
NON-ISOMORPHIC NON-HYPERFINITE FACTORS 

W A I - M E E CHING 

Introduction. A von Neumann algebra is called hyperfinite if it is the weak 
closure of an increasing sequence of finite-dimensional von Neumann sub-
algebras. For a separable infinite-dimensional Hilbert space the following is 
known: there exist hyperfinite and non-hyperfinite factors of type II i 
(4, Theorem 16'), and of type III (8, Theorem 1) ; all hyperfinite factors of type 
Hi are isomorphic (4, Theorem 14); there exist uncountably many non-iso-
morphic hyperfinite factors of type III (7, Theorem 4.8) ; there exist two non-
isomorphic non-hyperfinite factors of type IIi (10), and of type III (11). 
In this paper we will show that on a separable infinite-dimensional Hilbert 
space there exist three non-isomorphic non-hyperfinite factors of type II i 
(Theorem 2), and of type III (Theorem 3). 

Section 1 contains an exposition of crossed product, which is developed 
mainly for the construction of factors of type III in § 3. The second half of 
§ 1 contains a "cutting" lemma, important for our final result. 

In § 2 we introduce a new algebraic property of von Neumann algebra: 
property C. We construct a non-hyperfinite factor of type IIi which has 
properties C and T (4, Definition 6.1.1). Then we establish the non-isomorph
ism of three non-hyperfinite factors of type IIi by showing that C does not 
hold (T does) for a non-hyperfinite factor of type IIi used by Schwartz 
(10, Corollary 12). 

Section 3 contains a similar but more complicated construction of three 
non-isomorphic non-hyperfinite factors of type III . 

In this paper, all Hilbert spaces are complex and we use the following nota
tion: B(H) denotes the algebra of all bounded linear operators on a Hilbert 
space H, I the identity operator, S' the von Neumann algebra of operators 
which are permutable with the elements in S C B(H), Tt—^T strong operator 
convergence, | | r | | 2 = ( t r (T*r)) 1 / 2 the trace norm of an operator in a factor 
of type Hi. Isomorphism (automorphism) of von Neumann algebras will mean 
*-isomorphism (*-automorphism). R denotes a von Neumann algebra on H, 
a vector x in H is called separating for R if / £ R, tx = 0 implies t = 0, cyclic 
for R (equivalently, separating for Rr) if the closed linear subspace generated 
by Rx is H. G denotes a group with identity e. G is called ICC (infinite class 
of conjugates) if {hghr^h £ G) is infinite for each e ^ g £ G; H ® G the 
Hilbert space of all functions x on G with all x(g) Ç H and 

IHi2=Z«)ll2<«>; 
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u: G —> B{H) a unitary representation such that 

u{g)Ru{g-i) = R, Pg:H®G->H 

the partial isometry with Pgx = x{g), aQ (for any vector or operator a) the 
function on G with value a at g and value 0 elsewhere. Each T G B{H ® G) 
has a matrix representation: T = {Tg>h), Tg>h = PgTPh G B{H) for g, h £ G 
such that 

(7«)(g)=Z^^(*)-
ft 

Sections 1 and 2 of this paper are contained in my Ph.D. thesis, submitted to 
the University of Toronto in May, 1968. I express my deep gratitude to my 
supervisor, Professor I. Halperin, for the problem he suggested, for his en
couragement, and for the painstaking care with which he supervised the work 
of this thesis. 

1. The crossed product R ® u. Suppose that H, R, G, u, and H ® G are 
as described in the Introduction. 

Definition 1. A bounded linear operator on H ® G, to be denoted L(t), is 
called an R-shifter if it is determined by the formula 

h 

for some /: G—>B(H) with the property that the sum Y,ht{h)u{h)x{gh) 
converges in the strong topology of H for all x 6 H ® G, g G G (it is easily 
verified that sg is such a function t for all 5 Ç R, g G G, and ||L(s*)|| = | |s| |). 

Definition 2. The set of all i?-shifters, to be denoted R ® u, is called the 
crossed product of R by u. 

LEMMA 1. T G B(H) is of the form L{t) {with t necessarily unique) if and 
only if: Tg,h = Te,0-ih and Tetgu(g~l) G Rfor all g, h {then t{g) = T6tgu{g~1)). 

Proof. This is easily verified. 

COROLLARY 1. If L{t) and L{s) are R-shifter s and c is a complex number, then 
L{Ie) is the identity operator on H ® G and 

cL{t) = L{ct), L{t) + L{s) = L{t + s), 

L{t)L{s) = L{t * s), {L{t))* = L{t*), 
where 

{ct){g) =ct{g), {t + s){g) =t{g)+s{g), 

(1) (/ * s){g) = D tWuWsQT^uQT1), 
h 

(2) t*(g) = u{g)(t{g-i))*u{g-i). 

Proof. This is easily verified (use Lemma 1 and matrix representations). 
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COROLLARY 2. Suppose that x Ç H is separating for R. Then xe 6 H ® G is 
separating for R ® u. 

Proof. Suppose that T Ç R ® u and Txe = 0. Then we have: 

Tgthx = Tn-ig>ex = (Tx^Qi-ig) = 0, 

and hence TQyh = 0 for all g} h. Thus T = 0. 

THEOREM 1. R ® u is a von Neumann algebra on H ® G. 

