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Apstract. The performance of a thermal ice-drill having a smooth, solid, impervious frontal surface,
termed a “solid-nose hotpoint™, is determined by the velocities, pressures, and temperatures in the thin
layer of warm melt water between the hotpoint and the ice. The efficiency, the speed of penetration, the
temperature of the frontal surface, and the distribution of pressure on it can be calculated from the equations
of non-turbulent fluid flow. For hotpoints whose frontal surfaces are isothermal and axially symmetric, these
quantities are functions of the total input of power Q, of the weight W on the hotpoint, of the radius ¢ and
“shape factor’”” S of the [rontal surface, and of the pertinent physical properties of water and ice. The cal-
culation shows that with increasing ‘‘performance number” N = A0 §/a Wt the efficiency E decreases and the
surface temperature f, increases. Thus, for example, £ = 1-00and 6, = 0” C. when N = 0:0; E = 076 and
0o = 48° C. when N = 1-4;and E = 0-6oand 0, = 103" C. when NV = 3-0. The coefficient /1 is a constant
equal to 3-4 kg wtd cm. kW. 1. The shape factor § is a dimensionless number between 0 and 1 that varies
according to the shape of the frontal surface, greater values of § being associated with blunter profiles (thus
S = 10 for a plane frontal surface perpendicular to the axis). For coring hotpoints the same numerical
results are obtained. but the performance number is given by

N = AQ S| (1 —mi®) + (1 + ) Inw]ta[ W1 —wi)? In @]},
where 2tra is the inside diameter of the hotpoint.

Risumt. Le rendement d’une sonde a glace thermique ayant une surface frontale lisse, solide et étanche.
appelée “solid-nose hotpoint”, est déterminé par les vitesses, les pressions et les températures de la mince
couche d’eau de fonte se trouvant entre la pointe chaude et la glace. Le rendement, la vitesse de pénétration,
la température et la répartition de la pression sur la surface frontale peuvent étre calculés & I'aide des équations
d’écoulement d’un fluide non turbulent. Pour des pointes chaudes a surface frontale isotherme de symétrie
axiale, ces quantités sont fonctions de I’apport total de chaleur @, du poids W agissant sur la pointe chaude.
du rayon a et du “coefficient de profil”” § de la surface frontale, ainsi que des propriétés physiques de U'eau
et de la glace. Le calcul montre qu’avec 'augmentation du “cocfficient de rendement” N = AQS/aWt le
rendement E décroit et la temgéralurc de surface 0, croit. Ainsi par exemple E = 1,00 et 8, = 0° C pour
N =0,0; E = 0,76 et 8y = 48° C pour N = 1,4; et E = o,60 et , = 103 “Csi N = 3,0. Le cocfficient A
est une constante égale a 3.4 kgpt/cm kW —t. Le coefficient de profil § est un nombre sans dimension compris
entre 0 et 1, qui varie en fonction du profil de la surface frontale, les fortes valeurs de § étant associées 2
des profils plus obtus (ainsi § = 1,0 pour une surface frontale plane perpendiculaire 4 'axe). Pour des
carotteurs a pointe chaude les mémes résultats numériques sont obtenus, mais le coefficient de rendement
est donné par

N = A0S [(1 —w#) + (1 i) Inari]Ya[ W(1 —2;7)3 In @]
ou 277;a est le diamétre intérieur de la pointe chaude.

ZUSAMMENFASSUNG. Die Leistung eines thermischen Eisbohrers mit glatter, starrer und undurchlassiger
Spitze (‘“‘solid-nose hotpoint”) ist bestimmt durch die Geschwindigkeiten, Drucke und Temperaturen in der
diinnen Schicht warmen Schmelzwassers zwischen Eis und Bohrer. Mit hilfe der Gleichungen fiir laminares
Fliessen kann man die wirksame Leistung, die Vortriebsgeschwindigkeit, die Temperatur der Spitze und die
Druckverteilung iiber die Spitzenoberfliche wihrend des Bohrbetriebes berechnen. Diese Werte sind an
rotationssymmetrischen Bohrern mit isothermaler Spitzenoberfliche Funktionen der zugefithrten Wirme (.
des an der Bohrerspitze wirksamen Gewichtsanteils W, des Radius a, des Form-Koeffizienten § fiir das Spitzen-
profil und der in Betracht kommenden physikalischen Eigenschaften von Wasser und Eis. Bei zunehmender
“Leistungszahl” N = AQS/aW nimmt der Wirkungsgrad E ab, und die Spitzentemperatur 8, zu. So wird
zum Beispiel E = 1,00 und #, — o° C, wenn N = 0,0; £ = 0,76 und 8, = 48°, wenn N = 1,4: oder

