Kuerten 2014a). Thus it is reasonable
to assume that if kmax is 2.9 times higher (which is the case in U128 and L128),
the standard second-order staggered method is sufficiently accurate to resolve the
turbulence. The three-dimensional energy spectra shown in figure 3(a) confirm
this. The decay of the spectra is large and the two spectra nearly coincide. This
demonstrates that virtually all eddies are captured and that the flow is well resolved,
especially in simulation U128, which shows a spectral fall-off of approximately 15
orders of magnitude.

It is not straightforward to compute energy spectra for the laden flow, except in
the periodic φ-direction. For both L128 and L64, φ spectra are shown in figure 3b).
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These spectra represent the energy in the spherical components of the velocity field
at r = rb and θ = π/2. This is a critical region in the flow since there the grid size
of the spherical grid is maximum and the spherical velocity is directly computed by
interpolation from the Cartesian grid. The interpolation errors show up as a horizontal
tail in the spectrum. Fortunately, the level of the tail is low, in particular in case L128,
in which case the horizontal part of the tail is nine orders of magnitude lower than
the peak of the spectrum.

The accuracy of L128 was further confirmed by verification of the energy balance
and a grid refinement study. With respect to the energy balance, the global balance
error in L128 is less than 0.5 %, while the radial balance error is less than 1 % at
almost all radial locations. These results will be shown in detail in the next section.
With respect to the grid refinement study, L128 is a refinement of case L64, by a
factor of two for the resolution in each spatial direction and by a factor of four for
the temporal resolution. If a particular deviation between a result of simulation L128
and L64 is dominated by discretization errors, the effect of discretization errors on the
quantity corresponding to the deviation is expected to be three times smaller than the
deviation (because the method is second-order accurate). However, if the deviation is
dominated by statistical errors, it provides just an estimate of the error in simulation
L128 (and L64). Most deviations between L128 and L64 were found to be quite small
(as demonstrated by the tables and figures in the next section). No deviation affected
the conclusions.

As indicated above, the discrepancy between simulations at different resolutions
is caused not only by discretization, but also by statistical errors. It is not easy to
determine which type of error is dominant. All results in the next section correspond
to t2 = 300 (t2 − t1 = 280), but the dependence on the end time of the averaging
t2 has been investigated for fixed t1 = 20. Thus, the statistical error of the L2-norm
of the stochastic forcing term was estimated to be approximately 2 % for t2 = 300.
Since we are interested in the effect of the particles on the turbulence, the ratios of
laden and corresponding unladen values are particularly relevant. A comparison of the
modification ratios L128/U128 for t2 = 300 and t2 = 150 showed that the differences
between the ratios for the two averaging end times were a maximum 0.01 in table 3
and a maximum 2 % in table 7. The differences in the quantities themselves were
somewhat larger, but less than 2 % for all quantities, except for the skewness and
flatness factors of the pressure, which showed a difference of approximately 5 %. It is
mentioned that, in order to reduce the effect of the uncertainty due to the statistical
errors in the forcing term on the comparison between laden and unladen simulations,
all simulations were run for the same realization of the stochastic forcing f (x, t).
Thus, for a given f and t2, any statistical error between two simulations can only be
due to the nonlinear chaotic behaviour of the turbulence (and not to the stochastic
forcing). The effect of t2 upon the turbulence kinetic energy is shown in figure 4.
It is observed that for t2 > 150 the dependence on t2 is indeed sufficiently small
to conclude that the ratio between the turbulence kinetic energies of the laden and
unladen flow reduces to approximately 0.91 with an error estimate of 0.01.

4. Results

The following five subsections are ordered according to the five research questions
posed in § 1. The first four subsections are entirely devoted to the results of the DNS
introduced in the previous section. From § 3.3, we conclude that U128 and L128
are sufficiently accurate for the present purposes. The unladen reference simulation is
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FIGURE 4. (Colour online) The effect of the end time (t2) of the time interval
for statistical averaging on the global turbulence kinetic energy, for simulations U128
(squares), L128 (circles), U64 (red dashed) and L64 (black dash-dotted).

Quantity U128 L128 L64 L128/U128 L64/U128 PP0/U128 PP2/U128 PP4/U128

K 59.03 53.71 54.29 0.91 0.92 0.96 0.93 0.92
ε 22.10 22.81 22.81 1.03 1.03 1.02 1.02 1.00
|f |21/2

4.70 4.69 4.69 1.00 1.00 1.00 1.00 1.00
|u|21/2

10.87 10.36 10.42 0.95 0.96 0.98 0.96 0.96
RMS(p) 40.70 36.08 36.10 0.89 0.89 0.94 0.92 0.89
Reλ 32.42 29.03 29.35 0.90 0.91 0.95 0.92 0.92
η 0.46 0.46 0.46 0.99 0.99 1.00 1.00 1.00
Lε 20.52 17.25 17.53 0.84 0.85 0.92 0.88 0.87
tε 2.67 2.35 2.38 0.88 0.89 0.94 0.91 0.91

TABLE 3. Global turbulence kinetic energy and dissipation rate and other basic quantities
from simulations U128, L128 and L64. The ratios in the last five columns express
the modifications of the global quantities by the particles in ratios of laden to unladen
quantities for simulations L128, L64 and the point-particle simulations discussed in § 4.5.
Ratios obtained for half the averaging time differed by maximum 0.01 from those obtained
for the full averaging time (see § 3.3).

simulation U128. The coarse unladen simulation (U64) will not be used in the present
section. Case L128 should be regarded as the primary laden simulation. The resolution
used in that simulation is the resolution recommended for the flow with particles.
However, since the reader may be interested to see the comparison between the fine
and coarse laden cases in detail, the results of both L128 and L64 have been included
in the figures and tables in §§ 4.1–4.4. In the fifth subsection, three point-particle
simulations (PP0, PP2 and PP4) will be introduced and the results will be compared
to the particle-resolved simulation L128. For the sake of conciseness, results of the
point-particle simulations have been included in the tables in the first four subsections,
but the discussion of these results is postponed to the fifth subsection.
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FIGURE 5. (Colour online) A snapshot of the turbulence around one of the particles
at x2 = 4 and t = 150, taken from simulation L128. (a) Contours of the magnitude of
the velocity vector, (u2

r + u2
θ + u2

φ)
1/2; the contour increment is 1.5. (b) Contours of the

square root of the local dissipation rate, (νGijGij)
1/2; the contour increment is 8. (c) The

projection of the velocity vector on the plane, (u1, u2), and contours of the radial velocity
ur; the contour increment is 2. (d) Contours of the pressure, p; the contour increment is 5.
The vertical lines observed at x1= 12 denote the locations of the apparent singularities of
the Navier–Stokes equations in spherical coordinates at θ = 0 and θ =π.

4.1. Contours and radial profiles of basic quantities
Before we consider the statistical radial profiles of basic variables, we show a snapshot
from simulation L128 as an illustration of the modification of an intense structure
of kinetic energy by a particle. Figure 5 zooms into the region around a particle in
the x1–x3 plane at t = 150. The velocity is roughly in the plane, i.e. the u2 velocity
is relatively small in this particular region at this particular time. The region of low
kinetic energy around the stagnant particle is elongated in the main direction of the
velocity field (figure 5a), which points upwards and somewhat to the right (figure 5c).
Thus the velocity field in figure 5 is dominated by a positive u3 velocity. For the
discussion, it is convenient to introduce a front side and a rear side in terms of the
direction of the flow surrounding the particle. The front side is the region on the
particle surface where the outward-directed surface normal vector n is approximately
opposite to the direction of the surrounding flow, while the rear side is the region
on the particle surface where n is aligned with the direction of the surrounding flow.
Since the surrounding flow velocity is an instantaneous vector, the front and rear sides
are time-dependent regions. Figure 5(d) shows that the maximum pressure occurs at
the front and the minimum pressure at the rear side, as expected. As has been reported
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by others, the local dissipation rate is enhanced in the vicinity of the particles (Burton
& Eaton 2005; Tanaka & Eaton 2010). It is remarked that the square root of the
dissipation rate is shown in figure 5, and thus the local enhancement can be very
strong. The dissipation rate on the surface is due to shear caused by the tangential
velocity components. The surface locations where this shear is large are relatively far
away from the rear and front sides, further away from the rear than from the front
side. We will refer back to figure 5 a number of times, since several features will be
recognized in the statistics of the simulation.

We denote the global turbulence kinetic energy and dissipation rate by K and ε,
and the radial profiles by K and ε. We recall that the global statistics are based on
the average over time and the entire fluid volume, while the radial statistics are based
on 〈·〉, the average over time and all locations with distance r to the nearest particle
centre (see § 2.4). Since the means of all velocity components are zero, we define

K = ujuj/2, (4.1)
ε = νuj,iuj,i, (4.2)

K =K(r)= 〈ujuj〉/2= 〈u2
r + u2

θ + u2
φ〉/2, (4.3)

ε = ε(r)= ν〈uj,iuj,i〉 = ν〈GijGij〉. (4.4)

Results for the radial profiles K(r) and ε(r) and other basic statistical quantities
are shown in figure 6. All profiles have been normalized by appropriate unladen
references values from U128, which are denoted by K0 (unladen K), ε0 (unladen ε)
and p0 (unladen RMS(p)). The numbers can be found in table 3, discussed in the
next subsection.

Figure 6(a) shows the attenuation of the turbulence kinetic energy as a function
of r, the distance to the centre of the nearest particle. For each r, K(r) is lower
than the unladen value (indicated by the dotted horizontal line). Not surprisingly,
the strongest attenuation occurs on particle surfaces, K(r0) = 0, and the weakest
attenuation relatively far away from the particles. The largest distance to the nearest
particle centre, rmax= 8

√
3r0, is not shown on the figure since the radial profiles were

computed on the spherical domains, i.e. for r0 < r < rb ≈ 7r0. However, K(rmax) was
separately computed: K(rmax) ≈ 0.93K0. It is concluded that the turbulence kinetic
energy is significantly attenuated in the entire flow domain.

The profiles of the individual contributions of the three Cartesian velocity
components to 2K, 〈u2

1〉, 〈u2
2〉 and 〈u2

3〉, are the same and equal to 2K/3. However, the
individual contributions of the three spherical velocity components are not the same
(figure 6b). It appears that the particles suppress the variance of the radial component
〈u2

r 〉 more than the variances of the other two components, 〈u2
θ 〉 = 〈u2

φ〉. Figure 6(c)
shows that the RMS of the pressure is reduced, except near particles (r < 1.8r0; at
r0 it is enhanced by approximately 40 %). Unlike the mean profiles of the velocity
components, the mean profile of the pressure is not zero. Figure 6(c) shows that the
mean pressure is relatively low on the particle surfaces.

