Canad. Math. Bull. Vol. 27 (4), 1984

GENERALIZED CESÀRO MATRICES

BY
H. C. RHALY, JR.

Abstract. For $\alpha \in[0,1]$ the operator A_{α}^{*} is the operator formally defined on the Hardy space H^{2} by

$$
\left(A_{\alpha}^{*} f\right)(z)=(z-\alpha)^{-1} \int_{\alpha}^{z} f(s) d s, \quad|z|<1 .
$$

If $\alpha=1$, then the usual identification of H^{2} with l^{2} takes A_{1} onto the discrete Cesàro operator. Here we see that $\left\{A_{\alpha}: \alpha \in[0,1]\right\}$ is not arcwise connected, that $\operatorname{Re} A_{\alpha} \geq 0$, that A_{α} is a Hilbert-Schmidt operator if $\alpha \in[0,1)$, and that A_{α} is neither normaloid nor spectraloid if $\alpha \in(0,1)$.

The generalized Cesàro matrices

$$
A_{\alpha}=\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & \cdots \\
\frac{\alpha}{2} & \frac{1}{2} & 0 & 0 & \cdots \\
\frac{\alpha^{2}}{3} & \frac{\alpha}{3} & \frac{1}{3} & 0 & \cdots \\
\frac{\alpha^{3}}{4} & \frac{\alpha^{2}}{4} & \frac{\alpha}{4} & \frac{1}{4} & \cdots \\
. & . & . & . & \cdots \\
. & . & . & . & \cdots \\
. & . & . & . & \cdots
\end{array}\right]
$$

with $\alpha \in[0,1]$, were introduced in [6], where it was shown that, as operators on l^{2}, they are bounded; it was shown, furthermore, that if $0 \leq \alpha<1$, then A_{α} is compact and has spectrum $\sigma\left(A_{\alpha}\right)=\{1 / n\}_{n=1}^{\infty} \cup\{0\}$. The computation

$$
\sum_{i=0}^{\infty} \sum_{j=i}^{\infty}\left(\frac{\alpha^{j-1}}{j+1}\right)^{2}=\sum_{m=0}^{\infty} \alpha^{2 m} \sum_{n=m+1}^{\infty} \frac{1}{n^{2}} \leq \frac{1}{6} \pi^{2}\left(1-\alpha^{2}\right)^{-1}<\infty
$$

proves the following slightly stronger result.
Theorem 1. $A_{\alpha}, \alpha \in[0,1)$, is a Hilbert-Schmidt operator on l^{2} with

$$
\left\|A_{\alpha}\right\|_{2}^{2}=\sum_{m=0}^{\infty} \alpha^{2 m}\left(\sum_{n=m+1}^{\infty} \frac{1}{n^{2}}\right),
$$

where $\left\|\|_{2}\right.$ denotes the Hilbert-Schmidt norm [4, pp. 17-20].

Received by the editors June 3, 1983 and, in revised form, January 19, 1984.
AMS subject classification: Primary 47B99; Secondary 47A12, 47B10, 47B38.
Key words and Phrases: Cesàro operator, Hilbert-Schmidt operator, numerical range.
(C) Canadian Mathematical Society, 1984.

The next theorem implies that the collection $\left\{A_{\alpha}: 0 \leq \alpha \leq 1\right\}$ is not arcwise connected.
Theorem 2. The assignment $\alpha \rightarrow A_{\alpha}$ is continuous (with respect to the topology induced by the operator norm) on $[0,1)$ but fails to be continuous at 1 .