= 0,60 und 8, = 103°, wenn N — 3,0. Die Zahl A ist eine Konstante mit dem Wert 3.4, wenn wir als
Dimensionen kgt ecm kw ~* setzen (kg als Gewichtseinheit). Der Form-Koeffizient § ist eine dimensionslose
Zahl zwischen o und 1. die sich mit der Form der Bohrerspitze indert: je stumpfer das Profil ist. umso
héher der Wert von § (also § = 1,0 fiir den rechtwinklig endenden zylinder). Fir Kernbohrer gilt
N = A0S[(1 —wd) + (1 +) In wrg]ta Wt —o2)? In o]
mit denselben Werten wie zuvor und mit 2gr;a als Innendurchmesser des Kernrohrs.

InTRODUCTION

The performance of any type of thermal boring device, or “‘hotpoint”, that is drilling
through clean, solid, temperate ice is entirely determined by the velocities, pressures, and
temperatures in the warm melt water at the bottom of the hole. In the case of a hotpoint with
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a smooth, solid, impervious frontal surface nowhere heated above the local boiling tempera-
ture, herein termed a “‘solid-nose” hotpoint, this melt water flows outward in an extremely
thin, and therefore non-turbulent, layer between the hotpoint and the ice. Because the flow is
non-turbulent, it is possible to calculate the velocities, pressures, and temperatures from the
equations of fluid mechanics, and thus to deduce theoretically the performance of the hotpoint.

In this paper the efficiency, the speed of penetration, and the temperature and distribution
of pressure on the frontal surface are found as functions of the total input power, of the
weight driving the hotpoint downward, of the shape and dimensions of the frontal surface,
and of the pertinent physical properties of water and ice for the case of solid-nose hotpoints
whose frontal surfaces are isothermal, axially symmetric, and either circular (non-coring)
or annular (coring). The results are presented in graphical form in order to facilitate their
practical use.

L] [Ty

Mealed frontol
surface r=R(z)

Speed V
aed V

Sp

Healed frontal
surface r=R(z)

Circular (non-coring) hotpoint Annuilor (coringl holpoint

Fig. 1. Coordinate systems
THEORY

Coordinate systems. We define a set of circular cylindrical coordinates (r, z, 3), fixed in the
hotpoint, with the z-axis directed upward along the axis of symmetry. The radial coordinate
r is then the perpendicular distance from the axis of the hotpoint. The angular coordinate ¢
does not enter the problem because of the axial symmetry.

We also define a set of nearly orthogonal curvilinear coordinates (£, a. i), fixed in the hot-
point, in which ¢ is the arc length measured radially outward along the frontal surface, and
v = {|h, where { is the distance measured perpendicularly away from the frontal surface and
k is the local thickness of the layer of melt water. In the case of the circular hotpoint £ is
measured from the axis of symmetry; and in the case of the annular hotpoint it is measured
from the inner edge of the frontal surface. The angular coordinate ¢ is the same as in the
cylindrical system.

These coordinate systems are shown in Figure 1.

Symbols. The hotpoint has outside diameter 2a. It is assumed to be boring parallel to its
axis vertically downward at a constant speed » through clean, solid, temperate ice of density
pi (= 0-91 g.cm. 3). The heat of fusion of the ice is A (= 8o cal. g.—*). The melt water formed
has density p, (= 1-0 g. cm. %), heat capacity ¢ (= 1-0cal. g.7' °C.~"), and thermal conduc-
tivity A (= 1-4x 1073 cal. sec. " em.™* °C.~"). Only the viscosity u of the melt water varies
significantly over the temperature range involved. It is given by the formula

p= pan(6), (1)
where p, (= 1-8x 102 dyne sec. cm. ?) is the viscosity of water at 0o° C., and 7, which is
plotted in Figure 2, is the specific viscosity of water. The thickness / of the layer of melt water
is a function of £. The dependent variables u, v, p, and 8 are, respectively, the £&-component
of velocity, a-component of velocity, the pressure, and the temperature in the water layer.

