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Abstract

An approximate solution is determined for the problem of scattering of water waves
by a nearly vertical plate, by reducing it to two mixed boundary-value problems
(BVP) for Laplace's equation, using perturbation techniques. While the solution of
one of these BVP is well-known, the other BVPs is reduced to the problem of solving
two uncoupled Riemann-Hilbert problems, and the complete solution of the problem
under consideration up to first-order accuracy is derived with a special assumption
on the shape of the plate and a related approximation. Known results involving the
reflection and transmission coefficients are reproduced.

1. Introduction

The problem of scattering of water waves by a partially immersed nearly vertical
barrier was first considered by Shaw [7]. Various methods of solution have been
presented later for the approximate solution of this class of water wave problems
[2, 10, 3]. In the present paper we have considered the scattering problem
involving a nearly vertical submerged plate of finite length in deep water. This
problem has already been handled for solution by Mandal and Kundu [3] by using
the Green's function-cum-integral integral approach. A relatively shorter route
involving the direct utility of Green's identities, as employed by Mandal and
Chakrabarti [2], has also been used by Mandal and Kundu [3] to derive results
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involving first-order corrections to the reflection and transmission coefficients.
Though the final important results derived earlier as well as in the present paper
are the first-order corrections to the reflection and transmission coefficients
associated with the nearly vertical plate under consideration, explicit results for
the velocity potential of the flow problem, even up to the first-order terms, have
not been derived so far. Determination of the full potential (up to first order) is,
therefore, one of the many motives behind taking up the present study, to which
a direct complex variable method is observed to be well suited. The complex
variable method utilised here is similar to the one used to handle the problem
of a submerged nearly vertical barrier, by Vijaya Bharathi and Chakrabarti [10].
This paper will be referred to as Paper 1 in the text that follows.

Using a perturbation approach, the problem of determining the velocity po-
tential </>(*, v) associated with the nearly vertical plate is reduced, up to the
first-order approximation, to that of determining two potential functions #o(*> y)
and (/>\(x, y) under certain boundary conditions (BC), prescribed along the ho-
rizontal boundary, y — 0 and — oo < x < oo and along the vertical line
x = 0, y e [—b, —a]. It is observed that the BC to be satisfied by the function
$oC*, y) are the same as the ones encountered in the case of a plane vertical
plate problem whose solution is available in the literature (see [4, 1, 9] and
others), whereas the BC for the function </>, are of a new type. It is important
to realise that </>0 is a transmission potential for a fixed vertical plate of finite
length, whereas 0t is a radiation potential for a related plane vertical wave-maker
problem.

This new B VP will be solved in Section 2 of the present paper by employing
a complex variable technique as described in Paper 1. Introducing a reduced
complex potential W(z) (see [1] and [6]), the problem in question is shown to be
equivalent to a pair of uncoupled Riemann-Hilbert problems for the determina-
tion of two sectionally analytical functions k(z) and /i(z), analytic in the entire
complex z (= x + jy) plane cut along the segments [—jb, —ja] and [ja, jb].
The complex potential W(z) = <j>\{x, y) + jirx{x, y) (V̂ i is the conjugate of
<p\), is then obtained by straightforward integration. The asymptotic relations
on the complex potential W{z) are then used to derive the two important con-
stants R] and Tx, (see Paper 1 also) representing the first-order corrections to
the reflection and transmission coefficients, and these are found to be the same
as the ones obtained by Mandal and Kundu [3] recently. The formal explicit
expressions for the near-field potential (f>\ (x, y) are also determined by using a
standard contour-integration procedure.
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2. Formulation of the problem

With the usual assumptions of linear water wave theory (see Stoker [8]), the
main problem under consideration is that of the determination of the velocity
potential 0(jt, y) that corresponds to the irrotational motion of water in the
region y < 0, associated with the scattering of simple harmonic progressive
waves which are incident normally on the nearly vertical plate, the shape of
which is described by the equation x = eC{y) for y e [—b, —a] (where e <C 1
and max C(y) = 1) and C(-a) = 0.

