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Abstract

In this paper we obtain some sharp Lp − Lq estimates and the restricted weak-type endpoint estimates
for the multiplier operator of negative order associated with conic surfaces in R3 which have finite type
degeneracy.
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1. Introduction and statement of results

Let γ : [−1, 1]→ R be a smooth function. In this paper, we consider the cone multiplier
problem associated with the conic surface

Γγ = {(ξ, τ) ∈ R2 × R : (ξ, τ) = λ(t, γ(t), 1), t ∈ [−1, 1], λ > 0},

which is generated by the curveC = {(t, γ(t)) ∈ R2 : t ∈ [−1, 1]}. To do this, let us define
a cone-type multiplier operator S α of order α by

(S α f )ˆ(ξ, τ) =
φ(τ)

Γ(α + 1)
χ(ξ)

(
ξ2 − τγ

(
ξ1

τ

))α
+

f̂ (ξ, τ), (ξ, τ) = (ξ1, ξ2, τ) ∈ R2 × R,

(1.1)
where φ ∈C∞0 (1, 2) and χ is a smooth function compactly supported in a small
neighborhood of (0, γ(0)). Here Γ(z) is the gamma function, and r+ = r if r > 0 and
r+ = 0 if r ≤ 0. By analytic continuation, this definition makes sense even when
Re(α) ≤ −1.

When Γγ is a subset of the light cone, S α becomes essentially the standard cone
multiplier operator. We may represent this by the smooth surface generated by the
parabola C(t) = (t, t2), t ∈ [−1, 1], which is a simple model of curves with nonvanishing
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curvature. In this case, when α > 0, the problem of Lp boundedness has been studied
by several authors [4, 20, 24, 25, 27] and the most recent result in this direction is
due to Garrigós and Seeger [8] (see also [12, 13] for higher dimensions). When α < 0,
Lee [16] obtained some sharp range of Lp − Lq boundedness and showed that the cone
multiplier operator of negative order in R3 can be bounded from Lp(R3) to Lq(R3) only
in the range where the Bochner–Riesz operator in R2 of the same order is bounded.
However, the problems of Lp and Lp − Lq boundedness of the cone multiplier operator
are still open for both positive and negative orders.

On the other hand, one may consider the problem of Lp − Lq boundedness
associated with the conic surface Γγ which is generated by a curve C having
degeneracy at some points where the curvature of C vanishes. In fact, it turns out
that the Lp − Lq boundedness of S −α of negative order −α depends on the degeneracy
of the curve C. The purpose of this note is to show certain sharp Lp − Lq estimates for
S −α when the conic surface Γγ is generated by a curve C whose curvature vanishes at
a single point.

We need the following definition to specify the type of the curve C at a point.

D 1.1. Let m ≥ 2 be an integer and a ∈ R. Let γ be a smooth function defined
in a neighborhood of a. We say that γ is of finite type m at a if γ(k)(a) = 0 for 2 ≤ k < m
and γ(m)(a) , 0. We also say that the curve C is of finite type m at (a, γ(a)) if γ is of
finite type m at a.

We may assume that γ is of finite type m at zero and γ(0) = γ′(0) = 0. Indeed,
translation on the Fourier transform side and discarding some harmless smooth factor
of the multiplier do not affect the boundedness of S −α except for a constant multiple.

Now we introduce some notation. Let m ≥ 2 and, for 0 < α < (m + 1)/m, let us set

∆m
α =

{( 1
p
,

1
q

)
∈ [0, 1] × [0, 1] :

1
p
−

1
q
≥

mα
m + 1

,
1
p
>

1
4

+
α

2
,

1
q
<

3
4
−
α

2

}
.

Also we define points Aα, Bm
α , Cm

α , A′α, B′mα and C′mα contained in [0, 1] × [0, 1] by

Aα =

(1
4

+
α

2
, 0

)
, Bm

α =

(1
4

+
α

2
,

1
4
−

(m − 1)α
2m + 2

)
, Cm

α =

( mα
m + 1

, 0
)
,

and

A′α =

(
1,

3
4
−
α

2

)
, B′mα =

(3
4

+
(m − 1)α
2m + 2

,
3
4
−
α

2

)
, C′mα =

(
1, 1 −

mα
m + 1

)
.

(See Figure 1.) Note that if 0 < α < (m + 1)/[2(m − 1)], ∆m
α is the closed pentagon

with vertices Aα, Bm
α , B′mα , A′α and (1, 0), from which closed line segments [Aα, Bm

α ],
[A′α, B′mα ] are removed. If α > (m + 1)/[2(m − 1)], ∆m

α is the closed triangle with
vertices Cm

α , C′mα and (1, 0). If α = (m + 1)/[2(m − 1)], ∆m
α is the closed triangle with

vertices Cm
α , C′mα and (1, 0), from which two points Cm

α , C′mα are removed.
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[3] Cone-type multiplier operator of negative index 323

F 1. Lp − Lq boundedness of S −α with γ of finite type m.

In order to predict the mapping properties of S −α, let us consider a Bochner–Riesz
type operator T−α of negative order −α defined by

(T−α f )ˆ(ξ) =
(ξ2 − γ(ξ1))−α+

Γ(−α + 1)
χ(ξ) f̂ (ξ), ξ = (ξ1, ξ2) ∈ R2.

When C is a part of the circle (more generally, a curve with γ′′ , 0), T−α is essentially
the Bochner–Riesz operator. In this case, the sharp range of Lp − Lq boundedness
was proved by Bak [1] (see also [2, 5]). There are also some restricted weak-type
endpoint estimates in [11]. Recently, Lee and Seo [19] showed the sharp Lp − Lq

boundedness of T−α of negative order −α when the curve C is of finite type m. More
precisely, they showed that for 0 < α < (m + 1)/m, ‖T−α f ‖Lq(R2) ≤C‖ f ‖Lp(R2) if and
only if (1/p, 1/q) ∈ ∆m

α . They also obtained some restricted weak-type results.
As was shown in [16], the cone multiplier operator of negative order is closely

related to the Bochner–Riesz operator of the same order. In other words, the results
of the cone multiplier operator of negative order in R3 are parallel to those of the
Bochner–Riesz operator of the same order in R2. Thus we can also expect that
the type set of S −α is the same as that of T−α when the curve C is of finite type
m (see Section 3). Furthermore, as with the Bochner–Riesz type operator T−α

of negative order −α when the curve C is of finite type m, it can be conjectured
that for 0 < α < (m + 1)/m, ‖S −α f ‖Lq(R3) ≤C‖ f ‖Lp(R3) if and only if (1/p, 1/q) ∈ ∆m

α .
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The following is a partial answer to this question. We denote by Lp,r the Lorentz space
equipped with norm ‖ · ‖p,r.

T 1.2. Let γ be of finite type m ≥ 2 at zero and let (m + 1)/[2(4m − 1)] < α <
(m + 1)/m. Then the following hold.

(i) When (m + 1)/[2(4m − 1)] < α < (m + 1)/[2(m − 1)]:

(a) ‖S −α f ‖q ≤C‖ f ‖p if (1/p, 1/q) ∈ ∆m
α ;

(b) ‖S −α f ‖q,∞ ≤C‖ f ‖p if (1/p, 1/q) ∈ (B′mα , A′α];
(c) ‖S −α f ‖q,∞ ≤C‖ f ‖p,1 if (1/p, 1/q) = Bm

α or B′mα .

(ii) When (m + 1)/[2(m − 1)] ≤ α < (m + 1)/m:

(d) ‖S −α f ‖q ≤C‖ f ‖p if (1/p, 1/q) ∈ ∆m
α \ {C

m
α ,C

′m
α };

(e) ‖S −α f ‖q,∞ ≤C‖ f ‖p if (1/p, 1/q) = C′mα and α , (m + 1)/[2(m − 1)].

To obtain the results of Theorem 1.2, we decompose S −α dyadically away from
its singularities on Γγ. Thus, we consider a multiplier operator Tδ whose Fourier
multiplier is essentially supported in a δ-neighborhood of the cone Γγ. More precisely,
for 0 < δ� 1, define

(Tδ f )ˆ(ξ, τ) = φ(τ)ψ
(
ξ2 − τγ(ξ1/τ)

δ

)
χ(ξ) f̂ (ξ, τ), (1.2)

where φ ∈C∞0 (1, 2), ψ ∈C∞0 (−1, 1) (or S(R)) and χ is a smooth function compactly
supported in a small neighborhood of (0, γ(0)). Here S is the Schwartz class.

P 1.3. Let Tδ be defined by (1.2) with ψ ∈C∞0 (−1, 1) and let γ be of finite
type m at zero. Then for p ≥ 2, (m − 1)/p + (m + 1)/q ≤ m/2, q > 5p/3 and (p, q) ,
(2, 2(m + 1)), there is a constant C such that

‖Tδ f ‖q ≤Cδ2/p−1/2‖ f ‖p. (1.3)

Moreover, if ψ is a smooth function satisfying the condition

ψ̂ is supported in {t ∈ R : |t| ∼ 1}, (1.4)

then for 1 ≤ p < 2(m − 1)/m, there is a constant C such that

‖Tδ f ‖∞ ≤Cδ(m+1)/(mp)‖ f ‖p. (1.5)

The constant C may depend on the norms ‖γ‖CN ((−1, 1)), ‖ψ‖CN ((−1, 1)) and
‖φ‖CN ((−1, 1)) for some large N.

