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The study of near-rings is motivated by consideration of the system generated
by the endomorphisms of a (not necessarily commutative) group. Such endo-
morphism near-rings also furnish the motivation for the concept of a distribu-
tively generated (d.g.) near-ring. Although d.g. near-rings have been extensively
studied, little is known about the structure of endomorphism near-rings. In
this paper results are presented which enable one to give the elements of the
endomorphism near-ring of a given group. Also, some results relating to the
right ideal structure of an endomorphism near-ring are presented. These con-
cepts are applied to present a detailed picture of the properties of the endo-
morphism near-ring of (53, +).

1. Preliminaries
A near-ring is a triple (R, +, .) such that (/?, +) is a group, (R, .) is a semi-

group, and . is left distributive over + ; i.e. w(x+z) = wx+wz for each
w,x,zeR. A near-ring R is d.g. if there exists ScR such that (S, .) is a sub-
semigroup of (R, .), each element of S is right distributive, and 5 is an additive
generating set for (R, +). The near-ring generated additively by all the endo-
morphisms of a (not necessarily commutative) group (G, +) is d.g., S being
the set of endomorphisms. Such a near-ring will be called an endomorphism
near-ring and will be denoted by E(G).

A subset K of a near ring R is an ideal if (K, +) is a normal subgroup of
(R, +), rk e K, and (rl+k)r2—r1r2eK for each r, ru r2 e R and k e K.
A. Frohlich (5) has noted that for d.g. near-rings the third condition is
equivalent to kr e K. A subset K is a right (left) ideal if K satisfies the first and
third (second) conditions.

Frohlich ((6), 2.4) has shown that the near-ring generated by all the inner
automorphisms of a finite simple, non-commutative, group (G, +) is E(G). In
fact, this near-ring generated by the inner automorphisms consists of all the
mappings of G into G which leave 0 fixed. A. J. Chandy (4) has given a neces-
sary and sufficient condition that the near-ring generated by the inner auto-
morphisms of a group be a ring. However, the more general endomorphism
near-ring has not been studied.

If a is an endomorphism of (G, +) and g eG, the image of g under a is
denoted by gcc. Addition of functions on G is done pointwise and multiplication
of such functions is composition.
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2. Properties of E(G)
The following theorem is due to G. Berman and R. J. Silverman ((2), p. 27).

Theorem 2.1. Let e be an idempotent in the near-ring R. Then each r e R
has two unique decompositions r = (r—er) + er = er+(—er+r). Thus

R = Ae + Me = Me + Ae

where
Ae = {r- er | r e R) = {t e R \ et = 0}, Me = {er\re R],

and Aer\Me = 0.

The next theorem is immediate.

Theorem 2.2. Ae is a right ideal of R. IfOr = Ofor each r e R, then Ae is
also a subnear-ring of R. Me is a subnear-ring of R.

Frohlich ((5), p. 80) showed that a d.g. near-ring satisfies the Or = 0 con-
dition.

Theorem 2.3. Let Rbe a near-ring such that {R, +) is generated by {ry \ y e F,
an index set}. Then Ae is the normal subgroup generated by {ry — ery \ y e T} and
Me is the subgroup generated by {ery | y e F}.

Proof. Let r e R. Then r can be written as r = ct + c2 + ..- + ck, with
either ct or — c, in {ry | y e T}, i = 1, ..., k. Several cases arise. The proof is
presented for the case in which each ct e {ry | y e T}. No additional difficulties
arise in the other cases. The theorem follows from

r =

+ ...+((ck-eck) +

+ [ecj + ec2 + (c3 — ec3) - ec2 -

+ ... + lec1 + ec2+...+eck^1+(ck-eck)-eck^1-...-ec2-ec1'\

+ (ec1+ec2+... + eck~).

Corollary 2.4. Let R be d.g. and e right distributive. Then Me is d.g.

Proof. Let S = {ry | y e F}. Then (x+z)ery = (xe+ze)ry = xery+zery, for
each x, z e R and each y e F. So Me is d.g. with generating set {ery | y e F}.

