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ABSTRACT

The fact that a large proportion of insurance policyholders make no claims
during a one-year period highlights the importance of zero-inflated count mod-
els when analyzing the frequency of insurance claims. There is a vast literature
focused on the univariate case of zero-inflated count models, while work in the
area of multivariate models is considerably less advanced. Given that insurance
companies write multiple lines of insurance business, where the claim counts on
these lines of business are often correlated, there is a strong incentive to ana-
lyze multivariate claim count models. Motivated by the idea of Liu and Tian
(Computational Statistics and Data Analysis, 83, 200-222; 2015), we develop
a multivariate zero-inflated hurdle model to describe multivariate count data
with extra zeros. This generalization offers more flexibility in modeling the
behavior of individual claim counts while also incorporating a correlation
structure between claim counts for different lines of insurance business. We
develop an application of the expectation-maximization (EM) algorithm to
enable the statistical inference necessary to estimate the parameters associated
with our model. Our model is then applied to an automobile insurance portfo-
lio from a major insurance company in Spain. We demonstrate that the model
performance for the multivariate zero-inflated hurdle model is superior when
compared to several alternatives.

KEYWORDS

Multivariate zero-inflation, Hurdle model, EM algorithm, automobile insur-
ance.

1. INTRODUCTION

Generalized linear models (GLMs) have been widely applied in insurance
ratemaking over the last few decades. Within the GLM framework, Poisson
and negative binomial distributions have been routinely applied to the analysis
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of insurance claim frequencies. Some detailed illustrations can be found in
Cameron and Trivedi (1998) and Frees (2009). In automobile insurance, many
attempts have also been made in the actuarial literature to find an appropriate
distribution to model the dollar cost associated with individual claims. It is
often the case that automobile insurance policyholders do not incur any loss
in the period of insurance coverage. Even if the insureds do incur a loss, they
may opt not to put forward a claim in order to maintain a high level of no
claims discount to their annual insurance premium. In short, insurance claim
frequency data are often characterized by a large number of zero claims.
This, in turn, leads to the study of zero-inflated versions of typical count
distributions (see, e.g., Yip and Yau, 2005 and Boucher et al., 2007).

In practice, an insurer may provide multiple lines of insurance business,
where claims from different sources are bundled into one single policy. For
example, in automobile insurance, one policy may cover the payment in respect
of third-party liability and also losses sustained by the insured party. It is clear
from data that claims from these two forms of insurance are often triggered
from the same event leading to correlation between observed claim counts.
Dependence between costs associated with two (or more) different types of
claims must be considered when building a robust ratemaking system. As
pointed in Bermúdez (2009), even a minor correlation between the claim counts
can lead to major differences in ratemaking. Failure to take into account the
positive correlation between the claims will often result in premiums which are
too low relative to the underlying risk.

In the literature, there were some papers discussing zero-inflated models in
the multivariate version. Most of these models concentrated on the case where
the marginal claim count distributions are Poisson. Li et al. (1999) proposed a
multivariate zero-inflated Poisson model as a mixture of m+ 2 components of
m-dimensional discrete distributions. The complexity of this model renders the
implementation of maximum likelihood estimation not an easy job for largem.
Bermúdez andKarlis (2011) considered zero-inflated versions for the multivari-
ate Poisson model with common and full covariance structures. The inference
procedure was completed using a Bayesian framework. Using a similar struc-
ture as in Li et al. (1999), Dong et al. (2014) gave a multivariate zero-inflated
negative binomial model.

Recently Liu and Tian (2015) examined a new multivariate zero-inflated
Poisson model. This model had the advantage of avoiding the computation
issues resulting from an increase of dimension. However, all components in
this model share a common zero-inflation parameter which restricts scope for
application of this model. In addition, the fact that each marginal distribution
is assumed to be Poisson imposes a restriction on the ability of the model to
work with many different data sets. In an attempt to alleviate these limitations,
we propose a multivariate zero-inflated hurdle model. A univariate hurdle
model (Mullahy, 1986) is a two-part model that separates the occurrence of
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an event from the number of those events actually observed. Constructing
a multivariate hurdle model by assuming a hurdle distribution in every
margin has two advantages. First, it can easily handle the zero-inflation or
zero-deflation feature in each margin. Second, it provides users with greater
choice in modeling marginal behaviors. See some examples regarding the
implementation of hurdle models in Boucher et al. (2007). As a result, our
proposed multivariate zero-inflated hurdle model has greater in-built flexibility
than the multivariate zero-inflated Poisson model considered in Liu and
Tian (2015) in respect of diversifying marginal zero-inflation parameters and
employing non-Poisson marginal distributions. The hurdle model has also
been considered in a multivariate context by Zhang et al. (2020), but to study
the Type I multivariate zero-truncated data, which has a very different feature
from the type of data studied in this paper.

In our work, the inference process is enabled using the EM algorithm
(Dempster et al., 1977). The EM algorithm is a two-step iterative method to
find the maximum likelihood estimates (MLEs). It is particularly useful when
working with zero-inflated models. Examples illustrating the implementation
of the EM algorithm in zero-inflated models can be found in Lambert (1992)
and Hall (2000). Unfortunately, when covariates are introduced in our model,
there is no closed-form representation in the M-step. We could find the opti-
mal values in the M-step using the Newton-Raphson method however this was
shown to be computationally expensive. Rai (1993) provided an alternative
approach in which the Newton-Raphson method is carried out for only one
step in the M-step. This can reduce the computation time considerably.

