ON ASYMPTOTIC BEHAVIOURS OF TRIGONOMETRIC SERIES WITH δ-QUASI-MONOTONE COEFFICIENTS

by MING-CHIT LIU
(Received 30th September 1968)

1. Let

$$
\begin{aligned}
& f(x)=\sum_{k=1}^{\infty} a_{k} \cos k x \\
& g(x)=\sum_{k=1}^{\infty} a_{k} \sin k x .
\end{aligned}
$$

The asymptotic behaviours of $f(x)$ and $g(x)$, as $x \rightarrow+0$, were first given by G. H. Hardy in (4), (5). In his papers $\left\{a_{n}\right\}$ is a monotone decreasing sequence. Further results on the asymptotic behaviours of $f(x)$ and $g(x)$, as $x \rightarrow+0$, for monotone coefficients have been given in (9) and (1). Recently, the results have been generalized to quasi-monotone coefficients.

This paper is concerned with asymptotic behaviours of $f(x)$ and $g(x)$ for δ-quasi-monotone coefficients.

In what follows, we shall denote by $L(x)$ a slowly varying function in the sense of Karamata (6), i.e.,
(a) $L(x)$ is positive and continuous for all $x>0$;
(b) $L(t x) / L(x) \rightarrow 1$, as $x \rightarrow \infty$ with every fixed $t>0$.

A sequence $\left\{a_{n}\right\}$ is called δ-quasi-monotonic (3), if
(a) $a_{n}>0$ ultimately;
(b) $a_{n} \rightarrow 0$, as $n \rightarrow \infty$;
(c) $\Delta a_{n}=a_{n}-a_{n+1} \geqq-\delta_{n}$ for some positive sequence $\left\{\delta_{n}\right\}$.

A sequence $\left\{a_{n}\right\}$ of positive numbers is called quasi-monotonic if

$$
a_{n}-a_{n+1}=\Delta a_{n} \geqq-\alpha n^{-1} a_{n}
$$

for some $\alpha>0$. We see that a quasi-monotonic sequence with $a_{n} \rightarrow 0$ is a δ-quasimonotonic sequence when $\delta_{n}=\alpha n^{-1} a_{n}$.

By " $A(x) \simeq B(x)$, as $x \rightarrow a$ " we mean that $A(x)=B(x)\{1+o(1)\}$, as $x \rightarrow a$. We shall make use of K to denote some positive constants which need not be the same from one occurrence to another. K 's can depend on β.

The following theorems will be established in this paper.
Theorem 1. Let $0<\beta<1$ and let $\left\{a_{n}\right\}$ be a δ-quasi-monotonic sequence with $S=\sum_{k=1}^{\infty} \delta_{k} k^{\alpha}<\infty(\beta<\alpha)$. Then $\left\{a_{n}\right\}$ is of bounded variation and

$$
f(x) \simeq \frac{1}{2} \pi x^{\beta-1} L\left(x^{-1}\right) /\left\{\Gamma(\beta) \cos \frac{1}{2} \beta \pi\right\},
$$

E.M.S. - T
as $x \rightarrow+0$, if and only if $a_{n} \simeq n^{-\beta} L(n)$, as $n \rightarrow \infty$, where $L(n)$ is a slowly varying function in the sense of Karamata.

Theorem 2. Let $0<\beta<1$ and let $\left\{a_{n}\right\}$ be a δ-quasi-monotonic sequence with $S=\sum_{k=1}^{\infty} \delta_{k} k^{\alpha}<\infty(\beta<\alpha)$. Then $\left\{a_{n}\right\}$ is of bounded variation and

$$
g(x) \simeq \frac{1}{2} \pi x^{\beta-1} L\left(x^{-1}\right) /\left\{\Gamma(\beta) \sin \frac{1}{2} \beta \pi\right\}
$$

as $x \rightarrow+0$, if and only if $a_{n} \simeq n^{-\beta} L(n)$, as $n \rightarrow \infty$, where $L(n)$ is a slowly varying function in the sense of Karamata.

2. Preliminary Lemmas.

Lemma 1. For any $b>0$, we have
(a) $x^{b} L(x) \rightarrow \infty$ and $x^{-b} L(x) \rightarrow 0$, as $x \rightarrow \infty$;
(b) $\max _{0 \leqq \xi \leqq x}\left\{\xi^{b} L(\xi)\right\} \simeq x^{b} L(x)$,

$$
\max _{x \leqq \xi<\infty}\left\{\xi^{-b} L(\xi)\right\} \simeq x^{-b} L(x), \text { as } x \rightarrow \infty
$$

Lemma 1 is due to Karamata (8).
Lemma 2. Let $\left\{a_{n}\right\}$ be δ-quasi-monotonic with $\sum_{k=1}^{\infty} \delta_{k} k^{b}<\infty(b>0)$. If $\sum_{\equiv=1}^{\infty} a_{k} k^{b-1}$ converges, then $\sum_{k=1}^{\infty}\left|\Delta a_{k}\right| k^{b}$ converges.

Lemma 2 is due to Boas (3).
Lemma 3. Let $0<\beta<1$ and $\beta<\alpha$. Let $\left\{a_{n}\right\}$ be δ-quasi-monotonic with $\sum_{k=1}^{\infty} \delta_{k} k^{\alpha}<\infty$. If $a_{n} \simeq n^{-\beta} L(n)$, as $n \rightarrow \infty$, then
(a) $\left\{a_{n}\right\}$ is of bounded variation,
(b) $\sum_{k=n}^{\infty}\left|\Delta a_{k}\right|<K n^{-\beta} L(n)$, as $n \rightarrow \infty$.