It is known ((7), p. 48) that a subnear-ring of a d.g. near-ring need not be
d.g. It is shown below that even for an E(G) there is no assurance that either
Ae or Me is d.g. However, Corollary 2.4 tells us that for a properly selected
e, Me is d.g. In the example of E(S3, +) to be considered below, Ae will be
d.g. if e is right distributive. For an arbitrary G it is unknown if e right dis-
tributive implies that Ae is distributively generated.

The following result points the way to some of the right ideals in E(G).
The proof is immediate.
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Theorem 2.5. Let T be a non-empty subset of the group G. Let

K = {<xe E(G) | Ttx = 0}.

IfK is non-empty, K is a right ideal in E(G).

3. The elements of E(S3,+)

Let (S, + ) designate the non-abelian group of order six with addition as
given in Table I. In this section the elements of E(S) will be displayed.

+

0
a
b
c
d
e

0

0
a
b
c
d
e

TABLE

a

a
0
d
e
b
c

b

b
e
0
d
c
a

I
c

c
d
e
0
a
b

d

d
c
a
b
e
0

e

e
b
c
a
0
d

Since 5 is finite each element of E(S) can be expressed as a (finite) sum of
endomorphisms of S. It follows that each function in E(S) maps 0 to 0. Each
function in E(S) can then be represented by a 5-tuple: the first co-ordinate being
the image of a, the second the image of b, etc. For instance, the 5-tuple {abode)
represents the identity function.

Since the only non-trivial normal subgroup of S is {0, d, e} and since the
only automorphisms of S are the inner automorphisms, it follows that there are
exactly ten endomorphisms of S. Among these is the idempotent endomorphism
(aaaOO). Using the idempotent a = (aaaOO) we apply Theorem 2.3 to determine
the elements of E(S). Of course, the set of endomorphisms is our generating
set. The endomorphisms and their decompositions (in the sense of Theorem
2.1) are given in Table II.

From Table II and Theorem 2.3 it follows that Ma = {(*xx00) | x e S}
while A', the group generated by {ry-ary}, is {(00000), (Odede), (Oeded)}. It is
clear that A' is not normal:

0) + (0eded)-(aaa00) = (Odeed).

Consider the group generated by A' and (Odeed). In this group we have

(000*) = (Odeed) + (Oeded) and (OdeOO) = (Oedde) + (Oeded).

In fact, the group generated by A' and (Odeed) is

A = ((0de00))@((000de))

where (X), X e E(G), is the subgroup generated by X. For any function in E(S)
the fourth and fifth coordinates must be 00, de, or ed. Thus ((000de)) is a normal
subgroup of E(S). The subgroup ((OdeOO)) is invariant under conjugation by
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elements of Ma and is a normal subgroup of A. Thus ((OdeOO)) is normal in the
subgroup generated by A and Ma. But then A, as a sum of normal subgroups,
is normal in the group generated by A and Ma and A + Ma = Ma+A. Thus

(00000)
(aaaOO)
(bbbOO)
(cccOO)
(abode)
(acbed)
(cbaed)
(baced)
(cabde)
(bcade)

TABLE II

(00000)
(aaaOO)
(bbbOO)
(cccOO)
(aaaOO)
(aaaOO)
(cccOO)
(bbbOO)
(cccOO)
(bbbOO)

(00000)
(00000)
(00000)
(00000)
(Odede)
(Oeded)
(Oeded)
(Oeded)
(Odede)
(Odede)

TABLE III

An / indicates an idempotent element. An N indicates a nilpotent element.

