
Math. Struct. in Comp. Science (2016), vol. 26, pp. 1234–1268. c© Cambridge University Press 2014

doi:10.1017/S0960129514000449 First published online 3 December 2014

A coalgebraic view on decorated traces

F. BONCHI†, M. BONSANGUE‡,§, G. CALTAIS§,¶,

J. RUTTEN§,‖ and A. S ILVA§,‖,††

†ENS Lyon, Université de Lyon, LIP (UMR 5668 CNRS ENS Lyon UCBL INRIA), Lyon, France
‡LIACS - Leiden University, Leiden, The Netherlands
§Centrum voor Wiskunde en Informatica, Amsterdam, The Netherlands
¶School of Computer Science - Reykjavik University, Reykjavik, Iceland
‖Radboud University, Nijmegen, The Netherlands
††HASLab/INESC TEC, Universidade do Minho, Braga, Portugal

Received 23 April 2014

In the concurrency theory, various semantic equivalences on transition systems are based on

traces decorated with some additional observations, generally referred to as decorated traces.

Using the generalized powerset construction, recently introduced by a subset of the

authors (Silva et al. 2010 FSTTCS. LIPIcs 8 272–283), we give a coalgebraic presentation of

decorated trace semantics. The latter include ready, failure, (complete) trace, possible futures,

ready trace and failure trace semantics for labelled transition systems, and ready, (maximal)

failure and (maximal) trace semantics for generative probabilistic systems. This yields a

uniform notion of minimal representatives for the various decorated trace equivalences, in

terms of final Moore automata. As a consequence, proofs of decorated trace equivalence can

be given by coinduction, using different types of (Moore-) bisimulation (up-to context).

1. Introduction

The study of behavioural equivalence of systems has been a research topic in concurrency

for many years now. For different types of systems, several equivalences have been

proposed throughout the years, each of which is suitable for use in different contexts of

application.

The focus of this paper is on labelled transition systems (LTSs) and GPSs and a

suite of corresponding equivalences usually referred to as decorated trace semantics. More

explicitly, we consider ready, failure, (complete) trace, possible futures, ready trace and

failure trace semantics for LTSs, as described in van Glabbeek (2001) and ready, (maximal)

failure and (maximal) trace semantics for GPSs, as introduced in Jou and Smolka (1990).

Proof methods for the different equivalences are an important part of this research

enterprise. In this paper, we propose coinduction as a general proof method for the

aforementioned decorated trace semantics of LTSs and GPSs.

Coinduction is a general proof principle which has been uniformly defined in the

theory of coalgebras for different types of state-based systems and infinite data types.

Given a functor F : Set → Set, an F-coalgebra is a pair (X, f) consisting of a set

of states X and a function f : X → F(X) defining the dynamics of the system. The

functor F determines the type of the transition system or data type under study. For

a large class of functors F, there exists a final coalgebra into which every F-coalgebra

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1235

LTSs: GPSs:

bisimilarity

��

�����
��

bisimilarity

�����
��

�����
�

possible futures

��

ready

����
��
�� = �� (max.) failure

		����
�

ready trace

�����
�

�����
����

(max.) trace

failure trace

�����
����

ready

����
����

�

failure
��

complete trace

��
trace

Fig. 1. Lattices of semantic equivalences for LTSs and GPSs.

is mapped by a unique homomorphism. Intuitively, one can see the final coalgebra

as the universe of all behaviours of systems and the unique morphism as the map

assigning to each system its behaviour. This provides a standard notion of equivalence

called F-behavioural equivalence. Moreover, these canonical behaviours are minimal, by

general coalgebraic considerations (Rutten 2000), in that no two different states are

equivalent.

LTSs can be modelled as coalgebras for the functor L(X) = (PωX)A and the canonical

behavioural equivalence associated with L is precisely the finest equivalence of the

spectrum in van Glabbeek (2001). Orthogonally, GPSs are coalgebras for G(X) = Dω(A×
X), where Dω is the (sub)probability functor. The behavioural equivalence associated to

G is the probabilistic bisimilarity equivalence in Jou and Smolka (1990).