Proof. R ® u is a *-subalgebra of B (H ® G) containing the identity oper
ator by Corollary 1 to Lemma 1. To show that R ® u is strongly closed, we let 
(Tt) be a net in R ® u with Tt-^T. Then 

(7\),.» = PçT^n-^PJPn = r,f» and ( r , ) , . , ^ 1 ) ~> T9,gu(rl) Î 

since i? is strongly closed, Lemma 1 shows that T Ç R ® u. Thus R ® u is 
strongly closed and hence it is a von Neumann algebra. 

Corollary 1 to Lemma 1 shows that (R ® U)Q = {L(t)\t of finite support} is 
a *-subalgebra of R ® u. As in (3, Lemma 12.3.4), 

(R®uy = {L(p)\t e R , g e GY 

and (R ® u)0 is strongly (and weakly) dense in R ® u. 

LEMMA 2. Suppose that R is a factor, and G is ICC. Then R ® u is also a 
factor. 

Proof. Let L(t) be in the centre of R ® u. Then: 

L(t)L(Ih) = L(P)L(t) for all h G G; 

L(t)L(se) = L(se)L(t) for all 5 G R. 

By (1), we have 

(3) t(g)u(g) = u{g)t(h-*gh) for all h, g £ G; 

(4) t(g)s = si(g) for alls £R,ge G. 

Suppose that t(g) 9e 0 for some g 9e e. Then for every x £ H: 

(5) | |L(/K||2 = D |i(L(/)*,e*|l2 = E ll^r1)^*""1)*!!2 = £ ll'(*)*ll2-

In this sum there are infinitely many summands equal to ||£(g)x||2 7& 0 since 
G is ICC. Hence t(g)x = 0 for all x £ H. Thus /(g) = 0 for all g ?* e, or 
L(t) = t(e)e. Since i£ is a factor, (4) implies that t(e), hence L(t), is a scalar 
multiple of the identity operator. 

Remark 1. In the special case that H (hence R) is the complex field, u 
the identity representation of G, R ® u is just the group algebra associated 
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with G, which we shall denote by A (G). A (G) is a factor of type Hi if G is ICC. 
Ie is a trace vector oîA(G), and | |L(/)| |2 = (EJ*(g)l2)1/2. 

LEMMA 3. R ® u is purely infinite if R is purely infinite (in the case that 
R ® u is a factor on a separable Hilbert space, this is equivalent to R ® u is of 
type I I I ) . 

Proof. First we show, assuming 0 ^ Lit) ^ 0, that 0 ^ t(e) ^ 0. We have 
L{t) = L(s)(L(s))* for some s, 

t(e) = 0 ® s*)(e) = E sWuQi^QT^uQT1) 
h 

= 2 s(*)«(*)«(A-1)(*(&))*«(*)«(A-1) = £ s(h)(s(h))* ^ 0 

and /(e) = 0 would imply: s(h) = 0 for all h, s = 0, L(s) = 0, L(t) = 0. 
Now we use an argument of Sakai (9, § 3). Suppose, if possible, that there 

exists a non-zero finite projection L(p). Then p(e) G R and 0 ^ £(e) ^ 0. 
Hence, for some non-zero projection a G R: \p(e) ^ g ^ 0 for some X > 0, 
thus q = q\p(e) for some gi G i^. To complete the proof, it is sufficient to show 
that q is finite. By Sakai's proposition (9, Proposition 2'), we may suppose that 
tn G qRq, tn —* 0, and we need only to show that tn* —> 0. 

LetLn = L(tn
e). Then Ln —> 0 since supw||Lw|| = supn||£n|| < oo andLn(x°) = 

(tnx)° —> 0 for all x G H, g G G. Hence LnL(p) —» 0. Then by Sakai's proposi
tion (9, Proposition 2): L(p)Ln* -+ 0, hence p(e)tn* = (L(p)Ln*)e>e -> 0. Thus 
4* = g/re* = Oip(e)tn* —» 0 as required, and the proof is complete. 

Let u\\ K —> B(H ® K) be a. unitary representation of a group K such that 
Ui(k)(R ® u)ui(k~l) = R ® u for all k G i£. We make the convention that 
R ® u ® uu H ® G ® K, and a^fc shall mean (R ® u) ® uu (H ® G) ® K, 
and (a*7)*, respectively. We still write L(i) for an element of R ® u ® U\, but 
where t is an i^-valued function on the Cartesian product G X K such that 
L(t(-, k)) G R ® u for each k G K. Let x be a separating vector for R, then 
by Corollary 2 to Lemma 1, J = xe,e is a separating vector for R ® u ® U\. 
Suppose that | | r^i(^)x e | | = | | rx e | | for all T G R ® u. Then applying (5) 
twice, we have 

(6) ii£(mir = z z ii'(g,£Mg)*n2. 
k g 

For any function t on G ® K, let / denote the function: tie, k) = t(e, k)> if 
k G A, ?(g, &) = 0 if g 9^ e or & G A, where A is a subgroup of K. Let i?i be 
the set of all elements of R ® u ® U\ of the form L(t). Ri is certainly a vector 
space. Suppose, further, that Ui{k)ReUi(k~l) = Re for all k G K, where 
Re = {L(se)\s G i^J. Then a computation based on (1) shows that Ri is a 
*-subalgebra of R ® u ® u\. Now suppose L(ta) —> L(£). By (6), we have 

11 (?«(*, *)«(*) - Kg, *)«(*) )*ll - > 0 for each (g, k) £ G X K. 

https://doi.org/10.4153/CJM-1969-142-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-142-6


FACTORS 1297 

Hence t(g, k) = 0 if g ^ e or k G A. This shows that Ri is strongly closed, i.e. 
a von Neumann subalgebra of R ® u ® U\. We note that the set RF of all 
finite sums of se>k> s G R, k G A, form a strongly dense *-subalgebra of Ri. 