R 1.4. When Γγ is a subset of the light cone, if 1/p + 3/q = 1 and 14/3 < q ≤ 6
then (1.3) is due to Lee [16]. In particular, the estimate (1.3) with m = 2 is covered
by Proposition 2.1 which additionally contains the point (p, q) = (2, 6) in the (p, q)
range. For this reason, it suffices to show the case m ≥ 3 of the estimates (1.3) after
proving Proposition 2.1. Moreover, (1.3) shows that the Lp − Lq bounds for Tδ are not
influenced by the degeneracy of the curve C when p ≥ 2, 1/p + 1/q ≤ 1/2, q > 5p/3
and (p, q) , (2,∞).

https://doi.org/10.1017/S1446788712000572 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000572


[5] Cone-type multiplier operator of negative index 325

We would like to remark that the condition q > 5p/3 in Proposition 1.3 has been
dictated by the restriction r > 5/3 in the bilinear cone restriction estimate (stated below
as Theorem 4.1) and the use of the L∞ estimate ‖Tδ f ‖∞ ≤Cδ−1/2‖ f ‖∞. One can relax
this condition a little and prove some (almost optimal) estimates outside that region
(q > 5p/3) by using the so-called ‘plate decomposition estimates’ due to Wolff [27]
and Garrigós and Seeger [8] instead of the L∞ estimate. We get the following ε-loss
version of (1.3).

P 1.5. Let Tδ be defined by (1.2) with ψ ∈C∞0 (−1, 1) and γ be of finite type
m at zero. Then for all ε > 0, there is a constant Cε such that

‖Tδ f ‖q ≤Cεδ
2/p−1/2−ε‖ f ‖p (1.6)

in the (additional) range given by (m − 1)/p + (m + 1)/q ≤ m/2 and

3
5p
≤

1
q
<

3/10 − 1/pw

1/2 − 1/pw

( 1
p
−

1
pw

)
+

1
pw
. (1.7)

R 1.6 (Comments on Proposition 1.5). When m = 2, the estimate (1.6) can be
obtained from the results due to Wolff [27] (also Garrigós and Seeger [8]) and a bilinear
cone restriction estimate (stated below as Theorem 4.1).

To be more precise, Wolff established an important inequality [27, Theorem 1] on
the plate decompositions related to the (circular) cone multipliers. Let us temporarily
denote by Wδ the operator Tδ corresponding to the light cone (that is, γ(t) = t2). Wolff’s
inequality leads to the following almost sharp Lp bounds: for all sufficiently large p,
say p > pw, and all ε > 0, there exists a constant Cε such that

‖Wδ f ‖p ≤Cεδ
2/p−1/2−ε‖ f ‖p. (1.8)

Wolff obtained these estimates for p > pw = 74 (see [27, Corollary 2]). More recently,
Garrigós and Seeger [8, Remark 1.4 and Corollary 1.5 in Section 1] improved this
range to p > pw with pw = 63 1

3 (for a generalized version of Uδ corresponding to
the case |γ′′(t)| ≥ c > 0). Further progress (p > pw with pw = 20) has been made by
Garrigós et al. [9].

The following Lp − Lq estimate was deduced in [16] (in the case γ(t) = t2) from
(1.8) and a bilinear cone restriction estimate (stated below as Theorem 4.1):

‖Wδ f ‖q ≤Cεδ
2/p−1/2−ε‖ f ‖p

for some constant Cε , ε > 0, where p, q satisfy (1.7). Then, the estimate (1.6) with
m = 2 may be easily obtained by applying the arguments in [16, Section 5].

When m ≥ 3, one can use a scaling argument and (1.6) with m = 2. Notice that this
does not include the critical line (m − 1)/p + (m + 1)/q = m/2, because of the presence
of the δ−ε factor in (1.6) with m = 2. We omit the details of this argument, since it is
similar to the argument used to prove (1.3) from Proposition 2.1 (see Section 2 below).

https://doi.org/10.1017/S1446788712000572 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000572


326 S. Choi [6]

Furthermore, the estimates (1.6) give the following extended range of α in (a) of
Theorem 1.2:

αpw,m < α ≤
m + 1

2(4m − 1)

where

αpw,m =
2

pw,m
−

1
2

and (1/pw,m, 1/qw,m) is the point of intersection of the lines (m − 1)/p + (m + 1)/q =

m/2 and
1
q

=
3/10 − 1/pw

1/2 − 1/pw

( 1
p
−

1
pw

)
+

1
pw
,

which is the line joining the points (1/pw, 1/pw) and (1/2, 3/10). This is because
Theorem 1.2 is a consequence of Proposition 1.3 and a summation method (see
Section 3 below). For more details, we refer the reader to [16, Section 5].

In order to obtain the sharp Lp − Lq boundedness for S −α, the estimates (1.5) play
a crucial role. However, it is impossible to prove (1.5) without imposing an additional
condition (1.4) on ψ. To see this, suppose that (1.5) holds for a function ψ which does
not satisfy (1.4). We may choose an interval I0 away from zero satisfying γ′′ , 0 on I0

because γ is of finite type m at zero. Choose a smooth function f ∈ S(R3) satisfying

(Tδ f )ˆ(ξ, τ) = φ(τ)ψ
(
ξ2 − τγ(ξ1/τ)

δ

)
χI0 (ξ1/τ)

where χI ∈C∞0 with χI = 1 on interval I. By the simple change of variables ξ2 =

ξ2 + τγ(ξ1/τ) and integration in ξ2, we see that

Tδ f (x, t) = δψ̂(δx2)
∫

e2πitτI(x, τ)φ(τ) dξ1 dτ,

where I(x, τ) =
∫

e2πi(x1ξ1+x2τγ(ξ1/τ))χI0 (ξ1/τ) dξ1. Since γ′′ , 0 on I0 and τ ∼ 1, by
using the stationary phase method, we have |I(x, τ)| ≥C|x|−1/2 for sufficiently large
|x2| and |x1| <C|x2|. Note that for t with |t| ≤ c, we have e2πitτ = 1 + O(c). Hence, for
sufficiently large R and sufficiently small c,

‖Tδ f ‖qq ≥Cδq
∫

AR,c

|ψ̂(δx2)|q|x|−q/2 dx dt ≥Cδq
∫ ∞

R
|ψ̂(δr)|qr−q/2+1 dr

where AR,c = {(x, t) ∈ R2 × R : |x2| > R, |x1| <C|x2|, |t| ≤ c}. This means that if q > 4
then ‖Tδ f ‖q ≥Cδ. By duality and (1.5), if 1 ≤ p < 4/3 then Cδ ≤ ‖Tδ f ‖q ≤Cδ(m+1)/(mp)

for any q ≥ 1. This says that (1.5) is no longer valid for 1 ≤ p < (m + 1)/m. Therefore,
we conclude that the condition (1.4) on ψ plays an important role in deriving the
boundedness of Tδ.
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R 1.7. We obtain the estimates (1.5) from interpolation between the following
estimates;

‖Tδ f ‖∞ ≤Cδ(m+1)/[2(m−1)]‖ f ‖2(m−1)/m,1, (1.9)

‖Tδ f ‖∞ ≤Cδ(m+1)/m‖ f ‖1. (1.10)

Then an interpolation between (1.3) and (1.9) gives

‖Tδ f ‖q ≤Cδ2/p−1/2‖ f ‖p (1.11)

for p > 2(m − 1)/m, q > 5p/3, and m/2 ≥ (m − 1)/p + (m + 1)/q. Note that 2/p −
1/2 = (1 + 1/m)(1/p − 1/q) if (1/p, 1/q) is on the line (m − 1)/p + (m + 1)/q = m/2.
By interpolation between (1.3) for p, q satisfying (m − 1)/p + (m + 1)/q = m/2 and
(1.5), we see that

‖Tδ f ‖q ≤Cδ(1+1/m)(1/p−1/q)‖ f ‖p (1.12)

for (1/p, 1/q) ∈ ∆ \ {A, B}, where ∆ is the closed triangle with vertices A =

(5m/[4(4m − 1)], 3m/[4(4m − 1)]), B = (m/[2(m − 1)], 0) and C = (1, 0), from which
the line segment (A,C) is removed. In fact, we use the estimates (1.5), (1.11), and
(1.12) to prove Theorem 1.2.

The organization of this paper is as follows. In Section 2 we prove Proposition 1.3.
First, we obtain (1.3) from Proposition 2.1 by using a scaling argument which
depends on stability of estimates (see Remark 2.2). We also verify (1.5) by showing
the estimates (1.9) and (1.10). Actually, the good condition (1.4) on ψ makes it
possible to prove (1.9) and (1.10) by using the kernel estimates (see Lemma 2.6). In
Section 3 we give the proof of Theorem 1.2 by combining Proposition 1.3 and a dyadic
decomposition of S −α (see Lemma 3.1). Then we prove the necessary conditions for
S −α. In Section 4 we give the proof of Proposition 2.1 which is similar to the arguments
that were used by Lee [16] (see also [15]). We will also use the bilinear restriction
estimates for some conic surfaces, which are a generalized version of the bilinear cone
restriction estimates due to Wolff [28] and Tao [23].

Throughout this paper, C is a positive constant which may vary from line to line. Let
A . B or A = O(B) denote the estimates A ≤CB and let A ∼ B denote C−1A ≤ B ≤CA
for some C. In addition to the symbol ˆ , we use F (·), F −1(·) to denote the Fourier
transform and the inverse Fourier transform, respectively. Finally, supp f , supp f̂ (or
the support of f̂ ) mean the support of f and the Fourier support of f , respectively.