In the recent past, other equivalences of the spectrum have been also cast in the

coalgebraic framework. Notably, trace semantics of LTSs was widely studied (Hasuo et al.

2007; Lenisa 1999; Lenisa et al. 2000; Silva et al. 2010) and, more recently, decorated

trace semantics was recovered in Silva et al. (2013) via a coalgebraic generalization of the

classical powerset construction (Cancila et al. 2003; Lenisa 1999; Silva et al. 2010). This

paved the way to a coalgebraic modelling of a series of ‘twin’ semantics in the context of

GPSs, which we provide in this paper.

In the right hand side of Figure 1, we illustrate the hierarchy (based on the coarseness

level) among bisimilarity, ready, failure, (complete) trace, possible futures, ready trace and

failure trace semantics for LTSs, as introduced in van Glabbeek (2001). In the left hand

side, a similar hierarchy is depicted for bisimilarity, ready, (maximal) failure and (maximal)

trace semantics for GPSs, as in Jou and Smolka (1990). For example, for both types of

systems, bisimilarity (the standard behavioural equivalence on F-coalgebras) is the finest of

the semantics, whereas trace is the coarsest one. Moreover, note that for the case of GPSs,

maximality does not bring more distinguishing power and, ready and failure semantics are

equivalent. In order to get some intuition on the type of distinctions the equivalences

above encompass, consider the following LTSs:

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1236

p
a
��

a

����
��
�

q
a
��

r
a

��	
		

		a

����
��
� s

a
��

a

��	
		

		a

����
��
�

• •
c

b

�����
��

•
c

b

�����
��

•
b ��

•
c
��

•
b ��

•
b

c�����
��

•
c
��

• • • • • • • •

None of the top states of the systems above are bisimilar. The state p is the only among

the four in which an action a can lead to a deadlock state, whereas q, r and s have a

different branching structures.

The traces of the states p, q, r and s are {a, ab, ac}, and therefore they are all trace

equivalent. Of the four states above, q and r and s are complete trace equivalent as

they can execute the same traces that lead to states where no further action are possible,

whereas p is the only state that can trigger a and terminate.

Ready (respectively, failure) semantics identifies states according to the set of actions

they can (respectively, fail to) trigger immediately after a certain trace has been executed.

None of the states above are ready equivalent; for example, after the execution of action

a, process p can reach a deadlock state whereas q has always to choose between actions

b and c. Orthogonally, only r and s are failure equivalent.

Possible-futures semantics identifies states that can perform the same traces w and,

moreover, the states reached by executing such w’s are trace equivalent. None of the states

above are possible-futures equivalent. For example, after triggering action a, p can reach

a deadlock state (with no further behaviour) whereas q can execute the set of traces {b, c}.
Ready (respectively failure) trace semantics identifies states that can trigger the same

traces w and the (pairwise-taken) intermediate states determined by such w’s are ready

(respectively refuse) to trigger the same sets of actions. None of the systems above is ready

trace equivalent. For example, after performing action a, process q reaches a state that is

ready to trigger both b and c, whereas r cannot. The analysis on failure trace equivalence

follows a similar reasoning, but different results.

The corresponding semantic equivalences in Figure 1 distinguish between p, q, r and s

as summarized in the table below:

p, q p, r p, s q, r q, s r, s

bisimilarity × × × × × ×

trace � � � � � �

complete trace × × × � � �

ready × × × × × ×

p, q p, r p, s q, r q, s r, s

failure × × × × × �

possible futures × × × × × ×

ready trace × × × × × ×

failure trace × × × × × �

where � to stands for an ‘yes’ answer w.r.t. the behavioural equivalence of two of the

states p, q, r and s, whereas × represents a ‘no’ answer.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1237

Intuitively, GPSs resemble LTSs, with the difference that each transition is labelled by

both an action and the probability of that action being executed. For more insight on

decorated trace semantics for GPSs, consider the following systems:

p′
a[1]��

q′a[x]

�����
�� a[1−x]

��

•b[x]

�����
�� b[1−x]

����
��� •

b[1] ��

•
b[1]��

•
c[1] ��

•
d[1]��

•
c[1] ��

•
d[1]��

• • • •

In the setting of GPSs, decorated trace semantics take into consideration paths w which

can be executed by a probabilistic process p. Reasoning on the corresponding equivalences

is based on the sum of probabilities of occurrence of such w’s that, for example, lead p

to a set of processes, for the case of trace semantics, or to a set of processes that (fail to)

trigger the same sets of actions as a first step, for ready (respectively, failure) semantics.