Another basic quantity is the turbulence dissipation rate profile ε(r), which is shown
in figure 6(d). Near the surfaces of the particles, ε(r) has increased by more than a
factor 100 (note the logarithmic scaling of the vertical axis, ε(r0)= 2610= 118ε0 in
case L128 and 2650 in L64). However, further away from the particles (r > 3.6r0),
the turbulence dissipation rate is attenuated, like the turbulence kinetic energy and the
pressure fluctuation. Figure 6(d) shows that the profile ε(r)= ν〈uj,iuj,i〉 is marginally
different from the profile 2ν〈sijsij〉, where sij = (uj,i + ui,j)/2 is the rate of strain. The
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FIGURE 6. (Colour online) Radial profiles of basic quantities for cases L128 (blue,
thick solid) and L64 (red, thin dashed), normalized by reference values of the unladen
simulation U128. The thin dotted horizontal lines represent the normalized unladen values.
(a) Turbulence kinetic energy K(r). (b) Variances of the radial velocity component (circles)
and polar and azimuthal velocity components (squares), 〈u2

r 〉, 〈u2
θ 〉 and 〈u2

ψ〉, scaled by
2K0/3. (c) RMS pressure (circles) and mean pressure 〈p〉, scaled by p0 (squares; p
has been subtracted). (d) Turbulence dissipation rate ε(r). The black dash-dotted line
represents 2ν〈sijsij〉 for case L128.

second expression is precisely the viscous source term in the internal energy equation
and is therefore regarded as the thermodynamically correct definition of the energy
dissipation rate. However, since the difference between the two quantities is only a
transport term (the volume integral of the difference vanishes), it is not uncommon
to base the definition of the profile of the turbulence dissipation rate on νuj,iuj,i (see,
for example, Mansour, Kim & Moin (1988) and Vreman & Kuerten (2014b) and
references therein). It simplifies the computation and leads to a more compact form
of the turbulence kinetic energy transport equation than the definition based on 2νsijsij.
It is remarked that the two quantities are formally equal at r = r0, since 2sijsij =
(Gij + Gji)(Gij + Gji)/2 and uj,iuj,i = GijGij, while G12 and G13 are the only non-zero
components of G at r= r0.

That the local dissipation rate is enhanced near the particles is known, but that the
factor of the increase on the surfaces is this large (of the order of 100) is a surprise.
The high peak of the dissipation rate profile could not be inferred from Burton &
Eaton (2005), since only the part of the curve where the enhancement was less than
a factor of two was shown. Tanaka & Eaton (2010) reported that the dissipation
rate close to the particle surface is enhanced by a factor of three. In simulations
performed with another numerical method (the immersed boundary method) and for
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FIGURE 7. (Colour online) Fraction of the global turbulence dissipation rate that occurs
within distance r to a particle centre: (a) cε versus r/r0 and (b) cε versus cv . Cases L128
(blue, thick solid) and L64 (red, thin dashed).

much larger moving particles, the dissipation rate on particle surfaces was found to be
approximately three times larger than the dissipation rate far away from surfaces of
the particles (Lucci et al. 2010). A theoretical estimate of the turbulence dissipation
rate on particles, presented in § 4.5, shows that it strongly increases with decreasing
particle diameter. Thus the main reason for the large discrepancy with the results of
Lucci et al. (2010) is probably that in that work dp/η was roughly eight times larger.

The very large dissipation rate near particles supports the view expressed by Hwang
& Eaton (2006) and Tanaka & Eaton (2010) for heavy particles, namely that such
particles, like grids, act as localized dampers of the turbulence motion. To quantify
how much of the total amount of dissipation in the flow occurs near the particles, we
define Vr as the set of all points in the flow domain within distance r of a particle
centre, and we define

cv(r)= (4/3)πNp(r3 − r3
0)/(1− α)L3

1, (4.5)

cε(r)= 4πNp

∫ r

r0

ε(r′)r′2 dr′
/∫

Ω

νuj,iuj,i dΩ. (4.6)

The function cv is the fraction between the volume of Vr and the total flow volume,
while cε is the fraction between the dissipation that occurs in Vr and the total
dissipation. The function cε is shown in figure 7, plotted against r/r0 and Vr. Figure 7
shows that 10 % of the total dissipation occurs in 0.5 % of the total volume, and 5 %
occurs in only 0.1 % of the volume.

4.2. Global turbulence attenuation
In this subsection we investigate the modification of global (domain- and time-
averaged) statistics of the flow, most of them related to K and ε. First, the simulation
results shown in tables 3–5 are discussed. Afterwards, the main simulation results are
discussed in the light of experimental work found in the literature (table 6).

The simulation results for the global turbulence kinetic energy and dissipation rate
and various other basic quantities are summarized in table 3. The last five columns
show the ratios of laden to unladen quantities and thus quantify the suppression or
enhancement of the quantities due to particles. The bold ratios quantify the global
turbulence modification in the most accurate particle-resolved case (L128). Table 3
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Quantity U128 L128 L64 PP0 PP2 PP4

P 22.117 22.722 22.449 22.514 22.538 22.162
ε 22.102 22.815 22.814 22.497 22.521 22.176
E= P− ε 0.015 −0.092 −0.365 0.017 0.016 −0.014
|E|/ε 0.001 0.004 0.016 0.001 0.001 0.001

TABLE 4. Global energy balance for the simulations U128, L128, L64 and the
point-particle simulations discussed in § 4.5.

Quantity L128 L64 PP0 PP2 PP4

|Fp|21/2
188.9 189.6 97.3 148.2 171.2

|Fp,pres|21/2
68.9 68.7 — — —

|Fp,visc|21/2
120.3 121.2 — — —

εp 3.20 3.34 0.74 2.51 2.90
εp/ε 0.14 0.15 0.03 0.11 0.13
ε(rb) 19.57 19.16 21.07 20.31 19.63

TABLE 5. Particle force and particle-induced dissipation in simulations L128, L64 and
the point-particle simulations discussed in § 4.5.

√
2K0dp/ν Reλ α η/dp 1r/η ψ St vtdp/ν K/K0 ε/ε0

H & E (2006) 11 230 0.0001 1.0 3.7 0.23 61 10 0.61 0.59
H & E (2006) 9 ? 0.0001 1.1 3.3 0.29 48 10 0.65 0.53
T & E (2010) 30 127 0.0002 0.45 0.55 0.41 274 30 0.75 0.88
T & E (2010) 30 127 0.0005 0.45 0.55 0.41 138 30 0.95 1.09
Simulation L128 11 32 0.0010 0.46 0.07 — — 0 0.91 1.03

TABLE 6. Comparison between experiments of particle-laden stationary homogeneous
isotropic turbulence in the literature (Hwang & Eaton 2006; Tanaka & Eaton 2010) and
the present particle-resolved DNS L128.

shows that the global turbulence kinetic energy K in simulation L128 reduces to 91 %
of the unladen value, which corresponds to an attenuation of 9 %. The modification
of the global turbulence dissipation rate ε due to the particles is much smaller, an
increase of 3 %. The next quantity in table 3 is the L2-norm of the stochastic forcing
term (the L2-norm of any vector field q is defined by |q|21/2

in this paper). The
fourth quantity shown in table 3 is the L2-norm of the velocity, which is equal
to (2K)1/2. It is also the L2-norm of the particle Reynolds number Rep since the
velocity of the particles is zero, dp = 2r0 = 1 and ν = 1. Thus the L2-norm of Rep is
approximately 11. The results of RMS(p) show that not only K but also the pressure
fluctuations are significantly attenuated, even somewhat more than K. Owing to the
effect of particles upon global turbulence kinetic energy and to a smaller extent
upon the global turbulence dissipation rate, quantities constructed from K and ε are
also modified. The Taylor Reynolds number, Reλ = K(20/3νε)1/2, is attenuated by
approximately 10 %. The Kolmogorov length scale, η= (ν3/ε)1/4, is not significantly
modified. In contrast, the length scale of the large-scale turbulence, Lε = K3/2

/ε,
is relatively strongly reduced (16 %). The relatively strong decrease of Lε indicates
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Quantity U128 L128 L64 L128/U128 L64/U128 PP0/U128 PP2/U128 PP4/U128

F( f1) 3.02 3.02 3.02 1.00 1.00 1.00 1.00 1.00
F(u1) 2.88 2.88 2.87 1.00 1.00 0.98 0.98 0.98
S(p) −0.89 −0.74 −0.72 0.83 0.81 0.88 0.83 0.88
F(p) 5.69 5.23 5.19 0.92 0.91 0.97 0.86 0.93
χ 0.474 0.479 0.476 1.01 1.00 1.00 1.00 1.01
S(u1,1) −0.444 −0.498 −0.506 1.12 1.14 1.12 0.99 0.98
F(u1,1) 4.07 25.0 25.1 6.15 6.16 6.38 0.99 0.97
F(u1,2) 5.26 40.8 42.0 7.76 7.98 9.78 0.97 0.97

TABLE 7. Global skewness and flatness factors and ratio χ from simulations U128, L128
and L64. The last five columns express the modifications of the global quantities by the
particles in ratios of laden to unladen quantities for simulations L128, L64 and the point-
particle simulations discussed in § 4.5. Ratios obtained for half the averaging time differed
by a maximum 2 % from those obtained for the full averaging time (see § 3.3).

that the particles diminish the size or the strength of large eddies in particular. The
corresponding time scale of large eddies, tε = K/ε, is also significantly reduced
(approximately 12 %).

In summary, table 3 confirms that fine particles significantly attenuate the turbulence
kinetic energy in stationary homogeneous isotropic turbulence. The global attenuation
of the turbulence kinetic energy is found to be approximately 9 %. That a small
volume fraction of fine particles is able to attenuate turbulence is well known,
but it is the first time that global turbulence attenuation has been confirmed by
particle-resolved DNS for a case in which the particle diameter is only 2.2η and the
particle volume fraction is only 0.1 %.

In table 4, the global energy balance is shown for all simulations. The global
production of energy by the forcing term is defined by P = uj fj. Theoretically, we
should find P − ε = 0. The numerical evaluation of the energy balance is shown in
table 4. It appears that in each case the global balance error, E = P − ε, is small.
The last row shows the absolute value of the relative error, |E|/ε. The balance error
is very small in case U128 (only 0.1 %). The balance error in the particle-resolved
laden case L128 is somewhat larger, but still small (0.4 %). The balance error in case
L64 is 1.6 %, which is not large, but four times larger than in case L128. Since the
numerical method is second-order, it indicates that, at least in case L64, the balance
error is mainly caused by discretization errors. This is supported by the finding that
the difference between the domain average of uiui/2 at t2 and t1 divided by t2 − t1
is only 0.15 % of ε in case L64 and 0.07 % in case L128, considerably smaller than
the balance error.

In the particle-resolved simulations, the particle force is a numerical evaluation
of the exact expression in equation (2.17). To compute this L2-norm, the domain
integration in the definition of the global mean has been replaced by the average
over all particles in the domain. The L2-norms of the particle forces in the
particle-resolved cases differ by only 0.5 % and are 188.9 and 189.6 in cases L128
and L64, respectively (table 5). The magnitudes of the distinct pressure and viscous
contributions to the force are also shown.

The forces of the particles on the fluid lead to a strong increase of the turbulence
dissipation rate ε(r) near the particles, as we saw in figure 6(d). It is interesting to
quantify the extra dissipation due to particles by a global quantity, which we call
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the particle-induced dissipation εp. The quantity multiplied by the total fluid volume
should estimate the energy dissipated by all the particles in the flow domain, like ε
multiplied by the total fluid volume represents the total amount of dissipated energy
in the flow domain. Intuitively, the energy dissipated by the particles is related to a
volume integral of the increase of ε(r) in figure 6(d). Therefore, we define a radius
R sufficiently far away from the particle, where ε(r) has become approximately flat.
We integrate ε(r) − ε(R) (the local increase of the radial profile of the turbulence
dissipation rate) over the volume between r0 and R. The result multiplied by the
number of particles and divided by the total fluid volume is used as the definition
for the particle-induced dissipation in the particle-resolved simulation:

εp = Np

(1− α)L3
1

∫ R

r0

4πr2(ε(r)− ε(R)) dr. (4.7)

In the present paper, we choose the radius R= rb≈ 7r0. If the profile ε(r) is perfectly
horizontal for r>R then ε(r)− ε(R)= 0 for r>R and εp= ε− ε(R). However, for the
sake of clarity, we use (4.7) to compute εp for the two particle-resolved simulations.
The results are listed in table 5. According to the ratio εp/ε, approximately 14 % of
the turbulence dissipation rate can be attributed to the particles. Also the values of
ε(rb), the turbulence dissipation rate far away from the particles, are included. These
are significantly smaller than the unladen dissipation. This is perhaps not unexpected
because the turbulence kinetic energy far away from particles is also reduced. The
turbulence dissipation rate far away from particles is probably set by the turbulence
kinetic energy far away and the outer scale of the turbulence far away. The latter can
be estimated by (K(rb))

3/2/ε(rb), which is equal to 20.8 in case L128, in fact very
close to the global outer scale of the turbulence (Lε) in the unladen case. Indeed, the
outer scale far away from particles is set by the stochastic forcing, which is the same
in the laden and unladen cases.