Other symbols will be defined as they are needed.
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Frontal surface. The profile of the frontal surface is described in the (r, z, ) coordinate
system by the equation,

r = R(z), (2)
in which R must be a continuous, reasonably smooth function. The function R is subject to
the further not very stringent restrictions that there be only one value of 7 for each value of R
and that the radius of curvature of the frontal surface everywhere be large compared to the
thickness of the water layer.
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Dimensioniess lemperature
Fig. 2. Specific viscosity of waler as a function of temperature. The dimensionless lemperature  is defined by v = Bc/X
Fundamental equations. The variables «, v, p, and 0 must satisfy the continuity, momentum,

and energy equations of fluid mechanics. We note that the Reynolds number will be small,
that is, that

;(-I'/l
g (3a)
Mo

and that, in general,
ou oo |
A o E (3 ))

As will be seen, restriction (3a) amounts to a restriction on the minimum permissible magni-
tude of dR/dz. We assume that the temperature 6 is a function only of a, that viscous dissipation
1s unimportant, and that boiling does not occur. Because of these restrictions and assumptions
many terms in the equations are comparatively negligible. Dropping these small terms,
letting = = 6¢/A, and neglecting higher-order terms due to the very slight non-orthogonality
of the coordinate system, we obtain the fundamental equations governing the velocities,
pressures, and temperatures in the layer of melt water,

1 3(Ro)

Rudh  3(Ru)

& Thoax (42)
b  po 0 ou
3 ke aTu(”a_a)’ (40)
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G}
5§ = o, (4c)
and
d*r  pucvh dr
d2 K do (4d)
The derivation of equations (4) is straightforward but lengthy. A good procedure is to
write the fundamental equations in vector notation, then set the dilatation equal to zero
(because the water is practically incompressible) and drop the acceleration terms (because
the Reynolds number is small), and next by standard methods expand the remaining ex-
pressions in the (£, «, ) curvilinear coordinate system as if it were exactly orthogonal. The ele-
ment of arc ds in the (€, «, ) system is given exactly by (ds)? = ggg d€dE +gza dédx gz, dédf
g op AR G drdon -8 o, Aot +- gz ApdE +g.,, dipdo+ gy dipdis, inwhich the metric coefficients
are given approximately by gz = 1, 820 = 0,82y = O §uz = O Saa = R gay = 0, 84 = O,
Zyx = 0, g4y = R The closeness of approximation, which mostly affects gz, depends on
how small the thickness of the water layer is in comparison to the radius of curvature of the
frontal surface. Finally, by means of the remaining restrictions and assumptions many
negligible terms may be discarded, leaving only the dominant expressions in each equation.
Boundary conditions. The dependent variables must also satisfy certain boundary conditions,

namely,
dR\ 2|
#eme =0 By V{"(&é)}‘ (52)
3 e s
e P i ()
. 4 _ _pn -
T|u=1 = 0, d&.‘\g:l—_ K dfj (5(:)
Plipee=" (5d)

for both circular and annular hotpoints. In the case of the annular hotpoint, ¢ is subject to an
additional boundary condition,

le =ma = 0, (56)
where 2,4 is the inside diameter of the hotpoint. For mathematical convenience both the
atmospheric pressure and the hydrostatic pressure due to the water in the hole are dropped;
the actual pressure can be found by adding them to p. The melting temperature of ice is arbi-
trarily taken to be zero in order to take advantage of the resulting simplification of condition
(5¢). The quantity dR/d{ is calculated from the relation,

(d€)* = (dR)*+(d2)*. (6)
Integration of the equations. Integrating (4b) twice with respect to a, using (4¢) and the boun-
dary conditions (5a), noting that the right-hand side of the second equation (5a) is negligible
compared to the average value of , and defining