In Jou and Smolka (1990), a notion of maximality was introduced for the case of trace

and failure semantics. Intuitively, the former takes into consideration the probability of

a process p to execute a certain trace w and terminate, whereas the latter takes into

consideration the largest set of actions p fails to trigger as a first step after the execution

of w. However, it has been proven in Jou and Smolka (1990) that maximality does not

increase the distinguishing power of decorated trace semantics and, moreover, ready and

failure equivalence of GPSs coincide.

With respect to (maximal) trace semantics, amongst the systems above, p′ and q′ are

equivalent: they have the same probability of executing traces w ∈ {ε, a, ab, abc, abd}.
Moreover, each such w leads p′ and q′ to sets of processes S1, S2 ready to fire the same

actions. Consequently, S1 and S2 fail to trigger the same sets of actions as a first step.

Hence, p′ and q′ are ready and (maximal) failure equivalent as well. None of the processes

above are bisimilar: the corresponding states reached via transitions labelled a (with

total probability (1) display different behaviour as they either have different branching

structure, or can trigger different actions.

This paper is an extended version of the conference paper (Bonchi et al. 2012) where

we (a) proved that the coalgebraic ready, failure and (complete) trace semantics for

LTSs are equivalent to the corresponding set-theoretic notions from van Glabbeek

(2001), (b) showed how the coalgebraic semantics lead to canonical representatives for

the aforementioned decorated traces, and (c) showed how to prove decorated trace

equivalence of LTSs using coinduction, by constructing bisimulations (up-to context) that

witness the desired equivalence. The latter is interesting also from the point of view

of tool development: construction of bisimulations is known to be particularly suitable

for automation. Moreover, the up-to context technique also increases the efficiency of

reasoning, as verifications are performed under certain closure properties, which means

that the bisimulations which are built are smaller (see Section 7 for an example). The

techniques we used for up-to context reasoning on LTSs are an extension of the recent

work in Bonchi and Pous (2013).

In this paper we extend (a)–(c) above also for the case of possible futures, ready

trace and failure trace semantics for LTSs and for several equivalences on GPSs. We

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1238

provide (more) details, proofs and examples on how to use the coalgebraic framework

(summarized in Figure 10) for reasoning on decorated trace equivalences for both the

case of LTSs and GPSs. We also show that the spectrum of decorated trace semantics in

Figure 1 can be recovered from the coalgebraic modelling.

The paper is organized as follows. In Section 2, we provide the basic notions from

coalgebra and recall the generalized powerset construction. In Sections 3 and 4, we

show how the powerset construction can be applied for determinizing LTSs and GPSs,

respectively, in terms of Moore automata (X, f : X → B×XA), in order to coalgebraically

characterize the corresponding decorated trace semantics. Here we also prove that the

obtained coalgebraic models are equivalent to the original definitions, and illustrate how

one can reason about decorated trace equivalence by constructing (Moore) bisimulations.

A compact overview on the uniform coalgebraic framework is given in Section 5. Section 6

discusses that the canonical representatives of LTSs and GPSs we obtain coalgebraically

coincide with the corresponding minimal automata one would obtain by identifying all

states equivalent w.r.t. a particular decorated trace semantics. In Section 7, we introduce

bisimulations up-to context and emphasize on their efficiency by means of an example for

LTSs. Finally, Section 8 contains concluding remarks and discusses future work.

2. Preliminaries

In this section, we briefly recall basic notions from coalgebra and the generalized powerset

construction (Silva et al. 2010; Lenisa 1999; Cancila et al. 2003). We first introduce some

notation on sets.

We denote sets by capital letters X,Y , . . . and functions by lower case letters f, g,

The cartesian product of two sets X and Y is denoted by X × Y , and has the projection

maps X
π1←− X×Y π2−→ Y . By XY we represent the family of functions f : Y → X, whereas

the collection of finite subsets of X is denoted by PωX. The collection of all subsets of X

is denoted by P(X). For each of these operations defined on sets, there is an analogous

one on functions (for details see for example Awodey (2010)). This turns the operations

above into (bi)functors, which we shall use throughout this paper.