Order Two Order Three Order Six

(aaaOO)
(bbbOO)
(cccOO)
(abcOO)
(acbOO)
(bacOO)
(bcaOO)
(cabOO)
(cbaOO)

I, N (00000)

(000*)
(OOOed)
(dddde)
(eeeed)
(eeede)
(ddded)
(Odede)
(Oeded)
(eOdde)
(dOeed)
(deOde)
(edOed)
(Oedde)
(Odeed)

I (dOede)
(eOded)

I (edOde)
(deOed)

N (OedOO)
N (OdeOO)
N (deOOO)
N (edOOO)
N (dOeOO)
N (eOdOO)
N (dddOO)
N (eeeOO)

/ (abode)
(acbed)
(cbaed)
(baced)
(cabde)
(bcade)

I (aaade)
I (bbbde)
I (cccde)

(acbde)
(cbade)
(bacde)
(bcaed)
(abced)
(cabed)
(aaaed)
(bbbed)
(ccced)

E(S) = A + Ma and A is Aa. Since | Aa \ = 9 and | Ma \ = 6, | E(S)\ = 54.
The elements of E(S), classified according to additive orders, are given in Table
III.
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By Corollary 2.4 the subnear-ring Mx is d.g. It is also to be noted that
(Ma, + ) = (S, + ) . The near-ring generated by (OdeOO) has the null multi-
plication (every product is (00000)) and thus is a ring. The near-ring generated
by (OOOde) is a field of order three. It follows that the right ideal Aa is a ring.

The non-zero elements of E(S) have order two, three, or six. The elements
of order three and (00000) form a group of order twenty-seven. This group,
having index two, is normal and thus, as a Sylow subgroup, is the only group
of order twenty-seven. Also, it is a maximal subgroup.

4. The ideal structures of E(S)

In this section the right (left) (two-sided) ideals of E(S) and the radical of
E(S) will be determined. We start with the observation that the subgroups of
order two in E(S) are non-unique Sylow subgroups. So no one of them is
normal and there are no right (left) ideals of order two.

An application of Theorem 2.5 yields the annihilating right ideals as given
in Table IV. The appropriate T is listed with each of these right ideals.

TABLE IV

T = {c, d, e}, 7t(3) = ((rfeOOO))
T = {b, d, e], 72(3) = {(dOeOO))
T = {a, d, e], 73(3) = ((0<fe00))
T = {a, b, c), 74(3) = (((XKWe))
T = {c}, 7X(9) = A(3)©74(3)
T = {b}, 72(9) = 72(3)©74(3)
T = {a}, 73(9) = 73(3)©74(3)
T = {d, e}, 7(18) = {A e E(S) | 21 = (00000) or X2 = (00000)}

Table IV lists four right ideals of order three. 7X(3), 72(3), and 73(3) have
the null multiplication, 74(3) is a field of order three. Upon checking Table III
we find that 7i(iS) has five normal subgroups of order three. The subgroup
not so far considered is ((dddOO)). This subgroup determines a right ideal 7S(3)
which has the null multiplication. Thus, the five right ideals of order three are
rings. Of the five, only 75(3) is also a left ideal and so is the unique (left) ideal
of order three.

To the three right ideals of order nine listed in Table IV we may add

W) = 7!(3)©72(3) = 7!(3)©73(3) = 72(3)©73(3)
and

/5(9) = /4(3)©75(3).

Using a technique similar to that used in Section 3 in treating A' and A, we see
that E(S) has only these five normal subgroups of order nine. Of these, only
74(9) is also a left ideal and so is the unique (left) ideal of order nine. 74(9) has
the null multiplication. Each right (left) ideal of order nine is a ring.
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Since any function in E(S) carries the pair de to 00, de, or ed, it is seen that
the subgroup of order twenty-seven determines a right (left) ideal (call it /(27))
which is unique and maximal. Noting that

7(27) = 71(3)©/3(3)@/4(3))

we see that 7(27) is a ring with right identity (OOOde).
Each element of 7(18) carries the pair de to 00. It is immediate that 7(18)

is a maximal right (left) ideal. In Corollary 4.3 it will be verified that 7(18)
is unique as a right (left) ideal. In Section 5 it will be shown that 7(18) is not a
d.g. near-ring.

The proof of the following proposition is immediate.

Proposition 4.1. 1. In E(S), the elements of order two not of the form (xxxQfo)
form a multiplicative group M.