Proof. Let $a_{n}=n^{-\beta} L(n) \bar{a}_{n}$. We see that $\bar{a}_{n} \rightarrow 1$ as $n \rightarrow \infty$ and \bar{a}_{n} is bounded. Then we have

$$
\begin{aligned}
\sum_{k=1}^{\infty} a_{k} k^{-1+\frac{1}{2} \beta}= & \sum_{k=1}^{\infty} k^{-1-\frac{1}{2} \beta} L(k) \bar{a}_{k} \\
& \leqq \max _{1 \leqq k<\infty}\left\{\bar{a}_{k}\right\} \max _{1 \leqq \xi<\infty}\left\{\xi^{-1 \beta} L(\xi)\right\} \sum_{k=1}^{\infty} k^{-1-\nmid \beta}<K .
\end{aligned}
$$

By Lemma 2 we have $\sum_{k=1}^{\infty}\left|\Delta a_{k}\right|<\infty$, i.e. $\left\{a_{n}\right\}$ is of bounded variation.
Next, putting $\left(\Delta a_{k}\right)^{-}=\max \left\{0,-\Delta a_{k}\right\}$, we have

$$
\frac{n^{\beta}}{L(n)} \sum_{k=n}^{\infty}\left|\Delta a_{k}\right|=\frac{n^{\beta}}{L(n)}\left\{\sum_{k=n}^{\infty} \Delta a_{k}+2 \sum_{k=n}^{\infty}\left(\Delta a_{k}\right)^{-}\right\}=S_{1}+S_{2}
$$

where

$$
\begin{aligned}
& S_{1}=\frac{n^{\beta}}{L(n)} \sum_{k=n}^{\infty} \Delta a_{k}=\frac{n^{\beta}}{L(n)} a_{n}<K, \text { as } n \rightarrow \infty, \\
& S_{2}=2 \frac{n^{\beta}}{L(n)} \sum_{k=n}^{\infty}\left(\Delta a_{k}\right)^{-} \leqq 2 \frac{n^{\beta}}{L(n)} \sum_{k=n}^{\infty} \delta_{k} \leqq K \sum_{k=n}^{\infty} \delta_{k} k^{\frac{1}{2}(\alpha+\beta)}<K, \text { as } n \rightarrow \infty .
\end{aligned}
$$

Then we have

$$
\sum_{k=n}^{\infty}\left|\Delta a_{k}\right|<K n^{-\beta} L(n), \text { as } n \rightarrow \infty
$$

This completes the proof of Lemma 3.
Lemma 4. Let $0<\beta<1$ and $\beta<\alpha$. Let $\left\{a_{n}\right\}$ be δ-quasi-monotonic with $\sum_{k=1}^{\infty} \delta_{k} k^{\alpha}<\infty$. If $\sum_{k=1}^{n} a_{k} \simeq A n^{1-\beta} L(n)$, as $n \rightarrow \infty$, then $a_{n} \simeq A n^{-\beta} L(n)\{1-\beta\}$, as $n \rightarrow \infty$, where A is some positive constant.

Proof. Let $m=n+\eta n-\theta$, where m and n are positive integers, $0 \leqq \theta<1$ and $\eta=\eta(n)>0$. When $n \rightarrow \infty$ we have the asymptotic expression:

$$
\begin{aligned}
a_{n+1}+a_{n+2}+\ldots+a_{m} & =A m^{1-\beta} L(m)-A n^{1-\beta} L(n)+o\left(n^{1-\beta} L(n)\right) \\
& =A n^{1-\beta} L(n)\left\{(1+\eta)^{1-\beta}-1+o(1)\right\} .
\end{aligned}
$$

On the other hand, considering $\Delta a_{n}=a_{n}-a_{n+1} \geqq-\delta_{n}$, we have

$$
\begin{aligned}
& a_{k} \leqq a_{n}+\sum_{\gamma=n}^{k-1} \delta_{\gamma} \leqq a_{n}+n^{-\alpha} \sum_{\gamma=n}^{\infty} \delta_{\gamma} \gamma^{\alpha} \leqq a_{n}+n^{-\alpha} S ; \\
& a_{k} \geqq a_{m}-\sum_{\gamma=k}^{m-1} \delta_{\gamma} \geqq a_{m}-n^{-\alpha} \sum_{\gamma=n}^{\infty} \delta_{\gamma} \gamma^{\alpha} \geqq a_{m}-n^{-\alpha} S,
\end{aligned}
$$

where $n+1 \leqq k \leqq m$ and $S=\sum_{y=1}^{\infty} \delta_{\gamma} \gamma^{\alpha}<\infty$.
Then

$$
\begin{aligned}
& a_{n+1}+a_{n+2}+\ldots+a_{m} \leqq(m-n)\left\{a_{n}+n^{-\alpha} S\right\} \leqq \eta\left\{n a_{n}+n^{1-\alpha} S\right\} ; \\
& a_{n+1}+a_{n+2}+\ldots+a_{m} \geqq(m-n)\left\{a_{m}-n^{-\alpha} S\right\}=\eta(1-\theta / \eta n)\left\{n a_{m}-n^{1-\alpha} S\right\} .
\end{aligned}
$$