We recall the (finitely supported sub)probability distribution functor Dω defined on Set –

the category of sets and functions. Dω maps a set X to

Dω(X) = {ϕ : X → [0, 1] | supp(ϕ) is finite and
∑
x∈X

ϕ(x) � 1},

where supp(ϕ) = {x ∈ X | ϕ(x) > 0} is the support of ϕ. Given a function g : X → Y ,

Dω(g) : Dω(X)→ Dω(Y) is defined as

Dω(g)(ϕ) = λy .
∑
g(x)=y

ϕ(x).

For an alphabet A, we denote by A∗ the set of all words over A and by ε the empty

word. The concatenation of words w1, w2 ∈ A∗ is written w1w2.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1239

2.1. Coalgebra and bisimulation

We consider coalgebras of set functors F : Set→ Set. An F-coalgebra (or coalgebra, when

F is understood) is a pair (X, c : X → FX). We call X the state space, and we say that F

together with c determine the dynamics, or the transition structure of the F-coalgebra.

An F-homomorphism between two F-coalgebras (X, f) and (Y , g), is a function h : X →
Y preserving the transition structure, i.e., g ◦ h = F(h) ◦ f. F-coalgebras and F-

homomorphisms form a category denoted by Coalg(F).

An F-coalgebra (Ω, ω) is final if for any F-coalgebra (X, f) there exists a unique F-

homomorphism �−�X : X → Ω. A final coalgebra represents the universe of all possible

behaviours of F-coalgebras. The unique morphism �−�X : X → Ω maps each state in X

to its behaviour. Using this mapping, behavioural equivalence can be defined as follows:

for any two coalgebras (X, f) and (Y , g), the states x ∈ X and y ∈ Y are behaviourally

equivalent, written x ∼F y, if and only if they have the same behaviour, that is

x ∼F y iff �x�X = �y�Y . (1)

We think of �x�X as the canonical representative of the behaviour of x. The image of X

under �−�X can be viewed as the minimization of (X, f), since the final coalgebra contains

no pairs of equivalent states.

For an example, we consider deterministic automata (DA’s). A deterministic automaton

over the input alphabet A is a pair (X, 〈o, t〉), where X is a set of states and 〈o, t〉 : X →
2 × XA is a function with two components: o, the output function, determines if a state

x is final (o(x) = 1) or not (o(x) = 0); and t, the transition function, returns for each

input letter a the next state. DA’s are coalgebras for the functor D(X) = 2 × XA. The

final coalgebra of this functor is (2A
∗
, 〈ε, (−)a〉) where 2A

∗
is the set of languages over A

and 〈ε, (−)a〉, given a language L, determines whether or not the empty word ε is in the

language (ε(L) = 1 or ε(L) = 0, resp.) and, for each input letter a, returns the derivative

of L: La = {w ∈ A∗ | aw ∈ L}. From any DA, there is a unique map �−� into 2A
∗

which

assigns to each state its behaviour (that is, the language that the state recognizes).

X
�−�X

�����������

〈o,t〉
��

2A
∗

〈ε,(−)a〉
��

2×XA

id×�−�AX

�������� 2× (2A
∗
)A

�x�X(ε) = o(x)

�x�X(aw) = �t(x)(a)�X(w)

Therefore, behavioural equivalence for the functor D coincides with the classical language

equivalence of automata.

Another example (fundamental for the rest of the paper) is given by Moore automata.

Moore automata with inputs in A and outputs in B are coalgebras for the functor

M(X) = B × XA, that is pairs (X, 〈o, t〉) where X is a set, t : X → XA is the transition

function (like for DA) and o : X → B is the output function which maps every state in

its output. Thus DA can be seen as a special case of Moore automata where B = 2. The

final coalgebra for M is (BA
∗
, 〈ε, (−)a〉) where BA

∗
is the set of all functions ϕ : A∗ → B,

ε : BA
∗ → B maps each ϕ into ϕ(ε) and (−)a : B

A∗ → (BA
∗
)A is defined for all ϕ ∈ BA∗ ,

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1240

a ∈ A and w ∈ A∗ as (ϕ)a(w) = ϕ(aw).