Proof. If this assignment were continuous from the left at 1 , then for any sequence $\left\{\beta_{n}\right\}_{n=1}^{\infty} \subseteq[0,1)$ increasing to 1 it would be true that $\left\|A_{\mathcal{B}_{n}}-A_{1}\right\| \rightarrow 0$ as $n \rightarrow \infty$. This would say that A_{1}, the norm limit of a sequence of compact operators, is compact; A_{1} cannot be compact, however, since $\sigma\left(A_{1}\right)=$ $\{\lambda:|1-\lambda| \leq 1\}[1, \mathrm{p} .130]$. It remains to show that if $\alpha \in[0,1)$, then the assignment $\alpha \rightarrow A_{\alpha}$ is continuous at α. Fix $\lambda \in(\alpha, 1)$. We see that

$$
A_{\beta}-A_{\alpha}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & \cdots \\
\frac{\beta-\alpha}{2} & 0 & 0 & 0 & \cdots \\
\frac{\beta^{2}-\alpha^{2}}{3} & \frac{\beta-\alpha}{3} & 0 & 0 & \cdots \\
\frac{\beta^{3}-\alpha^{3}}{4} & \frac{\beta^{2}-\alpha^{2}}{4} & \frac{\beta-\alpha}{4} & 0 & \cdots \\
\cdot & \cdot & \cdot & . & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdots \\
\cdot & \cdot & \cdot & . & \cdots
\end{array}\right]
$$

and hence for $\beta<\lambda$ we have $\left\|A_{\beta}-A_{\alpha}\right\| \leq|\beta-\alpha|\left\|T_{\lambda}\right\|$, where T_{λ} is the following Toeplitz matrix:

$$
T_{\lambda}=\left[\begin{array}{ccccc}
0 & 0 & 0 & 0 & \cdots \\
1 & 0 & 0 & 0 & \cdots \\
\lambda & 1 & 0 & 0 & \cdots \\
\lambda^{2} & \lambda & 1 & 0 & \cdots \\
\cdot & \cdot & \cdot & \cdot & \cdots \\
\cdot & \cdot & . & . & \cdots \\
\cdot & . & . & . & \cdots
\end{array}\right]
$$

If $b_{n}=\lambda^{n-1}$ for $n=1,2,3, \ldots$, and $b_{n}=0$ for $n=0,-1,-2, \ldots$, then $\sum_{n}\left|b_{n}\right|^{2}=$ $\left(1-\lambda^{2}\right)^{-1}<\infty$, so the b_{n} 's are Fourier coefficients of a function ϕ in $L^{2}(0,1)$; the function ϕ is given by

$$
\phi(x)=\sum_{n=1}^{\infty} \lambda^{n-1} e^{2 \pi i n x}=e^{2 \pi i x}\left(1-\lambda e^{2 \pi i x}\right)^{-1} .
$$

Since ϕ is bounded (with $|\phi(x)| \leq(1-\lambda)^{-1}$ for all x), the matrix T_{λ} is bounded [4, p. 24]. Suppose $\varepsilon>0$; choose $\delta=\min \left\{\lambda-\alpha, \varepsilon\left\|T_{\lambda}\right\|^{-1}\right\}$. If $\beta \in$ $(\alpha-\delta, \alpha+\delta) \cap(0,1)$, then $\left\|A_{\beta}-A_{\alpha}\right\|<\varepsilon$, and the proof is complete.

Remark. The following proposition provides an alternate way of showing that the assignment $\alpha \rightarrow A_{\alpha}$ is not continuous at 1 .

Proposition 1. $\left\|A_{1}-A_{\alpha}\right\|=2$ for all $\alpha \in[0,1)$.
Proof. It is clear that $\left\|A_{1}-A_{\alpha}\right\| \leq\left\|A_{1}\right\|=2 \quad[1, \quad$ p. 130]. Since $A_{1}-\left(A_{1}-A_{\alpha}\right)=A_{\alpha}$ is compact and A_{1} has no eigenvalues, it follows from [3, Problem 143] that if $\lambda \in \sigma\left(A_{1}\right)$, then $\lambda \in \sigma\left(A_{1}-A_{\alpha}\right)$; therefore $\left\|A_{1}-A_{\alpha}\right\| \geq$ $r\left(A_{1}-A_{\alpha}\right) \geq r\left(A_{1}\right)=2$, where $r(\cdot)$ denotes spectral radius; this completes the proof.