The governing equations and conditions to be satisfied by <p(x, y) are as
follows (see [7, 2]):

3 2 0 82<t>
(/) — - H = 0 , (y < 0, — oo < x < oo)

dx2 dy2

d<b
(/1) K<p - — = 0, on y = 0

dy

( / / / ) ~S~£V C(~y^T~ h onx = 0±,y e [-b, -a]dx dy I dy]

(iv) rx'2 | V</> K 0, as r2 = {x2 + (y + d)2) - • 0 (d = a or b)

I TeiKx+Ky aS X ^ - OO

eiKx+Ky , fte-iKx+Ky a s x ^ . —QQ
and

(v/) </>, > 0, as y -»• —oo,

where T̂ = cr2/g, g is the acceleration due to gravity and the harmonic time
dependence e~io1 {a represents the circular frequency) is dropped throughout
the paper. The complex constants R and T are the reflection and transmission
coefficients of the plate, which are to be determined.

The BVP is attacked for approximate solution by using perturbational series
(see [2] and [3]), as described next. We assume

4>{x, y) = <po(x, y) + e(j)X{x, y) + O(e2),

R = Ro + eRi + Oie2)

and
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The problem of solving <p(x, y) satisfying the conditions as given by the
relations (i) and (vi) then reduces, up to O(e), to that of determining the two
potentials (j>o(x, y) and (px {x, y) which will be referred to as BVP 1 and BVP 2
respectively.

BVP 1. The BC to be satisfied by the potential (f>0(x, y) are the same as those

involving the plane vertical plate problem (see [1]), the solution of which is as

given as below. (See [3])

' focosi;;y + A:siniEy]<fy, f o r x > 0 ,

Y] + K

= eKy+iKx + Roe
Ky-iKx

f00 J(r))e+t>x

+D I — [T] COS rjy + K sin i
Jo r)2 + K2

with

D = - , To = U J . and Ro = ^—, (2.1)

a — p — ty a — fi — ty a — f3 — ly

where

a =
y = d2

ai{K)-a'{{K), d2 = a'{{-K) / ax{K)
and

bd2-t2

—— sia(tri)dt, (2.2)

Pit)

where

fib a -

2 fb

7T Jo

/
-b -Ki /.oo e~K'F(t)

and

= am(K, 1); a"(K) = -^—am(K) where m = 1, 2 or 3

(-K) = ai(—K, 1); a"(—K) = -j^a\{-K) (2.3)
dK2
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and
p(t) = [{b2-t2)(t2-a2)f2 (2.4)

with F{t) being any function such that the above integrals are well defined.
BVP 2. The BVP for the function <f>i(x, y) is governed by the following
equations and conditions:

3 0 i d4>\(i) V r + T"T = °' (y < 0,-oo <x <oo)
dx2 dy2

for

30i
(ii) AT0i ^ = 0, on y = 0

dy

(in) -r-dx
3 f dd)a . 1

dx

(iv) r1/2 | V0, |-> 0, as r -> 0

sx ->• —oo

and

(ui) 0 i , — - ->• 0, as y -*• — oo.

We shall describe, in the next section, the complex variable technique em-
ployed to solve this problem.

3. The method of solution of BVP 2

We introduce the reduced potential (see Paper 1), as defined by

^ jKw, (3.1)

where
w(z)=<f>l(x,y) + jMx.y) (3.2)

is the complex potential and j is a second imaginary unit not interacting with
the unit i, occurring in the earlier relations. The function V'iCx. y) is a function
which is the harmonic conjugate of 0i(x, y).

Then, using the Cauchy-Riemann equations in the BC (ii) and (iii) on the
function 0i (x, y), we obtain the following conditions for the function W(z):

hnjW(z)=0 ony = 0 (3.3)
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and

lim ReW(z) = — - K^ = /±(y) for y on L, (3.4)

where

f±(y) = h r - K ) \ c o o i f ^ 0 -?> f o r y o n L ' <3-5)

\ay / L o_y J
L represent ing the l ine segment x = 0, —6 < y < —a.