LEMMA 4. Let R2 = R ® u ® uly H ® G ® K, x, £, A C K, Rx be as de

scribed in the preceding discussion, i.e. \\T0ui(k)xe\| = 11T0x
e\\ for all T0 G R ® u, 

k G K, and Ui(k)ReUi(Jkrl) = Re for all k £ K. Suppose that the positive linear 
functional f (S) = (S£[£) on i?2 w swcA /Aa* / ( F S ) =f(ST) for all T G i?2, 
5 G i?i. rAew /Aere exists a projection P of norm one from the Banach space R2 

(with the operator norm) onto its sub s pace Ri such that 

(7) P(L{t)) = L(l) for all L(t) G R2. 

Proof. Let A+ denote the positive part of an operator algebra A. For each 
T G R2

+, define fT(S) = f(TS), S G Ri. T h e n / r is a positive linear functional 
on Rt satisfying: fT(S) S | | r | | / (S ) for all 5 G Ri+. Also, the trace/(5) = (Sf|£) 
on i^i is regular in the sense that if £ is a projection, f (E) = 0 implies E = 0. 
In fact, \\E£\\2 = (E£|£) = 0 implies E = 0, since ? is a separating vector for 
R2. By (12, Lemma 14.1), there exists a unique positive operator T' in i^i 
such t h a t / ( 7 5 ) = f(T'S) for all 5 G i?i. This mapping T i-> r of i?2+ to Rx+ 
can be uniquely extended (via the canonical decomposition of an operator) to 
a linear mapping P: T i—> T' from R2 onto i?i such that / (TS) = f (T'S) for all 

se RL 
I t is clear that P is a projection. Now, for any 7\, T2 G i?2, 

/((r1
,r2) ,5=/(r1

/ras) = /(r2'S7Y) =/(TYTYS) = /((ri7Y)'S) 
for all 5 G £ i . Hence, (2Yr 2 ) ' = TV TV - (T^TY)' for r i f T2 G i?2. 
( r * ) ' = ( D * since T ^ 0 implies V ^ 0. Moreover, for any T G i?2, 

o g ( ( r - T')*(T - T')y = (T*ry - T*T, 

i.e. T*'V ^ ( r*T) ' . For any r G i?2, 0 ^ F T ^ | | r T | | L Thus we have 

o s T*fr ^ (T*ry ^ \\T*T\\I, 
| |r|| = (||r*r||)i/2 ^ ||r*r||i/2 = ||r||. 

Hence the projection P from the Banach space R2 onto its subspace Ri is of 
norm one. 

We know that P satisfies (7). Let R0 denote the dense (weakly, strongly) 
*-subalgebra of R2 consisting of all operators L(i) with t of finite support on 
G X K. For an arbitrary L(t0) G Ro, L(t0) = S^ÇA L(t(e, k)e>k) is a finite sum 
of bounded operators, hence a well-defined element in Ri. We have 

(L(to)L(s°*)&) = (t0(e, k-i)xo\x0) = (L(f0)L(*é"*)É|{) 

for all k G K. Since i?F is dense in Ri, we conclude that 

(£(*o)S*|£) = (i(îo)5€|€) for all 5 G 2?i. 

Hence P(L(t)) = L(?) for all L(0 G 2?0. 

https://doi.org/10.4153/CJM-1969-142-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-142-6


1298 WAI-MEE CHING 

Now, let T = L(t) be an arbitrary operator in R2. And let Tt = L(tt) —> T, 
where Tt G i?o, | | 7 \ | | ^ | | r | | , i = 1, 2, . . . (such a sequence exists because of 
Kaplansky's density theorem and the metrizability of the unit ball in strong 
operator topology (1, § 3)). For each S Ç Ru 

Consequently, (7Y£|;y) —• (T'^b) for all y Ç i7 ® G ® i£. Since $ is cyclic for 
R2't we have (Tt'z\y) -> ( r / z |y ) for all z, y £ H ® G ® X. Hence P is con
tinuous from the unit ball of R2 with strong operator topology to the unit ball 
of Ri with weak operator topology. || (T — 7\-)£||2 —> 0 and (6) imply that 

\\(t(g,k)u(t) -tt(g,k)u(g))x\\^>0 

for each (g, k) £ G X K. Since the norms of all 

t(g,k), tt{g,k), i= 1,2, . . . , (g,k) e GXK, 

are bounded by | | r | | , this implies that ti(gy k)u(g) —> t(g, k)u(g) for each 
(g, k) £ G X K. In particular, 

(8) tt(e, k) —> t(e, k) weakly for each k Ç A. 

On the other hand, suppose that P(T) = L(s) 6 Ri> Then 

L(s) = P(T) = w e a k l i m P ( r , ) = weak lim £(?*); 

«s(e, k) - tt(e, k))x\s'x) = ((L(5) - L(J,))É| (*'*)'•*" *) - 0 

for each k £ A, s' G P ' . Hence /z(e, &) —> s(e, k) weakly for each k £ A, since x 
is cyclic for R'. In view of (8), we have s(e, k) = t(e, k) for all H A. Thus, 
P(L(t)) = L(f). This completes the proof of the lemma. 

Remark 2. For the special case that R is the complex field, G = [e], A C Kf 

then P: L(t) ->L(/ |A) , where *|A(ife) = t(k) if * € A, /|A(*) = 0, if & g A. This 
case has already been proved in (4, Appendix). 

