Canad. Math. Bull. Vol. 27 (4), 1984

GENERALIZED CESÀRO MATRICES

BY

H. C. RHALY, JR.

ABSTRACT. For $\alpha \in [0, 1]$ the operator A^*_{α} is the operator formally defined on the Hardy space H^2 by

$$(A_{\alpha}^*f)(z) = (z - \alpha)^{-1} \int_{\alpha}^{z} f(s) ds, \qquad |z| < 1$$

If $\alpha = 1$, then the usual identification of H^2 with l^2 takes A_1 onto the discrete Cesàro operator. Here we see that $\{A_{\alpha} : \alpha \in [0, 1]\}$ is not arcwise connected, that Re $A_{\alpha} \ge 0$, that A_{α} is a Hilbert–Schmidt operator if $\alpha \in [0, 1)$, and that A_{α} is neither normaloid nor spectraloid if $\alpha \in (0, 1)$.

The generalized Cesàro matrices

$$A_{\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots \\ \frac{\alpha}{2} & \frac{1}{2} & 0 & 0 & \cdots \\ \frac{\alpha^2}{3} & \frac{\alpha}{3} & \frac{1}{3} & 0 & \cdots \\ \frac{\alpha^3}{4} & \frac{\alpha^2}{4} & \frac{\alpha}{4} & \frac{1}{4} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix},$$

with $\alpha \in [0, 1]$, were introduced in [6], where it was shown that, as operators on l^2 , they are bounded; it was shown, furthermore, that if $0 \le \alpha < 1$, then A_{α} is compact and has spectrum $\sigma(A_{\alpha}) = \{1/n\}_{n=1}^{\infty} \cup \{0\}$. The computation

$$\sum_{i=0}^{\infty} \sum_{j=i}^{\infty} \left(\frac{\alpha^{j-1}}{j+1} \right)^2 = \sum_{m=0}^{\infty} \alpha^{2m} \sum_{n=m+1}^{\infty} \frac{1}{n^2} \le \frac{1}{6} \pi^2 (1-\alpha^2)^{-1} < \infty$$

proves the following slightly stronger result.

THEOREM 1. $A_{\alpha}, \alpha \in [0, 1)$, is a Hilbert–Schmidt operator on l^2 with

$$||A_{\alpha}||_{2}^{2} = \sum_{m=0}^{\infty} \alpha^{2m} \left(\sum_{n=m+1}^{\infty} \frac{1}{n^{2}} \right),$$

where $\| \|_2$ denotes the Hilbert–Schmidt norm [4, pp. 17–20].

Received by the editors June 3, 1983 and, in revised form, January 19, 1984.

AMS subject classification: Primary 47B99; Secondary 47A12, 47B10, 47B38.

Key words and Phrases: Cesàro operator, Hilbert-Schmidt operator, numerical range. © Canadian Mathematical Society, 1984.

December

The next theorem implies that the collection $\{A_{\alpha}: 0 \le \alpha \le 1\}$ is not arcwise connected.

THEOREM 2. The assignment $\alpha \to A_{\alpha}$ is continuous (with respect to the topology induced by the operator norm) on [0, 1) but fails to be continuous at 1.

Proof. If this assignment were continuous from the left at 1, then for any sequence $\{\beta_n\}_{n=1}^{\infty} \subseteq [0, 1)$ increasing to 1 it would be true that $||A_{\beta_n} - A_1|| \to 0$ as $n \to \infty$. This would say that A_1 , the norm limit of a sequence of compact operators, is compact; A_1 cannot be compact, however, since $\sigma(A_1) = \{\lambda : |1 - \lambda| \le 1\}$ [1, p. 130]. It remains to show that if $\alpha \in [0, 1)$, then the assignment $\alpha \to A_{\alpha}$ is continuous at α . Fix $\lambda \in (\alpha, 1)$. We see that

$$A_{\beta} - A_{\alpha} = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ \frac{\beta - \alpha}{2} & 0 & 0 & 0 & \cdots \\ \frac{\beta^2 - \alpha^2}{3} & \frac{\beta - \alpha}{3} & 0 & 0 & \cdots \\ \frac{\beta^3 - \alpha^3}{4} & \frac{\beta^2 - \alpha^2}{4} & \frac{\beta - \alpha}{4} & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix},$$

and hence for $\beta < \lambda$ we have $||A_{\beta} - A_{\alpha}|| \le |\beta - \alpha| ||T_{\lambda}||$, where T_{λ} is the following Toeplitz matrix:

$$T_{\lambda} = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots \\ 1 & 0 & 0 & 0 & \cdots \\ \lambda & 1 & 0 & 0 & \cdots \\ \lambda^2 & \lambda & 1 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix}.$$