Our work contributes to the existing literature in several ways. First, we
provide a very efficient way to generalize the zero-inflated model from univari-
ate case to multivariate case. Our proposed framework can easily handle high
dimensional data without any computational issues. Second, our model dif-
fers from the model of Liu and Tian (2015) in the sense that hurdle margins are
assumed here instead of just Poisson margins. This generalization preserves the
flexibility of capturing types of features in the insurance claims data. It is also
worth stressing that no closed-form exists anymore in the M-step due to the
introduction of covariates, enabling us to use a generalized EM algorithm for
inference. Third, we emphasize the better performance of our proposed model
compared with several existing candidate models when fitted using the same
insurance data set.

The rest of the article is organized as follows. Section 2 provides the defi-
nition of general multivariate zero-inflated distribution and investigates some
of its distributional properties. In Section 3, we propose our multivariate
zero-inflated hurdle model, followed by the corresponding EM algorithm for
model inference. In Section 4, the proposed model is applied to an automobile
insurance data set. The last section concludes the paper.
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2. MULTIVARIATE ZERO-INFLATED DISTRIBUTION

2.1. Definition

We now define our new multivariate zero-inflated distribution. Let Y =
(Y1, . . . ,Ym)� denote a discrete random vector whereYj, j= 1, . . . ,m, are inde-
pendent of each other and defined on N. Then Z = (Z1, . . . ,Zm)� is said to
follow the multivariate zero-inflated distribution if

Z d=UY =
{
0m, U = 0,

Y, U = 1,
(2.1)

where U ∼Bernoulli(π0), 0<π0 < 1, and U is independent of Y. The symbol
“ d= " means that the random variables on both sides of the equality share the
same distribution. The probability mass function (pmf) of Z can be derived as

Pr (Z = z)=
⎡
⎣1− π0 + π0

m∏
j=1

Pr (Yj = 0)

⎤
⎦
v ⎡
⎣π0

m∏
j=1

Pr (Yj = zj)

⎤
⎦

1−v

, (2.2)

where z= (z1, . . . , zm)� is a vector of observed values, v= I(z= 0m) and I( · ) is
an indicator function.

2.2. Properties of distribution

2.2.1. Marginal distributions
We first derive the marginal distribution for a single variable. The marginal
distribution of Zj is

Pr (Zj = zj)=
{
π0fYj (zj), zj > 0,

1− π0 + π0fYj (0), zj = 0.

Proof. If zj > 0,

Pr (Zj = zj) =
∞∑
z1=0

· · ·
∞∑

zj−1=0

∞∑
zj+1=0

· · ·
∞∑

zm=0

Pr (Z = z)

= π0fYj (zj)
m∏

k=1,k �=j

∞∑
zk=0

fYk (zk)

= π0fYj (zj).

Thus,

Pr (Zj = 0)= 1−
∞∑
zj=1

Pr (Zj = zj)= 1− π0 + π0fYj (0). �
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Next we derive an expression for the marginal distribution of an arbi-
trary random sub-vector of Z. Denote J = (j1, j2, . . . , jr)⊂ (1, 2, . . . ,m) where
1< r<m and JC = (jr+1, jr+2, . . . , jm) as the complementary set. Let Zr =
(Zj1 ,Zj2 , . . . ,Zjr)

� and zr = (zj1 , zj2 , . . . , zjr)
�, the distribution of Zr is

Pr (Zr = zr)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
π0

∏
j∈J

fYj (zj), zr �= 0r,

1− π0 + π0

∏
j∈J

fYj (0), zr = 0r.

Proof. If zr �= 0r,

Pr (Zr = zr) =
∞∑

zjr+1=0

· · ·
∞∑

zjm=0

Pr (Z = z)

= π0

∏
j∈J

fYj (zj)
∏
j∈JC

∞∑
zj=0

fYj (zj)

= π0

∏
j∈J

fYj (zj).

Thus,

Pr (Zr = 0r)= 1−
∑
zr �=0r

Pr (Zr = zr)

= 1− π0

∑
zr �=0r

∏
j∈J

fYj (zj)

= 1− π0

⎡
⎣1−

∑
zr=0r

∏
j∈J

fYj (zj)

⎤
⎦

= 1− π0

⎡
⎣1−

∏
j∈J

fYj (0)

⎤
⎦

= 1− π0 + π0

∏
j∈J

fYj (0).
�

The marginal distributions can also be obtained from the definition
Z d=UY.

2.2.2. Conditional distribution
Let Zm−r = (Zjr+1 ,Zjr+2 , . . . ,Zjm)

� and zm−r = (zjr+1 , zjr+2 , . . . , zjm)
�. The condi-

tional distribution of Zr|Zm−r is
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Pr (Zr = zr|Zm−r = zm−r)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∏
j∈J

fYj (zj), zm−r �= 0m−r,

π∗
0

∏
j∈J

fYj (zj), zr �= 0r, zm−r = 0m−r,

1− π∗
0 + π∗

0

∏
j∈J

fYj (0), zr = 0r, zm−r = 0m−r,

where π∗
0 = π0

∏
j∈JC fYj (0)

1−π0+π0 ∏j∈JC fYj (0)
.

Proof. If zm−r �= 0m−r,

Pr (Zr = zr|Zm−r = zm−r)=
π0
∏m

j=1 fYj (zj)

π0
∏

j∈JC fYj (zj)
=
∏
j∈J

fYj (zj).

If zm−r = 0m−r and zr �= 0r,

Pr (Zr = zr|Zm−r = 0m−r) = π0
∏

j∈J fYj (zj)
∏

j∈JC fYj (0)

1− π0 + π0
∏

j∈JC fYj (0)

= π∗
0

∏
j∈J

fYj (zj).