The sectionally analytic function W(z) (analytic in the z-plane, cut along the
segment L and bounded by the line _y = 0) in the half-plane y < 0 must meet
with the infinity requirement that

| W(z) | < oo, (3.6)

and the edge conditions that

[ W(z) | = O(r~1/2) as r -* 0, (3.7)

with r2 = x2 + (y + rf)2, {d = a or ft).
The above conditions on W(z) follow directly from the requirements (iv), (v)

and (vi) to be satisfied by the function <f>\ (JC, y).
We now define a function W\ (z) which is sectionally analytic in the whole of

the z-plane cut along LUL' (L' is the reflection of L into the plane y > 0, with
respect to the x-axis) by using Schwarz's reflection principle in the following
manner,

[ W(z) for y < 0
Wl(z)=\ (3.8)

( W(z) for y > 0.

From the above definition (3.8) of W\ (z), we observe that,

5). (3.9)

The conditions on W(z) as given by (3.3), (3.4), (3.6) and (3.7) give rise to the
following requirements to be satisfied by W\ (z):

(I) Im,W,(z) = 0 on>> = 0
(E) Rej lim^o* Wx (z) = / ± ( - | y |) for yon LUL'
(HI) | W , ( z ) l < o o

in the entire cut z-plane and
(IV) | IV, (z) | ~ O(r-X'2) as r -+ 0,
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where r2 = x2 + (y + d)2, d = ±a or ±b.
Next, in order to solve the problem for the function W\{z) satisfying the

conditions (I) to (IV), we define the two sectionally analytic functions \{z) and
/x(z) as given by (see Paper 1):

A(z) = i \wx{z) + W ^ l ) ] and fi(z) = i [V,(z) - W,(-z)] . (3.10)

On using the following standard notations for the limiting values,

fo r jonL
lim A.(z) = . , _ . . . . ,

o± [ XT(yy) forvonL',

the BC (II) on W\ (z) can be expressed as

A . + 0 » + *r<jy) = g(-\y I) for y on L U L '

and
fo r jonL

{_ / ( _ y ) for;onL,
where

It follows from (3.10) that the sectionally analytic functions in the cut z-plane
also satisfy conditions similar to the ones as given by the equations (III) and
(IV)on W,(z).

We thus have two independent Riemann-Hilbert problems for the functions
k(z) and n(z) with the BC (3.11) to be satisfied on L U L'. The solution of these
problems can be obtained by using the techniques available in Muskhlelishvili
[5], in the following form:

Mz) = ko(z)
La T)2 + Z<

and

- - f 4^r
n J-a vi1 + z

+ z2

where P(z) and Q{z) are polynomials in z and p{q) is as defined by (2.4) and

l/2. (3.14)
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Using (3.10) and the infinity conditions (III) on Wx (z), we obtain the following
forms of the polynomials P(z) and Q{z):

P(z) = C0 + Cxz + C2z
2 Q(z) = Q0. (3.15)

Then using (3.9) on W\{z) and (3.10), after simplification we arrive at the
following identity:

0o = C,Ao(z) for all z,

and we thus decide that
2o = C , = O . (3.16)

A similar procedure ensures that the constants Co and C2 will have to be real
constants, A and B respectively, in order to satisfy the condition (I) on Wx{z).

We have therefore ultimately determined the function W\ (z) completely ex-
cept for two arbitrary real constants A and B, and we have that

+ Bz2 - - [ J l ] f-- f 4^
* J-a V + Z

Z J * J-a V +
(3.17)

Upon integrating (3.1) and using (3.17), we then obtain the complex potential
W(z) as given by :

W(z) = e~iKz \c + f eJk*WiG)d$\ , (3.18)\c + f eJk*W

where C is an arbitrary real constant. This choice of C satisfies the condition
on ImjW(z) i.e. Vi(*> y) o n ^ which is derived from the condition (iii) on

4. Determination of the constants A,B,C,R\ and T,

It follows from (3.2) and (3.18), along with (3.17) for W,(z) that the potential
<Pi (x, y) (=Rey W(z)) is determined completely except for the arbitrary constants
A, B and C which are real with respect to j . Also the constants R\ and Tu

the first-order corrections to the reflection and transmission coefficients (Shaw
[7]) are to be determined explicitly. For this purpose we carry out the following
asymptotic analysis.