Put $\eta=\eta(n)=n^{-\frac{1}{2}}$. It follows that

$$
\begin{aligned}
& \eta n a_{n} \geqq A n^{1-\beta} L(n)\left\{(1+\eta)^{1-\beta}-1+o(1)-\eta \frac{S n^{-\alpha+\beta}}{A L(n)}\right\} \\
& =A n^{1-\beta} L(n)\left\{(1+\eta)^{1-\beta}-1+o(1)\right\} ; \\
& \eta\left(1-\frac{\theta}{\eta n}\right) n a_{m} \leqq A n^{1-\beta} L(n)\left\{(1+\eta)^{1-\beta}-1+o(1)+\eta\left(1-\frac{\theta}{\eta n}\right) \frac{S n^{-\alpha+\beta}}{A L(n)}\right\} \\
& =A n^{1-\beta} L(n)\left\{(1+\eta)^{1-\beta}-1+o(1)\right\} .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{a_{n}}{n^{-\beta} L(n)} & \geqq A n^{\frac{1}{2}\left\{\left(1+n^{-\frac{1}{2}}\right)^{1-\beta}-1\right\}} \\
& =A n^{\frac{1}{2}}\left\{1+(1-\beta) n^{-\frac{1}{2}}+O\left(n^{-1}\right)-1\right\} \simeq A(1-\beta)
\end{aligned}
$$

$$
\limsup _{m \rightarrow \infty} \frac{a_{m}}{m^{-\beta} L(m)} \leqq \frac{A n^{\frac{1}{2}}}{\left(1-\theta n^{-\frac{1}{2}}\right)}\left\{\left(1+n^{-\frac{1}{2}}\right)^{1-\beta}-1\right\}\left(1+n^{-\frac{1}{2}}\right)^{\beta} \simeq A(1-\beta),
$$

as $n \rightarrow \infty$. Thus $a_{n} \simeq A n^{-\beta} L(n)(1-\beta)$ as $n \rightarrow \infty$.
This completes the proof of Lemma 4.
Lemma 5. Let $c_{1}, c_{2}>0$. If $\int_{+0}^{\infty} y^{k}|f(y)| d y<\infty$ for $-c_{1}<k<c_{2}$, then

$$
\int_{+0}^{\infty} f(y) L\left(\frac{y}{1-r}\right) d y \simeq L\left(\frac{1}{1-r}\right) \int_{+0}^{\infty} f(y) d y
$$

as $r \rightarrow 1-0$.
Lemma 5 is due to Aljančić, Bojanić and Tomić (2).
Lemma 6. For $0<a,-1<b<1$, we have

$$
\int_{0}^{a} \frac{x^{b} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)}=(1-r)^{b-1} L\left(\frac{1}{1-r}\right)\{C(b)+o(1)\}
$$

as $r \rightarrow 1-0$, where $\Delta_{2}(r, x)=(1-r)^{2}+x^{2}$ and $C(b)=\frac{1}{2} \pi / \sin \left\{\frac{1}{2}(b+1) \pi\right\}$.
Proof. Let $f(y)=y^{-b} /\left(1+y^{2}\right)(y>0)$,

$$
c=\min \{1-b, 1+b\}
$$

We see that $-1<k+b<1$ where $|k|<c$. We have

$$
\int_{+0}^{\infty} y^{-k} f(y) d y=\int_{+0}^{\infty} \frac{y^{-(b+k)}}{1+y^{2}} d y=\frac{1}{2} \pi / \sin \left\{\frac{1}{2}(b+k+1) \pi\right\} .
$$

By Lemma 5 we have

$$
\begin{equation*}
\int_{+0}^{\infty} f(y) L\left(\frac{y}{1-r}\right) d y \simeq L\left(\frac{1}{1-r}\right) \int_{+0}^{\infty} f(y) d y, \text { as } r \rightarrow 1-0 \tag{2.1}
\end{equation*}
$$

On the other hand,

$$
\left.\begin{array}{l}
\left.\left|\int_{+0}^{(1-r) / a} f(y) L\left(\frac{y}{1-r}\right) d y\right| \leqq(1-r)^{\frac{1}{2} c} \int_{+0}^{(1-r) / a} y^{-\frac{1}{c} c} f(y) L\left(\frac{y}{1-r}\right)\left\{\frac{y}{1-r}\right\}^{\frac{1}{c} c} d y\right) \\
\qquad \leqq(1-r)^{\frac{1}{c} c} \max _{0 \leqq \xi \leqq 1 / a}\left\{L(\xi)^{\left.\xi^{\frac{1}{c} c}\right\}} \int_{+0}^{(1-r) / a} y^{-\frac{1}{c} c} f(y) d y=o\left(L\left(\frac{1}{1-r}\right)\right),\right. \tag{2.2}
\end{array}\right\}
$$

From (2.1) and (2.2) we obtain

ASYMPTOTIC BEHAVIOURS OF TRIGONOMETRIC SERIES

$$
\begin{equation*}
\int_{(1-r) / a}^{\infty} f(y) L\left(\frac{y}{1-r}\right) d y \simeq L\left(\frac{1}{1-r}\right) \int_{+0}^{\infty} f(y) d y, \text { as } r \rightarrow 1-0 \tag{2,3}
\end{equation*}
$$

Using (2.3) and putting $x=(1-r) / y$, we have

$$
\begin{aligned}
\int_{0}^{a} \frac{x^{b} L\left(x^{-1}\right) d x}{(1-r)^{2}+x^{2}}=(1-r)^{b-1} \int_{(1-r) / a}^{\infty} & \frac{y^{-b}}{1+y^{2}} L\left(\frac{y}{1-r}\right) d y \\
& \simeq(1-r)^{b-1} L\left(\frac{1}{1-r}\right) \int_{+0}^{\infty}\left\{y^{-b} /\left(1+y^{2}\right)\right\} d y \\
& =(1-r)^{b-1} L\left(\frac{1}{1-r}\right) C(b), \text { as } r \rightarrow 1-0 .
\end{aligned}
$$