2. Estimate for Tδ

In this section we prove Proposition 1.3. Before we begin, let us choose a smooth
function χ0 supported in I = [−1, 1]. For 0 < δ� 1, define Uδ by

(Uδ f )ˆ(ξ, τ) = φ(τ)ψ
(
ξ2 − τγ(ξ1/τ)

δ

)
χ0(ξ1/τ) f̂ (ξ, τ), (2.1)

https://doi.org/10.1017/S1446788712000572 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000572


328 S. Choi [8]

where φ ∈C∞0 (1, 2) and ψ ∈C∞0 (−1, 1). (Note that the only difference between Uδ and
Tδ in (1.2) is in the cutoff function.) We need the following proposition which will be
shown in Section 4.

P 2.1. Let Uδ be defined by (2.1) and let γ be a smooth function defined on
I = [−1, 1] with |γ′′| ≥ c > 0 on I. Then for p ≥ 2, q > 5p/3 and 1/p + 3/q ≤ 1,

‖Uδ f ‖Lq(R3) ≤Cδ2/p−1/2‖ f ‖Lp(R3) (2.2)

where the constant C is stable under ‘small smooth perturbations’ of γ (in a sense
made precise in Remark 2.2).

R 2.2. The stability of estimates under small smooth perturbation of γ plays
an important role in the proof of our results. Let γ̃ be a smooth function defined on
I = [−1, 1]. Suppose that there exist a large positive integer N, a constant B = BN

(depending on N) and a small ε0 > 0 such that for all 0 < ε ≤ ε0 and 0 ≤ n ≤ N,∣∣∣∣∣ dn

dtn
(γ̃(t) − γ(t))

∣∣∣∣∣ ≤ Bε, t ∈ I. (2.3)

Then the stability of estimates means that the constant C in the estimate in (2.2) is
uniform in the functions γ̃ satisfying (2.3).

However, in our problem, we need to treat γ(ξ1/τ) which is a function of two
variables. Thus, in this case we need to replace (2.3) by∣∣∣∣∣ ∂n+l

∂xn∂yl
(γ̃(x/y) − γ(x/y))

∣∣∣∣∣ ≤ Bε, x/y ∈ I, y ∈ [1, 2],

for all l + n ≤ N. But this follows from (2.3) by the chain rule and product rule in the
given range of x, y. �

The fact that a function γ is of finite type m at a makes it possible to use a scaling
argument which relies on this type of stability of estimates. More precisely, let us set

γ(a, t) = γ(t + a) − γ(a) − γ′(a)t.

For 0 < δ� 1 and γ of finite type m at a, we also set

γδ(a, t) = δ−mγ(a, δt)

and

Gδ(a, x, y) = γδ

(
a,

x
y

)
.

The following lemma means that Gδ is a smooth function uniformly in a, δ. Thus, it
gives the stability of estimates for γδ.
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L 2.3. Let γ be of finite type m at a. Then for sufficiently small δ > 0, if |t| ∼ 1,

|γ′′δ (a, t)| ≥ c > 0 (2.4)

and
Gδ(a, ·) ∈CN(V)

uniformly in a, δ, where N is a large constant and V = {(x, y) : x/y ∈ [−1, 1], 1 ≤ y ≤ 2}.

P. By a Taylor expansion, we see that

γδ(a, t) =
γm(a)

m!
tm + ζδ(t, a) (2.5)

with |ζδ(t, a)| ≤Cδ|t|m+1. This gives the estimate (2.4). If x/y is contained in [−1, 1]
and 1 ≤ y ≤ 2, by replacing t by x/y in (2.5), we see that∣∣∣∣∣ ∂n+l

∂xn∂yl

(
Gδ(a, x, y) −

γm(a)
m!

( x
y

)m)∣∣∣∣∣ ≤CNδ

for all l, n ≤ N. This means that Gδ is a smooth function contained in CN(V) uniformly
in a, δ. �

2.1. Proof of Proposition 1.3. As mentioned above, interpolation between (1.9) and
(1.10) gives (1.5). Therefore, we only need to show (1.3), (1.9) and (1.10).

First, in order to prove (1.3), we decompose Tδ dyadically away from its degeneracy.
We treat decomposed parts by using Proposition 2.1 and a rescaling argument. Then
it remains to treat the part of Tδ containing the degeneracy. To control it, we need the
following kernel estimate.

For 0 < δ� 1, let us define Ka by

(Ka)ˆ(ξ, τ) = φ(τ)ψ
(
ξ2 − τγ(ξ1/τ)

δ

)
ρ
(
ξ1/τ − a
δ1/m

)
(2.6)

where φ ∈C∞0 (1, 2), ψ ∈ S(R) and ρ ∈C∞0 [−1, 1].

L 2.4. Suppose γ is finite type m at a. Then there is a constant C = C(M),
independent of a, δ, such that

|Ka(x, t)| ≤Cδ(m+1)/m(1 + |δ1/m(x1 + γ′(a)x2)| + |δx2| + |t + ax1 + γ(a)x2|)−M (2.7)

for all 0 < M ≤ N with large N.

P. By the change of variables (ξ1, ξ2, τ)→ (ξ1 + τa, ξ2 + γ′(a)ξ1 + τγ(a), τ) and
rescaling (ξ1, ξ2, τ)→ (δ1/mξ1, δξ2, τ), we have that

Ka(x, t) = δ(m+1)/mK̃a(δ1/m(x1 + γ′(a)x2), δx2, t + ax1 + γ(a)x2)

where F (K̃a) = φ(τ)ψ(ξ2 − τγδ1/m (a, ξ1/τ))ρ(ξ1/τ). Since γ is of finite type m at a,
by Lemma 2.3, γδ1/m is a smooth function contained in CN(V) uniformly in a, δ,
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where V = {(ξ1, τ) : ξ1/τ ∈ [−1, 1], 1 ≤ τ ≤ 2}. Then by integration by parts, we see
that there is a uniform constant C, independent of a, δ, such that |K̃a(x, t)| ≤C(1 +

|(x, t)|)−M for all M ≤ N. This gives (2.7). �

We now state the following interpolation lemma which is a multilinear extension
of a result implicit in [3] (see also [6]). We refer the reader to [16] for a proof of the
lemma. It will be used several times throughout this paper.

L 2.5 (Interpolation lemma). Let ε1, ε2 > 0. Suppose {T j} is a sequence of linear
operators satisfying that for 1 ≤ pi

1, pi
2 <∞, i = 1, . . . , l (here the superscript i is not

an exponent, but an index), and 1 ≤ q1, q2 <∞,

‖T j( f 1, . . . , f l)‖q1 ≤ M12ε1 jΠl
i=1‖ f

i‖pi
1

and
‖T j( f 1, . . . , f l)‖q2 ≤ M22−ε2 jΠl

i=1‖ f
i‖pi

2
.

Then for T =
∑∞

j=−∞ T j,

‖T ( f 1, . . . , f l)‖q,∞ ≤CMθ
1M1−θ

2 Πl
i=1‖ f

i‖pi,1 (2.8)

where θ = ε2/(ε1 + ε2), 1/q = θ/q1 + (1 − θ)/q2, 1/pi = θ/pi
1 + (1 − θ)/pi

2, for i =

1, . . . , l. Furthermore, if q1 = q2 = q, then

‖T ( f 1, . . . , f l)‖q ≤CMθ
1M1−θ

2 Πl
i=1‖ f

i‖pi,1. (2.9)

We now prove (1.3). To decompose Tδ dyadically, let β ∈C∞0 ([−2, −1/2] ∪ [1/2, 2])
satisfying

∑
j∈Z β(2 j·) = 1 and let β0 ∈C∞0 ([−2, 2]) satisfying

∑
2− j<λ β(2 j·) = β0(·/λ).

Then
1 = β0(·/λ) +

∑
2− j≥λ

β(2 j·).

This gives
Tδ = T 0

δ +
∑

2− j≥δ1/m

T j
δ ,

where

(T 0
δ f )ˆ(ξ, τ) = φ(τ)ψ

(
ξ2 − τγ(ξ1/τ)

δ

)
β0

(
ξ1/τ

δ1/m

)
χ(ξ) f̂ (ξ, τ)

and, for 2− j ≥ δ1/m,

(T j
δ f )ˆ(ξ, τ) = φ(τ)ψ

(
ξ2 − τγ(ξ1/τ)

δ

)
β
(
2 j ξ1

τ

)
χ(ξ) f̂ (ξ, τ).

Since γ is of finite type m at zero, T̂ 0
δ is supported in a cube of size δ × δ1/m × 1.

Observe that T 0
δ f = K0 ∗ f , where Ka is defined by (2.6). Then using Lemma 2.4 and

Young’s convolution inequality yields that for 1 ≤ p ≤ q,

‖T 0
δ f ‖q ≤Cδ(1+1/m)(1/p−1/q)‖ f ‖p.

Here we note that (1 + 1/m)(1/p − 1/q) ≥ 2/p − 1/2 because (m − 1)/p + (m + 1)/q ≤
m/2. This gives the desired bound for T 0

δ .
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Next we consider
∑

2− j≥δ1/m T j
δ . Let us define

(T̃ j
λ f )ˆ(ξ, τ) = φ(τ)ψ

(
ξ2 − τγ2− j (0, ξ1/τ)

λ

)
β(ξ1/τ) f̂ (ξ, τ).