If zm−r = 0m−r and zr = 0r,

Pr (Zr = 0r|Zm−r = 0m−r) = 1− π0 + π0
∏m

j=1 fYj (0)

1− π0 + π0
∏

j∈JC fYj (0)

= 1− π∗
0 + π∗

0

∏
j∈J

fYj (0). �

2.2.3. Expectation, variance and covariance
The expectation and variance of Zj, j= 1, . . . ,m, are

E(Zj)= π0μ1j, Var(Zj)= π0μ2j − π 2
0μ

2
1j,

and the covariance between Zj and Zk, j, k= 1, . . . ,m, j �= k, is

Cov(Zj,Zk)= π0(1− π0)μ1jμ1k > 0,

where μ1j =E(Yj), μ1k =E(Yk) and μ2j =E(Y 2
j ).

Proof. This is easily obtained from Z d=UY. �
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2.2.4. Moment generating function
The moment generating function of Z is

MZ(t)= 1− π0 + π0

m∏
j=1

MYj (tj),

where t= (t1, . . . , tm)�.

Proof. The moment generating function of Z is

MZ(t) = E
[
exp (t�Z)

]=E
[
exp (Ut�Y)

]=E
{
E
[
exp (Ut�Y)|U]}

= E [MY(Ut)]= 1− π0 + π0MY(t)= 1− π0 + π0

m∏
j=1

MYj (tj). �

2.3. Two special cases

In this subsection, we introduce two multivariate zero-inflated distributions
where the margins are assumed to be either all Poisson or all negative binomial
distributed. Users do not have the flexibility to vary the marginal distribution
types for these two distributions. We note that the multivariate zero-inflated
Poisson distribution was first proposed by Liu and Tian (2015). To our best
knowledge, the multivariate zero-inflated negative binomial distribution has
not been studied in the literature before, but it has the same limitations as
the Poisson model, which was discussed above in Section 1. We will use
these two models in our model comparison in Section 4. For the purpose
of simplification, we have put the EM algorithms of parameter estimation
for these two models in Appendix A, where the location parameters are all
covariate-dependent.

2.3.1. Multivariate zero-inflated Poisson distribution
Let Yj∼Poisson(λj), for j= 1, . . . ,m. Then Z is said to follow the multivariate
zero-inflated Poisson distribution with the parameter vector λ = (λ1, . . . , λm)�

and a zero-inflation parameter π0, denoted by Z ∼MZIP(λ, π0). The pmf of
Z is

Pr (Z = z)=
(
1− π0 + π0e−∑m

j=1 λj

)v ⎛⎝π0

m∏
j=1

λ
zj
j e

−λj

zj!

⎞
⎠

1−v

, (2.3)

where v= I(z= 0m).

2.3.2. Multivariate zero-inflated negative binomial distribution
Let Yj∼NB(μj, θj), for j= 1, . . . ,m. Then Z is said to follow the multivariate
zero-inflated negative binomial distribution with two parameter vectors μ =
(μ1, . . . ,μm)�, θ = (θ1, . . . , θm)� and a zero-inflation parameter π0, denoted by
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Z ∼MZINB(μ, θ , π0). The pmf of Z is

Pr (Z = z) =
⎡
⎣1− π0 + π0

m∏
j=1

(
θj

μj + θj

)θj⎤⎦
v

×
⎡
⎣π0

m∏
j=1

�(zj + θj)
�(θj)zj!

(
μj

μj + θj

)zj ( θj

μj + θj

)θj⎤⎦
1−v

, (2.4)

where v= I(z= 0m).

3. MULTIVARIATE ZERO-INFLATED HURDLE MODEL

3.1. Model characterization

We shall assume that each underlying random variable Yj in (2.1) follows a
zero-modified distribution, which can be characterized as follows:

Yj
d=UjWj =

{
0, Uj = 0,
Wj, Uj = 1,

(3.1)

where Wj follows a count distribution defined on N+, Uj ∼Bernoulli(πj),
0<πj < 1, and Uj is independent of Wj. Again, we assume that all Yj are
independent of each other. Then Z constructed by (2.1) is said to follow
the multivariate zero-inflated hurdle distribution with parameter vectors π =
(π1, . . . , πm)�, � = (�1, . . . ,�m)� and a zero-inflation parameter π0. Here �j

is the set of parameters related toWj. The pmf of Z can be expressed as

Pr (Z = z) =
⎡
⎣1− π0 + π0

m∏
j=1

(1− πj)

⎤
⎦
v

×
⎡
⎣π0

∏
j:zj=0

(1− πj)
∏
j:zj �=0

πjfWj (zj)

⎤
⎦

1−v

, (3.2)

where v= I(z= 0m).

3.2. Model inference

Suppose each Z i, i= 1, . . . , n, independently follows a multivariate zero-
inflated hurdle distribution. The corresponding observed values are
z1, . . . , zn, where zi = (zi1, . . . , zim)�. The latent variables are v1, . . . , vn, where
vi = I(zi = 0m). Now we introduce some covariates, x1, . . . , xn, where
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xi = (1, xi1, . . . , xip)�. The parameter πij can then be modeled as

πij =
exp (x�

i β j)

1+ exp (x�
i β j)

, (3.3)

where β j = (βj0, βj1, . . . , βjp)�. For the purpose of easy interpretation, we do
not inject covariates in π0. We denote β = (β1, . . . , βm) as the set of parameters
related to all πij, and � as the set of parameters related to allWj, the likelihood
function then can be written as

L(β,�, π0) =
n∏
i=1

⎡
⎣1− π0 + π0

m∏
j=1

(1− πij)

⎤
⎦
vi

×
n∏
i=1

⎡
⎣π0

∏
j:zij=0

(1− πij)
∏
j:zij �=0

πijfWj (zij)

⎤
⎦

1−vi

. (3.4)

The observed log-likelihood function can be divided into two parts:

�1(β, π0) =
n∑
i=1

vi log

⎡
⎣1− π0 + π0

m∏
j=1

(1− πij)

⎤
⎦+

n∑
i=1

(1− vi) log π0

+
n∑
i=1

(1− vi)

⎡
⎣∑
j:zij=0

log (1− πij)+
∑
j:zij �=0

log πij

⎤
⎦,

�2(�) =
n∑
i=1

∑
j:zij �=0

(1− vi) log fWj (zij)=
m∑
j=1

∑
i:zij �=0

log fWj (zij).