This proves Lemma 6.
Lemma 7. Let $b_{k}>0$ for all positive integers k and let $0<\beta<1$. If

$$
\sum_{k=1}^{\infty} b_{k} r^{k} \simeq \Gamma(1-\beta) L\left(\frac{1}{1-r}\right)(1-r)^{\beta-1}
$$

as $r \rightarrow 1-0$, then $\sum_{k=1}^{n} b_{k} \simeq n^{1-\beta} L(n) /(1-\beta)$, as $n \rightarrow \infty$.
Lemma 7 is due to Karamata (7).
Lemma 8. For $0<x \leqq \pi$ and $\frac{1}{2} \leqq r<1$, let

$$
\begin{aligned}
\Delta_{1} & =\Delta_{1}(r, x)=1+r^{2}-2 r \cos x, \\
\Delta_{2} & =\Delta_{2}(r, x)=(1-r)^{2}+x^{2}, \\
K_{1}(r, x) & =1 / \Delta_{1}-1 / \Delta_{2}, \\
K_{2}(r, x) & =4 \sin ^{2} \frac{1}{2} x / \Delta_{1}-x^{2} / \Delta_{2}, \\
K_{3}(r, x) & =\sin x / \Delta_{1}-x / \Delta_{2} .
\end{aligned}
$$

We have
(a) $\left|K_{1}(r, x)\right| \leqq K\left(1-r+x^{2}\right) / \Delta_{2}$,
(b) $\left|K_{2}(r, x)\right| \leqq K$,
(c) $\left|K_{3}(r, x)\right| \leqq K\left\{(1-r) x+x^{3}\right\} / \Delta_{2}$.

Proof. Since

$$
\left|4 \sin ^{2} \frac{1}{2} x-x^{2}\right|=2\left|\cos x-1+\frac{1}{2} x^{2}\right|=\frac{1}{3}\left|\int_{0}^{x}(x-t)^{3} \cos t d t\right| \leqq \frac{1}{12} x^{4}
$$

and similarly $|\sin x-x| \leqq \frac{1}{6} x^{3}$, we have

$$
\begin{aligned}
\left|K_{1}(r, x)\right|= & \frac{\left\lfloor\left. x^{2}-4 r \sin ^{2} \frac{1}{2} x \right\rvert\,\right.}{\Delta_{1} \Delta_{2}}=\frac{\left|(1-r) x^{2}+r\left(x^{2}-4 \sin ^{2} \frac{1}{2} x\right)\right|}{\Delta_{1} \Delta_{2}}{ }^{2} \\
& \leqq K\left(1-r+\frac{1}{12} r x^{2}\right) / \Delta_{2} \leqq K\left(1-r+x^{2}\right) / \Delta_{2} \\
\left|K_{3}(r, x)\right|= & \left|\sin x K_{1}(r, x)+(\sin x-x) / \Delta_{2}\right| \leqq x\left|K_{1}(r, x)\right|+\frac{1}{6} x^{3} / \Delta_{2} .
\end{aligned}
$$

And $\left|K_{2}(r, x)\right| \leqq K$ is trivial. This completes the proof of Lemma 8.

3. Proof of Theorem 1.

We first prove the " only if " part, i.e. we assume that $\left\{a_{n}\right\}$ is of bounded variation and $f(x) \simeq \frac{1}{2} \pi x^{\beta-1} L\left(x^{-1}\right) /\left\{\Gamma(\beta) \cos \frac{1}{2} \beta \pi\right\}$ as $x \rightarrow+0$. Since $\left\{a_{n}\right\}$ is of bounded variation, we have that $\sum_{k=1}^{\infty} a_{k} \cos k x$ converges uniformly outside any arbitrarily small neighbourhood of 0 . Furthermore, by hypothesis

$$
f(x)=x^{\beta-1} L\left(x^{-1}\right)\{A(\beta)+o(1)\}
$$

as $x \rightarrow+0$, where $A(\beta)=\frac{1}{2} \pi /\left\{\Gamma(\beta) \cos \frac{1}{2} \beta \pi\right\}$, whence we see that

$$
f(x)=\sum_{k=1}^{\infty} a_{k} \cos k x
$$

is integrable over $(0, \pi)$. Thus, the trigonometric series $\sum_{k=1}^{\infty} a_{k} \cos k x$ converges to the integrable function $f(x)$ in $(0, \pi)$. It follows that the a_{n} 's are the Fourier cosine coefficients of $f(x)((9)$, p. 326).
i.e.

Using the Poisson kernel

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x
$$

$$
P(r, x)=\frac{1}{2}+\sum_{k=1}^{\infty} r^{k} \cos k x \quad(0<r<1)
$$

i.e.

$$
\sum_{k=1}^{\infty} r^{k} \cos k x=\left\{r(1-r)-2 r \sin ^{2} \frac{1}{2} x\right\} / \Delta_{1}(r, x)
$$

where $\Delta_{1}(r, x)=1+r^{2}-2 r \cos x$, we have

$$
\begin{aligned}
& \sum_{k=1}^{\infty} r^{k} a_{k}=\frac{2 r(1-r)}{\pi} \int_{0}^{\pi} \frac{f(x) d x}{\Delta_{1}(r, x)}-\frac{r}{\pi} \int_{0}^{\pi} \frac{4 \sin ^{2} \frac{1}{2} x f(x) d x}{\Delta_{1}(r, x)} \\
&=J_{1}(r, x)-J_{2}(r, x), \text { say }
\end{aligned}
$$

Let $f(x)=x^{\beta-1} L\left(x^{-1}\right) h(x)$. Then $h(x) \rightarrow A(\beta)$, as $x \rightarrow+0$. Hence $h(x)$ is bounded in $(0, \pi)$, say $h(x) \leqq M$.