I(2) = [ n~pa, | (7)

]

we find

h2dp 1

L e s 8
e T @R ()~ L) ®)
Substituting (8) into (4a), integrating once with respect to o, using the boundary conditions
(5b), and defining

(o) = _I—n(l)

{1, (1) [odo(o) — 1 ()] = Lo 1) [l (@) —Ea(o)1} and 4 = 1/$(1),  (9)
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wn
n

we obtain
. dR
3 e PdgAgS (10)

Substituting (10) into (4d), we see that 7 is a function only of a, and hence the frontal surface
of the hotpoint is isothermal, as previously assumed, provided

dR
h dE — (11)
in which £, is an unknown constant length. Integrating (4d) twice with respect to «, using (11)
and the boundary conditions (5d), and defining

B=" "f*“, (12)

we find
= j ‘AB[¢dy %, (13)

in which B and y are dummy variables of integration in place of «. The restriction (3a) on
the Reynolds number is equivalent to B < 12.

Equations (1), (7), (9), and (13) form a simultaneous system, valid for both circular and
annular hotpoints, which can be solved numerically for the functions =, 9, and ¢, and the
constant 4 corresponding to various values of B.

Performance of annular (coring) hotpoint. Continuity requires that

I

szkfu da — w(m—R,:)VE-"-, (14)

o
where R, is the radius at which the pressure is greatest. Substituting (7) and (8) into (14),
integrating by parts, using (7, and the boundary condition (5d), rearranging, and letting
w = R/a, we obtain

oAVpia a’R
8= &éf?afu’”(d:e o “’f B! s

2y

in which, from the boundary condition (5¢),

oy = f:f — f o w/f @ dw, (15b)

Wi

where 2w;a is the inside diameter of the hotpoint. The total weight driving the hotpoint
downward is

I
W = ama jpw dw, (16)
w;
in which the small contribution due to the viscous shear stress on the inclined portions of the
frontal surface has been neglected. Substituting (15) in (16), integrating by parts, and letting

() f () rmii

w;
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in which
In o;
4 | o e 1
Ss = (1—w?)24(1 —w?) In i (I7b)
we find
mpithoat AV
kK (179

The “shape factor” S is a dimensionless number between o and 1 that depends only on the
shape of the frontal surface, greater values of § being associated with blunter profiles; thus
S = 1 for a plane frontal surface perpendicular to the axis.

The total input of power Q is equal to the rate at which heat is conducted away from the
hotpoint, that is,

Q= "-ra—(—ch g exp{Aqub d’y} (18)

o

Eliminating k, and ¥, which are unknown, among (12), (17), and (18), we obtain

__ 42 (S ) L
— ( )aW*( 3 A= {4.K3A4'Pw 3 (lga)
in which the dimensionless “‘performance number” N is given by

2

- (87’%} exp{AB f :¢ dy} (19b)

and the coefficient A4 is equal to 3-4 kg wt.t cm. kW.~'. The driving weight W must in
practice be corrected for the effect of buoyancy due to the water in the hole.
The efficiency E of the annular hotpoint is given by

1

E = exp { —ABI ¢ dy} : (20a)

o

it is defined as the ratio of the cross-sectional area of the hotpoint to the cross-sectional area
of the hole it makes. The speed of penetration is, from (12) and (18),

- I o
Fi= a"’(I 1)( mpid) T (2 b)

The quantity (mp;A)~" is equal to 37 m. hr.~* kW.~* ecm.?. The temperature of the frontal
surface is, from (13),

0, = i T = g f [AquS d-y}dﬁ (20¢)

Finally, the distribution of pressure on the frontal surface is, from (15) and (17),

= (B () s}

By means of equations (19) and (20) together with the numerical solution of (1), (7), (9),
and (13) the desired parameters E, V, f,, and p describing the performance of the annular
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(coring) hotpoint can be calculated from the given quantities @, W, and a, the given shape
of the frontal surface, and the pertinent physical properties of water and ice.