Proposition 2. $\left\|\operatorname{Im} A_{\alpha}\right\| \leq 2 \alpha$.
Proof. Take $B_{\alpha} \equiv A_{\alpha}-A_{0}$. It was shown in [6] that $\left\|B_{\alpha}\right\| \leq 2 \alpha$. Since $\operatorname{Im} A_{\alpha}=(2 i)^{-1}\left(A_{\alpha}-A_{\alpha}^{*}\right)=(2 i)^{-1}\left(B_{\alpha}-B_{\alpha}^{*}\right)$, it is easy to see that $\left\|\operatorname{Im} A_{\alpha}\right\| \leqq$ $\frac{1}{2}\left(\left\|B_{\alpha}\right\|+\left\|B_{\alpha}^{*}\right\|\right) \leq 2 \alpha$.

The numerical range $W(A)$ of the operator A is defined to be the set $\{\langle A f, f\rangle:\|f\|=1\}$; the numerical radius $\omega(A)$ of A is the number sup $\{|\lambda|: \lambda \in$ $W(A)\}$. It is a consequence of the preceding proposition that $W\left(A_{\alpha}\right) \subseteq$ $\{\lambda:|\operatorname{Im} \lambda| \leq 2 \alpha\}$; the next theorem implies that $W\left(A_{\alpha}\right)$ is a subset of the right half-plane $\{\lambda: \operatorname{Re} \lambda \geq 0\}$.

Theorem 3. Re $A_{\alpha} \geq 0$ for $\alpha \in[0,1]$; that is, $\left\langle\left(\operatorname{Re} A_{\alpha}\right) f, f\right\rangle \geq 0$ for all $f \in l^{2}$.
Proof. It suffices to show that $A_{\alpha}+A_{\alpha}^{*} \geq 0$. The matrix $A_{\alpha}+A_{\alpha}^{*}$ is positive if and only if all of its finite sections

$$
S_{n}=\left[\begin{array}{ccccccc}
2 & \frac{\alpha}{2} & \frac{\alpha^{2}}{3} & \frac{\alpha^{3}}{4} & \cdots & \frac{\alpha^{n-2}}{n-1} & \frac{\alpha^{n-1}}{n} \\
\frac{\alpha}{2} & 1 & \frac{\alpha}{3} & \frac{\alpha^{2}}{4} & \cdots & \frac{\alpha^{n-3}}{n-1} & \frac{\alpha^{n-2}}{n} \\
\frac{\alpha^{2}}{3} & \frac{\alpha}{3} & \frac{2}{3} & \frac{\alpha}{4} & \cdots & \frac{\alpha^{n-4}}{n-1} & \frac{\alpha^{n-3}}{n} \\
\frac{\alpha^{3}}{4} & \frac{\alpha^{2}}{4} & \frac{\alpha}{4} & \frac{1}{2} & \cdots & \frac{\alpha^{n-5}}{n-1} & \frac{\alpha^{n-4}}{n} \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdots & \cdot & \cdot \\
\frac{\alpha^{n-2}}{n-1} & \frac{\alpha^{n-3}}{n-1} & \frac{\alpha^{n-4}}{n-1} & \frac{\alpha^{n-5}}{n-1} & \cdots & \frac{2}{n-1} & \frac{\alpha}{n} \\
\frac{\alpha^{n-1}}{n} & \frac{\alpha^{n-2}}{n} & \frac{\alpha^{n-3}}{n} & \frac{\alpha^{n-4}}{n} & \cdots & \frac{\alpha}{n} & \frac{2}{n}
\end{array}\right]
$$

have positive determinants. Multiply the second column of S_{n} by α and
subtract from the first column, then multiply the third column by α and subtract from the second, and continue in this way through the columns. The resulting matrix