Writing

$$
\begin{aligned}
& K_{1}(r, x)=\frac{1}{\Delta_{1}(r, x)}-\frac{1}{\Delta_{2}(r, x)} \\
& K_{2}(r, x)=\frac{4 \sin ^{2} \frac{1}{2} x}{\Delta_{1}(r, x)}-\frac{x^{2}}{\Delta_{2}(r, x)}
\end{aligned}
$$

where $\Delta_{2}(r, x)=(1-r)^{2}+x^{2}$, we have

$$
\begin{aligned}
J_{1}(r, x)=\frac{2 r}{\pi}(1-r) \int_{0}^{\pi} \frac{x^{\beta-1} L\left(x^{-1}\right) h(x) d x}{\Delta_{2}(r, x)} & \\
& +\frac{2 r}{\pi}(1-r) \int_{0}^{\pi} x^{\beta-1} L\left(x^{-1}\right) h(x) K_{1}(r, x) d x \\
& =J_{11}(r, x)+J_{12}(r, x)
\end{aligned}
$$

ASYMPTOTIC BEHAVIOURS OF TRIGONOMETRIC SERIES
$J_{2}(r, x)=\frac{r}{\pi} \int_{0}^{\pi} \frac{x^{\beta+1} L\left(x^{-1}\right) h(x) d x}{\Delta_{2}(r, x)}+\frac{r}{\pi} \int_{0}^{\pi} x^{\beta-1} L\left(x^{-1}\right) h(x) K_{2}(r, x) d x$

$$
=J_{21}(r, x)+J_{22}(r, x), \text { say }
$$

Let us consider $J_{12}, J_{21}, J_{22}, J_{11}$ in greater detail.
From Lemma 8(a) we obtain

$$
\begin{aligned}
\left|J_{12}\right|=\left\lvert\, \frac{2 r}{\pi}(1-r) \int_{0}^{\pi} x^{\beta-1} L\left(x^{-1}\right)\right. & h(x) K_{1}(r, x) d x \mid \\
& \leqq(1-r) K M \int_{0}^{\pi} x^{\beta-1} L\left(x^{-1}\right)\left\{\frac{(1-r)+x^{2}}{\Delta_{2}(r, x)}\right\} d x \\
& =(1-r) K M\left(I_{1}+I_{2}\right), \text { say }
\end{aligned}
$$

where, by Lemma 6 with $a=\pi, b=\beta-1$,

$$
I_{1}=(1-r) \int_{0}^{\pi} \frac{x^{\beta-1} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)} \simeq K(1-r)^{\beta-1} L\left(\frac{1}{1-r}\right)
$$

and by Lemma 6 with $a=\pi, b=\beta$,

$$
I_{2} \leqq \pi \int_{0}^{\pi} \frac{x^{\beta} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)} \simeq K(1-r)^{\beta-1} L\left(\frac{1}{1-r}\right) .
$$

Then $J_{12}=o\left((1-r)^{\beta-1} L\left(\frac{1}{1-r}\right)\right)$, as $r \rightarrow 1-0$.
By Lemma 6 with $a=\pi, b=\frac{1}{2}(1+\beta)$, we have

$$
\begin{aligned}
\left|J_{21}\right| & =\left|\frac{r}{\pi} \int_{0}^{\pi} \frac{x^{\beta+1} L\left(x^{-1}\right) h(x) d x}{\Delta_{2}(r, x)}\right| \\
& \leqq \frac{r}{\pi} M \pi^{\frac{1}{3}(1+\beta)} \int_{0}^{\pi} \frac{x^{\frac{1}{3}(1+\beta)} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)} \\
& \leqq K M(1-r)^{\frac{1}{2}(1-\beta)}\left\{(1-r)^{\beta-1} L\left(\frac{1}{1-r}\right)\right\}(0<\beta<1) \\
& =o\left((1-r)^{\beta-1} L\left(\frac{1}{1-r}\right)\right),
\end{aligned}
$$

as $r \rightarrow 1-0$.
It follows from Lemma 8(b) that

$$
\begin{aligned}
\left|J_{22}\right|=\left\lvert\, \frac{r}{\pi} \int_{0}^{\pi} x^{\beta-1} L\left(x^{-1}\right) h(x)\right. & K_{2}(r, x) d x \mid \\
& \leqq K M \int_{0}^{\pi} x^{\beta-1} L\left(x^{-1}\right) d x \\
& \leqq K M \max _{0<\xi \leqq \pi}\left\{\xi^{\frac{1}{1}} L\left(\xi^{-1}\right)\right\} \int_{0}^{\pi} x^{\frac{1}{2} \beta-1} d x \leqq K M .
\end{aligned}
$$

Hence

$$
J_{22}=o\left((1-r)^{\beta-1} L\left(\frac{1}{1-r}\right)\right), \text { as } r \rightarrow 1-0 .
$$

We come now to estimate J_{11}. Since $h(x) \rightarrow A(\beta)$ when $x \rightarrow+0$, for any arbitrary given $\varepsilon>0$, there exists $\delta>0$, such that $|h(x)-A(\beta)|<\varepsilon$ for $0<x<\delta$. It follows that

$$
\begin{align*}
& \left|J_{11}-2 r \frac{(1-r)}{\pi} \int_{0}^{\delta} \frac{x^{\beta-1} L\left(x^{-1}\right) A(\beta) d x}{\Delta_{2}(r, x)}\right| \\
& \\
& \leqq \frac{2 r}{\pi}(1-r)\left\{\int_{0}^{\delta} \frac{x^{\beta-1} L\left(x^{-1}\right)|h(x)-A(\beta)| d x}{\Delta_{2}(r, x)}+\int_{\delta}^{\pi} \frac{x^{\beta-1} L\left(x^{-1}\right)|h(x)| d x}{\Delta_{2}(r, x)}\right\} \tag{3.1}\\
& \quad \leqq \frac{2 r}{\pi}(1-r)\left\{\varepsilon \int_{0}^{\delta} \frac{x^{\beta-1} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)}+M \int_{\delta}^{\pi} \frac{x^{\beta-1} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)}\right\} \\
& \quad=\frac{2 r}{\pi}(1-r)\left\{\varepsilon I_{3}+M I_{4}\right\}, \text { say, }
\end{align*}
$$