X
�−�X

�����������

〈o,t〉
��

BA
∗

〈ε,(−)a〉
��

B ×XA

id×�−�AX

�������� B × (BA
∗
)A

�x�X(ε) = o(x)

�x�X(aw) = �t(x)(a)�X(w)

Coalgebras provide a useful technique for proving behavioural equivalence, namely,

bisimulation. Let (X, f) and (Y , g) be two F-coalgebras. A relation R ⊆ X × Y is a

bisimulation if there exists a function αR : R → FR such that π1 : R → X and π2 : R → Y

are coalgebra homomorphisms. In Rutten (2000), it is shown that under certain conditions

on F (which are met by all the functors considered in this paper), bisimulations are a

sound and complete proof technique for behavioural equivalence, namely,

x ∼F y iff there exists a bisimulation R such that xRy. (2)

2.2. The generalized powerset construction

As shown above, every functor F induces both a notion of F-coalgebra and a notion of

behavioural equivalence ∼F . Sometimes, it is interesting to consider different equivalences

than ∼F for reasoning about F-coalgebras. This is the case of LTSs and GPSs which

can be modelled as coalgebras for the functor L(X) = (PωX)A and G(X) = Dω(A × X),

respectively. The corresponding induced behavioural equivalences ∼L and ∼G coincide

with the standard notion of bisimilarity (Milner 1989; Park 1981) and probabilistic bisim-

ilarity (Jou and Smolka 1990), respectively. However, in concurrency theory, many other

equivalences have been studied, notably, decorated trace equivalences (van Glabbeek 2001;

Jou and Smolka 1990). Another example is given by non-deterministic automata (NDA’s)

which are coalgebras for the functor N(X) = 2× (PωX)A. The associated equivalence ∼N

strictly implies language equivalence, which is often the intended semantics.

With this intuition in mind, we refer to the generalized powerset construction (Cancila

et al. 2003; Lenisa 1999; Silva et al. 2010) for coalgebras f : X → FT (X) for a functor

F and a monad (T , η, μ), with the proviso that that FT (X) is an algebra for T . Recall

that a T -algebra for a monad (T (X), η, μ) is a pair (X, h : T (X)→ X) satisfying the laws

h ◦ η = id and h ◦ μ = h ◦ Th. For the case T = Pω , T -algebras are semilattices (with

bottom).

We briefly summarize the aforementioned construction, for the case when F has a final

coalgebra (Ω, ω), as in the following commuting diagram:

X

f
��

η
�� T (X)

f
�����
���

���
�

[[−]]
������� Ω

ω

��

FT (X)
F[[−]]

�������������� F(Ω)

(3)

(We refer the interested reader to Silva et al. (2013) where all the technical details are

explored and many instances of the construction are shown.)

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1241

Intuitively, the coalgebra f : X → FT (X) is extended to f
 : T (X)→ FT (X) which, for

two elements x1, x2 ∈ X, enables checking their ‘F-equivalence with respect to the monad

T ’ (η(x1) ∼F η(x2)) rather than checking their FT -equivalence.

Formally, f
 is the unique algebra map between (T (X), μ) and (FTX, h) (where h is

a given algebra structure on FTX) such that f
 ◦ η = f. Moreover, one can show that,

under certain additional conditions, also Ω has an algebra structure and that [[−]] is also

an algebra map (Silva et al. 2013).

Remark 2.1. Based on (1) and (2), verifying F-behavioural equivalence of two states x1, x2

in a coalgebra (T (X), f
) consists in identifying a bisimulation R relating η(x1) and η(x2):

�η(x1)� = �η(x2)� iff η(x1)R η(x2). (4)

Take, for example, the case of NDA’s which are FT -coalgebras for F(X) = 2 × XA and

the monad (T (X) = (Pω(X), η, μ), where

η : X → PωX μ : Pω(PωX)→ PωX

η(x) = {x} μ(U) =
⋃
S∈U S.