At this point it is appropriate to discuss the results obtained for the modification
of K and ε in relation to the two experimental works mentioned. Table 6 shows an
overview of four experiments selected from these works. In the first two experiments
listed (Hwang & Eaton 2006), glass beads of diameter 165 µm were used in air, while
in the third (fourth) experiment (Tanaka & Eaton 2010), glass (polystyrene) beads of
250 µm were used in air. The parameter 1r denotes the minimum spatial resolution
in the experiments and the simulation. The material density of the particles does not
play a role in the simulation, since the particles are fixed. Thus the mass loading (ψ)
and the Stokes number with respect to Kolmogorov time (St) are not defined in the
simulation, while the terminal velocity vt is zero since gravity is ignored.

According to the particle-resolved simulation, K is reduced by 9 %, while ε is
increased by 3 %. However, in the experiments, K reduced more (except in the
fourth experiment) and ε also reduced (except in the fourth experiment), although
the particle volume fraction in the experiments was smaller than in the simulation.
Thus, it is surprising that the simulated attenuation of K is not much larger than
9 % and that the dissipation is not reduced. According to experiments, the degree
of turbulence attenuation tends to increase with Stokes number (Kulick et al. 1994;
Tanaka & Eaton 2010). Larger Stokes number usually implies a weaker response
of the motion of the particles to the fluid and a larger particle–fluid slip velocity.
Therefore, we do not expect that the simulated attenuation of K would have been
stronger if the particles had not been fixed. However, the simulated attenuation of
K could have been stronger if the terminal velocity had not been zero, i.e. if the
effect of gravity had been included. The particle Reynolds number Rep based on the
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total velocity in the experiments was on average probably larger than Rep based on
the relative fluctuating velocity and Rep based on the terminal velocity. Provided Rep
remains small enough to avoid vortex shedding in the wakes of the particle, larger
Rep is expected to lead to stronger turbulence attenuation. However, it seems unlikely
that the quantitative discrepancy between experiments and simulations is only caused
by Rep. Perhaps, the relatively weak attenuation of K in the simulations is due to
the relatively low Reλ. Indeed, the maximum attenuation of K in the experiments
of Tanaka & Eaton (2010) (Reλ = 127) was slightly less than in the experiments of
Hwang & Eaton (2006) (Reλ = 230). Although the simulated flow at Reλ = 32 can
be regarded as turbulent (see the discussion of the higher-order statistics of the flow
in § 4.4), the number 32 is low and much lower than in the experiments. In addition,
some quantitative effect of the limited size of the computational box cannot be ruled
out. However, if Reλ is not increased simultaneously, a larger box size is not expected
to reduce the discrepancy between simulation and experiments significantly.

With respect to the discrepancies in the turbulence dissipation rate, Tanaka &
Eaton (2010) measured a much smaller reduction of ε than Hwang & Eaton (2006)
(in the fourth experiment listed in table 6, the turbulence dissipation rate did not
reduce at all). Tanaka & Eaton (2010) attributed the higher ε to the increase of the
spatial resolution. The values 1r/η listed in table 6 show that in the high-resolution
experiments performed by Tanaka & Eaton (2010) the turbulence dissipation rate
was much better resolved indeed (1r = 0.55η). However, figure 7 shows that, if
in the simulations 1r = 0.55η ≈ 0.5r0 had been chosen, 8 % of ε would not have
been captured (the amount of the dissipation in between r0 and 1.5r0). Whether this
means that even the high-resolution measurements by Tanaka & Eaton (2010) did not
entirely capture ε is difficult to say, since we do not know how figure 7 scales with
decreasing α and increasing Rep and Reλ.

4.3. The radial turbulence kinetic energy budget
For spherical particles in statistically stationary homogeneous isotropic turbulence, the
radial budget of turbulence kinetic energy is defined by

P+ T +Π +D− ε = 0, (4.8)

for all r, where

P(r)= 〈urfr + uθ fθ + uφfφ〉, (4.9)

T(r)=− 1
r2

d
dr
(r2〈(u2

r + u2
θ + u2

φ)ur〉), (4.10)

Π(r)=− 1
r2

d
dr
(r2〈pur〉), (4.11)

D(r)= 1
r2

d
dr

(
r2ν

dK
dr

)
, (4.12)

ε(r)= ν〈GijGij〉. (4.13)

The first term (P) represents the production of K=K(r) due to f , the last term (ε) the
sink of K due to dissipation of K, while the three terms in between, T , Π and D, are
transport terms, which are called the turbulent transport term, the pressure diffusion
term and the viscous diffusion term, respectively. It is remarked that the conventional
production term in turbulent shear flows, the product of the mean shear and minus
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FIGURE 8. (Colour online) Radial turbulence kinetic energy budget for cases L128 (blue,
thick solid) and L64 (red, thin dashed). (a,b) Production P (circles), turbulent transport
T (squares), pressure diffusion term Π (stars), viscous diffusion D (upward-pointing
triangles), and minus the turbulence dissipation rate −ε (downward-pointing triangles):
(a) normalized by the unladen dissipation rate (ε0) and (b) divided by ε. (c) The balance
error E (diamonds) divided by ε.

the Reynolds shear stress, does not appear in the balance because the mean velocity
and the Reynolds shear stress are both zero in this flow.

The budget normalized with the unladen global dissipation rate (ε0) is shown in
figure 8(a). Both D and ε are very large at r0; the values in the grid cell next to
the surface are: ε(1.033r0) = 96ε0 in case L128 and ε(1.068r0) = 82ε0 in case L64,
which is far outside the range of figure 8(a). Therefore, the terms are also shown
after division by ε(r) (figure 8b). The production by the forcing term is zero at r0,
since u = 0 there. At the further locations r > 3.8r0, we observe P/ε > 1. Thus at
most locations in the flow (the volume of a spherical shell is proportional to r2), the
production is not locally balanced by the dissipation. The sum of the transport terms,
T + Π + D = ε − P, is negative for r > 3.8r0 and positive for r < 3.8r0. Therefore,
the sum of the three transport terms transfers energy from the region r > 3.8r0 to
the regions r< 3.8r0, which surround the particles. The regions r< 3.8r0 correspond
to 5.5 % of the flow domain. Thus, in the direct vicinity of the particles, turbulence
attenuation is caused by the enhanced dissipation rate, but in the major part of the flow
domain, the attenuation is caused by transport of kinetic energy towards the particles.

There are three transport terms. Sufficiently far away from the nearest particle
surface, all transport terms are negative and take kinetic energy. However, moving
towards the nearest particle surface, each transport term becomes positive at some
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FIGURE 9. (Colour online) (a) Energy fluxes related to the three transport terms: turbulent
transport flux (squares), the pressure diffusion flux (stars) and the viscous diffusion flux
(triangles). The pressure diffusion flux is dominant over the other two in the region
between the black thin dotted vertical demarcation lines. (b) Pressure velocity correlation
coefficient β. Both panels show results for cases L128 (blue, thick solid) and L64 (red,
thin dashed).

point and starts to give kinetic energy. Turbulent transport (T) is negative for r> 5.5r0
and positive for r0 < r < 5.5r0; pressure diffusion term (Π ) is negative for r > 3.1r0
and positive for r < 3.1r0; while viscous diffusion (D) is negative for r > 1.5r0
and positive for r < 1.5r0. The relative importance of the pressure diffusion term
among the transport fluxes is surprising since the pressure diffusion transport term
is considered to be the least relevant contribution in the turbulent kinetic energy
budget of near-wall turbulence (Mansour et al. 1988). The maximum attained by the
pressure diffusion term is 13 % of the maximum turbulence dissipation rate in the
present flow. This is 6 % in turbulent channel flow at friction Reynolds number 180
(Mansour et al. 1988).

An interesting check on the statistical and numerical accuracy of the results is
whether the balance error,

E(r)= P+ T +Π +D− ε, (4.14)

is sufficiently small, since it should theoretically vanish. Profiles of the relative balance
error, E(r)/ε(r), are shown in figure 8(c). The figure shows that L128 is much more
accurate than L64, although the accuracy of L64 is not very poor since the relative
balance error less than 5 % for all r locations. However, the balance error of L128 is
less than 1 %, except for a few r locations. The maximum error (2 %) is attained at
the first grid point off the particle surface (the error at the second grid point is only
−0.5 %).

To further investigate the energy transport due to particles, we integrate the three
transport terms over the volume between r0 and r, multiply by −1 and divide by the
surface area 4πr2 to obtain the corresponding energy fluxes: the turbulent transport
flux 〈uiuiur〉, the pressure diffusion flux 〈pur〉 and the viscous diffusion flux −ν dK/dr.
Figure 9(a) shows that the energy flux profiles are negative everywhere, which means
that, for each transport term and for all r, the radial flux of kinetic energy is on
average directed towards the surface of the nearest particle. The demarcation lines
separate three regions: (1) r0 < r< 1.9r0, dominated by the flux of viscous diffusion;
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(2) 1.9r0 < r < 4.7r0, dominated by the flux of pressure diffusion; and (3) r > 4.7r0,
dominated by the flux of turbulent transport. The volumes of the three regions
correspond to 0.6 %, 9.9 % and 89.4 % of the total volume (0.1 % is occupied by
particles).

Figure 9(b) shows the correlation coefficient

β(r)= 〈pur〉
RMS(p) RMS(ur)

. (4.15)

The coefficient is interesting because it is the only non-zero coefficient of correlation
between two different basic variables (〈uruθ 〉 = 〈uruφ〉 = 〈uθuφ〉 = 0 and 〈puθ 〉 =
〈puφ〉 = 0). The negative sign is consistent with the qualitative behaviour in, for
example, turbulent channel flow and is intuitively not difficult to understand: owing
to the impermeability of the surface, the pressure is increased at times when the
instantaneous velocity vector is directed towards the surface. Figure 5 provides some
further insight into why the correlation is likely to be negative: near the surface at
the front side ur is negative and pressure fluctuation positive, while near the surface
at the rear side ur is positive and pressure fluctuation negative. Thus the product of
pressure fluctuation and ur tends to be negative at both sides, such that 〈pur〉 and β
become negative.

4.4. Higher-order statistics
Standardized higher-order moments, in particular the skewness and flatness factors of
velocity, pressure and their derivatives, have been a subject of extensive study in the
field of homogeneous isotropic turbulence (see e.g. Ishihara et al. 2007, and references
therein). It is therefore interesting to investigate how these quantities are influenced
by the particles. The global skewness S(q) is defined by (q− q)3/(RMS(q))3 and
the radial skewness by S(q) = 〈(q − 〈q〉)3〉/(RMS(q))3. The definitions of global
flatness F(q) and radial flatness F(q) are obtained if the third powers in the
skewness expressions are replaced by fourth powers. The skewness and flatness factors
characterize the shape of the probability density function (p.d.f.) of the variable q.
The skewness quantifies the asymmetry of the p.d.f. of q, while the flatness quantifies
the importance of the tails of the p.d.f. Higher flatness corresponds to stronger
intermittency. A large flatness of a variable corresponds to a relatively large probability
that extreme events occur, events in which the absolute value of the variable is much
larger than the standard deviation of its probability distribution. The standardized
third and fourth moments can also be used to quantify the non-Gaussianity of a
variable. The skewness of a Gaussian variable is zero and the flatness equals three.
The skewness and flatness of velocity derivatives are commonly used to describe
the properties of the small-scale turbulence. Negative skewness of the longitudinal
velocity derivative is related to the generation of small scales by vortex stretching
and the flatness of the components of the velocity gradient to the intermittency of
small-scale motions.