LEMMA 5 (Pukanszky (8, Lemma 10)). Let G be a group and B a subset of G. 
Suppose that there exists a subset S C B and two elements gi, g2 € G such that 
(i) 5 KJ hiSgi = B and (ii) the sets 5, g2~1Sg2, g2Sg2~

l C B are pairwise disjoint. 
Letfig) oe a complex-valued function on G such that Ylgto \f(g)\2 < °° » and 

(Zl/ter1)-/^)!2) <* (* = i,2). 

Then(Z9,B\f(g)\2) < 14e. 

2. Non-isomorphic factors of type Hi. The following definitions describe 
the properties we shall use to distinguish between factors. 

Definition 3 (4, Definition 6.1.1). A factor R, of type Hi, is said to have 
property V if for any given finite set of elements T1} T2y . . . , Tn £ R and any 
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e > 0, there exists a unitary U G R with tr(U) = 0 and || U*TtU - Tt\\2 < €, 
i = 1, 2 , . . . , w. 

Definition 4. A von Neumann algebra R is said to have property C, if for 
each sequence Uk (k = 1, 2, . . .) of unitary operators in R with the property 
that strong lim UjfTUk = T for each T £ R there exists a sequence 
Fa (k = 1, 2, . . .) of mutually commuting operators in R such that 

strong lim(Ujc — Vk) = 0. 

Since algebraic isomorphism between two von Neumann algebras preserves 
the strong convergence of sequences of operators (6), it preserves property C 
as well as property T. 

Let II denote the group of all finite permutations on the set of all natural 
numbers, $2 the free group with two generators, and II X $2 their direct 
product. Then it is known that A (II) is hyperfinite, but A (<£2) and A (II X $2) 
are non-hyperfinite; ^4(11) and A (II X $2) have property T, but A($2) does 
not (10). 

We construct below a factor A (<ï> ® A) of type II1 for which we shall prove 
the following lemmata. 

LEMMA 6. A($ ® A) has property V. 

LEMMA 7. A (<£ ® A) has property C. 

LEMMA 8. Neither A(n) nor i ( I I X $2) has property C. 

In view of the above lemmata, we have the following theorem. 

THEOREM 2. -4(11), -4($2), i ( I I X $2), and A($ ® A) are four pairwise 
non-isomorphic factors of type Hi. 

Construction of A($ 0 A). Let $ be a free group with an infinite system of 
generators {a0, bo, au 61, a2, b2j . . .}. Let pl be the permutation on the set of 
free generators of $ which permutes at with bu and leave all other generators 
fixed, i = 1, 2, . . . . Let A be the group of permutations on the set of free 
generators of $ which is generated by pif i = 1, 2, . . . . Aisabelian. I t is clear 
that each X Ç A induces an automorphism g —> Ag of $ in an obvious way, 
i.e. via the word representation of g G <£. Hence, A can be regarded as an 
abelian group of automorphisms of $. 

Let $ 0 A = f f e X ) U e ^ X G A}. Define (g, X)(A, M) = (gXA, X/0 for 
(g> X), (A, M) € $ ® A- Then, it is easy to check that $ ® A under this 
multiplication is a countable ICC group. Therefore, A($ ® A) is a factor of 
type Hi on a separable Hilbert space. 

Proof of Lemma 6. Let S be a finite subset of $ 0 A. Let a be the largest 
natural number j such that a3 or b3- appears in the reduced word representation 
of the first coordinate of some element in S. Then, (e, e) =̂  (e, pq+i) Ç $ ® A 

https://doi.org/10.4153/CJM-1969-142-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1969-142-6


1300 WAI-MEE CHING 

clearly satisfies (e, pq+i)k = k(e, pq+i) for all k £ S. By (4, Lemma 6.1.1), we 
conclude that A (3> ® A) has property T. 

Proof of Lemma 7. Let wfc = L(tk) (k = 1 ,2 , . . . ) be a sequence of unitary 
operators in ^4(̂ > ® A) with the property that lim|| Uk*TUk — T\\2 = 0 for 
each r ç i ( $ ® A) (this is equivalent to strong lim Uk*TUk = T). Let A 
denote the subgroup (e, A) of $ ® A. We claim that 

Vk = L(tk\A) e A (A) CA($® A) (k = 1 ,2 , . . . ) 

is a bounded (by Lemma 4 and Remark 2, | |F*| | ^ ||£7*|| = 1) sequence of 
mutually commuting operators (since A is abelian) required for having 
property C. 

Let Tt = L(Igi) (i = 1, 2), where gi = (a0, e), g2 = (&o, e). Let 5 be the 
subset {(g, X)| X G A, g Ç #, g in reduced word representation ends in a non
zero power of a0} of 3> X A. Put 5 = $ ® A \ (e, A). We note that 
B = SVJ giSgï"1, and 5, g2Sg2

_1, g2~1Sg2 are pairwise disjoint subsets of B. 
Given any e > 0, there is an N = iV(e) such that k > N implies 

\\Uk*TtUk - TtlU = \\Tt*UkTt - Uk\\2 

= ( E Ifefeggr1) - 4fe) |2)1 / 2 < e (* = 1, 2). 

By Lemma 5, we have 

\\Uk- Vk\ |2 = | | i ( / * ) - i f e | A ) | | 2 = ( Z |4 t e ) | 2 ) 1 / 2 <146 

for all k > N. Hence strong lim([7* — F*) = 0. 