By setting f j(x, t) = f (2 jx1, 2m jx2, t) and rescaling T j
δ f by (ξ1, ξ2)→ (2− jξ1, 2−m jξ2)

in frequency space, we have that

T j
δ f (x, t) = T̃ j

δ2m j f j(2− jx1, 2−m jx2, t).

From Lemma 2.3, we see that |γ′′2− j (0, ξ1/τ)| ≥ c > 0 uniformly in j because |ξ1/τ| ∼ 1

on the support of β. Therefore, applying Proposition 2.1 to T̃ j
λ f , we see that there is a

uniform constant C, independent of j, such that

‖T j
δ f ‖q ≤C2(m+1) j/q(δ2m j)2/p−1/2‖ f j‖p.

Rescaling again gives

‖T j
δ f ‖q ≤C2 j((m−1)/p+(m+1)/q−m/2)δ2/p−1/2‖ f ‖p (2.10)

for p ≥ 2, q > 5p/3 and 1/p + 3/q ≤ 1.
If (m − 1)/p + (m + 1)/q < m/2, then from direct summation, we obtain the

required estimate for
∑

2− j≥δ1/m T j
δ . If (m − 1)/p + (m + 1)/q = m/2, choose (1/p, 1/q1),

(1/p, 1/q2) satisfying 1/p + 3/qi ≤ 1, qi > 5p/3 (i = 1, 2), p ≥ 2 and (m − 1)/p +

(m + 1)/q1 > m/2 > (m − 1)/p + (m + 1)/q2. Then by (2.10), we have for i = 1, 2,

‖T j
δ f ‖qi ≤C2 j((m−1)/p+(m+1)/qi−m/2)δ2/p−1/2‖ f ‖p.

Applying (2.8) in Lemma 2.5 with l = 1, ε1 = (m − 1)/p + (m + 1)/q1 − m/2 and ε2 =

−((m − 1)/p + (m + 1)/q2 − m/2), we obtain the restricted weak-type estimate∥∥∥∥∥ ∑
2− j≥δ1/m

T j
δ f

∥∥∥∥∥
q,∞
≤Cδ2/p−1/2‖ f ‖p,1

for (m − 1)/p + (m + 1)/q = m/2, q > 5p/3 and p ≥ 2. Then interpolation between the
restricted weak-type estimates leads to the strong-type estimates except for (p, q) =

(2, 2(m + 1)). This completes the proof of (1.3).
We now turn to (1.9) and (1.10). In order to obtain these results, we need certain

estimates for a kernel which has the condition (1.4) imposed on ψ. Let us choose
a smooth function supported in a small neighborhood of the origin in R so that
χ(ξ) = χ1(ξ1)χ(ξ). Define K̂δ by

K̂δ(ξ, τ) = φ(τ)ψ
(
ξ2 − τγ(ξ1/τ)

δ

)
χ1(ξ1) (2.11)

where ψ ∈ S(R) and φ ∈C∞0 (1, 2). Since χ is a smooth function compactly supported
in a small neighborhood of (0, γ(0)), we may write that Tδ f = Kδ ∗ f . By
Young’s convolution inequality, it is enough to show that ‖Kδ‖∞ ≤Cδ(m+1)/m and
‖Kδ‖2(m−1)/(m−2),∞ ≤Cδ(m+1)/[2(m−1)]. These are obtained from the following Lemma 2.6.

https://doi.org/10.1017/S1446788712000572 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000572


332 S. Choi [12]

L 2.6. Let Kδ be defined by (2.11). Suppose that ψ satisfies (1.4) and γ is of finite
type m at zero. Then for 0 < δ� 1,

‖Kδ‖∞ ≤Cδ(m+1)/m, (2.12)

‖Kδ‖2(m−1)/(m−2),∞ ≤Cδ(m+1)/[2(m−1)]. (2.13)

P. We first consider the case m = 2. By the change of variables ξ2→ ξ2 + τγ(ξ1/τ)
and integration in ξ2,

Kδ(x, t) = δψ̂(δx2)
∫

e2πi(x1ξ1+tτ+x2τγ(ξ1/τ))χ1(ξ1)φ(τ) dξ1 dτ.

Set Φ(ξ1, τ) = τγ(ξ1/τ). Then Φ is homogeneous of degree one and the Hessian matrix
of Φ has rank one because γ is of finite type 2 at zero. From the well-known oscillatory
integral estimates, we see that∣∣∣∣∣∫ e2πi(x1ξ1+tτ+x2τγ(ξ1/τ))χ1(ξ1)φ(τ) dξ1 dτ

∣∣∣∣∣ ≤C|(x, t)|−1/2

if |x2| ≥C(x2
1 + t2)1/2. Therefore,

‖Kδ‖∞ ≤Cδ3/2 (2.14)

because ψ̂ is supported in {x2 ∈ R : |x2| ∼ δ
−1}.

Turning to the cases m ≥ 3, the proof of (2.12) is similar to the argument that was
used to prove (1.3). As before, we use β and β0 to decompose Kδ dyadically away
from its degeneracy. Then

Kδ = K0
δ +

∑
2− j≥δ1/m

K j
δ

where

K̂0
δ (ξ, τ) = φ(τ)ψ

(
ξ2 − τγ(ξ1/τ)

δ

)
β0

(
ξ1/τ

δ1/m

)
χ1(ξ1),

K̂ j
δ(ξ, τ) = φ(τ)ψ

(
ξ2 − τγ(ξ1/τ)

δ

)
β
(
2 j ξ1

τ

)
χ1(ξ1) for 2− j ≥ δ1/m.

Since γ is of finite type m at zero, Lemma 2.4 shows that K0
δ satisfies (2.12).

Now consider
∑

2− j≥δ1/m K j
δ . By rescaling (ξ1, ξ2)→ (2− jξ1, 2−m jξ2),

K j
δ(x, t) = 2− j(m+1)K̃δ2m j (2− jx1, 2−m jx2, t) (2.15)

where

K̃λ = F −1
(
φ(τ)ψ

(
ξ2 − τγ2− j (0, ξ1/τ)

λ

)
β(ξ1/τ)

)
.

By (2.14) we see that there is a uniform constant C, independent of j, such that
‖K̃λ‖∞ ≤Cλ3/2, because, from Lemma 2.3, |γ′′2− j (0, ξ1/τ)| ≥ c > 0 on the support of β
uniformly in j. Therefore,

‖K j
δ‖∞ ≤Cδ3/22(m−2) j/2. (2.16)
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Since m ≥ 3, we may sum over 2− j ≥ δ1/m, and thus∑
2− j≥δ1/m

‖K j
δ‖∞ ≤Cδ(m+1)/m.

This gives the required bound (2.12).
Similarly, we can prove (2.13) by using an analogous argument. To see this, define

K0
δ , K j

δ and K̃λ as before. From Lemma 2.4, one can easily see that K0
δ satisfies the

estimate (2.13).
By Plancherel’s theorem, we have ‖K̃λ‖2 ≤Cλ1/2. Then we obtain from (2.15) that

‖K j
δ‖2 ≤Cδ1/22− j/2. (2.17)

Using Hölder’s inequality together with (2.16) and (2.17),

‖K j
δ‖q ≤Cδ3/2−2/q2− j((m−1)/q−(m−2)/2).

Therefore ∥∥∥∥∥ ∑
2− j≥δ1/m

K j
δ

∥∥∥∥∥
2(m−1)/(m−2),∞

≤Cδ(m+1)/[2(m−1)]

by Lemma 2.5 and hence (2.13) holds. �

Furthermore, we claim that Proposition 1.3 is true if we replace ψ ∈C∞0 by ψ ∈
S(R). To see this, it is sufficient to show that (1.3) holds when ψ ∈ S(R) takes the
place of ψ ∈C∞0 , because we only used the condition (1.4) to prove (1.9) and (1.10).
For ψ ∈ S(R), let us define

(S 0 f )ˆ(ξ, τ) = φ(τ)ψ
(
ξ2 − τγ(ξ1/τ)

δ

)
β0

(
ξ2 − τγ(ξ1/τ)

δ

)
χ(ξ) f̂ (ξ, τ)

and, for 2− j ≥ δ,

(S j f )ˆ(ξ, τ) = φ(τ)ψ
(
ξ2 − τγ(ξ1/τ)

δ

)
β
(
ξ2 − τγ(ξ1/τ)

2− j

)
χ(ξ) f̂ (ξ, τ),

where β, β0 are the same functions as in the proof of (1.3). Then

Tδ = S 0 +
∑

2− j≥δ

S j.

By (1.3), we have ‖S 0 f ‖q ≤Cδ2/p−1/2‖ f ‖p.
It remains to consider

∑
2− j≥δ S j. Set ψ2− j (t) = β(t/2− j)ψ(t/δ). Then for 2− j ≥

δ, the smooth function ψ2− j is supported in [−2− j, 2− j] and it is easy to see that
|(dl/dtl)ψ2− j (t)| ≤C2 jlδM2 jM for any M. Observe that (1.3) is also valid if the function
ψ(ξ2 − τγ(ξ1/τ)/δ) in the definition (1.2) with ψ ∈C∞0 is replaced by ψδ(ξ2 − τγ(ξ1/τ)),
where ψδ is a smooth function supported in [−δ, δ] which satisfies |(dl/dtl)ψδ| ≤Clδ

−l

for l ≥ 0. Then we have that, for 2− j ≥ δ,

‖S j f ‖q ≤CδM2 jM2− j(2/p−1/2)‖ f ‖p

for the same p, q in Proposition 1.3. Summing these estimates shows our claim.
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3. Lp − Lq boundedness of S−α

In this section we prove Theorem 1.2 by using Proposition 1.3. We also show the
necessary conditions for S −α.