Global skewness and flatness factors of the forcing term, velocity, pressure and
velocity derivatives are shown in table 7. In addition, the ratio χ =u2

1,1 / u2
1,2 is shown,

which according to the theory of single-phase incompressible homogeneous isotropic
turbulence should be equal to 1/2. To limit the length of the table, the skewness
factors of f1, u1 and u1,2 have not been included since these are theoretically zero
and numerically small (|S( f1)|< 0.01, |S(u1)|< 0.01 and |S(u1,2)|< 0.03).
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The results for F( f1) are very close to 3, which confirms that the temporal filtering
of the Ornstein–Uhlenbeck process does not affect the Gaussianity of the stochastic
process used to force the large scales. The derivative ratio χ is equal to 0.474 in case
U128, reasonably close to the theoretical isotropic value. In the literature on DNS
of single-phase isotropic turbulence, skewness and flatness factors have been reported
for single-phase isotropic turbulence at Reλ somewhat higher than 32: F(u1) = 2.80,
−S(u1,1) = 0.49, F(u1,1) = 4.2 and F(u1,2) = 5.7 at Reλ = 35 (Jimenez et al. 1993);
and −S(p)= 0.88, F(p)= 5.6 and F(u1,1)= 4.0 at Reλ = 38 (Vedula & Yeung 1999).
The numbers for U128 in table 7 are sufficiently close to these values to conclude
that this case provides an acceptable description of homogeneous isotropic turbulence
at Reλ= 32. The quantitative discrepancies between table 7 and the values cited from
the literature can perhaps be attributed to differences in Reλ and the forcing. Although
the forcing has been applied to large scales only, some sensitivity of the small-scale
turbulence to the forcing probably cannot be avoided if Reλ is low. For this reason,
the forcing has fully been specified in § 3.

We proceed to discuss the effect of particles on the global statistics listed in table 7.
The value of F(u1) is close to 3 in laden and unladen cases; the nearly Gaussian
behaviour of the velocity is not significantly affected by particles. Likewise, the ratio
χ is not significantly affected by particles. However, the skewness and flatness factors
of the pressure and the velocity derivatives are modified by particles. Both −S(p) and
F(p) appear to be reduced. Thus not only is the size of the pressure field affected,
but also the structure of the pressure field changes due to particles: it becomes less
skewed and less intermittent. The negative skewness of the pressure in a turbulent
flow means that local pressure minima, which usually occur at the cores of vortices,
tend to be stronger (but also narrower) than the pressure maxima. The reduction
of −S(p) is rather strong and seems to be larger than can be explained from the
reduction of Reλ from 32 in the unladen to 29 in the laden cases. The reverse trend
is visible in the skewness of the longitudinal velocity derivative: −S(u1,1) is slightly
increased by particles, while this skewness normally decreases with decreasing Reλ
(Ishihara et al. 2007). The largest effect of particles is observed in the global flatness
factors of the velocity derivatives: F(u1,1) becomes 6 and F(u1,2) almost 8 times larger.
These derivatives and thereby also the turbulence dissipation rate become much more
intermittent in a particle-laden field. It means that if we sampled a Cartesian velocity
gradient at a random location in the flow, the probability that we would find a very
large velocity gradient (much larger than the global standard deviation) is much
higher than in an unladen turbulent flow. The shape of the turbulence dissipation
rate profile shows that these very strong gradients preferentially occur in the direct
vicinity of the particles.

The question arises how skewness and flatness factors are modified if the p.d.f. is
conditioned on the distance to the nearest particle. That information is provided by the
radial skewness and flatness factors, shown in figure 10. It appears that the skewness
of ur, approximately zero far away from particles, becomes more and more negative
if a particle is approached. This means that an extremely large radial velocity tends
to be negative (the meaning of extremely large is very large compared to the local
standard deviation, which is a function of r). This tendency is probably due to the
asymmetry between the flow at the front and rear sides of the non-Stokesian particles,
with the result that an extremely large velocity directed towards the surface becomes
more probable than an extremely large velocity directed away from the surface.
The radial flatness factors (figure 10b) show that the intermittency of all velocity
components is enhanced near the surfaces of the particles, while the intermittency of
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FIGURE 10. (Colour online) (a) Skewness of ur (circles) and p (downward-pointing
triangles) and (b) flatness of u1 (stars), ur (circles), uθ and uφ (squares) and p
(downward-pointing triangles). (c) Coefficient χ (diamonds) and skewness of u1,1 (plus
signs). (d) Flatness of u1,1 (plus signs) and u1,2 (upward-pointing triangles). Results are
from simulations L128 (blue, thick solid) and L64 (red, thin dashed). The corresponding
unladen quantities from simulation U128 are denoted by black filled symbols. The black
thin dotted horizontal lines in (b) and (d) represent the Gaussian flatness.

the radial component is enhanced most. In contrast, the intermittency of the pressure
reduces, at all r locations, but near r0 in particular. The radial profile χ(r) defined
by 〈u2

1,1〉/〈u2
1,2〉 is shown in figure 10(c). Although χ displays a significant variation

around the isotropic value (1/2), the local anisotropy in the Cartesian velocity gradient
tensor seems to be surprisingly weak. Furthermore, S(u1,1) is shown in figure 10(c)
(S(u1,2) is approximately zero). The curve displays a remarkably strong oscillation:
from approximately zero at r0 it decreases sharply to approximately −0.45, then it
rises to almost zero, before it slowly decreases, until it has reached a level slightly
below the unladen value.

The radial flatness factors of the Cartesian velocity derivatives are shown in
figure 10(d). For all r locations, the radial flatness appears to be much lower than
the corresponding global flatness values listed in table 7. This is due to the fact that
extremely large velocity gradients occur at preferential locations, namely near particles.
Nonetheless, not only the global but also the radial intermittency of the velocity
gradient tensor are stronger than in unladen turbulence, at least near particle surfaces.

Additional insight into the structure of the small-scale turbulence around particles is
obtained from the statistics of G, the gradient of the velocity in spherical coordinates.
These statistics are shown in figure 11. Whereas all components of the Cartesian
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FIGURE 11. (Colour online) (a) RMS (Gij), (b) zoomed RMS (Gij), (c) skewness S(Gij)
and (d) flatness F(Gij) of the components of the gradient of the velocity in spherical
coordinates: G12 and G13 (squares), G11 (circles), G22 and G33 (stars), G21 and G31
(upward-pointing triangles), and G23 and G32 (downward-pointing triangles). Results are
from simulations L128 (blue, thick solid) and L64 (red, thin dashed). The corresponding
unladen quantities from simulation U128 are denoted by black filled symbols; Cartesian
unladen values are denoted by squares. The black thin dotted horizontal line in (d)
represents the Gaussian flatness.

gradient of the velocity are enhanced at surfaces of the particles (χ(r0) ≈ 1/2),
this is not the case for the components of G. Figures 11(a) and 11(b) show that
only G12 and G13 are enhanced; the other components are zero on the surfaces of
the particles. According to (2.7), the components G12 and G13 are uθ,r and uφ,r,
respectively. The boundary conditions imply that the other components of G are zero
at r0 (G11 = ur,r is zero due to the incompressibility constraint). This is true for
stagnant particles, but also for moving particles, provided each spherical coordinate
system moves and rotates with the same translative and angular velocities as the
corresponding particle. However, slightly off the particles surfaces (r ≈ 1.3r0), all
components are significantly enhanced compared to the unladen values, except G23

and G32. At r ≈ 1.3r0, the ordering from large to small is (1) G12 and G13, (2) G11,
(3) G22 and G33, (4) G21 and G31, and (5) G23 and G32. Between r ≈ 1.55r0 and
r≈ 3.1r0, the longitudinal component G11 is the largest one. It should be recalled that
the sum of the squares of the components constitutes the local turbulence dissipation
rate divided by the viscosity. The dominance of G12 and G13 near r0 is caused by
the viscous friction due to the no-slip boundary condition imposed on the tangential
velocity components. This is also illustrated in figure 5(b): the largest dissipation rate
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occurs in thin shear layers near the particle, away from the front and rear sides (in
the plane shown, G12 = uθ,r is very large). Figure 5 also suggests that, at somewhat
larger radius, the radial compression and expansion regions near the front and rear
sides of a particle lead to large turbulence dissipation rate, which is consistent with
the dominance of RMS(G11)=RMS(ur,r) for 1.55r0 < r< 3.1r0 in figure 11(b).

The non-zero skewness factors and all flatness vectors of the components of G are
shown in figure 11(c,d). Near r0, S(G11) is strongly negative, while S(G22) and S(G33)
are strongly positive. This indicates that, near particle surfaces, a strongly negative
G11 (relatively strong radial compression) is more likely than a strongly positive G11
(relatively strong radial expansion). Owing to the continuity equation, the reverse must
be true for the sum of G22 and G33, and, owing to symmetry, the reverse is true for
both G22 and G33. The skewness factors of the non-diagonal components of G are
zero and not shown. The radial flatness factors of the components of G (figure 11d)
seem to be lower than those of the Cartesian components of the velocity gradient, at
least near r0 (figure 10d). All curves show a minimum, and the minimum of F(G11)
is even lower than the Gaussian value. Very close to the surfaces of the particles, the
intermittency is relatively large for the diagonal components. Apart from the G12 and
G13, the components of G are small near r0, but in an intermittent way, the diagonal
components in particular. Since the particle surfaces are solid impermeable no-slip
walls, it is interesting to mention that also in turbulent channel flow the flatness factors
of several spatial velocity derivatives peak at the walls (Vreman & Kuerten 2014b).

At first glance, it is surprising that at r0 the intermittency of the transverse Cartesian
derivative u1,2 is much larger than the intermittency of G12 = uθ,r and G13 = uφ,r,
in particular when we realize that, at r0, the only non-zero components of G are
G12 and G13. This is probably due to preferential concentration of large values of
u1,2 at specific locations on the particle surface, namely in the neighbourhood where
the normal of the surface is approximately parallel to the x2-direction. This leads
to a larger radial flatness of u1,2 at r0 since the radial averaging operator includes
averaging over spherical surfaces. In contrast, the local p.d.f. of G12 (and G13) is nearly
independent of the position on the particle surface.