We first observe that

\ W&) - B \-> 0, as | z h oo. (4.1)
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Using (4.1) along with Cauchy's integral theorem, (see Paper 1 and [1]) we can
derive the following relation, as x —*• +oo:

/ e*k* W
J—aj K ,F)

,F)-a2(K,F)] (4.2)

and, as x —>• — oo, we find that

J —aj

where

K

j [A(a2(k)-a3(k))-B(a^k)-ar;(k))-a2(K, F)+a3(K, F)], (4.3)

= — I te dt I — -an,
71 J-a J-a X\2-t2

F{t) = -
V8(V)P(V)

dt)

(4.4)

e-*'f+(-t)dt,
(4.5)

and the other constants am(K), a'^(K) and am(K, F) are as defined earlier by
(2.3), form = 1,2,3.

We can, therefore, obtain from the asymptotic relations (4.2) and (4.3) the
behaviour of the complex potential W(z) and derive the following behaviour of
the function (/)\(x, y) [using (3.2) that Re; W(z) = 4>\(x, y)] as x ->• ±oo:

<t>\{x,y) ~ eK'ca&Kx [C + A + Aa^K) - Ba'{{K) -
sin Kx[ki + A(a2(K)-a3(K))

as x +oo
(4.6)

and

e«y cos Kx [C + A - Aax(K) + Ba'{(K) +ax(K, F)]
+eKy sin Kx[X2 + A(a2(K)-a3(K))

-B(flZ(K)-aZ(K))-a2{K,F)+a3(K,F)],
as x —*• —oo.

(4.7)
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Comparing the above relations (4.6) and (4.7) with the conditions (V) on
</>! (x, y), we obtain that

r, = C + A + Aax(K) - Ba'^K) - ax(K, F),

if, = kx + A [a2(K)-a3(K)] - B [a'2'(K)-a'^K)] - a2{K, F) + a3(K, F),

Rx=C + A-Aax (K) + Ba'l(K) + ax(K,F),

iRx = -k2 -A[a2(K)-ai(K)] +B[a'2'(K)-a'^(K)]+a2(K, F)-a3(K, F).

(4.8)

Now we must meet with the requirement that the velocity potential </» (x, y)
and, therefore, the functions </>oOt, y) and 4>\{x, y) are single-valued. Hence,
circulation of the flow induced by the potential </>i(x, 30 around any closed
contour must be zero. This criterion (see [1] and [6], also) gives rise to the
relation that

r
= 0,

where 5 is a closed contour around L. Following Evans [1] and shrinking the
contour onto L we simplify the above relation to the following equation:

Aa^-K) - Ba'K-K) - ax{-K, F) = 0, (4.9)

where F(f) is as defined earlier by (4.4) and ax{—K), a"(—K) and ax(—K, F)
are defined by (2.3).

The five relations, given by (4.8) and (4.9), provide us with five equations
for the determination of the five unknowns A,B,C,RX and Tx and we ultimately
obtain the following expressions for these constants:

A =
B = (a-B-iy)-1 [ia^K, F) - a2(K, F)+a3(K, F) + I(X, + X2)

+ [ai(-K,F)/ax(-K)] [iax{K) - a2(K)
C = i [ A . 2 - A , ] - A ,

{
+B[d2

ai(K)-a';(K)],
Ri = 2-[k2-kl]+al{K,F)-al{K)[al(-K,F)/al(-K)]

+B[a'[{K)-ax{K)d2],
(4.10)

where the constants a, fi, y and d2 are as defined earlier by (2.2).
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Using the above relations and the definitions of the constants X\ and k2 as
given by (4.5), we derive that

f~b * 3 -
iiTi + R}) = 2K eK'Cit)—<b0(t)dt, (4.11)

La dt
where

y), (4-12)

after using a further assumption that C(—b) = 0. But the relations (2.1) and
(2.2) for the function <f>o(x, y) give rise to the result that

e~K'dt, -b < y < —a
pit) (4.13)

0, otherwise.

This relation (4.13) when substituted in (4.11) finally gives that

r-b _

-dr)
4A: La La

J —

-b (d2 - t2)
V -Cit)eK'dt. (4.14)

If in the above result (4.14) we use the identity that T\ = 0 which can be
derived by employing physical arguments similar to the ones used by Shaw [7],
we find that the expression for the constant /?i agrees with that obtained by
Mandal and Kundu [3].