Note that FT (X) is a T -algebra, that is a semilattice, since 2 ∼= P(1) is a semilattice and,

moreover, product and exponentiation preserve the algebra structure. Therefore, according

to the diagram above, every NDA (X, f) is transformed into (PωX, f

) which is a DA.

This corresponds to the classical powerset construction for determinizing NDA’s. The

language recognized by a state x can be defined by precomposing the unique morphism

�−� : PωX → 2A
∗

with the unit of Pω . Consequently, this enables reasoning on language

equivalence of states of NDA’s, in terms of bisimulations.

In this paper, we exploit the coalgebraic modelling of the powerset construction and

derive a framework for handling decorated trace semantics of both LTSs and GPSs in

terms of (final) Moore coalgebras, in a uniform fashion. We will only be interested in the

case F(X) = M(X) = B × XA, for A an action alphabet and B a T -algebra. (Intuitively,

B captures the decorations of interest for each of the semantics under consideration.)

To model GPSs, we consider the (sub)probability distribution monad (Dω(X), η, μ)

where

η : X → Dω(X) μ : Dω(Dω(X))→ Dω(X)

η(x) = λy .

{
1 if x = y

0 otherwise
μ(ψ) = λx .

∑
ϕ∈supp(ψ)

ϕ(x)× ψ(ϕ)

The algebras for this monad are the so-called positive convex structures (Doberkat 2008).

In Silva et al. (2013), it is shown that the function mapping a FT -coalgebra f to

the F-colagebra f
 extends to a functor D : Coalg(FT) → Coalg(F) assigning to each

FT -homomorphism h the F-homomorphism T (h). For later use, we fix Det(FT) to be

the image of Coalg(FT) through D and we prove the following lemma.

Lemma 2.1. Let (TX, f
) and (TY , g
) be coalgebras in Det(FT) and let ≈F be the

largest bisimulation on Det(FT). Then, for all x ∈ TX, y ∈ TY , x ≈F y = x ∼F y.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1242

Proof. Since Det(FT) is a subcategory of Coalg(F), then every bisimulation in Det(FT)

is also a bisimulation in Coalg(F) and therefore ≈F⊆∼F .

For the other direction, take a bisimilation R ⊆ TX×TY , π1 : R → TX, π2 : R → TY

and an F-coalgebra structure r : R → FR. The latter f
 and g
 can be post-composed

with Fη and, in this way, both π1 and π2 are FT -homomorphisms. As a consequence

(TTX, (F(η)◦f
)
)
T (π1)← (TR, (F(η)◦r)
)

T (π2)→ (TTX, (F(η)◦f
)
) is a span in Det(FT). By

routine calculation (???), one can show that f
 ◦μ = (F(η)◦f
)
) and g
 ◦μ = (F(η)◦g
)
)
and thus (TX, f
)

μ◦T (π1)← (TR, (F(η) ◦ r)
)
μ◦T (π2)→ (TX, f
) is a span in Coalg(F).

3. Decorated trace semantics of LTSs via determinization

In this section, our aim is to provide a coalgebraic view on decorated trace equivalences

of LTSs. We use the generalized powerset construction and show how one can determinize

arbitrary labelled transition systems obtaining particular instances of Moore automata

(with different output sets) in order to model ready, failure, (complete) trace, possible

futures, ready trace and failure trace equivalences. This paves the way to building a

general framework for reasoning on decorated trace equivalences in a uniform fashion, in

terms of bisimulations (up-to context).

An LTS is a pair (X, δ) where X is a set of states and δ : X → (PωX)A is a function

assigning to each state x ∈ X and to each label a ∈ A a finite set of possible successors

states. We write x
a−→ y whenever y ∈ δ(x)(a). We extend the notion of transition to words

w = a1 . . . an ∈ A∗ as follows: x
w−→ y if and only if x

a1−→ . . .
an−→ y. For w = ε, we have

x
ε−→ y if and only if y = x.

The coalgebraic characterization of ready, failure and (complete) trace was originally

obtained in Silva et al. (2013). We recall it here, with a slight adaptation which will be

useful for the generalizations we will explore. Given an arbitrary LTS (X, δ : X → (PωX)A),

one constructs a decorated LTS, which is a coalgebra of the functor FI(X) = BI×(PωX)A.