We finish this subsection with analytical expressions for the radial flatness of
Cartesian derivatives and the value of χ at r0. We denote the time averaging operator
at r0 by 〈·〉(r0, θ, φ), where θ and φ are the coordinates of the spherical reference
frame of the nearest particle. The radial averaging operator at r0 is denoted by 〈·〉(r0).
We assume that the local p.d.f. of Gij does not depend on the position on the surface.
Thus the kth moment of Gij satisfies

〈Gk
ij〉(r0, θ, φ)= 〈Gk

ij〉(r0). (4.16)

In the present case the assumption is only approximately valid since the particles are
ordered in a lattice. The components of G are zero at r0, except G12 and G13. Since
G12 and G13 behave statistically in the same way, we define

Mk = 〈Gk
12〉(r0)= 〈Gk

13〉(r0). (4.17)

Note that M1 = 0. With the use of (2.8), we derive for the moments of the Cartesian
derivatives

〈uk
j,i〉(r0) = 〈(G12A1iA2j +G13A1iA3j)

k〉(r0)

= 1
4π

∫ 2π

0

∫ π

0
〈(G12A1iA2j +G13A1iA3j)

k〉(r0, θ, φ) sin θ dθ dφ. (4.18)
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The integrals can be evaluated after substitution of (2.4) and with use of (4.16) and
(4.17) and the notion that any component of A is not affected by the time average
〈·〉(r0, θ, φ). The integral over θ reduces to an integral over a polynomial in y after the
substitution y= cos θ . For the evaluation of the integral over φ, the recursive relation∫ 2π

0
sinn φ cosm φ dφ = n− 1

n+m

∫ 2π

0
sinn−2 φ cosm φ dφ

= m− 1
n+m

∫ 2π

0
sinn φ cosm−2 φ dφ (4.19)

is useful. This integral is zero when both m and n are odd. We thus obtain

〈u2
1,1〉(r0)= 2

15 M2, 〈u2
1,2〉(r0)= 4

15 M2, (4.20a,b)

and therefore χ(r0) = 1/2. Figure 7(c) is consistent with this result. Similarly the
fourth moments can be rewritten as

〈u4
1,1〉(r0)= 〈u4

3,3〉(r0)= 8
315 M4, (4.21)

〈u4
1,2〉(r0)= 〈u4

3,2〉(r0)= 16
105 M4. (4.22)

These expressions and those in (4.20) imply that the corresponding radial flatness
factors of the Cartesian derivatives satisfy

F(u1,1)(r0)= 10
7 F(G12)(r0), (4.23)

F(u1,2)(r0)= 15
7 F(G12)(r0). (4.24)

Figures 10(d) and 11(d) are consistent with these results since very close to r0 the
intermittency (flatness factor) of u1,2 is indeed one and a half times higher than the
intermittency of u1,1 and more than twice as high as the intermittency of G12.

4.5. A posteriori testing of the point-particle model
Point-particle simulations, also called Eulerian–Lagrangian simulations, are based on
an empirical model for the particle force, usually the standard drag law, also called
Schiller–Naumann correlation, which is defined by

Fp,SN = 3πdpρν(1+ 0.15Re0.687
p )(u− v), (4.25)

where Rep = dp|u − v|/ν and v is the particle velocity. The point-particle model for
the fluid motion reads

∇ · u= 0, (4.26)
u,t +∇ · (uu)=−∇p+ ν∇2u+ f + f p, (4.27)

f p =−
∑

p

δ(x− xp)Fp,SN, (4.28)

where δ is the delta function. A straightforward implementation of the feedback force
f p on a staggered grid consists of four steps: (1) the fluid velocity u is linearly
interpolated to each particle location, (2) each particle force is computed, (3) each
particle force is distributed to the eight surrounding centres of the pressure cells, and
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(4) the Eulerian force field is then linearly interpolated from the pressure locations
to the staggered velocity locations. The simulation following this procedure using the
grid of U128 is called PP0.

Some modellers will object that the grid size of dp/2 in simulation PP0 is too small
because the point-particle method should only be applied if the grid size is at least
a few times larger than the particle size. However, if the grid size is increased, the
turbulence will be resolved less accurately, which is undesirable since we wish to use
simulation U128 in our comparison. A logical approach is then to modify step 3 in
the described point-particle procedure and to distribute each particle force over more
cells than just the eight surrounding cells. This has been reported in the literature:
Link et al. (2005) distributed each particle force over a cube of 53 cubic cells around
each particle. This approach can be formalized through the application of a spatial
convolution filter H(x− y) with filter width ∆ to equation (4.28). We choose the top-
hat filter, which essentially means that the particle force is distributed over a cube with
volume ∆3 around each particle. For example, the top-hat filter kernel is defined by
H(x− y)= 1/∆3 if |xi− yi|<∆/2 (i= 1, 2, 3) and H(x− y)= 0 otherwise. Application
of the top-hat filter to (4.28) leads to

f p =−
∑

p

H(x− xp)Fp,SN . (4.29)

Two point-particle simulations were performed with (4.28) replaced by (4.29): PP2
(∆= 2dp) and PP4 (∆= 4dp). Since PP0 represents a discretization of the limit ∆→ 0,
we say that ∆= 0 in PP0. However, the effective ∆ cannot be smaller than the grid
size h1= dp/4. Owing to interpolation to eight surrounding pressure locations in case
PP0, PP0 in fact corresponds to ∆≈ dp/2.

The three point-particle simulations were performed on a uniform grid with 1283

cells (like U128), but, to reduce the computation time, the iterative Poisson solver
was replaced by a direct solver based on fast Fourier transforms. In addition, the
time step was increased to 0.002, while the first-order explicit temporal discretization
of the viscous terms was replaced by the second-order explicit Adams–Bashforth
method. The forcing function and the statistical averaging time were the same as
in simulations U128 and L128. It was verified that an unladen simulation using the
same time step, time discretization and Poisson solver as the point-particle simulations
produced results very similar to those of simulation U128 (K became 59.33 instead
of 59.03).

In the comparison presented below, the results of the particle-resolved simulation
L128 are considered as the standard. Using the terminology common in the literature
of large-eddy simulations, we could call a comparison of results of a point-particle
simulation against results of a corresponding particle-resolved DNS an a posteriori
test. An a priori test would then be a comparison in which the result of a model
for the drag force (or another quantity of interest) is evaluated by inserting the fields
of the particle-resolved DNS into the model expression and then compared to the
corresponding particle-resolved result.

We define the global turbulence dissipation rate in a point-particle simulation by

ε = ε(1) + ε(2), where ε(1) = νuj,iuj,i and ε(2) =−uj f p
j . (4.30)

The turbulence dissipation rate thus consists of a resolved part (ε(1)) and a Schiller–
Naumann part (ε(2)). The corresponding radial profiles are defined analogously:

ε(r)= ε(1)(r)+ ε(2)(r), where ε(1)(r)= ν〈uj,iuj,i〉 and ε(2)(r)=−〈uj f p
j 〉. (4.31)
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FIGURE 12. (Colour online) (a) Radial profiles of turbulence kinetic energy K, normalized
by reference values of the unladen simulation U128: L128 (blue dashed), PP0 (black solid
and circles), PP2 (red solid) and PP3 (red dash-dotted). The thin dotted horizontal line
represents the normalized unladen turbulence kinetic energy. (b–d) Radial profiles of the
turbulence dissipation rate of point-particle simulations PP0 (b), PP2 (c) and PP4 (d), for
which ε (black solid line and open symbols) has been decomposed into a resolved part
ε(1) (red solid) and a Schiller–Naumann part ε(2) (red dashed). The ε value from the point-
particle simulations should be compared to ε from the particle-resolved simulation L128
(blue dashed).

They are shown in figure 12, together with the profiles of the turbulence kinetic
energy. It is observed that, with increasing ∆, the minimum of K(r) increases, the
maximum of ε(r) reduces, while ε(1)(r) becomes nearly flat and the Schiller–Naumann
contribution to the turbulence dissipation rate, ε(2)(r), increases. The negativity of
ε(2)(r) in case PP0 is remarkable since it means that in the limit of ∆→0 the Schiller–
Naumann contribution does not dissipate turbulence kinetic energy but generates it.

The results of the global statistics for PP0, PP2 and PP4 are shown in tables 3–
5 and 7. The attenuation of K is 4 %, 7 % and 8 % in cases PP0, PP2 and PP4,
respectively, which should be compared to 9 %, the attenuation in the PR-DNS (L128).
The results in the tables show that the effect of the particles on the turbulence is not
properly captured by PP0, but most predictions improve with increasing ∆. In fact,
the overall agreement between PP4 and L128 is reasonably good. An exception are
the flatness factors of the velocity derivatives, which are strongly increased in both
PP0 and L128 (F(u1,2) in PP0 is even larger than the corresponding PR-DNS value).
However, no increase is found in PP4 (and PP2), due to the smoothing effect of the
top-hat filter on the peaks created by the delta functions in the feedback force.
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The differences between PP0, PP2 and PP4 show that the point-particle method
is sensitive to the chosen approximation of the delta function. Without any filter the
point-particle method depends on the grid size because the effective volume over
which each particle force is distributed is then set by the volume of the grid cell.
This introduces arbitrariness into the method because the optimum value of the grid
size, or the optimum value of ∆ if the delta function force field is explicitly filtered,
is not known a priori and may vary from case to case. Nonetheless, the fact that one
of the point particle simulations (PP4) is able to deliver reasonable predictions of the
turbulence is surprising since the point-particle model is formally valid for dp � η

only, and this condition is not satisfied in the present case. It is therefore interesting
to investigate the accuracy of the Schiller–Naumann correlation and its contribution
to the dissipation rate in further detail.

For a turbulent flow around a single particle with diameter d ≈ 2η, a case in
which the global turbulence kinetic energy was not modified, Burton & Eaton (2005)
reported that the Schiller–Naumann correlation underpredicts the magnitude of the
true particle force. In addition, they found that the relative error of the force, defined
as the relative difference between the model signal and the signal of the true force,
varied between 15 % and 30 %. Table 5 shows that the magnitude (L2-norm) of
the Schiller–Naumann force is also underpredicted in the present assessment of the
point-particle method: the values are 97.3, 148.2 and 171.2 in simulations PP0, PP2
and PP4, respectively, while the PR-DNS result is 188.9. Thus the particle force is
underpredicted by 48 %, 22 % and 9 % in cases PP0, PP2 and PP4. The degree of
underprediction of the turbulence attenuation roughly corresponds to the degree of
underprediction of the particle force in each point-particle simulation.

In the point-particle simulations, the fluid velocity at the particle location is used
to compute the Schiller–Naumann force. The reduction of the velocity at the particle
location (see figure 12a) is the reason why the force reduces with decreasing ∆ and
one of the reasons why the magnitude of the Schiller–Naumann force is too low in
cases PP0 and PP2. The magnitude of the Schiller–Naumann force based on the global
magnitude of the velocity from the PR-DNS, (2K)1/2 from simulation L128, is equal
to 170.6, very close to the prediction by PP4. The magnitude of the Schiller–Naumann
force based on the unladen velocity is higher, of course, but it seems questionable to
base the Schiller–Naumann force upon the unladen velocity if the velocity of the laden
flow is globally modified by the turbulence.

No evidence was found that the underprediction of the particle force by the
Schiller–Naumann correlation is caused by hydrodynamic particle–particle interactions.
For uniform flow over a regular particle array, the hydrodynamic actions can be very
strong (Hill et al. 2001). Figure 12 in that paper is particularly interesting in the
present context, as it shows the drag force obtained from particle-resolved simulations
of uniform flows over a simple cubic particle array for a volume fraction of 0.001 and
a particle Reynolds number around 10. That figure applies to uniform flows pointing
in five different directions, and it shows that, when the uniform flow was directed
along the unit vector e1, the force was roughly 30 % lower, while when the uniform
flow was directed along e1 + e2, the force was roughly 15 % lower than in the other
three cases. To investigate whether a similar dependence on the angle of the velocity
over each particle occurs in the present turbulent flow, the magnitude and the cosine
of the angle of the instantaneous particle force vectors from case L128 were binned
into 20 uniform bins, spanning the range of the cosine from −1 to 1. The angle
was defined as the angle between the force vector and a Cartesian unit vector, first
e1, and then e2 and e3 (to improve the statistics). For each bin the L2-norm of the
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particle force deviated less than 1 % from the overall magnitude of the force (188.9).
Thus particle–particle hydrodynamic interactions in the present turbulent flow seem
to be much weaker than in some uniform flows over simple cubic particle arrays.