where, by Lemma 6 with $a=\delta, b=\beta-1$

$$
\begin{aligned}
I_{3} & =\int_{0}^{\delta} \frac{x^{\beta-1} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)} \simeq C(\beta-1)(1-r)^{\beta-2} L\left(\frac{1}{1-r}\right), \text { as } r \rightarrow 1-0, \\
I_{4} & =\int_{\delta}^{\pi} \frac{x^{\beta-1} L\left(x^{-1}\right) d x}{(1-r)^{2}+x^{2}} \leqq \int_{\delta}^{\pi} x^{\beta-3} L\left(x^{-1}\right) d x \\
& \leqq K(\delta) \max _{0<\xi \leqq \pi}\left\{\xi^{\frac{1}{\beta}} L\left(\xi^{-1}\right)\right\}=K(\varepsilon),
\end{aligned}
$$

where $K(\varepsilon)$ is a constant which depends on ε and is independent of r. Since $\beta-2<0$ we see that

$$
I_{3} \simeq C(\beta-1) L\left(\frac{1}{1-r}\right)(1-r)^{\beta-2} \rightarrow \infty, \text { as } r \rightarrow 1-0
$$

Then for $\varepsilon>0$ we have

$$
\begin{equation*}
\varepsilon I_{3}+M I_{4} \leqq\left\{\varepsilon+\frac{M K(\varepsilon)}{I_{3}}\right\} I_{3}=\{\varepsilon+o(1)\} \int_{0}^{\delta} \frac{x^{\beta-1} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)} \tag{3.2}
\end{equation*}
$$

as $r \rightarrow 1-0$.
From (3.1) and (3.2) for arbitrarily small $\varepsilon>0$, we have

$$
\begin{aligned}
& J_{11} \leqq \frac{2 r}{\pi}(1-r)\{A(\beta)+\varepsilon+o(1)\} \int_{0}^{\delta} \frac{x^{\beta-1} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)}, \\
& J_{11} \geqq \frac{2 r}{\pi}(1-r)\{A(\beta)-\varepsilon+o(1)\} \int_{0}^{\delta} \frac{x^{\beta-1} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)}
\end{aligned}
$$

as $r \rightarrow 1-0$. It follows from Lemma 6 that
$J_{11} \simeq \frac{2}{\pi} A(\beta) C(\beta-1)(1-r)^{\beta-1} L\left(\frac{1}{1-r}\right)$

$$
=\Gamma(1-\beta)(1-r)^{\beta-1} L\left(\frac{1}{1-r}\right), \text { as } r \rightarrow 1-0 .
$$

We therefore have

$$
\sum_{k=1}^{\infty} r^{k} a_{k}=J_{11}+J_{12}-J_{21}-J_{22}=\{\Gamma(1-\beta)+o(1)\}(1-r)^{\beta-1} L\left(\frac{1}{1-r}\right)
$$

as $r \rightarrow 1-0$. By Lemma 7 and Lemma 4 it follows that $a_{n} \simeq n^{-\beta} L(n)$, as $n \rightarrow \infty$.
We come now to prove the " if" part, i.e. we assume that $a_{n} \simeq n^{-\beta} L(n)$ as $n \rightarrow \infty$. By Lemma 3, we see that $\left\{a_{n}\right\}$ is of bounded variation.

Next, we set $0<\omega<1<\Omega<\infty$, and $[\omega / x]=p,[1 / x]=q,[\Omega / x]=t$, where ω and Ω are some constants which will be defined later. Then we have

$$
\begin{aligned}
f(x)=\sum_{k=1}^{p} a_{k} \cos k x & +\sum_{k=i+1}^{\infty} a_{k} \cos k x+\sum_{k=p+1}^{t}\left\{a_{k}-k^{-\beta} L(k)\right\} \cos k x \\
& +\sum_{k=p+1}^{t}\{L(k)-L(q)\} k^{-\beta} \cos k x-L(q) \sum_{k=1}^{p} k^{-\beta} \cos k x \\
& -L(q) \sum_{k=t+1}^{\infty} k^{-\beta} \cos k x+L(q) \sum_{k=1}^{\infty} k^{-\beta} \cos k x \\
& =\sum_{i=1}^{7} S_{i}, \text { say } .
\end{aligned}
$$

Here we have $S_{7} \simeq A(\beta) L\left(x^{-1}\right) x^{\beta-1}$, as $x \rightarrow+0$, where

$$
A(\beta)=\frac{1}{2} \pi /\left\{\Gamma(\beta) \cos \frac{1}{2} \beta \pi\right\}
$$

((9), p. 187). We shall now show that $S_{i}=o\left(x^{\beta-1} L\left(x^{-1}\right)\right)$, as $x \rightarrow+0$, for $i=1,2, \ldots, 6$.

With a notation similar to that used in the proof of Lemma 3, we write $a_{n}=n^{-\beta} L(n) \bar{a}_{n}$. Then by Lemma 1 we have

$$
\begin{aligned}
\left|S_{1}\right| & =\left|\sum_{k=1}^{p} a_{k} \cos k x\right| \leqq K \sum_{k=1}^{p}\left|a_{k}\right|=K \sum_{k=1}^{p} k^{-\beta} L(k)\left|\bar{a}_{k}\right| \\
& <K \max _{1<\xi \leqq p}\left\{\xi^{\frac{1}{2}(1-\beta)} L(\xi)\right\} \sum_{k=1}^{p} k^{-\frac{1}{2}(1+\beta)} \leqq K p^{\frac{1}{2}(1-\beta)} L(p) \int_{1}^{p} \xi^{-\frac{1}{2}(1+\beta)} d \xi \\
& \leqq K p^{1-\beta} L(p) \leqq K \omega^{1-\beta} L\left(x^{-1}\right) x^{\beta-1}, \text { as } x \rightarrow+0 .
\end{aligned}
$$

We are now in a position to define ω. For any arbitrarily small $\delta>0$, let $0<\omega=\omega(\delta)<1$ so that $K \omega^{1-\beta} / A(\beta)<\delta$.