Thus, the maximization procedure can be completed for �1 and �2, respectively.
For �2, the estimation can proceed in respect of the zero-truncation part of each
margin separately. For �1, we implement the EM algorithm as described below.

Denote Z ′ = (Z′
1, . . . ,Z

′
m)

� where Z′
j = I(Zj > 0). The corresponding

observed values are denoted by z′
1, . . . , z

′
n where z′

i = (z′
i1, . . . , z

′
im)

�. The
observed log-likelihood function �1 can be rewritten as

�1(β, π0) =
n∑
i=1

vi log

⎡
⎣1− π0 + π0

m∏
j=1

(1− πij)

⎤
⎦+

n∑
i=1

(1− vi) log π0

+
m∑
j=1

n∑
i=1

(1− vi)
[
z′
ij log πij + (1− z′

ij) log (1− πij)
]
.

In addition to the known values z′
i, suppose we also know the value u′

i, one
for each individual to take the value 1 if the observation of common zeros
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is inflated and 0 otherwise. The complete data log-likelihood function then
becomes

�c1(β, π0) =
n∑
i=1

[
u′
ivi log (1− π0)+ (1− u′

ivi) log π0

]

+
m∑
j=1

n∑
i=1

[
z′
ij log πij + (1− u′

ivi − z′
ij) log (1− πij)

]
.

Note in our case, viz′
ij = 0. Given initial values of parameters β and π0, the EM

algorithm proceeds as follows.

• E-step: Replace u′
i by

ū′
i =

1− π0

1− π0 + π0
∏m

j=1 (1− πij)
, i= 1, . . . , n,

where πij = exp (x�
i β j)

1+exp (x�
i β j)

.
• M-step:

– For π0, we can get

π0 = 1− 1
n

n∑
i=1

ū′
ivi.

– For β, let

�̄c1j(β j)=
n∑
i=1

[
z′
ij log πij + (1− ū′

ivi − z′
ij) log (1− πij)

]
.

There is no closed-form representation for β j, so we update the regression
parameters, respectively, for each j by implementing the Newton–Raphson
method for one step. The first- and second-order derivatives are given as
follows:

∂�̄c1j

∂β j

=
n∑
i=1

[
z′
ij − (1− ū′

ivi)πij
]
xi,

∂2�̄c1j

∂β j∂β
�
j

= −
n∑
i=1

(1− ū′
ivi)πij(1− πij)xix�

i .

• Iterate through the E-step and M-step until some convergence criterion is
met, for example, the relative change of observed log-likelihood between two
consecutive iterations is smaller than a tolerance level ε.

Remark 1. The initial values of parameters β j for EM algorithm can be obtained
by implementing univariate logistic regression with observed values z′

1j, . . . , z
′
nj.
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The initial value of parameter π0 can be set as 0.5. The standard errors for the
estimates can be approximated using the approach in Louis (1982).

For the case without covariates incorporated in πij, the EM algorithm is
simplified as shown below.

• E-step: Replace u′
i by

ū′ = ū′
i =

1− π0

1− π0 + π0
∏m

j=1 (1− πj)
, i= 1, . . . , n.

Initial value for πj can be set as the proportion of non-zeros for margin j.
• M-step:

– Update π0 through the following equation:

π0 = 1− ū′

n

n∑
i=1

vi.

– Update each πj through the following equation:

πj =
∑n

i=1 z
′
ij

n− ū′ ∑n
i=1 vi

, j= 1, . . . ,m.

4. APPLICATION

4.1. Data description

This application is based on an automobile portfolio from a major insurance
company operating in Spain in 1995. The whole data set consists of 80,994
policyholders. We have access to a rich set of information for each individ-
ual. The detailed description for each predictor is presented in Table 1. The
mean of each covariate is also provided in the table to show the proportion of
corresponding group. For example, the mean of v1 tells us that 16.0% of the
policyholders are female.

The simplest policy only includes third-party liability (denoted as Z1 type)
and a set of basic guarantees such as emergency roadside assistance, legal
assistance or insurance covering medical costs (denoted as Z2 type). The com-
prehensive coverage (damage to one’s vehicle caused by any unknown party,
for example, damage resulting from theft, flood or fire) and the collision cover-
age (damage resulting from a collision with another vehicle or object when the
policyholder is at fault) are also denoted as Z2 type. For our purpose, we only
select policyholders with full coverage (v9= 0, v10= 1) to implement our anal-
ysis. This is consistent with the analysis in Bermúdez and Karlis (2017). This
subset only contains information for 28,590 policyholders. The empirical joint
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TABLE 1

THE DESCRIPTION FOR EXPLANATORY VARIABLES.

Variable Description Mean

v1 = 1 for women; = 0 for men 0.160
v2 = 1 when driving in urban area; = 0 otherwise 0.669
v3 = 1 when zone is medium risk (Madrid and Catalonia) 0.239
v4 = 1 when zone is high risk (northern Spain) 0.194
v5 = 1 if the driving license is between 4 and 14 years old 0.257
v6 = 1 if the driving license is 15 or more years old 0.719
v7 = 1 if the client is in the company for more than 5 years 0.856
v8 = 1 if the insured is 30 years old or younger 0.092
v9 = 1 if includes comprehensive coverage (except fire) 0.156
v10 = 1 if includes comprehensive and collision coverage 0.353
v11 = 1 if horsepower is ≥ 5500 cc 0.806

TABLE 2

THE EMPIRICAL JOINT DISTRIBUTION OF Z1 AND Z2.