3.1. Proof of Theorem 1.2. First, we need to decompose S −α dyadically into Tδ
whose kernel has a good localization property (1.4) to use Proposition 1.3. This is
obtained by the following lemma (see, for example, [7, Lemma 2.1]). Let us define
the distribution Dz by

〈Dz, f 〉 =
∫

(ξ2 − τγ(ξ1/τ))z
+

Γ(z + 1)
φ(τ) f (ξ, τ) dξ dτ, Re(z) > −1.

When Re(z) ≤ −1, Dz is defined by analytic continuation.

L 3.1. For Re(z) > 0, there is a smooth function ψ−z satisfying supp ψ̂−z ⊂ {t ∈ R :
|t| ∼ 1} such that for all f ∈ S,

〈D−z, f 〉 =
∑

j

2z j
∫

ψ−z

(
2 j

(
ξ2 − τγ

(
ξ1

τ

)))
φ(τ) f (ξ, τ) dξ dτ.

By this lemma, we may write

S −α f =
∑

j

K j ∗ f

where K̂ j = 2α jψ−α(2 j(ξ2 − τγ(ξ1/τ)))φ(τ)χ(ξ) and supp ψ̂−α ⊂ {t : |t| ∼ 1}. Since φ and
χ are compactly supported, by the rapid decay of ψ−α, for 2 j ≤ 1 and 1 ≤ p ≤∞, we
have ‖K j‖p ≤C2α j. This gives, for all p ≤ q,∥∥∥∥∥∑

2 j≤1

K j ∗ f
∥∥∥∥∥

q
≤C‖ f ‖p.

Hence we only need to treat the part
∑

2 j≥1 K j ∗ f to prove Theorem 1.2. Since ψ
satisfies the condition (1.4), from Lemma 2.6 and Young’s convolution inequality, we
obtain ‖K j ∗ f ‖∞ ≤C2(α−(m+1)/m) j‖ f ‖1. Thus, for 0 < α < (m + 1)/m,∥∥∥∥∥∑

2 j≥1

K j ∗ f
∥∥∥∥∥
∞

≤C‖ f ‖1.

Therefore, if (m + 1)/[2(4m − 1)] < α < (m + 1)/[2(m − 1)], it is sufficient to prove (b)
and (c), because then we can obtain (a) by interpolation and duality. If (m + 1)/[2(m −
1)] < α < (m + 1)/m, we also obtain (d) from (e) by interpolation and duality.

We first consider case (i): (m + 1)/[2(4m − 1)] < α < (m + 1)/[2(m − 1)]. To show
(c), by duality we only need to show the restricted weak type for

∑
2 j≥1 K j ∗ f at Bm

α .
From (1.11),

‖K j ∗ f ‖q ≤C2α j2(1/2−2/p) j‖ f ‖p, (3.1)
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for p > 2(m − 1)/m, (m − 1)/p + (m + 1)/q ≤ m/2 and q > 5p/3. Choose (1/p1, 1/q1),
(1/p2, 1/q2) satisfying (m − 1)/pi + (m + 1)/qi = m/2 for i = 1, 2 and
5m/[4(4m − 1)] < 1/p1 < 1/4 + α/2 < 1/p2 < m/[2(m − 1)]. Then we obtain from
(3.1) that

‖K j ∗ f ‖qi ≤C2α j2(1/2−2/pi) j‖ f ‖pi i = 1, 2.

An application of Lemma 2.5 yields that, for (1/p, 1/q) = Bm
α ,∥∥∥∥∥∑

2 j≥1

K j ∗ f
∥∥∥∥∥

q,∞
≤C‖ f ‖p,1

because α + 1/2 − 2/p2 < 0 < α + 1/2 − 2/p1. This gives the desired estimates.
Next we prove (b). By duality it is sufficient to show, for (1/r, 1/s) ∈ (Bm

α , Aα], that∥∥∥∥∥∑
2 j≥1

K j ∗ f
∥∥∥∥∥

s
≤C‖ f ‖r,1.

Since (m + 1)/[2(4m − 1)] < α < (m + 1)/[2(m − 1)], we can choose (1/r1, 1/s),
(1/r2, 1/s) satisfying (m − 1)/ri + (m + 1)/s ≤ m/2 for i = 1, 2 and 5m/[4(4m − 1)] <
1/r1 < 1/4 + α/2 < 1/r2 < m/[2(m − 1)]. Then, by (3.1),

‖K j ∗ f ‖s ≤C2α j2(1/2−2/ri) j‖ f ‖ri i = 1, 2.

Noting that α + 1/2 − 2/r2 < 0 < α + 1/2 − 2/r1 as before and using (2.9) in
Lemma 2.5, we get ‖

∑
2 j≥1K j ∗ f ‖s ≤C‖ f ‖r,1. This shows (b).

We now consider case (ii): (m + 1)/[2(m − 1)] < α < (m + 1)/m. To show (e), by
duality it is sufficient to show, for (m + 1)/[2(m − 1)] < α < (m + 1)/m, that∥∥∥∥∥∑

2 j≥1

K j ∗ f
∥∥∥∥∥
∞

≤C‖ f ‖(m+1)/mα,1.

By (1.5), for 1 ≤ p < 2(m − 1)/m,

‖K j ∗ f ‖∞ ≤C2α j2−(m+1) j/(pm)‖ f ‖p. (3.2)

As before, since (m + 1)/[2(m − 1)] < α < (m + 1)/m, one can choose p1, p2 satisfying
m/[2(m − 1)] < 1/p1 < mα/(m + 1) < 1/p2 < 1. By (3.2), for i = 1, 2,

‖K j ∗ f ‖∞ ≤C2α j2−(m+1) j/(pim)‖ f ‖pi .

Note that mα/(m + 1) − 1/p2 < 0 < mα/(m + 1) − 1/p2. By applying (2.9) in Lemma
2.5, we obtain the desired estimates for α , (m + 1)/[2(m − 1)].

Next we prove (d). Since duality and interpolation between (e) and the L1 − L∞

estimate give (d) except for the case α = (m + 1)/[2(m − 1)], it is sufficient to prove
that, for 1/p − 1/q = m/[2(m − 1)] and q ,∞,∥∥∥∥∥∑

2 j≥1

K j ∗ f
∥∥∥∥∥

q,∞
≤C‖ f ‖p,1.

However, this can be obtained by the same argument as before by using (1.12), duality
and interpolation.
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3.2. Necessary conditions.

T 3.2. Let 0 < α < (m + 1)/m and let S −α be defined by (1.1). If χ(0, 0) , 0 and
α , 1, ‖S −α f ‖q ≤C‖ f ‖p may hold only if (1/p, 1/q) ∈ ∆m

α .

P. For 0 < α < (m + 1)/m and α , 1, we want to show that S −α may be bounded
from Lp to Lq only if

1
p
>

1
4

+
α

2
,

1
q
<

3
4
−
α

2
, (3.3)

1
p
−

1
q
≥

αm
m + 1

. (3.4)

First we prove (3.3). By duality it is sufficient to prove this for 1/q < 3/4 − α/2.
Define a smooth function b by

b̂(ξ, τ) = η
(
ξ1

τ

)
ϕ
(
ξ2 − τγ

(
ξ1

τ

))
φ(τ)/χ(ξ)

where η is a smooth function supported away from zero such that γ′′ , 0 on the support
of η and ϕ ∈C∞0 with ϕ = 1 on a small interval around zero. Since χ(0, 0) , 0, if we
choose η, ϕ supported in a sufficiently small neighborhood of zero, χ , 0 on the support
of η and ϕ. Hence we have a smooth function b ∈ Lp for all 1 ≤ p ≤∞.

Observe that
S −αb(x, t) = L(x, t)Bα(x2),

where

L(x, t) =

∫
e2πi(x1ξ1+tτ+x2τγ(ξ1/τ))η

(
ξ1

τ

)
φ(τ) dξ1 dτ

and

Bα(x2) =

∫
ϕ(ξ2)

(ξ2)−α+

Γ(−α + 1)
e2πix2ξ2 dξ2.

First, we want to show that for |x2| > R, |x1| <C|x2| and |t| ≤ c,

|L(x, t)| ≥C|(x, t)|−1/2, (3.5)

where R is a sufficiently large constant and c > 0 is a sufficiently small constant. Using
the change of variable ξ1→ ξ1τ,

L(x, t) =

∫
e2πitτ

∫
e2πi(x1τξ1+x2τγ(ξ1))η(ξ1) dξ1τφ(τ) dτ.

Since γ′′ , 0 on the support of η, by a well-known asymptotic expansion, we see that
if |x1| <C|x2|,∫

e2πi(x1τξ1+x2τγ(ξ1))η(ξ1) dξ1 = C(x2τ)−1/2
N∑

j=0

a j(x2τ)− j/2 + AN(x2τ),
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where AN satisfies |(d/ds)kAN(s)| = O(s−k−(N+1)/2). Furthermore, for t with |t| ≤ c, we
have e2πitτ = 1 + O(c) because τ ∼ 1. From this and an integration for τ ∼ 1, it follows
that

L(x, t) = C(1 + O(c))
∫ (

(x2τ)−1/2
N∑

j=0

a j(x2τ)− j/2 + AN(x2τ)
)
τφ(τ) dτ

= C(1 + O(c))
(
x−1/2

2 +

N∑
j=1

a jx
−(1+ j)/2
2 + AN(x2)

)
.