The particle-induced dissipation in the particle-resolved case is defined by (4.7) and
is approximately 14 % of the global turbulence dissipation rate. The particle-induced
dissipation in the point-particle simulations is defined as the sum of two effects, the
global Schiller–Naumann dissipation term, ε(2) =−uj f p

j , and the integral of the extra
dissipation near particles observed in the profile ε(1)(r). Thus in the point-particle
simulations

εp = ε(2) + Np

(1− α)L3
1

∫ R

r0

4πr2(ε(1)(r)− ε(1)(R)) dr, (4.32)

where R = 7r0. The Schiller–Naumann term, ε(2), is equal to −0.76, 2.56 and 2.99
in cases PP0, PP2 and PP4, respectively. The second term on the right-hand side
of (4.32) is equal to 1.50, −0.06 and −0.09 in cases PP0, PP2 and PP4, and thus
significant only in case PP0. The particle-induced dissipation itself (the sum of the
two terms) is approximately 3 % of the turbulence dissipation rate in case PP0, 11 %
in case PP2, and 13 % in case PP4 (table 5). It underpredicts the PR-DNS value in
each case, but the underprediction in case PP4 is small.

We conclude that, provided the size of fluid volume over which each point-particle
is distributed is suitably chosen, the point-particle model based on the Schiller–
Naumann correlation provides reasonable predictions for the effect of two-way
coupling on the turbulence, at least for the flow case investigated in this paper.
The differences between point-particle and particle-resolved global quantities are
noticeable, but most of them are much smaller than expected, at least in case PP4. In
particular, the underpredictions of the turbulence attenuation and the particle-induced
dissipation are no more than 10 % in case PP4. This is much better than expected
since, as we mentioned in the introduction, Hwang & Eaton (2006) concluded from
measurements that not only the attenuation of turbulence kinetic energy but also the
extra dissipation due to particles were greatly underpredicted by conventional models.
However, in the present simulations, a strong underprediction of the extra dissipation
is only observed in case PP0, in which each particle force is fed back to a relatively
small fluid volume, much smaller than in common Eulerian–Lagrangian simulations.
The extra dissipation in the experiments was not directly measured but computed
from the overall energy balance, by subtracting the measured turbulence dissipation
rate from the net input of potential energy and energy from the synthetic jet actuators.
However, using the same set-up with a high-resolution particle image velocimetry
system, Tanaka & Eaton (2010) measured significantly higher turbulence dissipation
rates than Hwang & Eaton (2006) did. If the turbulence dissipation rate measured
by Hwang & Eaton (2006) was too low, the estimate of the extra dissipation due to
particles was perhaps too high.

The fact that replacing the true particle forces by point-particle forces applied
to a sufficiently large volume of fluid around the particle does not alter the most
relevant turbulence modification results by more than 10 % suggests that each particle
experiences the ambient turbulent flow basically as a (time-varying) uniform flow
in the case that dp/η ≈ 2 and Reλ is low. To further investigate this hypothesis, we
derive an expression for the turbulence dissipation rate on particle surfaces, assuming
uniform flow around each particle. For uniform Stokes flow past a sphere, the
analytical solution is known. It is straightforward to derive that the corresponding
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dissipation rate averaged over the particle surface is equal to 6ν(U∞/dp)
2, where

U∞ is the ambient (relative) velocity far away from the sphere. For fixed U∞, the
dissipation rate increases if dp reduces. Compared to the Stokes drag force, the
drag force for a uniform flow at non-zero Reynolds number increases by a factor
1 + 0.15Re0.687

p , according to the Schiller–Naumann correlation. Since the shear is
expected to increase by approximately the same factor, the dissipation rate on the
surface is expected to increase by the square of that factor. After identifying U∞ with
(2K)1/2, we arrive at the following (rough) estimate of the turbulence dissipation rate
on the surface of a fixed particle:

ε(r0)≈ 12ν
K
d2

p

(1+ 0.15Re0.687
p )2. (4.33)

For the second test case in § 2.5, uniform flow over a particle at Rep = 100, the
expression was found to estimate the average dissipation rate on the surface with an
error of 1 %. For simulation L128, in which K ≈ 59 and Rep ≈ 10.4, the expression
leads to ε(r0) ≈ 1970, approximately 25 % smaller than 2610, the simulated value.
Although the underprediction is significant, the estimate based on the assumption
of uniform flow is able to capture the correct order of magnitude of the strongly
enhanced turbulence dissipation rate on the particle surfaces.

Although it is outside the scope of this paper to test many different options of
the point-particle formulation (the scope was set by the research questions in the
introduction), a few other options are briefly discussed. The top-hat filter was chosen
because of its compact support and its separability into three one-dimensional filters
(properties relevant for computational efficiency). Although the effect of the filter size
is expected to be more important than the effect of the shape of the filter kernel, the
selection of another shape (for example, spherically Gaussian) could lead to further
improvement. Second, one could include forces other than the drag force into the
model. In fact, a variant of simulation PP4 was performed with inclusion of the
lift force. Using the common lift coefficient of 0.5, the results were hardly different
from those of the original PP4. Inertial, mass and history forces were not included,
since Bagchi & Balachandar (2003) reported that the best approximation to their
DNS result was obtained without these forces. Third, instead of the fluid velocity at
the particle location, one could insert into the Schiller–Naumann expression the fluid
velocity averaged over a volume around the point particle (Bagchi & Balachandar
2003). To test the latter option for the present flow, another variant of simulation PP4
was performed, in which the averaging operator (top-hat filter) was applied not only
to the force but also to the fluid velocity inserted into the force. The results were
slightly but not significantly different from those of the original PP4.

5. Conclusions
A statistically stationary homogeneous isotropic turbulent flow modified by 64 small

fixed non-Stokesian spherical particles was investigated by means of particle-resolved
DNS. The particle diameter dp was approximately twice the Kolmogorov length scale
η, while the particle volume fraction was approximately 0.001. The Taylor Reynolds
number of the corresponding unladen flow was approximately 32. The DNS of the
particle-laden flow was based on a discretization of the incompressible Navier–Stokes
equations on 64 spherical grids overset on a Cartesian grid. The numerical method was
described in detail because non-standard procedures were required to obtain an overset
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grid method that could be applied to a turbulent flow with multiple small spherical
particles. The sensitivity of the numerical results to resolution and statistical averaging
time was addressed. In the following five paragraphs, following the order of the five
research questions formulated in the introduction, we summarize the conclusions of
this work.

Radial statistics, statistics that are functions of the distance to the nearest particle,
showed that the kinetic energy is attenuated in the entire domain. The radial velocity
variance is attenuated more than the azimuthal and polar velocity variances. The
turbulence dissipation rate on particle surfaces is enhanced by two orders of
magnitude, much larger than any local enhancement of the turbulence dissipation
rate previously reported. More than 5 % of the total dissipation occurs in only 0.1 %
of the flow domain. An equation that provides a rough estimate of the turbulence
dissipation rate on particle surfaces was derived.

The global (space- and time-averaged) turbulence kinetic energy is attenuated by
approximately 9 %, which is less than expected. The global turbulence dissipation
rate is slightly increased by the particles. The particle-induced dissipation, the extra
dissipation attributed to particles, was estimated to be 14 % of the global turbulence
dissipation rate. The quantitative discrepancies between the results of the present
particle-resolved simulations and the results of experiments on statistically steady
homogeneous isotropic turbulence modified by particles were discussed.

In addition, the budget of the turbulence kinetic energy was computed as a function
of the distance to the nearest particle centre. The budget illustrates how energy
relatively far away from particles is transported towards the surfaces of the particles,
where it is dissipated by the (locally enhanced) turbulence dissipation rate. The
energy flux towards the particles is dominated by turbulent transport relatively far
away from particles, by viscous diffusion very close to the particles and by pressure
diffusion in a significant region in between. The volume where the pressure diffusion
flux dominates over the other two transport fluxes is larger than expected and covers
approximately 10 % of the entire flow volume.

To investigate the modification of the small-scale turbulence, the variances and
higher-order statistics of the components of the gradient of the velocity were
computed. The global flatness factor of the longitudinal velocity gradient, which
characterizes the intermittency of small scales, is enhanced by a factor of six.
The radial profiles of the higher-order turbulence statistics were also investigated.
Significant modification of the statistical properties of the unladen small-scale
turbulence was found, in particular near particles. Analytical relations were derived
to explain the unexpected difference between moments of Cartesian and moments of
spherical velocity derivatives on particle surfaces.

The same flow was also simulated by three point-particle simulations based on
the Schiller–Naumann drag correlation. Three different sizes for the fluid volume
over which each particle volume was distributed were used. The conclusion of the
a posteriori tests, comparisons in which the particle-resolved results are regarded
as the standard, is that, in this case, the point-particle model captures both the
turbulence attenuation and the fraction of the turbulence dissipation rate due to
particles reasonably well, provided the (arbitrary) size of the fluid volume over which
each particle force is distributed is sufficiently large (for example 64d3

p). This is a
surprising conclusion since dp ≈ 2.2η > η. It was expected from the literature that
for this particle size all three point-particle simulations would severely underpredict
the turbulence attenuation and the part of the turbulence dissipation rate due to
the particles. In the point-particle simulation in which each particle volume was
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distributed over a fluid volume of 64d3
p, the magnitude of the true particle force was

underpredicted by 9 %. This is in line with the conclusion of Bagchi & Balachandar
(2003), who showed, for a single fixed particle subjected to a stationary frozen
turbulent flow, that the Schiller–Naumann correlation provides a reasonably accurate
prediction of the particle force if dp/η = 1.5. It is also in line with the conclusion
of Burton & Eaton (2005), who showed, for a single fixed particle in isotropic
turbulence, that the Schiller–Naumann correlation tends to underpredict the magnitude
of the particle force if dp/η= 2. Bagchi & Balachandar (2003) also showed that the
errors in the Schiller–Naumann correlation increase with increasing dp/η. Botto &
Prosperetti (2012) performed particle-resolved simulations of turbulent flow past one
or nine fixed particles for 6< dp/η < 10. They found that, for this range of particle
sizes, the dissipation induced by a particle can instantaneously be very different from
the work done by the particle force (in the reference frame of the fluid).

We finish the paper with a few remarks on possible extensions of the research,
extensions that fall outside the scope of the present paper since they increase the
computational complexity and demand. In this paper we discussed the quantitative
discrepancies between the results of the present particle-resolved simulations and the
results of high-resolution experiments on statistically steady homogeneous isotropic
turbulence modified by particles. In view of this discussion, future particle-resolved
simulations of turbulent flows laden with small particles could focus on the effects of
(1) gravity, (2) higher Reλ and (3) particles that do respond to the flow.