Proof of Lemma 8. Let g* be the element in II which permutes i with i + 1 
and leaves all other natural numbers fixed, for each £ = 1 , 2 , . . . . Given any 
operator T = L(t) in 4 ( H ) , let Z7 = L(t') Ç 4(11) be such that *'(g) = 0 
for all g Ç II except on a finite subset 5 of II, and | |T — Tf\\2 < e/2. Let N be 
the largest natural number which is permuted by some element in S. I t is 
easy to see that Ui commutes with V for all i > N. Thus, i > N implies 

\\Ut*TUt - T\\2 = \\Ut*(T - T')Ui\\2 + \\T - T'\\2 < e. 

Hence lim\\U*TUi — T\\2 = 0, or equivalently, strong lim U*TUi = T for 
each T<E 4(11). 

Suppose that A (II) has property C. Then there exists a sequence 
Vi (i = 1 ,2 , . . . ) of mutually commuting operators in -4(11) such that 
strong lim(Ui — Vi) = 0. Now, since gigi+i 9e gi+igtiori = 1, 2 , . . . , we have 

V2 = ||L(/'<'*+i - pi+iu)p\\ = ||f/,C/,+1 - *7,+1£/,||2 

^ | | ( t f < - F 0 £ / m l | 2 + | | F , ( ^ + 1 - F , + 1 ) | | 2 + | | ( F , + 1 - U„i)Vt\\s 

+ \\Ui+1{Vi- Ui)\\2^2\\Ui- ^ | | 2 +211^11 || C 7 t + 1 - 7<+1||2, 
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the last step follows since the trace is unitary invariant and 

\tr(ST)\ â ||S|| • |tr(r)|. 

By the uniform boundedness principle, the strong convergence of (Ui — Vt) 
implies that {||F, - Ui\\], i = 1, 2, . . . , and {H^H}, i = 1, 2, . . . , are 
bounded by some positive number M. Hence, each term in the last expression 
of the above inequality approaches 0 as i —•> co. This contradiction shows that 
A (II) does not have property C. Replace all II by II X $2 and gi by (gi, e) in 
the preceding proof, we also conclude that A (II X $2) does not have property 
C. 

3. Non-isomorphic factors of type III. The following algebraic property 
of von Neumann algebras was introduced by Pukanszky (8) to distinguish a 
pair of factors of type III . 

Definition 5. A von Neumann algebra is said to have property L, if there 
exists a sequence Ut (k = 1, 2, . . .) of unitary operators in R such that 
weak lim Uk = 0 and strong lim U{TUK* — T for each T Ç R. 

Our construction of non-isomorphic factors of type III follows the construc
tion in Pukanszky (8) and the construction of the new factor of type II1 in 
§ 2. Rx is the factor Mx in (8) and -R2 is the factor M2 in (8). 

Construction of Ri. Let G be an infinite group and let x0 = {0, 1}. Let JU0 

be the measure on X0 with MO({0}) = p, fx0 = ({1}) = q, p + q = 1, 0 < p < q. 
Let X = Tlg£G Xg be the Cartesian product of {Xg}, g Ç G, where all Xg = X0, 
and let /x be the completion of the product measure \x = Tlg^G \xQ on X, where 
all fig = MO. Let H = L2(X, ix) be the Hilbert space of all /i-square-integrable 
functions/on X. Let M(X, ju) be the abelian von Neumann algebra consisting 
of all multiplication operators on H, i.e. M(X, n) = {w/0|/o a bounded 
/z-measurable function on X and (tnfo) (x) — fo(x)f(x) for a l l / Ç H}. We shall 
simply write f0 for mfo hereafter. The function / (x) = 1 on X is a separating 
cyclic vector for M(X, M) and we denote it by / . 

Next, let K be the subset of X consisting of those elements of X which take 
the value 1 only at finitely many points of G. Define (x + y) (g) = x(g) + y(g) 
(mod 2) for all x, y Ç X. Then K is an abelian group with identity e(g) = 0. 
Each a Ç K defines a transformation a: x —> x + <xon X; and the measure /JL is 
quasi-invariant under K (8, Corollary to Lemma 3). Define M«CE) = v(E -{- a) 
for each ^-measurable subset E of X, and let {dixa/dfx){x) be the Radon-
Nikodym derivative of fia for each a Ç K. Define 

(M(a)/)(x) = ( ^ ( x ) ) 1 / 2 / ( x + a) 

for a l l / G H. Then w. a —•> u(a) is a faithful unitary representation ol K on H 
such that w(a)/(x)z/(a-1) = f (x + a) G M(X, /*) for a l l / (x) 6 M ( Z , /*). By 
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(8, Lemma 7), the transformation group K is (i) free, (ii) ergodic, (iii) non-
measurable on X; hence the crossed product Ri = M(X, fx) ® u on Hi == H ® K 
is a factor of type III with Ie as a separating vector (5, Lemmas 3.6.5, 4.3.5). 
Glimm (2, § 2) has shown that Ri is hyperfinite. An arbitrary element in Ri is 
denoted by L(J(x, a)), where for each a G K,f(x, a) is a bounded measurable 
function on X. 