If $b_n = \lambda^{n-1}$ for n = 1, 2, 3, ..., and $b_n = 0$ for n = 0, -1, -2, ..., then $\sum_n |b_n|^2 = (1 - \lambda^2)^{-1} < \infty$, so the b_n 's are Fourier coefficients of a function ϕ in $L^2(0, 1)$; the function ϕ is given by

$$\phi(x) = \sum_{n=1}^{\infty} \lambda^{n-1} e^{2\pi i n x} = e^{2\pi i x} (1 - \lambda e^{2\pi i x})^{-1}.$$

Since ϕ is bounded (with $|\phi(x)| \le (1-\lambda)^{-1}$ for all x), the matrix T_{λ} is bounded [4, p. 24]. Suppose $\varepsilon > 0$; choose $\delta = \min\{\lambda - \alpha, \varepsilon ||T_{\lambda}||^{-1}\}$. If $\beta \in (\alpha - \delta, \alpha + \delta) \cap (0, 1)$, then $||A_{\beta} - A_{\alpha}|| < \varepsilon$, and the proof is complete.

REMARK. The following proposition provides an alternate way of showing that the assignment $\alpha \rightarrow A_{\alpha}$ is not continuous at 1.

PROPOSITION 1. $||A_1 - A_{\alpha}|| = 2$ for all $\alpha \in [0, 1)$.

Proof. It is clear that $||A_1 - A_\alpha|| \le ||A_1|| = 2$ [1, p. 130]. Since $A_1 - (A_1 - A_\alpha) = A_\alpha$ is compact and A_1 has no eigenvalues, it follows from [3, Problem 143] that if $\lambda \in \sigma(A_1)$, then $\lambda \in \sigma(A_1 - A_\alpha)$; therefore $||A_1 - A_\alpha|| \ge r(A_1 - A_\alpha) \ge r(A_1) = 2$, where $r(\cdot)$ denotes spectral radius; this completes the proof.

PROPOSITION 2. $\|\text{Im } A_{\alpha}\| \leq 2\alpha$.

Proof. Take $B_{\alpha} \equiv A_{\alpha} - A_0$. It was shown in [6] that $||B_{\alpha}|| \leq 2\alpha$. Since Im $A_{\alpha} = (2i)^{-1}(A_{\alpha} - A_{\alpha}^*) = (2i)^{-1}(B_{\alpha} - B_{\alpha}^*)$, it is easy to see that $||\text{Im } A_{\alpha}|| \leq \frac{1}{2}(||B_{\alpha}|| + ||B_{\alpha}^*||) \leq 2\alpha$.

The numerical range W(A) of the operator A is defined to be the set $\{\langle Af, f \rangle : ||f|| = 1\}$; the numerical radius $\omega(A)$ of A is the number sup $\{|\lambda|: \lambda \in W(A)\}$. It is a consequence of the preceding proposition that $W(A_{\alpha}) \subseteq \{\lambda : |\text{Im } \lambda| \le 2\alpha\}$; the next theorem implies that $W(A_{\alpha})$ is a subset of the right half-plane $\{\lambda : \text{Re } \lambda \ge 0\}$.

THEOREM 3. Re $A_{\alpha} \ge 0$ for $\alpha \in [0, 1]$; that is, $\langle (\text{Re } A_{\alpha})f, f \rangle \ge 0$ for all $f \in l^2$.