Z2

Z1 0 1 2 3 4 5 6

0 24,408 1916 296 69 12 6 0
1 1068 317 61 21 6 2 2
2 203 71 18 6 2 1 1
3 49 14 8 3 3 1 0
4 11 6 2 0 1 0 0
5 2 0 0 0 0 0 1
6 1 0 0 1 0 0 0
8 0 0 1 0 0 0 0

distribution for claim numbers Z1 and Z2 is displayed in Table 2. The over-
all Pearson’s correlation coefficient between these two types of claim is 0.189.
This observed correlation is consistent with our model’s positive correlation
assumption. For our study, we randomly take 70% of the observations from
the subset as training data to develop the models, and the remaining 30% are
reserved as hold-out sample for validation purpose.

4.2. Model fitting

Prior to fitting our proposed hurdle model, we need to determine the distri-
butions for the zero-truncated univariate componentsWj, j= 1, 2. In addition
to the commonly used zero-truncated Poisson (ZTP) and zero-truncated neg-
ative binomial (ZTNB) distributions, we also try unit-shifted Poisson (USP)
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TABLE 3

GOODNESS-OF-FIT OF MARGINAL MODELS.

W1 Observed ZTP ZTNB USP USNB

1 1033 993.71 1037.84 981.99 1032.45
2 207 266.50 202.80 286.75 209.20
3 54 47.65 52.32 41.87 53.21
4 17 6.39 15.14 4.08 14.45
≥5 4 0.75 6.90 0.32 5.68

χ 2 47.34 1.61 112.32 0.98
LogLik −924.59 −906.31 −940.51 −905.92

W2 Observed ZTP ZTNB USP USNB

1 1624 1562.13 1612.94 1548.65 1623.88
2 265 358.21 281.18 382.08 265.14
3 66 54.76 64.72 47.13 66.48
4 18 6.28 16.70 3.88 18.61
≥5 9 0.62 6.46 0.25 7.89

χ 2 163.54 2.13 403.05 0.18
LogLik −1258.84 −1221.06 −1283.18 −1220.22

and unit-shifted negative binomial (USNB) distributions. Implementing a unit-
shifted distribution onWj is equivalent to using a standard count distribution
for Wj − 1. These four univariate models can be implemented in R using the
packages gamlss and gamlss.tr. The results are summarized in Table 3. Both the
log-likelihood values and the χ 2 statistics indicate that the USNB distribution
outperforms the alternatives for both claim type counts. The small differ-
ences between the observed and fitted frequencies demonstrate the adequacy
of adopting a USNB distribution for both margins.

We next turn to parameter estimation when covariates are introduced in
our multivariate zero-inflated hurdle (MZIH) model. The estimation results
in Table 4 correspond to πj, j= 0, 1, 2. The 95% confidence interval of π0 is
(0.318, 0.372), where the upper bound is far below the boundary 1. This reveals
the zero-inflation feature reflected in the data set. Focusing on the claims of Z1

type, parameters v4 and v7 are statistically significant. It can be concluded that
policyholders with more years with the insurance company (v7) exhibit a lower
probability of claiming. On the other hand, driving in a high-risk region (v4)
is associated with an increase in the probability of making a claim. If we focus
on the claims of Z2 type, we notice that v3, v5, v7 and v11 are all statistically
significant. This suggests that driving in a zone of medium risk (v3), driving
license between 4 and 14 years (v5) and greater horsepower (v11) are all asso-
ciated with increased chances of a claim in this category. However, clients with
the company for more than 5 years (v7) have a lower probability of making
a claim. Table 5 is associated with the estimates for Wj, j= 1, 2. In this table,
we report the coefficient estimates when a linear model with logarithmic link
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TABLE 4

ESTIMATES AND t-RATIOS ASSOCIATED WITH THE COVARIATES OF πj IN MZIH MODEL.

π1 π2

Estimate t-ratio Estimate t-ratio

Intercept −0.953 −3.474*** −1.271 −4.786***
v1 0.029 0.327 0.041 0.496
v2 −0.044 −0.629 0.084 1.305
v3 0.098 1.227 0.168 2.336*
v4 0.274 3.230** −0.032 −0.397
v5 −0.188 −0.863 0.430 2.014*
v6 −0.336 −1.462 0.081 0.360
v7 −0.259 −3.022** −0.359 −4.517***
v8 0.107 0.873 0.060 0.527
v11 −0.086 −0.846 0.398 4.051***

Estimate 95% CI

π0 0.345 (0.318, 0.372)

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.

TABLE 5

ESTIMATES AND t-RATIOS ASSOCIATED WITH THE COVARIATES OF Wj IN MZIH MODEL.

W1 W2

Estimate t-ratio Estimate t-ratio

Intercept −1.299 −2.594** −1.350 −2.769**
v1 −0.112 −0.663 0.098 0.675
v2 −0.013 −0.096 0.001 0.009
v3 −0.079 −0.531 0.231 1.821
v4 −0.304 −1.884 −0.141 −0.896
v5 0.129 0.319 0.162 0.393
v6 0.141 0.333 0.039 0.092
v7 0.012 0.075 −0.037 −0.274
v8 −0.081 −0.366 −0.081 −0.415
v11 0.053 0.280 −0.178 −0.964

Estimate 95% CI

θ1 0.678 (0.428, 0.928)
θ2 0.498 (0.351, 0.644)

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05.

function is used to describe the location parameter in the USNB marginal dis-
tributions of the MZIH model. As can be observed from this table, conditional
on the occurrence of claims, no predictor is significant for the expected number
ofW1 andW2.
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TABLE 6

OBSERVED AND EXPECTED FREQUENCIES OF MZIH MODEL FOR THE JOINT DISTRIBUTION OF
Z1 AND Z2.