Note that if |x2| is sufficiently large,

|x2|
−1/2 ≥ B

∣∣∣∣∣ N∑
j=1

a jx
−(1+ j)/2
2 + AN(x2)

∣∣∣∣∣
for some B ≥ 2. Then the desired estimate (3.5) is obtained.

Now we claim that for sufficiently large |x2|,

|Bα(x2)| ≥C|x2|
−1+α. (3.6)

We may assume that x2 > 0. From the change of variable ξ2→ ξ2/x2,

Bα(x2) = x−1+α
2

∫
ϕ
(
ξ2

x2

) (ξ2)−α+

Γ(−α + 1)
e2πiξ2 dξ2.

Since ∫
ϕ
(
ξ2

x2

) (ξ2)−α+

Γ(−α + 1)
e2πiξ2 dξ2→F

−1
( (ξ2)−α+

Γ(−α + 1)

)
(1) , 0

as x2→∞ (see [10, p. 172]), we obtain (3.6).
Combining (3.5) and (3.6) gives that for sufficiently large R and small c,"

|S −αb|q dx dt ≥C
"

AR,c

|x|(−3/2+α)q dx dt

where AR,c = {(x, t) ∈ R2 × R : |x2| > R, |x1| <C|x2|, |t| ≤ c}. If 1/q ≥ 3/4 − α/2, then
it follows that "

AR,c

|x|(−3/2+α)q dx dt ≥C
∫
|x|>R
|x|(−3/2+α)q dx =∞,

and hence the proof is complete.
We now turn to (3.4). Let 0 < c1, c2� 1 be constants to be chosen later. Let Eδ be

the set defined by

Eδ = {(ξ, τ) ∈ R2 × R : 1 ≤ τ ≤ 2, c1δ ≤ ξ1/τ ≤ 2c1δ, c2δ
m ≤ ξ2 ≤ 2c2δ

m}.
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Since γ is of finite type m at zero, one can choose c1, c2 such that, for all 0 < δ� 1,

dist(Eδ, Γγ) ∼ δm and Eδ ⊂

{
(ξ, τ) : ξ2 > τγ

(
ξ1

τ

)}
,

where Γγ = {(ξ, τ) : ξ2 = τγ(ξ1/τ)}. This means that Eδ is supported in the region away
from the cone Γγ. Moreover, for ε > 0, we define a dual set E∗δ of Eδ which is given by

E∗δ = {(x, t) ∈ R2 × R : |x1| ≤ εδ
−1, |x2| ≤ εδ

−m, |t| ≤ ε}.

If (ξ, τ) ∈ Eδ and (x, t) ∈ E∗δ, then it is obvious that

e2πi(ξ,τ)·(x,t) = 1 + O(ε). (3.7)

Now choose a positive function η ∈C∞0 (1, 2) and set

χ̂δ(ξ, τ) = φ(τ)η
(
ξ1/τ

c1δ

)
η
(
ξ2

c2δm

)
.

Since χ̂δ is supported in Eδ which is away from the cone Γγ, we obtain from (3.7) that,
for (x, t) ∈ E∗δ,

S −αχδ(x, t) = C−α(1 + O(ε))
∫
R

∫
R2

φ2(τ)
Γ(−α + 1)

χ(ξ)
(
ξ2 − τγ

(
ξ1

τ

))−α
+

× η
(
ξ1/τ

c1δ

)
η
(
ξ2

c2δm

)
dξ dτ.

This is because the distribution is a function away from the cone Γγ if α , 1. Then it
is easy to see that for sufficiently small ε > 0 and (x, t) ∈ E∗δ,

|S −αχδ(x, t)| ≥Cδ
∫ 2c2δ

m

c2δm
t−α dt,

which implies that

‖S −αχδ‖q ≥Cδδm(−α+1)|E∗δ |
1/q ≥Cδδm(−α+1)δ−(m+1)/q.

However, we have that ‖χδ‖p ≤Cδm+1δ−(m+1)/p by using a change of variables. This
gives condition (3.4). �

4. Proof of Proposition 2.1

To prove Proposition 2.1, we need the bilinear restriction estimates for conic
surfaces. This is a generalized version of the bilinear cone restriction estimates due
to Wolff [28] and Tao [23].

Let Γγ = {(ξ, τ) ∈ R2 × R : ξ2 = τγ(ξ1/τ), 1 ≤ τ ≤ 2} and let V1 and V2 be closed
subsets of [−1, 1]. We set

Γi = {(ξ, τ) ∈ Γγ : ξ1/τ ∈ Vi}

for i = 1, 2. The following is a bilinear restriction theorem for the conic surfaces Γγ in
R3. It is a special case of Theorem 1.2 given in [18] (see also [17]).
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T 4.1. Let γ be a smooth function defined on I = [−1, 1] with |γ′′| ≥ c > 0 on I.
If dist(V1, V2) ∼ 1, then for r > 5/3,

‖( f dµ1)ˆ(gdµ2)ˆ‖Lr ≤C‖ f ‖L2(dµ1)‖g‖L2(dµ2) (4.1)

where dµ1, dµ2 are the surface measures on Γ1, Γ2, respectively, and the constant C is
stable under small smooth perturbations of γ.

R 4.2. (a) When γ is the quadratic function given by γ(s) = s2, Γi is a subset
of the light cone. For this case, the bilinear estimate (4.1) was obtained by Wolff [28]
(r > 5/3) and Tao [23] (r = 5/3). Recently, Lee [18] and Lee [14] extended Wolff’s and
Tao’s results, respectively, to oscillatory integral operators with cinematic curvature
condition. These are related to the regularity problem of Fourier integral operators
in [21].

To be more precise, for i = 1, 2, let an oscillatory integral operator be defined by

W i
λ f (z, x2) =

∫
eiλΨi(z,x2,η)ai(z, x2, η) f (η) dη, (z, x2) = (x1, t, x2) ∈ R2 × R.

Here, ai(z, x2, η) is a compactly supported smooth function in R2 × R × R2 and η =

(ξ1, τ) ∈ R2. The phase Ψi(z, x2, η) is a smooth function, homogeneous of degree one
in η on the support of ai. Let us consider the L2 × L2→ Lr bilinear estimate

‖W1
λ f W2

λg‖Lr(R3) ≤Cλ−3/r‖ f ‖2‖g‖2 (4.2)

under the following conditions for the phase functions.

(i) For i = 1, 2, rank ∂2
z,ηΨi = 2 and ∂x2Ψi , 0 on the support of ai.

(ii) From the above conditions and the implicit function theorem, we may assume
that

∂x2Ψi(z, x2, η) = qi(z, x2, ∂zΨi(z, x2, η))

for some qi(z, x2, η). Then rank ∂2
ηqi = 1 on the support of ai. (This is called the

cinematic curvature condition.)
(iii) For i = 1, 2,∣∣∣∣∣〈 ∂zΨi(z, x2, ηi)

|∂zΨi(z, x2, ηi)|
, ∂ηq2(z, x2, ∂zΨ2(z, x2, η2)) − ∂ηq1(z, x2, ∂zΨ1(z, x2, η1))

〉∣∣∣∣∣
≥ c > 0

for all (z, x2, η1) ∈ supp a1 and (z, x2, η2) ∈ supp a2.

Then Lee [18] and Lee [14] obtained the estimate (4.2) for r > 5/3 and r = 5/3,
respectively.
(b) The bilinear estimate (4.1) is a special case of the L2 × L2→ Lr bilinear estimate
(4.2). To verify this, let us set Ψi(z, x2, η) = x1ξ1 + tτ + x2τγ(ξ1/τ). Then the adjoint
Fourier restriction operator ( f dµi)̂ related to the conic surface Γi can be viewed
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as an oscillatory integral operator with the phase function Ψi. Note that we have
∂x2Ψi = τγ(ξ1/τ). Hence, it is easy to see that for i = 1, 2, the phase function Ψi

satisfies conditions (i), (ii) because γ′′ , 0. Moreover, the condition dist(V1, V2) ∼ 1
guarantees that condition (iii) holds. Thus, (4.1) is a consequence of the bilinear
estimate (4.2) in [18].
(c) The stability of the bilinear estimate (4.1) under small smooth perturbations of γ
plays an important role in the proof of our result. This comes from the fact that the
L2 × L2→ Lr bilinear estimate (4.2) is uniform for small smooth perturbations of the
phase function Ψ in [18]. For more details on the L2 × L2→ Lr bilinear estimates
for oscillatory integral operators with cinematic curvature condition, we refer readers
to [14, 17, 18].

We actually use the following lemma, which is a ‘thickened’ version of
Theorem 4.1, to prove Proposition 2.1, because the operator Uδ is essentially supported
in a δ-neighborhood of the cone Γγ. For this reason, let us define T i

δ by

(T i
δ f )ˆ(ξ, τ) = φ(τ)ψ

(
ξ2 − τγ(ξ1/τ)

δ

)
χi(ξ1/τ) f̂ (ξ, τ)

where χ1, χ2 are functions supported on [−1, 1].

L 4.3. Let 0 < δ� 1 and let |γ′′| ≥ c > 0 on I = [−1, 1]. Then if dist(suppχ1,
suppχ2) ∼ 1, then for 5/3 < q ≤ 2,

‖T 1
δ f T 2

δg‖q ≤Cδ‖ f ‖2‖g‖2,

where the constant C is stable under small smooth perturbations of γ.