$$
T_{n}=\left[\begin{array}{ccccccc}
2-\frac{\alpha^{2}}{2} & \frac{\alpha}{2}-\frac{\alpha^{3}}{3} & \frac{\alpha^{2}}{3}-\frac{\alpha^{4}}{4} & \cdots & \frac{\alpha^{n-2}}{n-1}-\frac{\alpha^{n}}{n} & \frac{\alpha^{n-1}}{n} \\
-\frac{\alpha}{2} & 1-\frac{\alpha^{2}}{3} & \frac{\alpha}{3}-\frac{\alpha^{3}}{4} & \cdots & \frac{\alpha^{n-3}}{n-1}-\frac{\alpha^{n-1}}{n} & \frac{\alpha^{n-2}}{n} \\
0 & -\frac{\alpha}{3} & \frac{2}{3}-\frac{\alpha^{2}}{4} & \cdots & \frac{\alpha^{n-4}}{n-1}-\frac{\alpha^{n-2}}{n} & \frac{\alpha^{n-3}}{n} \\
0 & 0 & -\frac{\alpha}{4} & \cdots & \frac{\alpha^{n-5}}{n-1}-\frac{\alpha^{n-3}}{n} & \frac{\alpha^{n-4}}{n} \\
\cdot & \cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot & \cdot \\
0 & 0 & 0 & \cdots & \frac{2}{n-1}-\frac{\alpha^{2}}{n} & \frac{\alpha}{n} \\
0 & 0 & 0 & \cdots & -\frac{\alpha}{n} & \frac{2}{n}
\end{array}\right]
$$

has the same determinant as S_{n}. We now multiply the second row of T_{n} by α and subtract from the first row, then multiply the third row by α and subtract from the second, and continue in this way through the rows. The resulting matrix

$$
Z_{n}=\left[\begin{array}{ccccccc}
2 & -\frac{\alpha}{2} & 0 & \cdots & 0 & 0 & 0 \\
-\frac{\alpha}{2} & 1 & -\frac{\alpha}{3} & \cdots & 0 & 0 & 0 \\
0 & -\frac{\alpha}{3} & \frac{2}{3} & \cdots & 0 & 0 & 0 \\
0 & 0 & -\frac{\alpha}{4} & \cdots & 0 & 0 & 0 \\
\cdot & \cdot & \cdot & \cdots & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdots & \cdot & \cdot & \cdot \\
0 & 0 & 0 & \cdots & \frac{2}{n-2} & -\frac{\alpha}{n-1} & 0 \\
0 & 0 & 0 & \cdots & -\frac{\alpha}{n-1} & \frac{2}{n-1} & -\frac{\alpha}{n} \\
0 & 0 & 0 & \cdots & 0 & -\frac{\alpha}{n} & \frac{2}{n}
\end{array}\right]
$$

has the same determinant as T_{n}. It is easy to check that $2 /(k-1)>$ $\alpha /(k-1)+\alpha / k$ for $k>2$ and $\alpha \in[0,1]$, and hence z_{n+1} is diagonally dominant [5, Exercise 3, p. 227]; since Z_{n+1} is hermitian, diagonally dominant, and all of its diagonal elements are positive, it follows that Z_{n+1} is positive definite [5, Exercise 5, p. 228]. Its principal minor det Z_{n} must then be positive [5, p. 96], so $\operatorname{det} S_{n}=\operatorname{det} Z_{n}>0$, as needed.

Since $W\left(A_{\alpha}\right)$ is convex [3, p. 110] and contains the set of eigenvalues $\pi_{0}\left(A_{\alpha}\right)=\{1 / n\}_{n=1}^{\infty}\left[6\right.$, p. 407], it is easy to see that $(0,1] \subseteq W\left(A_{\alpha}\right)$; in fact, it is routine to check that $W\left(A_{0}\right)=(0,1]$. We also find that the numerical range of the Cesàro operator A_{1} is not hard to compute; for this computation we need the following lemma.