Z2

Z1 0 1 2 3 4 5 6

0 17,104 1342 199 41 8 4 0
(17,102.66) (1306.43) (213.31) (53.49) (14.97) (4.41) (1.34)

1 736 228 46 16 5 1 1
(731.96) (246.71) (40.28) (10.10) (2.83) (0.83) (0.25)

2 145 42 10 6 2 1 1
(148.32) (49.99) (8.16) (2.05) (0.57) (0.17) (0.05)

3 34 7 8 2 2 1 0
(37.73) (12.72) (2.08) (0.52) (0.15) (0.04) (0.01)

4 9 5 2 0 1 0 0
(10.25) (3.45) (0.56) (0.14) (0.04) (0.01) (0.00)

5 2 0 0 0 0 0 0
(2.87) (0.97) (0.16) (0.04) (0.01) (0.00) (0.00)

6 1 0 0 1 0 0 0
(0.82) (0.28) (0.05) (0.01) (0.00) (0.00) (0.00)

Furthermore, we present in Table 6 the observed and expected frequencies
(numbers in the brackets) based on the MZIH model. It can be observed that
the overall fit is acceptable. The result of the chi-squared test indicates that
only a few cells contribute to this goodness-of-fit. It is thus our belief that the
overall quality of fit is good considering the number of cells.

Finally, we compare different available models. Apart from our proposed
MZIH model, fitted with the USNB marginal distributions, our candidate
models also include the multivariate zero-inflated Poisson (MZIP) and mul-
tivariate zero-inflated negative binomial (MZINB) models. It is worth men-
tioning that for the zero-truncation parts in our MZIH model, only intercepts
are adopted to avoid the over-fitting problem. Furthermore, a model with two
independent hurdle margins (Ind) is fitted as a benchmark. The marginal zero-
truncated distributions in the independent hurdle model are the same as for
the MZIH model. Different information criteria are provided in Table 7. By
assuming the existence of a zero-inflation parameter, we are able to improve
the model fitting considerably. This confirms the fact that extra common zeros
exist in our data set. Also the superior performance ofMZIHmodel overMZIP
and MZINB models verifies the benefit of having extra flexibility in our MZIH
model when handling marginal distributions.

4.3. Predictive analysis

To evaluate the predictive performance, we calculate the predicted claim fre-
quencies and compare these to the observed frequencies from the test sample
for the following scenarios: no claims in any line, claims occur in only one of
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TABLE 7

INFORMATION CRITERIA OF FOUR FITTED MODELS.

Model Parameters LogLik AIC BIC

MZIH 25 −13,162.50 26,375.00 26,581.52
MZIP 21 −13,313.94 26,669.88 26,843.36
MZINB 23 −13,195.20 26,436.40 26,626.39
Ind 24 −13,372.87 26,793.73 26,991.99

TABLE 8

PREDICTED FREQUENCIES OF FOUR MODELS UNDER FOUR DIFFERENT SCENARIOS.

(Z1,Z2) Observed MZIH MZIP MZINB Ind

(0, 0) 7304 7332.54 7330.50 7330.93 7224.20
(>0, 0) 407 399.46 403.20 411.71 506.12
(0, >0) 705 681.36 621.17 684.42 790.03
(>0, >0) 161 163.63 222.13 149.94 56.65

χ 2 1.12 28.26 1.59 221.68

the lines and claims occur in both lines. The candidate models include MZIH,
MZIP, MZINB and Ind models. The goodness-of-fit results are shown in
Table 8. Our conclusions are consistent with those made based on Table 7. As
anticipated, we observe very poor performance from the Ind model, which can
be explained by the failure to model the excess common zeros in the data set as
well as the positive correlation between the two lines of claims. The more accu-
rate prediction of MZIH model against MZIP and MZINB models is largely
due to the introduction of hurdle margins. The tiny discrepancies between
observed and predicted frequencies of our MZIH model suggest a satisfactory
quality of fit for this particular data set.

4.4. Model comparison

In this subsection, we apply the four models from the previous section using the
whole data set with 80,994 policyholders to facilitate the comparison between
these models and the ones in Bermúdez (2009) and Bermúdez and Karlis
(2012). All eleven covariates are considered in this case. The first candidate
model is the best model studied in Bermúdez (2009) that is the zero-inflated
bivariate Poisson (ZIBP) model with regressors on the third Poisson parameter
λ3. The second candidate model is the best model studied in Bermúdez and
Karlis (2012), which is the 2-finite mixture of bivariate Poisson (2-FMBP)
model with regressors on the mixing proportion p. For readers’ convenience,
description of the ZIBP and 2-FMBP models is given in Appendix B. Our
MZIH model is still fitted with the USNB marginal distributions for zero-
truncation parts with only significant predictors reserved. The comparative
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TABLE 9

INFORMATION CRITERIA OF SIX CANDIDATE MODELS.

Model Parameters LogLik AIC BIC

MZIH 30 −44,777.18 89,614.35 89,893.41
2-FMBP 53 −44,842.22 89,790.44 90,283.45
MZINB 27 −45,069.46 90,192.92 90,444.08
ZIBP 27 −45,414.80 90,883.60 91,134.76
MZIP 25 −45,471.08 90,992.17 91,224.72
Ind 29 −45,721.80 91,501.59 91,771.36

analysis is shown in Table 9. As is evident from the table, all information
criteria agree that our proposed MZIH model still performs the best.