5. Determination of the near-field for <$>\ (x, y)

Simplifying (3.18), we can obtain explicitly the complex potential W(z) in the
halfplane y < 0. For z = {x + jy) near the barrier, by choosing an appropriate
contour (see Paper 1) and using the relations (4.2) and (4.8) we can arrive at the
following expression for <\>\ {x, y) for x > 0:

, y) = Txe
Ky+iKx - Reje-JKt jT e^« W,(£)d£. (5.1)

Substituting for Wi(£) from (2.17), we obtain that

= 5,(z) - -5 2 (z) - -5 3 (z) , (5.2)
n n
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[12] Solution of the problem of scattering of water waves by a nearly vertical plate 393

where

with/2 = A/B,

/

OO f-b

SejK*d$ / -
J —a "

and
. - 6 (5.3)

We then simplify the above expressions, in the manner as described below.
From Laplace-transform theory we find that

/

°° - 2 2

e r) r) -
where

2 rb g2 - u2)
1 K '-•-' X J (5.5)

and Ao(^) is as defined in (3.14). Using the result (5.4), we can express the
integral S{(z) as follows:

/

OO />O0

ejK*d$ /
Jo

/

OO /»0O

Af (»j)d»? /

= v r Jin
Jo »?-y

Also, using the standard result that

/

oo I

£>"*" cos(tr])dr) =
we can express 52(z) as

52(z) = ,^z f" f(t)dt r ^Le-^dn. (5.7)
J-a JO V-jK
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We next write the integral Si(z) in the following form:

253(z) = f g(f)p(f)dt f°° eJK^X0^) \—l— + —L
J-a Jz U + jH t~j

To prove this we use the result that

f
Jo

where

L{r),t) = — I (5.8)

and obtain that

p—b /»oo poo

2S3(z) = / g(f)p(t)dt I ejK*d% I e-*nL(r), t)dr)
J-a Jz Jo

which, after interchanging the orders of integration and simplification, gives the
result that

cJKz f-b

(5.9)
jKz r—b /.oo r f .-v

53(z) = — - / p{t)g{t)dt / - ^ 2
2 J-a Jo ri-jK

Substituting the above results for 5i (z), 52(z) and 53(z) in (5.2) we ultimately
find that the function (f>\ (x, y) can be expressed as:

,(x,y) = Txe
K>+iKx - B jT ^ Y i ^ ^ c o s W + K s i n

- / nodi r^^e^
JO 1)

+- / nodi r^^e^[r)COSriy+Ksinr)y]dr)
* J J 1) + K--a

1 P—^ /*0

+^~ g(t)p(t)dt -^-^e-^lrtcosny + K sin

for^:>0. (5.10)

Note that if we use the result that T\ = 0, the first term drops out.
The function (j)\{x, y) can be determined by a similar procedure for x < 0

also, and we obtain that

/•OO

<t>i(x, v) = R^eKy-iKx - Reje-jKz / eJK*Wite)d£, for* < 0,
Jz

https://doi.org/10.1017/S033427000000936X Published online by Cambridge University Press

https://doi.org/10.1017/S033427000000936X


[14] Solution of the problem of scattering of water waves by a nearly vertical plate 395

and this can be expressed ultimately as:

*,(*, y) = R,eKy~iKx + B [°° f ^ e " * [r,cosr,y + K sin r,y)dr,[
+- I f(t)dt [° T f ^ V * [i? cos r,y + K sin r,y] dr,

* J-a Jo Vi2 + K2

~b C°° L(n t)1 C~b C°° L(n
- = - / g(Op(t)dt ^

2n J_a Jo t]2 + for;c<0. (5.11)

The knowledge of the function (p\{x, y) as given by (5.10) and (5.11) for
x > 0 and x < 0 respectively, where M(rj) and L(r), t) are as defined by (5.5)
and (5.8), gives the idea of the complete field for this potential for all finite
values of x.

It is observed that the above expressions (5.10) and (5.11) for the potential 0]
involve the functions / and g which, in turn, depend on the potential </>o(O, y)
(y e L), as well as the shape function C(y). Therefore, these forms of <f>i
are to be regarded as formal explicit expressions for the potential and their
actual determination requires difficult but practicable manipulations which are
not taken up in the present work.
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