Proof. It suffices to show that $A_{\alpha} + A_{\alpha}^* \ge 0$. The matrix $A_{\alpha} + A_{\alpha}^*$ is positive if and only if all of its finite sections

$$S_{n} = \begin{bmatrix} 2 & \frac{\alpha}{2} & \frac{\alpha^{2}}{3} & \frac{\alpha^{3}}{4} & \cdots & \frac{\alpha^{n-2}}{n-1} & \frac{\alpha^{n-1}}{n} \\ \frac{\alpha}{2} & 1 & \frac{\alpha}{3} & \frac{\alpha^{2}}{4} & \cdots & \frac{\alpha^{n-3}}{n-1} & \frac{\alpha^{n-2}}{n} \\ \frac{\alpha^{2}}{3} & \frac{\alpha}{3} & \frac{2}{3} & \frac{\alpha}{4} & \cdots & \frac{\alpha^{n-4}}{n-1} & \frac{\alpha^{n-3}}{n} \\ \frac{\alpha^{3}}{4} & \frac{\alpha^{2}}{4} & \frac{\alpha}{4} & \frac{1}{2} & \cdots & \frac{\alpha^{n-5}}{n-1} & \frac{\alpha^{n-4}}{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{\alpha^{n-2}}{n-1} & \frac{\alpha^{n-3}}{n-1} & \frac{\alpha^{n-4}}{n-1} & \frac{\alpha^{n-5}}{n-1} & \cdots & \frac{2}{n-1} & \frac{\alpha}{n} \\ \frac{\alpha^{n-1}}{n} & \frac{\alpha^{n-2}}{n} & \frac{\alpha^{n-3}}{n} & \frac{\alpha^{n-4}}{n} & \cdots & \frac{\alpha}{n} & \frac{2}{n} \end{bmatrix}$$

have positive determinants. Multiply the second column of S_n by α and

1984]

H. C. RHALY, JR.

[December

subtract from the first column, then multiply the third column by α and subtract from the second, and continue in this way through the columns. The resulting matrix

	$2-\frac{\alpha^2}{2}$	$\frac{\alpha}{2} - \frac{\alpha^3}{3}$	$\frac{\alpha^2}{3} - \frac{\alpha^4}{4}$		$\frac{\alpha^{n-2}}{n-1} - \frac{\alpha^n}{n}$	$\frac{\alpha^{n-1}}{n}$
$T_n =$	$-\frac{\alpha}{2}$	$1-\frac{\alpha^2}{3}$	$\frac{\alpha}{3} - \frac{\alpha^3}{4}$		$\frac{\alpha^{n-3}}{n-1} - \frac{\alpha^{n-1}}{n}$	$\frac{\alpha^{n-2}}{n}$
	0	$-\frac{\alpha}{3}$	$\frac{2}{3}-\frac{\alpha^2}{4}$		$\frac{\alpha^{n-4}}{n-1} - \frac{\alpha^{n-2}}{n}$	$\frac{\alpha^{n-3}}{n}$
	0	0	$-\frac{\alpha}{4}$		$\frac{\alpha^{n-5}}{n-1} - \frac{\alpha^{n-3}}{n}$	$\frac{\alpha^{n-4}}{n}$
		•	•	• • •	•	•
		•	•	• • •	•	•
		•	•	• • •	•	•
	0	0	0		$\frac{2}{n-1} - \frac{\alpha^2}{n}$	$\frac{\alpha}{n}$
	0	0	0	•••	$-\frac{\alpha}{n}$	$\frac{2}{n}$

has the same determinant as S_n . We now multiply the second row of T_n by α and subtract from the first row, then multiply the third row by α and subtract from the second, and continue in this way through the rows. The resulting matrix

	2	$-\frac{\alpha}{2}$	0		0	0	0
	$-\frac{\alpha}{2}$	1	$-\frac{\alpha}{3}$		0	0	0
	0	$-\frac{\alpha}{3}$	$\frac{2}{3}$	•••	0	0	0
	0	0	$-\frac{\alpha}{4}$		0	0	0
$Z_n =$	•	•	•	• • •	•	•	•
	•	•	•	• • •	•	•	•
	•	•	•	• • •	•	•	•
	0	0	0		$\frac{2}{n-2}$	$-\frac{\alpha}{n-1}$	0
	0	0	0		$-\frac{\alpha}{n-1}$	$\frac{2}{n-1}$	$-\frac{\alpha}{n}$
	0	0	0		0	$-\frac{\alpha}{n}$	$\frac{2}{n}$

has the same determinant as T_n . It is easy to check that $2/(k-1) > \alpha/(k-1) + \alpha/k$ for k > 2 and $\alpha \in [0, 1]$, and hence z_{n+1} is diagonally dominant [5, Exercise 3, p. 227]; since Z_{n+1} is hermitian, diagonally dominant, and all of its diagonal elements are positive, it follows that Z_{n+1} is positive definite [5, Exercise 5, p. 228]. Its principal minor det Z_n must then be positive [5, p. 96], so det $S_n = \det Z_n > 0$, as needed.