5. CONCLUDING REMARKS

In this article, we introduced a new type of multivariate model, the so called
multivariate zero-inflated hurdle (MZIH) model. We started with the definition
for the multivariate zero-inflated distribution and provided some of its proper-
ties. Next, two special multivariate zero-inflated models, namely theMZIP and
MZINB, were presented with associated EM algorithms necessary for estimat-
ing their parameters given in Appendix A. However, these two models often
cannot accommodate the observed characteristics in the marginal distributions
of claim counts. Our proposed MZIH model could address these limitations
by allowing any zero-modified distribution for each margin. The separation
of zeros from the positive parts provided us with more freedom to deal with
zero features in each dimension and the marginal distributions as well. The
usefulness of our model was illustrated with the help of real data from auto-
mobile insurance. The results from fitting several relevant models were shown
and compared. As expected, the superiority of our proposed MZIH model was
supported by different information criteria as well as predictive performance.

Our proposedMZIHmodel provides significantly enhanced flexibility com-
pared to univariate models for the actuary who is dealing with multiple related
insurance coverage. Our model takes into account the correlations between
observed claim frequencies for different lines of insurance business, meaning
that the models for one line of business are enhanced by information in the data
relating to other lines of business. Univariate models are unable to incorpo-
rate this given their separate focus on individual lines of business. Second, the
MZIH model builds on the analysis from univariate modeling of claim counts
by adding a hurdle requirement within a multivariate structure. More impor-
tantly, despite the significantly enhanced model flexibility inherent in MZIH
model analysis, the additional effort in coding and computation is limited.
Starting form appropriate values, our program for the EM algorithm only
takes several minutes to obtain the results when working on tens of thousands
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of observations. The estimation aimed at the positive part of each margin can
be easily handled in R using publicly available packages. All of these advan-
tages make theMZIHmodel an attractive candidate when studying claims with
the zero-inflation feature in a multivariate context.

R CODE

The authors used the R package gamlss and gamlss.tr in themodel fitting of this
paper. The authors are happy to share their R code when needed. Interested
readers please contact the corresponding author.
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APPENDIX

APPENDIX A. EM ALGORITHMS FOR TWO
MODELS

A.1. Multivariate zero-inflated Poisson model

Suppose for each independent individual, Z i ∼MZIP(λi, π0), i= 1, . . . , n, where λi =
(λi1, . . . , λim)�. Taking covariates into account, the parameter λij can be modeled as
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λij = exp (x�
i β j) with new parameters β j = (βj0, βj1, . . . , βjp)�. If we denote β =

(β1, . . . , βm), the likelihood function becomes

L(β, π0)=
n∏
i=1

(
1− π0 + π0e

−∑m
j=1 λij

)vi n∏
i=1

⎛
⎝π0 m∏

j=1

λ
zij
ij e

−λij

zij!

⎞
⎠

1−vi
.

Following the same data augmentation method as for the multivariate zero-inflated
hurdle model, we obtain the complete data likelihood function given as

Lc(β, π0) =
n∏
i=1

(1− π0)
u′ivi

n∏
i=1

(
π0e

−∑m
j=1 λij

)(1−u′i)vi

×
n∏
i=1

⎛
⎝π0 m∏

j=1

λ
zij
ij e

−λij

zij!

⎞
⎠

1−vi
.

The complete data log-likelihood function is

�c(β, π0) =
n∑
i=1

[
u′
ivi log (1− π0)+ (1− u′

ivi) log π0
]

+
m∑
j=1

n∑
i=1

[
zij log λij − (1− u′

ivi)λij
]+C0,

where C0 is a constant not related to (β, π0). Note in our case, vizij = 0.
The associated EM algorithm is given below.

• E-step: Replace u′
i by

ū′
i =

1− π0

1− π0 + π0e
−∑m

j=1 λij
, i= 1, . . . , n,

where λij = exp (x�
i βj).

• M-step:
– For π0, we can get

π0 = 1− 1
n

n∑
i=1

ū′
ivi.

– For β, let

�̄cj (β j)=
n∑
i=1

[
zij log λij − (1− ū′

ivi)λij
]
.

There is no closed-form representation for β j , so we update the regression parameters,
respectively, for each j by implementing the Newton–Raphson method for one step. The
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first- and second-order derivatives are given as follows:

∂�̄cj

∂βj
=

n∑
i=1

[
zij − (1− ū′

ivi)λij
]
xi ,

∂2�̄cj

∂βj∂βj
� = −

n∑
i=1

(1− ū′
ivi)λijxix

�
i .

For the case without covariates incorporated in λij , the corresponding E-step and
M-step can be simplified as follows.

• E-step: Replace ui by

ū′ = ū′
i =

1− π0

1− π0 + π0e
−∑m

j=1 λj
, i= 1, . . . , n.

• M-step:
– Update π0 using the following equation:

π0 = 1− ū′
n

n∑
i=1

vi.

– Update each λj using the following equation:

λj =
∑n

i=1 zij
n− ū′ ∑n

i=1 vi
, j= 1, . . . ,m.

A.2. Multivariate zero-inflated negative binomial model

Suppose for each independent individual, Z i ∼MZINB(μi, θ , π0), i= 1, . . . , n, where μi =
(μi1, . . . ,μim)� and θ = (θ1, . . . , θm)�. Similarly, the covariates could be introduced as μij =
exp (x�

i βj). If we denote β = (β1, . . . , βm) , the likelihood function becomes

L(β, θ , π0) =
n∏
i=1

⎡
⎣1− π0 + π0

m∏
j=1

(
θj

μij + θj

)θj⎤⎦
vi

×
n∏
i=1

⎡
⎣π0 m∏

j=1

�(zij + θj)
�(θj)zij!

(
μij

μij + θj

)zij ( θj

μij + θj

)θj⎤⎦
1−vi

.