P. Let Γi(δ) = {(ξ, τ) : ξ1/τ ∈ supp χi, dist((ξ, τ), Γγ) ≤ δ}. Then we decompose
Γi(δ) into a family of conic surfaces Γs

i = {(ξ, τ) ∈ Γi(δ) : ξ2 = τγ(ξ1/τ) + s}. That is,
we write

Γi(δ) =
⋃
|s|≤Cδ

Γs
i for i = 1, 2.

Let dµs
i be the surface measure of Γs

i for i = 1, 2. Since dist(supp χ1, supp χ2) ∼ 1,
Theorem 4.1 gives that, for all s, u and q > 5/3,

‖( f dµu
1)ˆ(gdµs

2)ˆ‖Lq ≤C‖ f ‖L2(Γu
1,dµ

u
1)‖g‖L2(Γs

2,dµ
s
2) (4.3)

with C independent of s and u. We notice that the constant C is stable under small
smooth perturbations, since the same is true for the bilinear restriction estimate.

Set f̃ = φ(τ)χ1(ξ1/τ) f̂ and g̃ = φ(τ)χ2(ξ1/τ)ĝ. Let f̃s = f̃ |Γs
1

and g̃s = g̃|Γs
2
. Since

f̃ , g̃ are supported in
⋃
|s|≤Cδ Γs

1,
⋃
|s|≤Cδ Γs

2, respectively, by the change of variables
ξ2 = s + τγ(ξ1/τ) we see that

T 1
δ f (x, t) =

∫
e2πi(x1ξ1+tτ+x2(s+τγ(ξ1/τ)))ψ(s/δ) f̃s(ξ, τ) dξ1 dτ ds

=

∫
ψ(s/δ)( f̃sdµ

s
1)ˆ ds
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and

T 2
δg(x, t) =

∫
ψ(s/δ)(g̃sdµ

s
2)ˆ ds.

Hence, it follows that

‖T 1
δ f T 2

δg‖qq ≤
" ∣∣∣∣∣" ψ(u/δ)ψ(s/δ)( f̃udµu

1)ˆ(g̃sdµ
s
2)ˆ du ds

∣∣∣∣∣q dx dt.

Applying Hölder’s inequality to
∫
ψ(u/δ)( f̃udµu

1)̂ du and
∫
ψ(s/δ)(g̃sdµs

2)̂ ds,
respectively, and using (4.3) yield that

‖T 1
δ f T 2

δg‖qq ≤Cδ2q−2
""

|( f̃udµu
1)ˆ(g̃sdµ

s
2)ˆ|q dx dt|ψ(u/δ)ψ(s/δ)| du ds

≤Cδ2q−2
"
‖ f̃u‖

q
L2(Γu

1)
‖g̃s‖

q
L2(Γs

2)
|ψ(u/δ)ψ(s/δ)| du ds.

Since q ≤ 2, applying Hölder’s inequality again to the last inequality,

‖T 1
δ f T 2

δg‖qq ≤Cδq‖ f ‖q2‖g‖
q
2.

This completes the proof of the lemma. �

4.1. Proof of Proposition 2.1. We begin by defining Ia,r to be an interval centered at
a with length r. Let us set

Λa,r = {(ξ, τ) ∈ R2 × R : ξ1/τ ∈ Ia,r, 1 ≤ τ ≤ 2}. (4.4)

Decomposing Λ0,1 into small cubes, we may assume that the support of f̂ is contained
in Λa,ε with 0 < ε � 1.

Observe that the change of variables ξ1→ ξ1 + τa for Uδ f gives

Uδ f (x, t) =

∫
e2πi(L(x,t)·(ξ,τ))φ(τ)ψ

(
ξ2 − τγ(ξ1/τ + a)

δ

)
χIa,ε (ξ1/τ + a) f̂ (ξ, τ) dξ dτ

where L(x, t) = (x, t + ax1). Since the translation (x, t)→ (x, t − ax1) does not affect
the boundedness of Uδ f and |γ′′| ≥ c > 0 on I = [−1, 1], it is sufficient to consider the
case Λ0,ε . Hence, we may assume that f̂ is supported in Λ0,ε .

We utilize a Whitney type decomposition (see [26]). Let j0 be the integer satisfying
2− j0 < 4

√
δ ≤ 2− j0+1. For each j, 0 ≤ j ≤ j0, we divide the interval I = [−1, 1] into 2 j+1

disjoint dyadic intervals I j
k of length 2− j. When j < j0, we write I j

k ∼ I j
k′ to mean that

I j
k and I j

k′ are not adjacent but have adjacent parent intervals of length 2− j+1. So
dist(I j

k , I j
k′) ∼ 2− j. When j = j0, we write I j

k ∼ I j
k′ to mean dist(I j

k , I j
k′) . 2− j0 ∼

√
δ. By

adapting the idea of Whitney type decomposition of I × I away from the diagonal
I × I, we may write

I × I =
⋃

0≤ j≤ j0

⋃
I j
k∼I j

k′

I j
k × I j

k′ . (4.5)
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Let f j
k be given by

f̂ j
k (ξ, τ) = χI j

k
(ξ1/τ) f̂ (ξ, τ),

where χI ∈C∞0 with χ = 1 on the interval I. From (4.5), it follows that

Uδ f · Uδ f =
∑

0≤ j≤ j0

∑
I j
k∼I j

k′

Uδ f j
k (x, t)Uδ f j

k′(x, t).

For each j, we define a bilinear operator B j by

B j( f , g)(x, t) =
∑

I j
k∼I j

k′

Uδ f j
k (x, t)Uδg

j
k′(x, t).

Then,
(Uδ f )2 =

∑
0≤ j≤ j0

B j( f , f ). (4.6)

So, we want to obtain the operator norm of B j from Lp × Lp to Lq/2.
First, we consider L∞ estimates. More precisely, we claim that

‖B j( f , g)‖∞ ≤C2− jδ−1‖ f ‖∞‖g‖∞. (4.7)

Let ω ∈C∞0 be supported in (−1, 1) so that
∑
ν∈Z ω(· − ν) ≡ 1. We set

f̂ j
k,ν(ξ, τ) = ω

(
ξ1/τ − ν
√
δ

)
f̂ j
k (ξ, τ)

where ν ∈
√
δZ. Since (Uδ f j

k,ν)ˆ is supported in a cube of size 1 × δ1/2 × δ, from the
kernel estimates, it is easy to see that for p ≤ q,

‖Uδ f j
k,ν‖q ≤Cδ3/2(1/P−1/q)‖ f ‖p. (4.8)

Moreover, the number of ν is about 2− jδ−1/2 for each j because |I j
k | ∼ 2− j &

√
δ.

Therefore, for 0 ≤ j ≤ j0,

‖Uδ f j
k ‖∞ ≤C

∑
ν

‖Uδ f j
k,ν‖∞ ≤C2− jδ−1/2‖ f ‖∞. (4.9)

Since the number of k′ associated with k is at most four, the number of pairs (k, k′) is
about 2 j. Then we obtain, for 0 ≤ j ≤ j0,

‖B j( f , g)‖∞ ≤C
∑

I j
k∼I j

k′

‖Uδ f j
k Uδg

j
k′‖∞

≤C2 j(2− jδ−1/2)2‖ f ‖∞‖g‖∞.

This gives the desired estimates.
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Next, we consider the following lemma which is the main estimate of this section.

L 4.4. Suppose that 1/p + 1/q ≥ 1/2, 2p ≥ q > 5p/3, p ≥ 2 and q ≥ 4. Then there
is a constant C, independent of j, δ, such that for 0 ≤ j ≤ j0,

‖B j( f , g)‖Lq/2 ≤Cδ4/p−122 j(1/p+3/q−1)‖ f ‖Lp‖g‖Lp . (4.10)

Assuming this for the moment, we give the proof of Proposition 2.1. When 1/p +

3/q < 1, interpolation between (4.7) and (4.10) gives

‖B j( f , g)‖Lq/2 ≤C2−ε0 jδ4/p−1‖ f ‖p‖g‖p

for some ε0 > 0. Summing in j and using (4.6), we have, for 1/p + 3/q < 1 and
2p ≥ q > 5p/3,

‖Uδ f ‖Lq(R3) ≤Cδ2/p−1/2‖ f ‖Lp(R3). (4.11)

When 1/p + 3/q = 1, we use Lemma 2.5 as before. Indeed, choose (1/p, 1/q1)
and (1/p, 1/q2) satisfying 1/p + 3/qi = 1 for i = 1, 2 and 1/p + 3/q1 < 1 < 1/p + 3/q2.
Then by (4.10), we obtain for i = 1, 2,

‖B j( f , g)‖Lqi/2 ≤Cδ4/p−122 j(1/p+3/qi−1)‖ f ‖Lp‖g‖Lp .

Using Lemma 2.5 and (4.6), we see that, for 1/p + 3/q = 1 and 2p > q > 5p/3,

‖Uδ f ‖q,∞ ≤Cδ2/p−1/2‖ f ‖p,1.

By real interpolation, these restricted weak-type estimates can be strengthened to
strong type. From this and (4.11), we get, for 1/p + 3/q ≤ 1, 2p ≥ q > 5p/3 and
(p, q) , (5/2, 5),

‖Uδ f ‖Lq(R3) ≤Cδ2/p−1/2‖ f ‖Lp(R3). (4.12)

On the other hand, it is well known that the L2→ Lp adjoint restriction estimate
holds for the cone-type operator in R3. Since γ′′ , 0, at least one of the principal
curvatures is nonzero at each point of the cone Γγ. Thus, for p ≥ 6,

‖( f dµ)ˆ‖Lp(R3) ≤C‖ f ‖L2(dµ)

where dµ is the surface measure on Γγ (see [22, pp. 365–367]). From this and an
argument similar to one used to prove Lemma 4.3, we obtain, for p ≥ 6,

‖Uδ f ‖p ≤Cδ1/2‖ f ‖2.