Construction of R2. Let the group G in the construction of Ri be <£2, the free 
group with two generators. For each g G $2, define 

(9) («i(g)/)(tf, a) =f{gx, go) for a l l / O , a) G # 1 , 

where gx(A) = x{hg) for x G X D i£. Wi: g —>^i(g) is a faithful unitary 
representation of <î>2 on i?i, and ui(g)RiUi(g~1) = Ri for all g G <Ê>2. Also, it is 
easily verified that for each g G <J>2, we have 

llTuWW = ( E f |/(x,«)|2^)1/2= ||r/«|| 

for all T = L(J(x,a)) G R\. Since $2 is an ICC group, the crossed product 
R2 = Ri ® ^1 on the Hilbert space H2 = Hi ® $2 is a factor by Lemma 2. 
By Lemma 3, i^2 is a factor of type III since Ri is purely infinite. Indeed, R2 

can be identified with M\ in (8) by the isomorphism i: R2—> M2 such that 
i(f'-') = Z„ î(/—) = £7(ata)f a G K (A in (8)), *(/••') = É7(6.,)f g G <î>2. As 
shown in (5, Theorem VIII) , R2 = WR2W, where W is an involuntary on H2 

defined by 

iWf) (*, «, g) = ( ^ ^ (x)y2fQT\x + a), g-^, g"1) 

for a l l / O , a, g) G H2. 

Construction of R%. Let $ be a free group with an infinite system of generators 
{a_i, a0, ai, a2, . . .}, and let the group G in the construction of Ri be the 
subgroup <£2 of $ generated by a_i and a2. Let II be the group of all finite 
permutations on the set of natural numbers. Put 7r(a_i) = a_i, 7r(<20)

 := a0, and 
7T(U^) = aTd), i = 1, 2, . . . , for each ir G II. II is a group of permutations on 
the set of free generators of $, and naturally, a group of automorphisms of <£. 
Let $ ® II = {(g, 7r)| g G ^, 7T G n} , and define (g, 7r)(&, TTI) = (gir(h), 7r7ri) 
for (g, 7r), (A, 7ri) G $ ® n . I t is easily seen that $ 0 II is an ICC group under 
this multiplication. The mapping #: a_i —» a_i, a0 —> a0, at —> 6, i = 1 , 2 , . . . , 
7T —•» £, 7T G II, between generators of <£ ® II and that of <E2 clearly induces a 
homomorphism 0': g —> g' of $ ® II onto $2. The free group <£2 has a unitary 
representation U\ on iJi defined by (9) which induces a group of automorphisms 
of R\. Put Vi = UiO <j>f. vi is obviously a unitary representation of <£ ® II on 
Hx such that z>i(g)i?i*>i(g_1) = Ri for all g G $ ® II. By Lemmas 2 and 3, the 
crossed product Rs = Ri ® z>i on H% = 27i ® $ ® II is a factor of type III 
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with a separating vector £ = Ie'e. As shown in (5, Theorem VIII) , 
Rz = WiRzWi, where W is an involuntary on Hz defined by 

for all / (x, a, g) £ Hz. 

Construction of Ri. Let $ ® A be the group constructed in § 2, and let the 
group G in the construction of Ri be the subgroup $>2 of $ ® A generated by 
(a0, tf) and (&o, #)• The free group $2 has a unitary representation u\ on iiZ* 
defined by (9). Now, the mapping #1: (a0, e)—> (a0, e), (̂ o, e) —> (&o, #), 
(a*, e) —> 0, a), (6i, e) —» 0, e), i = 1, 2, . . . , (e, X) —> (e, e), X Ç A, clearly 
induces a homomorphism 0 / : g —» g' of $ ® A onto <£2. Then » = u\ o 0 / 
is a unitary representation of $ (8) A on Hx such that ^dO^i^Gf"1) = R\ and 
II^MgKII = | | r / e | | f o r a l l g Ç $ ® A, T e i^L By Lemmas 2 and 3, the crossed 
product i£4 = J?i ® v = Jlf (x, M) ® w ® z> on i74 = i2"i ® $ ® A is a factor of 
type III with a separating vector £ = I e ,e. As in (5, Theorem VIII) , it can be 
verified that R± = W2R4W2, where W2 is an involuntary on H4 defined by 

for all / (x, a, g) G i?4. 

We shall prove the following lemmata for the factors of type III we con
structed on separable Hilbert spaces Hu i = 1, 2, 3, 4. 

LEMMA 9. R2, Rz, Ri are non-hyper finite. 

LEMMA 10. Both Rz and Ri have property L. 

LEMMA 11. Rz does not have property C. 

LEMMA 12. RA has property C. 

Since R2 is just the factor M2 in (8) which does not have property L 
(8, Lemma 13), the above lemmata imply the following theorem. 

THEOREM 3. R2, Rz, R± are three pairwise non-isomorphic non-hyper finite 
factors of type III on a separable infinite-dimensional Hilbert space. 

Proof of Lemma 9. Suppose that Ri is hyperfinite. Since R± and Ri are iso
morphic by an involuntary W2, Ri is also hyperfinite. Let 

be an increasing sequence of finite-dimensional von Neumann subalgebras of 
Ri which generates it weakly. For any x, y G Hi and T 6 B (Hi), define 

(dn(T)x\y) = f (UTU*x\y)^ (dU), 
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where Un is the compact group of all unitary operators in Mn, and /xn is the 
normalized Haar measure on Un, n = 1, 2, . . . . Let 

(0(T)x\y) = Banachlim (6n(T)x\y). 

Then 6: T —> 0(T) is a linear mapping from B(HA) onto (RAY = î 4 such that 
(i) e(T*) = 0(T)*, (ii) 6(1) = J, (iii) ô(i4D = i4fl(r), 0(7M) = 0 ( r ) 4 for 
all A G 2?4, and (iv) T ^ 0 implies 0(T) à 0 (see 10). 

The Hilbert space i74 is the space of all complex functions F(x, a, g) on 
X X K X $ ® A such that 

E E f |F(x,a,£)|2^<+0). 

Put r(T) = (r£|£) for r G i?4. We shall prove that for each h G ker v (kernel 
of v) C $ ® A, 

(10) r(L(P>h)*TL(P'h)) = r ( r ) for all T € 2?4. 