Performance of circular (non-coring) hotpoint. In the case of the circular hotpoint R, = o,
and the resulting equations are greatly simplified. The shape factor is given by

I dR .
= 4](*ﬁ\ widor; (21)
d¢ |
o

as in the case of the coring hotpoint, .§ is a number between o and 1, greater values of S being

associated with blunter profiles. Some representative profiles and their shape factors are shown
in Figure 3. The performance number for the circular hotpoint is given by

408 (22)

= m{q 3

§=0.443 5:0.669 5=0.669 $:20372

Fig. 3. Shape factors for some representative profiles of the frontal surface

in which the coefficient 4 as before is equal to 3-4 kg wt.¥ cm. kW.~'. As in the case of the
coring hotpoint, the driving weight # must in practice be corrected for the effect of buoyancy
due to the water in the hole. The efficiency is

= exp{—ABIqS d’-y}. (23a)
The speed of penetration is
v =L, (23b)

in which the quantity (mp;A)~' is equal to 37 m. hr.=* kW.~* em.?. The temperature of the

frontal surface is
1 4

A
G = BJ‘exp{ABfgb d’y}dﬁ. (23¢)
o B
Finally, the distribution of pressure on the frontal surface is

6‘,,=Z"r
¢

4W [ dR\*
p=—n (d?) w dw. (23d)
w

In complete analogy with the case of the annular hotpoint the performance of the circular
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hotpoint can be calculated from equations (21), (22), and (23) together with the numerical
solution of (1), (7), (9), and (13).

Numerical solution. Equations (1), (7), (9), and (1) are numerically solved for given B by
a method of successive approximations. First, a trial temperature profile, r as a function of
«, is selected; next, the corresponding viscosity profile is determined (from, for example,
Figure 2); then, ¢ is computed from (9) by numerical integration; and, finally, a new tem-
perature profile is found in like manner from (13). This new temperature profile is then used
as the starting point for the second cycle of the process, which converges rapidly, only a few
cycles being needed to attain practical accuracy.
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Fig. 4. Efficiency, surface temperature and
The approximation process is carried out for a number of values of B, and the correspond-
ing values of E and 7, are obtained, from which the remaining parameters N and 8, are
casily computed by means of (19), and (20) or (23). These quantities are tabulated in Table 1
for 12 values of B covering the range of practical interest. The quantity 4 is the maximum
depth in water at sea-level at which boiling will occur at the corresponding temperature s
Figure 4 shows the efficiency and the dimensionless surface temperature 7, plotted against the
dimensionless performance number V; it summarizes in convenient form the main results
of this paper.

Discussion
Drilling speed. The information presented in Table I and Figure 4 shows that the efficiency
E of isothermal solid-nose hotpoints decreases with increasing performance number V.
This raises the interesting possibility that the drilling speed ¥ might actually decrease with
increasing power input () , inasmuch as the effect of the increased power input might be more
than offset by the decreased efficiency. To show that this possibility does not arise in the range
of NV of practical interest, we differentiate (23b) with respect to O , using (22) and the chain
rule, then divide both sides by V" and simplify, obtaining
dv 1dQ dE [dN

via - "TE (242)
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TasLe 1. Summary oF NumericarL REsurts

B N E T 0, d
g6 m.
0-00 0°000 1-000 0000 00 0-0
0-10 0-294 0-950 0° 104 83 0-0
0-20 0-538 0°Qo1 0-215 133 00
0°30 0°793 0-853 0335 26-8 0°0
0- 40 1'070 o-8o7 0464 371 0-0
o-gg 1-376 0- 762 0-bog '3 0:0
o- &0 6 ) 0-718 0° 755 60 4 0:0
0-70 2:097 0-677 0-918 73" 4 0:0
o-8o 2522 0-637 1-095 876 0-0
0-go 2:999 0599 1-286 102-9 &3]
1:00 3536 0-563 1493 119°5 94
110 4148 0-528 1-719 137°5 23-6

An identical result will be obtained for the coring hotpoint by differentiating (20b) and using

(19). The function —(dE/E)/(dN|N) is plotted against the performance number .V in Figure 4.