Write

$$
S_{2}=\sum_{k=t+1}^{\infty} a_{k} \cos k x=\sum_{k=t+1}^{\infty} \Delta a_{k} D_{k}(x)-a_{t+1} D_{t+1}(x),
$$

where

$$
D_{n}(x)=\sum_{k=1}^{n} \cos k x=\sin \frac{1}{2} n x \cos \frac{1}{2}(n+1) x / \sin \frac{1}{2} x
$$

Then it follows from Lemma 3 that

$$
\begin{aligned}
\left|S_{2}\right| \leqq\left\{\sum_{k=1+1}^{\infty}\left|\Delta a_{k}\right|+\left|a_{t+1}\right|\right\} / \sin \frac{1}{2} x & \leqq K x^{-1}\left\{(t+1)^{-\beta} L(t+1)\right\} \\
& \leqq K \Omega^{-\beta} L\left(x^{-1}\right) x^{\beta-1}, \text { as } x \rightarrow+0
\end{aligned}
$$

Here, for $\delta>0$ we define Ω to be a number $1<\Omega=\Omega(\delta)<\infty$ so that

$$
K \Omega^{-\beta} / A(\beta)<\delta
$$

Since $\bar{a}_{n} \rightarrow 1$ when $n \rightarrow \infty$, for any arbitrary given $\varepsilon>0$, there exists p such that $\left|\bar{a}_{n}-1\right|<\varepsilon$ for all $n>p$. Then by Lemma 1 we see that

$$
\begin{array}{r}
\left|S_{3}\right|=\left|\sum_{k=p+1}^{t}\left(\bar{a}_{k}-1\right) k^{-\beta} L(k) \cos k x\right| \leqq \varepsilon \max _{p<\xi \leqq t}\left\{\xi^{-\frac{1}{2} \beta} L(\xi)\right\} \sum_{k=p+1}^{t} k^{-\frac{1}{2} \beta} \\
\leqq \varepsilon K L(p) p^{-\frac{1}{2} \beta}\left\{t^{1-\frac{1}{2} \beta}-p^{1-\frac{1}{2} \beta}\right\} \leqq \varepsilon K L\left(x^{-1}\right) x^{\beta-1} \Omega^{1-\frac{1}{2} \beta} \omega^{-\frac{1}{2} \beta}
\end{array}
$$

as $x \rightarrow+0$. For ω and Ω defined above let $\varepsilon=\varepsilon(\delta)$ be small enough so that

$$
\varepsilon K \Omega^{1-\frac{1}{2}} \omega^{-\frac{1}{2} \beta} / A(\beta)<\delta .
$$

It remains to consider S_{4}, S_{5}, S_{6}. Since these trigonometric sums are independent of $\left\{a_{n}\right\}$, we may follow the same arguments as shown in ((1), p. 112) to obtain

$$
S_{4}, S_{5}, S_{6}=o\left(x^{\beta-1} L\left(x^{-1}\right)\right), \text { as } x \rightarrow+0
$$

Hence

$$
f(x) \simeq \frac{1}{2} \pi x^{\beta-1} L\left(x^{-1}\right) /\left\{\Gamma(\beta) \cos \frac{1}{2} \beta \pi\right\}
$$

as $x \rightarrow+0$. This completes the proof of Theorem 1 .

4. Proof of Theorem 2.

We first prove the " only if" part, i.e. we assume that $\left\{a_{n}\right\}$ is of bounded variation and $g(x) \simeq \frac{1}{2} \pi x^{\beta-1} L\left(x^{-1}\right) /\left\{\Gamma(\beta) \sin \frac{1}{2} \beta \pi\right\}$ as $x \rightarrow+0$. Following the same argument as in $\S 3$, we see that the a_{n} 's are the Fourier sine coefficients of $g(x)$, i.e.

$$
a_{n}=\frac{2}{\pi} \int_{0}^{\pi} g(x) \sin n x d x
$$

Next, let $g(x)=x^{\beta-1} L\left(x^{-1}\right) h(x)$. Here $h(x)$ should not be confused with that in §3. We see that $h(x) \rightarrow B(\beta)$ as $x \rightarrow+0$, where $B(\beta)=\frac{1}{2} \pi /\left\{\Gamma(\beta) \sin \frac{1}{2} \beta \pi\right\}$ and $h(x)$ is bounded. Using the Poisson conjugate kernel

$$
\sum_{k=1}^{\infty} r^{k} \sin k x=r \sin x / \Delta_{1}(r, x) \quad(0<r<1)
$$

we have

$$
\begin{aligned}
\sum_{k=1}^{\infty} r^{k} a_{k} & =\frac{2 r}{\pi} \int_{0}^{\pi} \frac{x^{\beta} L\left(x^{-1}\right) h(x) d x}{\Delta_{2}(r, x)}+\frac{2 r}{\pi} \int_{0}^{\pi} x^{\beta-1} L\left(x^{-1}\right) K_{3}(r, x) h(x) d x \\
& =J_{3}(r, x)+J_{4}(r, x), \text { say }
\end{aligned}
$$

ASYMPTOTIC BEHAVIOURS OF TRIGONOMETRIC SERIES 315
where

$$
K_{3}(r, x)=\frac{\sin x}{\Delta_{1}(r, x)}-\frac{x}{\Delta_{2}(r, x)}
$$

From Lemma $8(c)$ and Lemma 6 (cf. the discussion of J_{21} in $\S 3$) we obtain

$$
\begin{aligned}
&\left|J_{4}(r, x)\right| \leqq K M\left\{(1-r) \int_{0}^{\pi} \frac{x^{\beta} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)}+\int_{0}^{\pi} \frac{x^{\beta+2} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)}\right\} \\
& \leqq K M L\left(\frac{1}{1-r}\right)\left\{(1-r)^{\beta}+\pi^{\frac{1}{2(3+\beta)}}(1-r)^{\frac{1}{2(\beta-1)}}\right\}, \text { as } r \rightarrow 1-0
\end{aligned}
$$