2. In E(S), the conjugate of an element of order two of the form (xxxOO) by
(abcOO) is in M.

4.1.1 implies that any right (left) ideal containing an element of order two
not of the form (xxxOO) must contain M and has order 2: 7. 4.1.2 implies
that any right (left) ideal containing an element of order two of the form (*;ct00)
must contain M and thus must have order S 8. Thus a proper right (left)
ideal which contains an element of order two has order 18. Also, a proper right
(left) ideal which contains an element of order six has order 18. Hence there
are no right (left) ideals of order six.

Proposition 4.2. A proper right (left) ideal of E(S) containing an element of
order two consists of functions which map the pair de to 00.

Proof. Let A be a proper right (left) ideal. Let 8, X e A with | 8 \ = 2 and
{d, e}X =£ 0 . E i t h e r | X | = 6 o r | X \ = 3 . I f \X\ = 6 , 2X = (OOOde) o r (OOOed).
If | X | = 3 , then | X + d | = 6. In any case, (000*fe) e A. By Proposition 4.1,
(abcOO) e A. Therefore the identity map (abcde) e A and A = R. The result
follows from this contradiction.

Corollary 4.3. 7(18) is the only right (left) ideal of order eighteen.

Proof. 7(18) contains all functions sending de to 00.

Several authors have characterized the radical of a near-ring (for instance,
(1) and (3)). This radical is the analogue of the Jacobson radical of ring theory
and has the usual radical properties.

Definition 4.4. A subgroup H of the near-ring 7? is an 7?-subgroup if 777? c: 77.
The radical J(R) is the intersection of the right ideals of R which are maximal
7?-subgroups.

Theorem 2.2 of (1) is of particular interest with regard to E(S) for it states
that if 7? is a finite d.g. near-ring with identity whose additive group (7?, +) is
solvable, then J(R) is nilpotent and the quotient near-ring RJJ(R) is a ring.
It is easily seen that (E(S), +) is solvable.
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Since the right ideals of order three or nine of E(S) are subsets of /(27),
since there are no right ideals of order two or six, and since 7(18) and 7(27) are
then the maximal £(S)-subgroups, J(E(S)) = 7(18)n7(27), i.e. J(E(S)) = 74(9).
Thus, 74(9) is a two-sided ideal.

Proposition 4.5. Let L be a left ideal of E(S). Let X e L, with \ X | = 3,
and let X map the pair to either de or ed. Then (rfeOOO), (dOeOO) e L. That is,
J(E(S))czL.

From this proposition we see that the radical is the unique left ideal of
order nine.

It is to be noted that the near-ring E(S)/J(E(S)) is isomorphic to the subnear-
ring generated by (abode) and that each of these is isomorphic to the ring of
integers modulo six.

J(E(S)) is the set of all nilpotent elements of E(S). In fact, J(E(S)) has the
null multiplication.

5. Comments
The only elements of 7(18) which are right distributive in 7(18) are the four

endomorphisms contained in 7(18). These four elements do not constitute an
additive generating set for 7(18). No other element of 7(18) is right distributive
since all others, except (deOOO) and (edOOO), fail to distribute over the sum
(aaaOO) + (bbbOO) and (tfeOOO) and (edOOO) fail to distribute over the sum
(abc0O)+(abc00). Thus 7(18) is not d.g. So we have a new example showing
that a subnear-ring of a d.g. near-ring need not be d.g. The only other example
appearing in the literature is that noted in (7). In that example the subnear-
ring is not a right ideal.

In contrast to the situation of Corollary 2.4, we can show that Me need not
be d.g. if e is not right distributive. For 0 = (abcOO), Mp = 7(18). But, as
we have seen, 7(18) is not d.g. If we let y = (OOOde), then Ay = 7(18) and we
see that an Ae need not be d.g. One would like to determine the precise relation
between e being right distributive and Ae and Me being d.g. subnear-rings of
E{G).

Our example of E(S) also leads to the formulation of the following conjec-
ture : The near-ring E(G) contains an idempotent element e such that

(M£, +) s (G, +).

In subsequent papers, further properties of E(G) will be explored and addi-
tional examples will be presented. It will be shown, by using the technique of
Theorem 2.3, that E(D8) has 256 elements.
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