Assuming that computer resources continue to increase, the long-term goal could
be to use particle-resolved DNS to study the effect of a small concentration of small
heavy particles on a more realistic turbulent flow, for example a turbulent channel
flow. Kulick et al. (1994) measured strong turbulence attenuation in a gas–solid
turbulent channel flow with a particle volume fraction of 0.0001, particle size
d+p = 2.3 and Reτ = 640. Recently, a point-particle DNS of this case was performed
in a configuration that contained roughly 105 particles (Vreman 2015). However,
significant differences from the experimental results were still observed. To simulate
such a configuration with the present particle-resolved method, roughly 3 × 1010

points for the uniform Cartesian and 1.5× 1010 points for the overset grids would be
required to achieve a resolution with dp/h = 30 near the particles. If the same case
with the same dp/h were simulated on a uniform grid (for example by an immersed
boundary method equipped with a pressure solver based on fast Fourier transforms),
many more grid points would be required (roughly 1013). Despite the disadvantage
that the pressure Poisson equation needs to be solved iteratively, the overset method
seems to be a promising method for future particle-resolved simulation of (dilute)
particle-laden flows.
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Appendix A. Further specification of the numerical method

The governing equations and the overlapping grid structure were defined in §§ 2.2
and 2.3. When the simulation is started, the metric terms are determined and stored
for each staggered location in each mesh. In addition, the interpolation data structure
that arranges the communication among the different meshes is set up. The grid points
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for which interpolation is required are identified, and all interpolation coefficients are
computed and stored. Then the initial velocity field is set, and the boundary conditions
and interpolations are applied to the initial velocity field. The time level n is set to
zero, and the time step is set to 1t. The projection method is then used to solve
the velocity and pressure at the next time level (n+ 1). It consists of two steps: the
intermediate velocity step and the projection step. In the following, the intermediate
velocity step is described first, then the projection step is described, and finally the
spatial discretization and interpolation procedures are described.

A.1. Intermediate velocity step
The intermediate velocity step of the projection method consists of four substeps. First
the auxiliary velocities are computed according to

un+1/2 = 3un/2− un−1/2, ũn+1/2 = 3ũn
/2− ũn−1

/2, (A 1a,b)

except in the first time step (n= 0), when these auxiliary velocities are set equal to
the initial condition.

The second substep is the computation of the intermediate velocity u∗ on the
Cartesian grid:

u∗ = un +1t(−Hn+1/2 + Jn), (A 2)

where Hn+1/2 represents the nonlinear terms applied to the auxiliary velocity un+1/2

and Jn represents the viscous terms applied to the velocity un plus the forcing terms
at level n.

The third substep is the computation of the intermediate velocities on the spherical
grids. Two terms in the equation for ũj are treated implicitly: the first-order convective
derivative with respect to φ and the second-order viscous derivative with respect to φ.
All other terms are treated explicitly. On each spherical grid the following system is
solved for the intermediate velocity:

(I − 1
21t(−H̃

φ + J̃
φ
))ũ∗ = ũn + 1

21t(−H̃φ + J̃φ)ũn +1t(H̃
n+1/2 + J̃

n
), (A 3)

where I is the identity matrix, and H̃
φ

and J̃
φ

are the coefficient matrices for the
implicit convective term and implicit viscous term, respectively. The matrix J̃

φ
is the

same in each time step, but the matrix H̃
φ

needs to be computed in each time step
since it depends on the auxiliary velocity component ũn+1/2

3 =un+1/2
φ . The vector H̃

n+1/2

represents the explicit nonlinear terms (applied to the auxiliary velocity ũn+1/2), and J̃
n

represents all explicit viscous terms (applied to the velocity ũn) plus the forcing terms
at level n. The forcing terms are given by Af after interpolation of the Cartesian f to
the spherical grid. For moving particles, the particle velocity term that appears in the
Navier–Stokes equation in the spherical frame of reference should also be included
into J̃

n
. The implicit systems for the spherical intermediate velocities are solved by a

direct method, Gauss elimination, which is fast since only tri-diagonal matrices need
to be inverted.

The last substep is that the same boundary condition and interpolation routines used
for the velocity are executed for the intermediate velocity fields.
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A.2. Projection step
The projection step of the projection method consists of three substeps. In the first
substep, the discrete pressure field (at level n + 1) is computed from the following
system of equations (no summation convention over index i):

ai(∇2p)i + b= ai(∇ · u∗)i/1t at all internal points i
of the Cartesian domain,

ai(∇̃2p)i + b= ai(∇̃ · ũ∗)i/1t at all internal points i
of all spherical domains,

m∑
i=1

pi = 0.


(A 4)

The system contains m + 1 equations and m + 1 unknowns, where m is the total
number of internal points in all domains. The first two equations represent the
discretized Poisson equations, where (·)i denotes the discretization of the operator
inside the brackets at point i. The equations are normalized such that the diagonal
elements of the coefficient matrix are equal to 1; ai is the reciprocal of the coefficient
of pi in the stencil of the discrete Poisson operator. This normalization is effectively
Jacobi preconditioning. The augmented matrix method proposed by Henshaw (1994)
leads to the appearance of the last equation and the additional unknown b. This
technique is used because, due to the interpolations, the global conservation property
of the continuous Laplace and divergence operators is not exactly satisfied by the
discrete system, although the property is satisfied in the limit of zero grid size
(b converges to zero in the limit of zero grid size). Without this technique or
another treatment, the system would be singular and the iterative procedure would
not converge. The complication is inherent to pressure Poisson problems without a
Dirichlet boundary condition.

The total linear system to be solved is written as My = z, where M is the (m +
1) × (m + 1) coefficient matrix, y the vector of unknowns and z the vector of the
m+ 1 right-hand sides of the system. The linear system My= z is iteratively solved
by the BiCGStab(1) method proposed by van der Vorst (1992). The implementation
of the method is based on a Fortran subroutine written by M. A. Botchev, who used
the code written by Fokkema (1996) and incorporated the enhancements proposed by
Sleijpen & van der Vorst (1995, 1996). The subroutine was parallelized by the author
of the present work. When the iterative procedure is started, the vector y contains
the pressure at the previous time level and b is set to zero. The iterations continue
until the maximum of the absolute elements of the residual vector z − My is less
than the prescribed tolerance, 10−4. For each interior cell that is not adjacent to a
virtual cell or a particle surface, the matrix row contains eight non-zero elements (the
standard seven elements plus one that represents the coefficient of b). For interior
cells adjacent to virtual cells, the matrix row contains many more non-zero elements,
since the virtual points that occur in the discrete definitions of ∇2p and ∇̃2p are
replaced by the interpolation relations that relate the pressure at the virtual points
to the pressure at interior points. For interior cells adjacent to the particle surface,
the matrix row contains one element less since in these cells ∇̃2p does not represent
the physical Laplace operator, but a discrete pseudo-Laplace operator, after ∂p/∂r on
the wall has been replaced by zero (see Vreman 2014, and references therein), which
makes the staggered projection method equivalent to the approach originally proposed
by Harlow & Welch (1965). Thus the method does not need the pressure gradient on
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the wall. Indeed, it can be shown that the physical boundary condition respected by
the staggered discretization is that the Laplacian of the velocity divergence is zero
in the near-wall limit, which is equivalent to imposing the continuity equation at the
solid boundary (Vreman 2014).

After the pressure field has been obtained, the second substep is applied, which is
the actual projection step. The pressure at the virtual points is set using the same
interpolation relations that have been used in each matrix evaluation (iteration) of the
BiCGStab method. The velocities at the internal points are obtained by projecting the
intermediate velocities on the space of functions that is (approximately) divergence-
free,

un+1 = u∗ −1t∇p (A 5)

in the Cartesian domain, and

ũn+1 = ũ∗ −1t∇̃p (A 6)

in all spherical domains, where ∇̃ represents the gradient operator applied to a scalar
field in spherical coordinates.

The last substep is the execution of the boundary condition and interpolation
routines for the velocity fields at the new time level n+ 1. Whereas the discretization
of the convective terms and the implicitly treated viscous terms is second order in
time, the discretization of the pressure and the explicitly treated viscous terms is only
first order in time. However, the simulations did not suffer from excessive temporal
discretization errors, as has been confirmed by grid refinement, which included a
reduction of the time step (see §§ 3 and 4). Since the intermediate velocity step is
explicit (apart from the φ direction), a refinement of the mesh by a factor 2 requires
the time step to be smaller by a factor 4. Thus in combination with second-order
spatial accuracy, the relative reduction of temporal and spatial errors are the same.
To alleviate the time step restriction, one could consider using the Crank–Nicolson
scheme for all viscous terms. However, a fast implicit treatment of all viscous terms in
the spherical coordinate system is not straightforward. In addition, the computational
effort per time step would increase.

A.3. Spatial discretization and interpolations
All spatial partial derivatives in the Navier–Stokes equations in the forms specified
in § 2.2 are discretized by second-order central differences. In the computation of the
nonlinear fluxes, the velocities are averaged to the faces (using weights 1/2 and 1/2)
before they are multiplied. Each metric quantity in the spherical form is computed by
direct substitution of the r and θ coordinate of the location where the metric quantity
is defined (centre or face of a pressure or velocity cell). This means that no averaging
of any metric quantity is used (averaging of metric quantities may lead to inconsistent
discretization near the poles).

The grid of uθ has points at the poles (θ = 0 or θ = π), where the uθ momentum
equation is not defined. To approximate uθ at the poles, fourth-order interpolation
across the poles is used,

uθ(r, 0, φ, t) = 2
3 [uθ(r, 1θ, φ, t)− uθ(r, 1θ, φ +π, t)]
− 1

6 [uθ(r, 21θ, φ, t)− uθ(r, 21θ, φ +π, t)], (A 7)

and a similar equation is used for θ = π. The minus sign of the terms inside the
rectangular brackets occurs because at the poles uθ(r, θ, φ + π, t) = −uθ(r, θ, φ, t)
should hold.
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An essential feature of the discretization is the interpolation routines applied to the
variables in the virtual cells. These interpolations are third-order interpolations. For
example, the pressure in virtual cell i of a spherical grid is defined as an average
over 3× 3× 3 neighbouring points of the Cartesian grid,

pi =
∑
j∈Wi

wijpj, (A 8)

where Wi is the set of Cartesian grid points j on the Cartesian grid and the 27 weight
coefficients wij are based on quadratic Lagrange polynomials for each Cartesian
direction. The interpolation of a velocity component requires more effort. For example,
to obtain ur in virtual cell i of a spherical grid, all three Cartesian velocity components
are needed. Each of the three Cartesian velocity components is interpolated to virtual
cell i, using expressions similar to (A 8), then the transformation to ur is performed,
according to the first expression in (2.5). This means that 3× 27 Cartesian grid points
and as many weight coefficients are used for each velocity component in a virtual
cell. Burton & Eaton (2002) also used third-order interpolations, but they interpolated
the pressure gradient instead of the pressure. Interpolation of the pressure was used
by Chesshire & Henshaw (1990) and Henshaw (1994), who developed discretization
methods for collocated overlapping grids.

The tangential boundary conditions on the surfaces of the particles are discretized
by linear extrapolation of uθ and uφ at radius rc

0 from the values at the radii r0 and rc
1.

The approximation of the radial uθ,r at the wall is approximated by (uθ(rc
1, θ, φ, t)−

uθ(rc
0, θ, φ, t))/(rc

1− rc
0), and similarly uφ,r is approximated. As indicated, the pressure

at location rc
0 is not required in the discretized partial differential equations. However,

the pressure at rs
0 = r0 is required, to compute the force Fi, exerted on the particle

surface. This pressure is approximated by linear extrapolation: (3/2)p(rc
1, θ, φ, t) −

(1/2)p(rc
2, θ, φ, t).

The radial statistical profiles are defined at the cell centres (radial locations rc
j ,

defined in § 2.3). In order to obtain the radial statistics based on velocity components
(not on velocity derivatives), the spherical velocity components are first transferred to
pressure locations, with use of second-order interpolation for uθ and uφ and third-order
interpolation for ur.

The statistics of the small-scale turbulence are expressed in first-order velocity
derivatives. The Cartesian finite difference formula in the post-processing routine is,
like the first-order derivatives inside the Laplacian, based on finite differences applied
to a small stencil. For example, u2,1 is defined at the x1 faces of the staggered u2-cells,
using a central difference based on two points with distance h1. For the spherical grid,
it is more convenient to compute the nine components of the gradient of the velocity,
G, at the cell centres of the p-cells. This means that, for example, the numerical
expression for ur,r is based on two points whose coordinates differ by 1r, while, for
example, the expression for ur,θ is based on two points whose coordinates differ by
21θ .