Then we have

$$
J_{4}(r, x)=o\left((1-r)^{\beta-1} L\left(\frac{1}{1-r}\right)\right), \text { as } r \rightarrow 1-0 .
$$

Since $h(x) \rightarrow B(\beta)$ as $x \rightarrow+0$, given $\varepsilon>0$ we can find $\delta>0$ such that

$$
|h(x)-B(\beta)|<\varepsilon \text { for } 0<x<\delta
$$

We therefore have

$$
\begin{align*}
\mid J_{3}(r, x)- & \left.\frac{2 r}{\pi} \int_{0}^{\delta} \frac{x^{\beta} L\left(x^{-1}\right) B(\beta) d x}{\Delta_{2}(r, x)} \right\rvert\, \\
& =\left|\frac{2 r}{\pi} \int_{0}^{\delta} \frac{x^{\beta} L\left(x^{-1}\right)\{h(x)-B(\beta)\} d x}{\Delta_{2}(r, x)}+\frac{2 r}{\pi} \int_{\delta}^{\pi} \frac{x^{\beta} L\left(x^{-1}\right) h(x) d x}{\Delta_{2}(r, x)}\right| \tag{4.1}\\
& \leqq \frac{2 r}{\pi}\left\{\varepsilon \int_{0}^{\delta} \frac{x^{\beta} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)}+M \int_{\delta}^{\pi} x^{\beta-2} L\left(x^{-1}\right) d x\right\} \\
& \leqq \frac{2 r}{\pi}\left\{\varepsilon I_{5}+K(\varepsilon)\right\}
\end{align*}
$$

where

$$
I_{5}=\int_{0}^{\delta} \frac{x^{\beta} L\left(x^{-1}\right)}{(1-r)^{2}+x^{2}} d x
$$

By Lemma 6,

$$
I_{5} \simeq(1-r)^{\beta-1} L\left(\frac{1}{1-r}\right) C(\beta) \text { as } r \rightarrow 1-0
$$

By arguments similar to that used in obtaining (3.2), we have

$$
\left\{\varepsilon I_{5}+M I_{6}\right\} \leqq\{\varepsilon+o(1)\} \int_{0}^{\delta} \frac{x^{\beta} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)}, \text { as } r \rightarrow 1-0
$$

From (4.1), (4.2) and Lemma 6 we obtain
$J_{3}(r, x)=\frac{2 r}{\pi}\{B(\beta)+o(1)\} \int_{0}^{\delta} \frac{x^{\beta} L\left(x^{-1}\right) d x}{\Delta_{2}(r, x)}$

$$
\simeq \frac{2}{\pi} C(\beta) B(\beta)(1-r)^{\beta-1} L\left(\frac{1}{1-r}\right), \text { as } r \rightarrow 1-0
$$

Then we have

$$
\sum_{k=1}^{\infty} r^{k} a_{k}=J_{3}(r, x)+J_{4}(r, x)=\{\Gamma(1-\beta)+o(1)\}(1-r)^{\beta-1} L\left(\frac{1}{1-r}\right)
$$

as $r \rightarrow 1-0$. By Lemma 7 and Lemma 4 we have

$$
a_{n} \simeq n^{-\beta} L(n), \text { as } n \rightarrow \infty
$$

The " if" part of Theorem 2 follows by the same arguments as that of Theorem 1.

Finally it should be remarked that the range of β in Theorem 2 is $0<\beta<1$. I have been unable to establish the theorem for $0<\beta<2$ which is true for monotone and quasi-monotone coefficients. The main difficulty here is that the hypothesis in Lemma 4, " $\sum_{k=1}^{n} a_{k} \simeq A n^{1-\beta} L(n)$, as $n \rightarrow \infty$," cannot be replaced by " $\sum_{k=1}^{n} k a_{k} \simeq A n^{2-\beta} L(n)$, as $n \rightarrow \infty$."

The author wishes to express his indebtedness to the referee, not only for pointing out some slips, but also for valuable suggestions which brought improvements in the proof of Lemma 8.

REFERENCES

(1) S. Aluančić, R. Bojanić et M. Tomić, Sur le comportement asymptotique au voisinage de zéro des séries trigonométriques de sinus à coefficients monotones, Publ. Inst. Math. Acad. Serbe Sci. 10 (1956), 101-20.
(2) S. Aluančić, R. Bojanić et M. Tomíć, Sur la valeur asymptotique d'une classe des intégrales définies, Publ. Inst. Math. Acad. Serbe Sci. 7 (1954), 81-84.
(3) R. P. Boas, Quasi-positive sequences and trigonometric series, Proc. London Math. Soc. (3) 14A (1965), 38-46.
(4) G. H. Hardy, A theorem concerning trigonometrical series, J. London Math. Soc. 3 (1928), 12-13.
(5) G. H. Hardy, Some theorems concerning trigonometrical series, Proc. London Math. Soc. 32 (1931), 441-8.
(6) J. Karamata, Sur un mode de croissance régulière des fonctions, Mathematica 4 (1930), 38-53.
(7) J. Karamata, Neuer Beweis und Verallgemeinerung einiger Tauberian-Sätze, Math. Zeitschrift, 33 (1931), 294-9.
(8) J. Karamata, Sur un mode de croissance régulière, Bull. Soc. Math. France, 61 (1933), 55-62.
(9) A. ZyGmund, Trigonometric series (2nd ed., Cambridge, 1959), Vol. 1.

Department of Mathematics
University of Hong Kong