Lemma. If T is an operator and λ is a complex number such that $|\lambda|=\|T\|$ and $\lambda \in W(T)$, then λ is an eigenvalue of T.

The proof of this lemma appears in [3, p.319].
Theorem 4. The numerical range of the Cesàro operator A_{1} is the open disk $\{\lambda:|1-\lambda|<1\}$.

Proof. If λ is an eigenvalue of A_{1}^{*}, then it is clear that $\bar{\lambda} \in W\left(A_{1}\right)$; hence $\{\lambda:|1-\lambda|<1\} \subseteq W\left(A_{1}\right)$ by [1, Theorem 2, p. 130]. Assume $|\lambda-1|=1$; then $|\lambda-1|=\left\|A_{1}-I\right\|$, but $\lambda-1$ is not an eigenvalue of $A_{1}-I$ by [1, p. 130]. It follows from the lemma that $\lambda-1 \notin W\left(A_{1}-I\right)$ and hence $\lambda \notin W\left(A_{1}\right)$ when $|\lambda-1|=1$. If $|\lambda-1|>1$, then $\lambda \notin W\left(A_{1}\right)$ since $W\left(A_{1}\right)$ is convex.

We now turn to the case $0<\alpha<1$. It is easy to see that if B is the matrix $\left\langle b_{i j}\right\rangle$ $(i, j=0,1,2, \ldots)$ with $b_{00}=1, b_{10}=\alpha / 2, b_{11}=\frac{1}{2}$, and $b_{i j}=0$ for all other values of i, j, then $W(B) \subseteq W\left(A_{\alpha}\right)$. It follows from [2] that $W(B)$ is the closed elliptical disk bounded by the curve

$$
\frac{\left(x-\frac{3}{4}\right)^{2}}{1+\alpha^{2}}+\frac{y^{2}}{\alpha^{2}}=\frac{1}{16}
$$

since the major axis is $\frac{1}{2}\left(1+\alpha^{2}\right)^{1 / 2}$ we find that $\omega(B)=\frac{3}{4}+\frac{1}{4}\left(1+\alpha^{2}\right)^{1 / 2}$, and hence $\omega\left(A_{\alpha}\right) \geq \omega(B)>1$ if $\alpha>0$. Since $r\left(A_{\alpha}\right)=1<\left\|A_{\alpha}\right\|[6]$, we must have $\left\|A_{\alpha}\right\|>$ $\omega\left(A_{\alpha}\right)$ [3, Problem 173]. In summary, we have found that $r\left(A_{\alpha}\right)<\omega\left(A_{\alpha}\right)<$ $\left\|A_{\alpha}\right\|$; we state this result in Halmos' terminology [3, pp. 114-115].

Theorem 5. A_{α} is not normaloid (since $\left.\omega\left(A_{\alpha}\right) \neq\left\|A_{\alpha}\right\|\right)$ and not spectraloid (since $r\left(A_{\alpha}\right) \neq \omega\left(A_{\alpha}\right)$) for $0<\alpha<1$.

References

[^0]4. P. R. Halmos and V. S. Sunder, Bounded Integral Operators on L^{2} Spaces, Springer-Verlag, New York, 1978.
5. P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.
6. H. C. Rhaly, Discrete generalized Cesàro operators, Proc. Amer. Math. Soc. 86 (1982), 405-409.

Department of Mathematics
University of Mississippi
University, Mississippi 38677
Current Address:
Department of Mathematics
Millsaps College
Jackson, Mississippi 39210

[^0]: 1. A. Brown, P. R. Halmos and A. L. Shields, Cesàro operators, Acta Sci. Math. (Szeged) 26 (1965), 125-137.
 2. W. F. Donoghue, On the numerical range of a bounded operator, Michigan Math. J. 4 (1957), 261-263.
 3. P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.