Since $W(A_{\alpha})$ is convex [3, p. 110] and contains the set of eigenvalues $\pi_0(A_{\alpha}) = \{1/n\}_{n=1}^{\infty}$ [6, p. 407], it is easy to see that $(0, 1] \subseteq W(A_{\alpha})$; in fact, it is routine to check that $W(A_0) = (0, 1]$. We also find that the numerical range of the Cesàro operator A_1 is not hard to compute; for this computation we need the following lemma.

LEMMA. If T is an operator and λ is a complex number such that $|\lambda| = ||T||$ and $\lambda \in W(T)$, then λ is an eigenvalue of T.

The proof of this lemma appears in [3, p. 319].

THEOREM 4. The numerical range of the Cesàro operator A_1 is the open disk $\{\lambda : |1-\lambda| < 1\}$.

Proof. If λ is an eigenvalue of A_1^* , then it is clear that $\overline{\lambda} \in W(A_1)$; hence $\{\lambda : |1-\lambda| < 1\} \subseteq W(A_1)$ by [1, Theorem 2, p. 130]. Assume $|\lambda - 1| = 1$; then $|\lambda - 1| = ||A_1 - I||$, but $\lambda - 1$ is not an eigenvalue of $A_1 - I$ by [1, p. 130]. It follows from the lemma that $\lambda - 1 \notin W(A_1 - I)$ and hence $\lambda \notin W(A_1)$ when $|\lambda - 1| = 1$. If $|\lambda - 1| > 1$, then $\lambda \notin W(A_1)$ since $W(A_1)$ is convex.

We now turn to the case $0 < \alpha < 1$. It is easy to see that if *B* is the matrix $\langle b_{ij} \rangle$ (i, j = 0, 1, 2, ...) with $b_{00} = 1$, $b_{10} = \alpha/2$, $b_{11} = \frac{1}{2}$, and $b_{ij} = 0$ for all other values of *i*, *j*, then $W(B) \subseteq W(A_{\alpha})$. It follows from [2] that W(B) is the closed elliptical disk bounded by the curve

$$\frac{(x-\frac{3}{4})^2}{1+\alpha^2} + \frac{y^2}{\alpha^2} = \frac{1}{16};$$

since the major axis is $\frac{1}{2}(1+\alpha^2)^{1/2}$ we find that $\omega(B) = \frac{3}{4} + \frac{1}{4}(1+\alpha^2)^{1/2}$, and hence $\omega(A_{\alpha}) \ge \omega(B) > 1$ if $\alpha > 0$. Since $r(A_{\alpha}) = 1 < ||A_{\alpha}||$ [6], we must have $||A_{\alpha}|| > \omega(A_{\alpha})$ [3, Problem 173]. In summary, we have found that $r(A_{\alpha}) < \omega(A_{\alpha}) < ||A_{\alpha}||$; we state this result in Halmos' terminology [3, pp. 114–115].

THEOREM 5. A_{α} is not normaloid (since $\omega(A_{\alpha}) \neq ||A_{\alpha}||$) and not spectraloid (since $r(A_{\alpha}) \neq \omega(A_{\alpha})$) for $0 < \alpha < 1$.

REFERENCES

1. A. Brown, P. R. Halmos and A. L. Shields, *Cesàro operators*, Acta Sci. Math. (Szeged) 26 (1965), 125–137.

2. W. F. Donoghue, On the numerical range of a bounded operator, Michigan Math. J. 4 (1957), 261–263.

3. P. R. Halmos, A Hilbert Space Problem Book, Van Nostrand, Princeton, 1967.

H. C. RHALY, JR.

4. P. R. Halmos and V. S. Sunder, Bounded Integral Operators on L^2 Spaces, Springer-Verlag, New York, 1978.

5. P. Lancaster, Theory of Matrices, Academic Press, New York, 1969.

6. H. C. Rhaly, Discrete generalized Cesàro operators, Proc. Amer. Math. Soc. 86 (1982), 405-409.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MISSISSIPPI UNIVERSITY, MISSISSIPPI 38677

Current Address: DEPARTMENT OF MATHEMATICS MILLSAPS COLLEGE JACKSON, MISSISSIPPI 39210

422