Since the linear span of all operators of the form L(Ja,g) is weakly dense in i?4, 
we only need to verify that 

(L(P>»)*L(f«>°)L(P*)&) = (LCf •')*!*). 

where / 6 M" (x, M), a G K, g G $ ® A, for each h G ker p. In fact, if g ^ 6, 
both sides equal 0; if g = e, both sides equal (£(/a,e)£|£) since L(Ie,h) commutes 
with L(fa-e) when & G kerz;. 

The mapping rjf: (a0, e) —> e, (60, e) —* e, (a*, X) —> (a*, X), (6*, X) —> (bu X), 
i = 1, 2, . . . , X G A, obviously induces a homomorphism 77 of 3> ® A onto 
ker t; C $ ® A. Now, for each subset <x of ker v, let 7^ be the non-negative 
operator on the Hilbert space H± defined by 

(TF)(x a e) = iF(*'a'g) U^^^> {lffP){x,a,g) ^ Q J f ^ € ^ 

a —» Tff is a finitely additive operator-valued function of all subsets of ker v, 
and Tier 0 = / . Put v(<r) = r(0(r<r)). Then p(<r) is a non-negative finitely 
additive function defined for all subsets of ker v with *>(ker v) = 1 by (ii) and 
(iv) of the mapping 6. An elementary computation shows that 

L(P>°)*TMIe'°) = T„-i. 

for each g G ker v. Then it follows from (iii) and (10) that 

viT1*) = T(6(L(P>°)*TMIe'g))) = T(L(P>')*d(Tff)L(P'°)) 

= TÇÔÇTV)) = *>(o-) for each g G ker y. 

Hence ^ is a Banach mean on the group ker v. But ker v obviously contains a 
subgroup isomorphism to the free group with two generators, consequently, 
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ker v cannot be amenable. This contradiction shows that R*, and hence R±, 
are non-hyperfinite. The proof for R% or R2 is exactly the same. We omit the 
repetition here. 

Proof of Lemma 10. We first note that strong lim UkTUk* — T is equivalent 
to \im^co\\(UkTUk* - T)$\\ = 0 for each T G Rz (RA), and weak lim Uk = 0 
is equivalent to lim| (£/*£!£) | = 0 for any sequence of unitary operators 
Uk (k = 1, 2, . . .) since £ is a cyclic vector for i?3' (RA)> Let X* be the element 
of II which permutes k with k + 1 and leaves all others fixed (X* = pk G A) 
and let Uk = L(J< ••**>) for k = 1, 2, . . . . J7* is unitary and (Z7*£|£) = 0, 
& = 1, 2, . . . . Hence weak lim Uk = 0. 

For any given operator T = L(t) in i?3 = Ri 0 vi (R* = Ri ® «;), where / is 
an i^-valued function on $ 0 II ($ ® A), and e > 0, let V = L(jf) G Rz (RA) 
be such that t'(g) = 0 for all g in $ ® II ($ ® A) except on a finite subset 5, 
and || (T — r ' ) | | < e/2. Let £ denote the largest natural number 7 for which 
there is a (g, 7r) G S with T(J) 7^ j , q denote the largest natural number j such 
that a,j (cij or bj) appears in the reduced word representation of the first 
coordinate of some element in S. Let N = max(/>, q). At this point, we note 
that L(se)L(P) = L(P)L(se) for all h G (e, II) ( 0 , A)), 5 G Rx. Clearly, for 
ail k> N, Uk commutes with L(P) if g G 5. In short, r ET* = E/*r' for ail 
k > N. Hence k > N implies 

\\(ukTuk* - r)£|| g ||t/*(r- r)c/^| | + | | ( r - r)£|| = 2\\(T - r)t\\<e. 
The last step in the above expression is justified since for each h G (e, n ) ((e, A)) 
we have: 

(11) (L(I")rL(I")*m = (m) for ail T 6 R, (Rt). 

To verify this, we only need to show that 

W*)L(p-')L(P*)i\S) = (L(f •')«!« 

for arbi trary/ G ikf(x, /x), & G i£, g G $ ® n ($ 0 A). In fact, both sides are 
equal to zero if g 9^ e or a 9^ e, and equal to jxf(%) dp. if g = e, a — e. Hence 
lim*_J|(J7rC/* - T)i\\ = 0, i.e. strong lim UkTUk* = 7\ Therefore, R3 and 
i?4 have property L. 

Proof of Lemma 11. Assume, on the contrary, that R% has property C. Then, 
for the unitary sequence Uk (k = 1, 2, . . .) in the proof of Lemma 10, there 
exists a sequence Vk (k — 1, 2, . . .) of mutually commuting operators in R% 
such that strong \\m(Uk — Vk) = 0. Since X̂ +iX* 9e X^X +̂i, for k = 1, 2, . . . , 
we have: 

V 2 = \\(Uk+1Uk - J7*£/*+i)!|| ^ ||(J/*+1 - 7 t )£ te | | + \\Vk+1(Uk - Vt)Z\\ 

+ ||(V* - t/*)(F*+1 - £/*+i)S|| + | | ( 7 . - Z7*)Z7*+i£|| 
+ ||tf»(F»+i - Uk+1n\\ ^ 2\\(Uk+i - Vk+1)it\\ + | |(7» - £4)£|| 

+ ||7*+i|| ||(Uk - Vk)t\\ + \\Vk- Uk\\ IKTH-I - CWSII, 
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by (11). Since strong lim( 17* - Vk) exists, {\\Uk - Vk\\}, k = 1, 2, . . . , and 
{11̂ *11}» ^ = 1» 2, . . . , are bounded by some positive number M by the 
uniform boundedness principle. Therefore, each term in the last expression 
in the above inequality approaches 0 as k —» oo. This contradiction proves that 
Rz does not have property C. 