Because this function never exceeds unity in the range of N of practical interest, we conclude

that the drilling speed always increases with increasing power input. The actual per cent

increase in V¥ per per cent increase in ( varies from 1-00 for ¥ = 0-0 to 0-59 for N = 4-0.
Similar calculations show that for both circular and annular hotpoints

dV |da dE [dN
SO a el b
ile=—(*+%/%): (24b)
dv |dIV 1 dE [dN
Sy moet el e, (24¢)
Vi W 4 Eif N
dv [dS  dE [dN
V/ = ’E’-/”\': (24d)
and
dV |dN _dE [dN ()
VI N T E[ N A
‘The per cent increase in I” per per cent decrease in a varies from 2-00 for ' = 0-0 to 1-59
for V' = 4-0. Over the same range the per cent increase in ¥ varies from 000 to 010 per

per cent increase in 117, and from 0-00 to 0- 41 per per cent decrease in § or N. Thus, over the
whole range in .V for which the theory is valid, the drilling speed of isothermal hotpoints
varies in a simple manner with respect to variations in design or operation.

Effect of turbulence. Though the theory presented in this paper is quantitatively valid only
for non-turbulent flow in the layer of melt water between the hotpoint and the ice, it can give
a semiquantitative indication of the effect of turbulence in the layer of melt water on the
performance of an isothermal hotpoint. For fully developed turbulence K, == 2cu,, where K,
is the eddy conductivity and , is the eddy viscosity, which will be of order 107 times the mole-
cular viscosity .. Substituting these values into the expression for 4 in (19a), we find that
A, = A4/30, hence N, =~ N/30, and therefore that, other things being equal, turbulence in the
layer of melt water should remarkably improve efficiency. Partially developed turbulence
should have a similar but smaller effect.

Isothermal restriction. The assumption that the frontal surface is isothermal corresponds to
the assumption that it is composed of material with infinite thermal conductivity, or has a
special shape. For real materials and nearly all shapes the boundary condition at the frontal
surface will in general be a functional relationship between the temperature 7 and its normal
derivative 97/0{ on the surface { = o; this relationship can in principle be found by solving
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the heat-flow equation for the interior of the hotpoint (assuming that the magnitude and distri-
bution of all heat sources and sinks except the frontal surface are known). Only in special
cases will the relationship required by the theory presented in this paper be satisfied, namely,

or dR

TlC:o Tg and}{az-;;u_qndf’

where 7, is a constant temperature and ¢, is a constant heat flux independent of position.
Note that implicit in the condition that the frontal surface be isothermal is the further condi-
tion that the flow of heat through any element of area of the frontal surface be proportional
to the area of the projection of the element on a plane perpendicular to the axis of the hotpoint.

One way to test the assumption for a given design is to calculate, by numerical methods,
if necessary, the heat flow at the frontal surface that would occur if the surface were actually
isothermal. The degree 1o which this calculated heat flow agrees with the required heat flow
is a measure of the applicability of the theory. A misfit of a few per cent probably is not crucial.
In any case, if the calculated value of ¢, increases with increasing £, then the hotpoint will be
less efficient than predicted by the theory, and conversely. This follows because, if ¢, is less
at the center, the “cool”” center will be “slower” than the hotter outer zone of the frontal
surface, hence the effluent melt water at the outer edge of the hotpoint, being hotter, will carry
away a larger fraction of the total heat available.

Effect of corrosion. If the frontal surface of an isothermal hotpoint becomes coated with a thin
layer of poorly conducting material, for example by becoming corroded, the drop in tempera-
ture across the insulating layer will be greatest where the heat flow is greatest. Thus, by the
same reasoning as for the non-isothermal hotpoint, if dR/d¢ decreases with increasing §
(the usual case), then corrosion will cause a decrease in efficiency, and conversely.

Design of hotpoints. Although the theory presented in this paper applies specifically to iso-
thermal hotpoints, it can also be used to estimate the approximate drilling speed and efficiency
of non-isothermal designs in terms of power input, driving weight, inside and outside diameter
of hotpoint, and shape of frontal surface, thus facilitating selection of the optimum design for a
given application without the time and expense of building and testing a long series of proto-
types. Even more important, it enables the designer to estimate at least approximately two
other highly important parameters in the design, the temperature of the frontal surface, and
the magnitude and distribution of pressure on it, thus permitting much smaller factors of
safety than would otherwise be possible.

(25)
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