Following the same data augmentation method as for the multivariate zero-inflated
hurdle model, we obtain the complete data likelihood function given as

Lc(β, θ , π0) =
n∏
i=1

(1− π0)
u′ivi

n∏
i=1

⎡
⎣π0 m∏

j=1

(
θj

μij + θj

)θj⎤⎦
(1−u′i)vi

×
n∏
i=1

⎡
⎣π0 m∏

j=1

�(zij + θj)
�(θj)zij!

(
μij

μij + θj

)zij( θj

μij + θj

)θj⎤⎦
1−vi

.
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The complete data log-likelihood function is

�c(β, θ , π0) =
n∑
i=1

[
u′
ivi log (1− π0)+ (1− u′

ivi) log π0
]

+
m∑
j=1

n∑
i=1

{
(1− u′

ivi)θj log θj −
[
(1− u′

ivi)θj + zij
]
log (μij + θj)

+zij logμij + log
(
�(zij + θj)

)− log
(
�(θj)

)}+C1,

where C1 is a constant not related to (β, θ , π0). Note in our case, vizij = 0.
The EM algorithm can be described as follows.

• E-step: Replace ui by

ū′
i =

1− π0

1− π0 + π0
∏m
j=1

(
θj

μij+θj
)θj , i= 1, . . . , n,

where μij = exp (x�
i βj).

• M-step:
– For π0, we can get

π0 = 1− 1
n

n∑
i=1

ū′
ivi.

– For (β, θ ), let

�̄Cj (β j , θj) =
n∑
i=1

{
(1− ū′

ivi)θj log θj −
[
(1− ū′

ivi)θj + zij
]
log (μij + θj)

+zij logμij + log
(
�(zij + θj)

)− log
(
�(θj)

)}
.

There is no closed-form representation for β j and θj , so we update the regression parame-
ters, respectively, for each j by implementing the Newton–Raphson method for one step.
The first- and second-order derivatives are given as follows:

∂�̄Cj

∂βj
=

n∑
i=1

[
zij − (1− ū′

ivi)μij
]
θj

μij + θj
xi ,

∂�̄Cj

∂θj
=

n∑
i=1

[
(1− ū′

ivi) log
θj

μij + θj
+ (1− ū′

ivi)μij − zij
μij + θj

+ψ(zij + θj)−ψ(θj)
]
,

∂2�̄Cj

∂βj∂βj
� = −

n∑
i=1

[
zij + (1− ū′

ivi)θj
]
μijθj

(μij + θj)2
xix�

i ,
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∂2�̄Cj

∂θ2j

=
n∑
i=1

[
(1− ū′

ivi)μ
2
ij + zijθj

θj(μij + θj)2
+ψ1(zij + θj)−ψ1(θj)

]
,

∂2�̄Cj

∂βj∂θj
=

n∑
i=1

[
zij − (1− ū′

ivi)μij
]
μij

(μij + θj)2
xi .

where ψ( · ) and ψ1( · ) denote the digamma and trigamma functions, respectively.
For the case without covariates incorporated in μij , the corresponding E-step and

M-step can be simplified as follows.

• E-step: Replace ui by

ū′ = ū′
i =

1− π0

1− π0 + π0
∏m
j=1

(
θj

μj+θj
)θj , i= 1, . . . , n.

• M-step:
– For π0, we can get

π0 = 1− ū′
n

n∑
i=1

vi.

– For (μ, θ ), let

�̄Cj (μj , θj) =
n∑
i=1

{
(1− ū′

ivi)θj log θj −
[
(1− ū′

ivi)θj + zij
]
log (μj + θj)

+zij logμj + log
(
�(zij + θj)

)− log
(
�(θj)

)}
.

– Update each μj using the following equation:

μj =
∑n

i=1 zij
n− ū′ ∑n

i=1 vi
, j= 1, . . . ,m.

– Substitute the value of μj obtained from the last step into �̄Cj , update θj using the
one variable Newton–Raphson method.

APPENDIX B. DESCRIPTION FOR TWO PREVIOUS
MODELS

B.1. Zero-inflated bivariate Poisson (ZIBP)

The bivariate Poisson (BP) regression model is defined as follows. Let Y1, Y2 and Y3
denote three independent Poisson random variables with parameters λ1, λ2 and λ3, respec-
tively. Then Z1 =Y1 +Y3 and Z2 =Y2 +Y3 follow jointly a BP distribution, denoted as
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Z = (Z1,Z2)∼BP(λ1, λ2, λ3). Covariates can be introduced into the model through the
following schemes:

λj = exp (x�β j), j= 1, 2, 3.

where x= (1, x1, . . . , xp)� and β j = (βj0, βj1, . . . , βjp)�.
A zero-inflated bivariate Poisson (ZIBP) model is specified by the following pmf:

fZIBP(z1, z2)=
{
π0fBP(z1, z2), (z1, z2) �= (0, 0),

1− π0 + π0fBP(0, 0), (z1, z2)= (0, 0).

B.2. 2-finite mixture of bivariate Poisson (2-FMBP)

Let Z1 = (Z11, Z12) and Z2 = (Z21, Z22) denote two independent BP random variables
with parameters (λ11, λ12, λ13) and (λ21, λ22, λ23), respectively. Then the 2-finite mixture of
bivariate Poisson (2-FMBP) model is defined by the following pmf:

f (z1, z2)= pfZ1 (z1, z2)+ (1− p)fZ2 (z1, z2).

Covariates can be introduced into the model through the following schemes:

λkj = exp (x�βkj), k= 1, 2, j= 1, 2, 3,

where x= (1, x1, . . . , xp)� and βkj = (βkj0, βkj1, . . . , βkjp)�. Covariates can also be incorpo-
rated in the mixing proportion p through a logit-link function.
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