Proof of Lemma 12. Let Uk = L(fk(x, a, g)) (k = 1, 2, . . .) be a sequence of 
unitary operators in R± = M"(x, /*) (g) w ® v such that strong lim Uk*TUk = T 
for each T G i£4, where for each (a, g) £ K X $ ® A,fk(x, a, g) is a bounded 
/x-measurable function on X. Let i£4i denote the von Neumann subalgebra of 
R± consisting of all L (f (x, a, g) ) w i th / (pcy a, g) = 0 if a ^ e or g $ A = (e, A). 
Note that L(P'h)L(fe>e) = L(fe>e)L(P>h) for all & G A C ker v , / G M(*, M). 
Since M(X, /x) and A are abelian, Rn is an abelian von Neumann subalgebra 
of RA. By (11), (L(I'-h)Tè\Ç) = (TL(P>h)&) for all A 6 A, T G 2?4. Also, for 
each/o G M"(X, A0, we have: 

(L(foe'em\ï) = (TL(foe'*)m for all T G i?4. 

To verify this, we only need to show that 

(L(u><)L(f«>°m = (La-^)L(/oe'Oêi^) 
for a n y / G M(X, M ) , « 6 ^ , ^ $ ® A. In fact, both sides are non-zero only 
iî a = e, g = e, and in this case both sides are equal to Jx fo(x)f(x) dix. Hence, 
for any T G Ri, S G R±i, we have (TS£\%) = CST£|£), since the linear span of 
L ( / 0

e ' e ) £ ( ^ ) , / o G M(X, M), A G A, is weakly dense in i?4i. Now, by Lemma 4, 
there exists a projection P of norm one from R^ into Rn- We claim that 
^* = P(Uk) = L(fk(x, a, g)) (k = 1, 2, . . .) (where /*(*, e, g) = /*(*, e, g) if 
g G A, /A;(X, a, g) = 0 if a ^ e or g g A) is a sequence of mutually commuting 
(since P4 i is abelian) operators required for having property C. 

Let G = $ ® A, gi, g2, S, B as described in the proof of Lemma 7. Let 
Ti = L(P>°i), i = 1, 2. Note that v(gt) = I (i = 1, 2). For given e > 0, 
suppose that N = 7V(e) is such that for i = 1, 2, k > N implies 

e > 11(17**2^7*- Tt)Z\\ 

= \\(L(Ie^)L(fk(x,a,g)) -L(fk(xfafg))L(r^))i\\ 

= ( X ) Z ) J \fk(g&, g«x, g) -fk(x1a1giggtr
1)\2) . 

> Q€G a£K *>x / 

Put F(a, g) = (Jx |/fc(^, «, g)\2
 ^M)1/2> where & is an arbitrary integer greater 

than N. We observe that x-+gLx (i = 1, 2) is a measure-preserving trans
formation on X] thus by an application of the triangle inequality, for i = 1, 2, 
we have: 

= X) Z I l /fcfr .a.giggr1)!2^) —I |/jt(gf*, g<a, g)\2 dfx) 
g£G a£K\\^X / \ "X / 

g ||(rfi7* - c/,r^||2<e2.' 
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196«2. 

By Lemma 5, we have: 

(12) Z Z f \h(x,a,g)\2 = £ Z |F(«,g)|2 < 

For a, p £ K, we write a ~ f3 if there exists a g G <£2 such that ga = 0, 
where <£2 is the subgroup of G generated by gi, g2. I t is easy to see that in this 
way we obtain an equivalence relation on K. We denote by 12 the totality of 
the equivalence classes not containing the identity e of K. In each œ £ Œ, 
choose an element aw. Then every element of K can be written uniquely in the 
form ga^ (g £ $2). We introduce the function 

ît 

:« = V X) ljWg)|2) » èco = SUp( X) |/«fegO -f*(g)\2) • 

on $2 for each ce Ç 12. Let 

We remark that by (8, Lemma 11), we have cu ^ 20 dœ. Hence 

(13) E E f |/*(x,a,A)|2d/x 
a£K\ /2€A » / X 

= Z E I \F(£^, h)\2 = Z c2 ^ Z 400 <C 

= 400 sup Z Z Z \F(ggt<*»,h) - F{ga,h)f 
i = l , 2 coGS2 0£$2 rt£A 

^ 400 sup E E \fk(g&, gin, h) - fk(x, a, g) |2 à\x 
*=1,2 a£A; »€A « ' X 

g 400 sup ||(TW* - c/*r,)f|r g 400e'. 
<=1,2 

By (12) and (13), we have, for k > N, 

1104- F,)|||2 = Z Z f !/*(*,«,£)I2 

ff€S «CK «'X" 

+ Z Z f !/*(*> «> ^)|2 M̂ < (196 + 400)e2. 
a£K; A€A "X 

Hence | | ( [ / * - 7 * ) £ | | - 0 as * ->oo . Since | | 7 4 | | = \\P(Uk)\\ ^ \\Uk\\ = 1, 
fe = 1, 2, . . . , {11 T̂fc — £/*||}, & = 1, 2, . . . , is also bounded. Thus, 
strong lim ( Uk — Vk) = 0, since £ is a cyclic vector for R±. This completes the 
proof that R4 has property C. 
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