Interpolating this with (4.12) finishes the proof of Proposition 2.1.

L 4.5. Suppose that, for p ≥ 2, q ≥ 4 and 1/p + 1/q ≥ 1/2, there is a constant B,
independent of j, δ, I j

k and I j
k′ , such that for I j

k ∼ I j
k′ ,

‖Uδ f j
k · Uδg

j
k′‖Lq/2(R3) ≤ B‖ f j

k ‖Lp(R3)‖g
j
k′‖Lp(R3). (4.13)

Then there is a constant C, independent of j and δ, such that

‖B j( f , g)‖Lq/2(R3) ≤CB‖ f ‖Lp(R3)‖g‖Lp(R3).
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P. Note that the supports of f̂ and ĝ are contained in Λ0,ε defined by (4.4). For
fixed j, if I j

k ∼ I j
k′ , the supports of the Fourier transforms of Uδ f j

k · Uδg
j
k′ are contained

in the set
{(ξ, τ) ∈ R2 × R : dist(ξ1/τ, I j

k) ≤C2− j, |ξ2| ≤C, τ ∼ 1}.

From this, we can easily see that the Fourier transforms of {Uδ f j
k · Uδg

j
k′}I j

k∼I j
k′

are
supported in essentially disjoint cubes. By using Plancherel’s theorem and a standard
argument (see [25, Lemma 7.1]), we have, for q/2 ≥ 2,

‖B j( f , g)‖Lq/2 ≤C
( ∑

I j
k∼I j

k′

‖Uδ f j
k · Uδg

j
k′‖

(q/2)′

q/2

)1−2/q

.

By assumption (4.13),

‖B j( f , g)‖Lq/2 ≤CB
( ∑

I j
k∼I j

k′

‖ f j
k ‖

(q/2)′
p ‖g j

k′‖
(q/2)′
p

)1−2/q

. (4.14)

Since the number of I j
k′ satisfying I j

k ∼ I j
k′ is at most four, using the Schwarz inequality,∑

I j
k∼I j

k′

‖ f j
k ‖

(q/2)′
p ‖g j

k′‖
(q/2)′
p ≤C

(∑
k

‖ f j
k ‖

2(q/2)′
p

)1/2(∑
k

‖g j
k‖

2(q/2)′
p

)1/2

.

From the condition 1/p + 1/q ≥ 1/2 and lr ⊂ ls for r ≤ s, we see that the right-hand
side of (4.14) is bounded by C(

∑
k ‖ f

j
k ‖

p
p)1/p(

∑
k ‖g

j
k‖

p
p)1/p.

Now it is sufficient to show that, for p ≥ 2,(∑
k

‖ f j
k ‖

p
p

)1/p

≤C‖ f ‖p. (4.15)

By Plancherel’s theorem, it follows that (
∑

k ‖ f
j

k ‖
2
2)1/2 ≤C‖ f ‖2. From the fact that the

support of f̂ is contained in Λ0,ε , for sufficiently small ε, we obtain supk ‖ f
j

k ‖∞ ≤

C‖ f ‖∞. Inequality (4.15) follows from interpolation between the above two
estimates. �

4.2. Proof of Lemma 4.4. From Lemma 4.5, it is sufficient to consider Uδ f j
k · Uδg

j
k′

when I j
k ∼ I j

k′ . More precisely, we claim that for 1/p + 1/q ≥ 1/2, 2p ≥ q > 5p/3, p ≥ 2
and q ≥ 4,

‖Uδ f j
k · Uδg

j
k′‖Lq/2 ≤Cδ4/p−122 j(1/p+3/q−1)‖ f j

k ‖Lp‖g j
k′‖Lp

with C independent of j, δ, I j
k and I j

k′ .

We first handle the case j = j0. Since 2− j0 ∼
√
δ, it is sufficient to show

‖Uδ f j
k · Uδg

j
k′‖q/2 ≤Cδ3(1/p−1/q)‖ f j

k ‖p‖g
j
k‖p.

However, this is an easy consequence of Hölder’s inequality and (4.8).
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We now turn to the case 0 < j < j0. This case follows from interpolation between
the following two estimates:

‖Uδ f j
k · Uδg

j
k′‖∞ ≤C2−2 jδ−1‖ f j

k ‖∞‖g
j
k‖∞, (4.16)

‖Uδ f j
k · Uδg

j
k′‖r ≤Cδ2 j(3/r−1)‖ f j

k ‖2‖g
j
k‖2 (4.17)

for 5/3 < r ≤ 2. From (4.9), we obtain (4.16).
To show (4.17), we use the bilinear cone restriction estimates for conic surfaces.

Let a ∈ R be the center of the smallest interval containing both I j
k and I j

k′ . Observe
that by translation ξ1→ ξ1 + τa, the intervals I j

k and I j
k′ are moved to I1 and I2,

respectively. Here, I1 and I2 are intervals contained in I0,21− j with |I1| ∼ 2− j ∼ |I2| and
dist(I1, I2) ∼ 2− j. Recall that Ia,r is an interval centered at a with length r. Let us set

(Uδ,a f )ˆ(ξ, τ) = φ(τ)ψ
(
ξ2 − τγ(a, ξ1/τ)

δ

)
f̂ (ξ, τ).

And for i = 1, 2, we set Λi = {(ξ, τ) ∈ R2 × R : ξ1/τ ∈ Ii, 1 ≤ τ ≤ 2}. Then by the affine
map (ξ, τ)→ La(ξ, τ) = (ξ1 + τa, ξ2 + γ′(a)ξ1 + τγ(a), τ), if supp f̂ ⊂ Λ1 and supp ĝ ⊂
Λ2, we see that

Uδ f j
k · Uδg

j
k′(x, t) = Uδ,a f · Uδ,ag(x1 + γ′(a)x2, x2, t + ax1 + γ(a)x2).

Since the change of variables (x1, x2, t)→ (x1 − γ
′(a)x2, x2, t − ax1 − γ(a)x2) in (x, t)

space does not affect the boundedness, it is sufficient to show that if supp f̂ ⊂ Λ1 and
supp ĝ ⊂ Λ2, then for 5/3 < r ≤ 2,

‖Uδ,a f · Uδ,ag‖r ≤Cδ2 j(3/r−1)‖ f ‖2‖g‖2 (4.18)

with C independent of a, j, I j
k and I j

k′ .
Set f j(x, t) = f (2 jx1, 22 jx2, t) and g j(x, t) = g(2 jx1, 22 jx2, t). Let Ĩ1, Ĩ2 be intervals

contained in I0,2 with |Ĩ1| ∼ 1 ∼ |Ĩ2| and dist(Ĩ1, Ĩ2) ∼ 1. Observe that f̂ j, ĝ j are
supported in the sets Λ̃1, Λ̃2, respectively, where Λ̃i = {(ξ, τ) ∈ R2 × R : ξ1/τ ∈ Ĩi, 1 ≤
τ ≤ 2}. Let χ1, χ2 be smooth functions supported in I0,2 satisfying χi = 1 on Ĩi for
i = 1, 2 and dist(supp χ1, supp χ2) ∼ 1. Define U j

λ,a f and U j
λ,ag by

(U j
λ,a f )ˆ(ξ, τ) = φ(τ)ψ

(
ξ2 − τγ2− j (a, ξ1/τ)

λ

)
χ1(ξ1/τ) f̂ (ξ, τ),

(U j
λ,ag)ˆ(ξ, τ) = φ(τ)ψ

(
ξ2 − τγ2− j (a, ξ1/τ)

λ

)
χ2(ξ1/τ)ĝ(ξ, τ).

By rescaling Uδ,a f and Uδ,ag by (ξ1, ξ2, τ)→ (2− jξ1, 2−2 jξ2, τ) in frequency space, we
see that

(Uδ,a f · Uδ,ag)(x, t) = (U j
δ22 j,a

f j · U
j
δ22 j,a

g j)(2− jx1, 2−2 jx2, t). (4.19)

Recall that f̂ is supported in Λ0,ε defined by (4.4). Then we may assume that 2− j�

1 and |a| � 1. Since γ is of finite type 2 at a, from Lemma 2.3, |γ′′2− j (a, ξ1/τ)| ≥ c > 0
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uniformly in a, j on the support of χi for = 1, 2. Therefore, applying Lemma 4.3 to
U j
λ,a f · U j

λ,ag, we see that there is a uniform constant C, independent of a, j, such that
for 0 < λ� 1 and 5/3 < r ≤ 2,

‖U j
λ,a f · U j

λ,ag‖r ≤Cλ‖ f ‖2‖g‖2.

Since 0 < δ22 j� 1 for 0 < j < j0, by applying the above inequality to (4.19) and
rescaling, we get (4.18). More precisely,

‖Uδ,a f · Uδ,ag‖r = 23 j/r‖U j
δ22 j,a

f j · U
j
δ22 j,a

g j‖r

≤C23 j/rδ22 j‖ f j‖2‖g j‖2

≤C23 j/rδ22 j2−3 j‖ f ‖2‖g‖2.

This completes the proof of Lemma 4.4. �
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