REFERENCES

BAGCHI, P. & BALACHANDAR, S. 2002 Steady planar straining flow past a rigid sphere at moderate
Reynolds number. J. Fluid Mech. 466, 365–407.

BAGCHI, P. & BALACHANDAR, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys.
Fluids 15, 3496–3513.

BALACHANDAR, S. & EATON, J. K. 2010 Dispersed turbulent multiphase flow. Annu. Rev. Fluid
Mech. 42, 111–133.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

22
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.228


Particle-resolved DNS of homogeneous isotropic turbulence 83

BALTUSSEN, M. W. 2015 Bubbles on the cutting edge – direct numerical simulations of gas–liquid–
solid three-phase flows. PhD thesis, Eindhoven University of Technology.

BENEK, J. A., BUNING, P. G. & STEGER, J. L. 1985 A 3-D chimera grid embedding technique,
AIAA Paper 85-1523.

BOTTO, L. & PROSPERETTI, A. 2012 A fully resolved numerical simulation of turbulent flow past
one or several spherical particles. Phys. Fluids 24, 013303.

BREUGEM, W. P. 2012 A second-order accurate immersed boundary method for fully resolved
simulations of particle-laden flows. J. Comput. Phys. 231, 4469–4498.

BURTON, T. M. & EATON, J. K. 2002 Analysis of a fractional-step method on overset grids.
J. Comput. Phys. 177, 336–364.

BURTON, T. M. & EATON, J. K. 2005 Fully resolved simulations of particle–turbulence interaction.
J. Fluid Mech. 545, 67–111.

TEN CATE, A., DERKSEN, J. J., PORTELA, L. M. & VAN DEN AKKER, H. E. A. 2004 Fully
resolved simulations of colliding monodisperse spheres in forced isotropic turbulence. J. Fluid
Mech. 539, 233–271.

CHESSHIRE, G. & HENSHAW, W. D. 1990 Composite overlapping meshes for the solution of partial
differential equations. J. Comput. Phys. 90, 1–64.

DEEN, N. G., KRIEBITZSCH, S. H. L., VAN DER HOEF, M. A. & KUIPERS, J. A. M. 2012 Direct
numerical simulation of flow and heat transfer in dense fluid–particle systems. Chem. Engng
Sci. 81, 329–344.

DJENIDI, L. & ANTONIA, R. A. 2015 A general self-preservation analysis for decaying homogeneous
isotropic turbulence. J. Fluid Mech. 773, 345–365.

EATON, J. K. 2009 Two-way coupled turbulence simulations of gas–particle flows using point-particle
tracking. Intl J. Multiphase Flow 35, 792–800.

ELGHOBASHI, S. & TRUESDELL, G. C. 1993 On the two-way interaction between homogeneous
turbulence and dispersed solid particles. I: Turbulence modification. Phys. Fluids A 5,
1790–1801.

ESWARAN, V. & POPE, S. B. 1988 An examination of forcing in direct numerical simulations of
turbulence. Comput. Fluids 16, 257–278.

FERRANTE, A. & ELGHOBASHI, S. 2003 On the physical mechanisms of two-way coupling in
particle-laden isotropic turbulence. Phys. Fluids 15, 315–329.

FOKKEMA, D. R. 1996 Subspace methods for linear, nonlinear, and eigen problems. PhD thesis,
University of Utrecht, The Netherlands.

GORE, R. A. & CROWE, C. T. 1989 Effect of particle size on modulating turbulence intensity. Intl
J. Multiphase flow 15, 279–285.

HARLOW, F. E. & WELCH, J. E. 1965 Numerical calculation of time-dependent viscous incompressible
flow of fluid with free surface. Phys. Fluids 8, 2182–2189.

HENSHAW, W. D. 1994 A fourth-order accurate method for the incompressible Navier–Stokes
equations on overlapping grids. J. Comput. Phys. 113, 13–25.

HETSERONI, G. 1989 Particles–turbulence interaction. Intl J. Multiphase Flow 15, 735–746.
HILL, R., KOCH, D. L. & LADD, A. J. C. 2001 Moderate-Reynolds-number flows in ordered and

random arrays of spheres. J. Fluid Mech. 448, 243–278.
HWANG, W. & EATON, J. K. 2006 Homogeneous and isotropic turbulence modulation by small heavy

(St∼ 50) particles. J. Fluid Mech. 564, 361–393.
ISHIHARA, T., KANEDA, Y., YOKOKAWA, M., ITAKURA, K. & UNO, A. 2007 Small-scale statistics

in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of
one-point velocity gradient statistics. J. Fluid Mech. 592, 335–366.

JIMENEZ, J., WRAY, A. A., SAFFMAN, P. G. & ROGALLO, R. S. 1993 The structure of intense
vorticity in isotropic turbulence. J Fluid Mech. 255, 65–90.

KULICK, J. D., FESSLER, J. R. & EATON, J. K. 1994 Particle response and turbulence modification
in fully developed channel flow. J. Fluid Mech. 277, 109–134.

KUSSIN, J. & SOMMERFELD, M. 2002 Experimental studies on particle behaviour and turbulence
modification in horizontal channel flow with different wall roughness. Exp. Fluids 33, 143–159.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

22
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.228


84 A. W. Vreman

LINK, J. M., CUYPERS, L. A., DEEN, N. G. & KUIPERS, J. A. M. 2005 Flow regimes in a spout-
fluid bed: a combined experimental and simulation study. Chem. Engng Sci. 60, 3425–3442.

LUCCI, F., FERRANTE, A. & ELGHOBASHI, S. 2010 Modulation of isotropic turbulence by particles
of Taylor length-scale size. J. Fluid Mech. 650, 5–55.

MANSOUR, N. N., KIM, J. & MOIN, P. 1988 Reynolds-stress and dissipation-rate budgets in a
turbulent channel flow. J. Fluid Mech. 194, 15–44.

MARK, A. & VAN WACHEM, B. G. M. 2008 Derivation and validation of a novel implicit second-
order accurate immersed boundary method. J. Comput. Phys. 227, 6660–6680.

MEHRABADI, M., TENNETI, S., GARG, R. & SUBRAMANIAM, S. 2015 Pseudo-turbulent gas-phase
velocity fluctuations in homogeneous gas–solid flow: fixed particle assemblies and freely
evolving suspensions. J. Fluid Mech. 770, 210–246.

PHAN-THIEN, N. 2013 Understanding Viscoelasticity. Springer.
PICANO, F., BREUGEM, W.-P. & BRANDT, L. 2015 Turbulent channel flow of dense suspensions of

neutrally-buoyant spheres. J. Fluid Mech. 764, 463–487.
PROSPERETTI, A. 2015 Life and death by boundary conditions. J. Fluid Mech. 768, 1–4.
SLEIJPEN, G. & VAN DER VORST, H. 1995 Maintaining convergence properties of BiCGstab methods

in finite precision arithmetic. Numer. Algor. 10, 203–223.
SLEIJPEN, G. & VAN DER VORST, H. 1996 Reliable updated residuals hybrid BiCG methods.

Computing 56, 141–163.
SQUIRES, K. D. & EATON, J. K. 1990 Particle response and turbulence modification in isotropic

turbulence. Phys. Fluids A 2, 1191–1203.
STARIUS, G. 1977 Composite mesh difference methods for elliptic boundary value problems. Numer.

Math. 28, 243–258.
TAKAGI, S., OGUZ, H. Z. Z. & PROSPERETTI, A. 2003 PHYSALIS: a new method for particle

simulations. Part II: two-dimensional Navier–Stokes flow around cylinders. J. Comput. Phys.
187, 371–390.

TANAKA, T. & EATON, J. K. 2010 Sub-Kolmogorov resolution particle image velocimetry
measurements of particle-laden forced turbulence. J. Fluid Mech. 643, 177–206.

TANG, Y., KRIEBITZSCH, S. H. L., PETERS, E. J. A. F., VAN DER HOEF, M. A. & KUIPERS,
J. A. M. 2014 A methodology for highly accurate results of direct numerical simulations:
drag force in dense gas–solid flows at intermediate Reynolds number. Intl J. Multiphase Flow
62, 73–86.

TENNETI, S., GARG, R. & SUBRAMANIAM, S. 2011 Drag law for monodisperse gas–solid systems
using particle-resolved direct numerical simulation of flow past fixed assemblies of spheres.
Intl J. Multiphase Flow 37, 1072–1092.

TRYGGVASON, G., SCARDOVELLI, R. & ZALESKI, S. 2011 Direct Numerical Simulations of Gas–
Liquid Flows. Cambridge University Press.

TSUJI, Y., MORIKAWA, Y. & SHIOMI, H. 1984 LDV measurements of an air–solid two-phase flow
in a vertical pipe. J. Fluid Mech. 139, 417–434.

UHLMANN, M. 2005 An immersed boundary method with direct forcing for the simulation of
particulate flows. J. Comput. Phys. 209, 448–476.

UHLMANN, M. 2008 Interface-resolved direct numerical simulation of vertical particulate channel
flow in the turbulent regime. Phys. Fluids 20, 053305.

VEDULA, P. & YEUNG, P. K. 1999 Similarity scaling of acceleration and pressure statistics in
numerical simulations of isotropic turbulence. Phys. Fluids 11, 1208–1220.

VAN DER VORST, H. A. 1992 Bi-CGSTAB – a fast and smoothly converging variant of Bi-CG for
the solution of nonsymmetric linear-systems. SIAM J. Sci. 13 (2), 631–644.

VREMAN, A. W. 2007 Turbulence characteristics of particle-laden pipe flow. J. Fluid Mech. 584,
235–279.

VREMAN, A. W. 2014 The projection method for the incompressible Navier–Stokes equations: the
pressure near a no-slip wall. J. Comput. Phys. 263, 353–374.

VREMAN, A. W. 2015 Turbulence attenuation in particle-laden flow in smooth and rough channels.
J. Fluid Mech. 773, 103–136.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

22
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.228


Particle-resolved DNS of homogeneous isotropic turbulence 85

VREMAN, A. W. & KUERTEN, J. G. M. 2014a Comparison of direct numerical simulation databases
of turbulent channel flow at Reτ = 180. Phys. Fluids 26, 015102.

VREMAN, A. W. & KUERTEN, J. G. M. 2014b Statistics of spatial derivatives of velocity and
pressure in turbulent channel flow. Phys. Fluids 26, 085103.

YEUNG, P. K. & POPE, S. B. 1989 Lagrangian statistics from direct numerical simulations of isotropic
turbulence. J. Fluid Mech. 207, 531–586.

ZENG, L., BALACHANDAR, S. & FISCHER, P. 2005 Wall-induced forces on a rigid sphere at finite
Reynolds number. J. Fluid Mech. 536, 1–25.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

22
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.228

	Particle-resolved direct numerical simulation of homogeneous isotropic turbulence modified by small fixed spheres
	Introduction
	Particle-resolved simulation method
	Coordinate systems
	Governing equations
	Overlapping grids
	Statistical operators
	Results of test cases

	Definition of the direct numerical simulations
	Stochastic forcing
	Direct numerical simulation cases
	Accuracy of the direct numerical simulations

	Results
	Contours and radial profiles of basic quantities
	Global turbulence attenuation
	The radial turbulence kinetic energy budget
	Higher-order statistics
	A posteriori testing of the point-particle model

	Conclusions
	Acknowledgement
	Appendix A. Further specification of the numerical method
	Intermediate velocity step
	Projection step
	Spatial discretization and interpolations

	References