More precisely, we construct (X, 〈oI , δ〉 : X → BI × (PωX)A), where the output operation

oI : X → BI provides the observations of interest corresponding to the original LTS

and depending on the equivalence we want to study. (Here, BI represents an arbitrary

semilattice with a ∨ operation, instantiated for each of the semantics under consideration

as in Silva et al. (2013).) Then, the decorated LTS is determinized, as depicted in

Figure 2.

Note that both the output operation and its image are parameterized by I , which will

vary depending on the type of decorated trace semantics under consideration.

The coalgebraic modelling of possible-futures semantics could easily be recovered

by following a similar approach. However, for the case of ready and failure trace

semantics the transition structure of the LTS also needs to be slightly modified before the

determinization. This consists in changing the alphabet A to include additional information

represented by sets of actions ready to be triggered as a first step. Consequently, each

LTS (X, δ : X → (PωX)A) is uniquely associated a coalgebra (X, 〈oI , δ̄ : X → (PωX)Ā〉),
defined in a natural fashion, as we shall see later on. The construction in Figure 2 is then

applied on (X, 〈oI , δ̄〉).

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1243

X
{−}

��

〈oI ,δ〉

��

PωX
�−�

����������

〈o,t〉
�����

���
���

���
���

(BI)A
∗

〈ε,(−)a〉

��

FIX = BI × (PωX)A
idBI×�−�A

�������������� BI × ((BI)A
∗
)A

o(Y) =
∨
y∈Y oI(y)

t(Y)(a) =
⋃
y∈Y δ(y)(a)

[[Y]](ε) = o(Y)

[[Y]](aw) = [[
⋃
y∈Y

δ(y)(a)]](w)

Fig. 2. The powerset construction for decorated LTSs.

The explicit instantiations of oI and BI are provided later in this section, where we will

also show that the coalgebraic modelling in fact coincides with the original definitions of

the corresponding equivalences. This was not formally shown in Silva et al. (2013), for

none of the aforementioned semantics.

Our coalgebraic modelling of decorated trace semantics enables the definition of the

corresponding equivalences as Moore bisimulations (Rutten 2000) (i.e., bisimulations for a

functor M = BI ×XA). This way, checking behavioural equivalence of x1 and x2 reduces

to checking the equality of their unique representatives in the final coalgebra: �{x1}� and

�{x2}�.
In the subsequent sections we (a) provide the details on the coalgebraic modelling of

ready, failure, (complete) trace, possible futures, ready trace and failure trace semantics,

(b) show that the corresponding representations coincide with their original definitions

in van Glabbeek (2001) and (c) show, by means of examples, how the associated

coalgebraic framework can be used in order to reason on (some of) the aforementioned

equivalences in terms of Moore bisimulations.

3.1. Ready and failure semantics

In this section, we show how the ingredients of Figure 2 can be instantiated in order

to provide a coalgebraic modelling of ready and failure semantics. Moreover, we prove

that the resulting coalgebraic characterizations of these semantics are equivalent to their

original definitions in van Glabbeek (2001).

Consider an LTS (X, δ : X → (PωX)A) and define, for a function ϕ : A→ PωX, the set

of actions enabled by ϕ:

I(ϕ) = {a ∈ A | ϕ(a) �= �}, (5)

and the set of actions ϕ fails to enable:

Fail(ϕ) = {Z ⊆ A | Z ∩ I(ϕ) = �}.

For the particular case ϕ = δ(x), I(δ(x)) denotes the set of all (initial) actions ready to

be fired by x ∈ X, and Fail(δ(x)) represents the set of subsets of all (initial) actions that

cannot be triggered by such x.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1244

A ready pair of x is a pair (w,Z) ∈ A∗ × PωA such that x
w−→ y and Z = I(δ(y)).

A failure pair of x is a pair (w,Z) ∈ A∗ × PωA such that x
w−→ y and Z ∈ Fail(δ(y)).

We denote by R(x) and F(x), respectively, the sets of all ready pairs and failure pairs,

respectively, associated to x.

Intuitively, ready semantics identifies states in X based on the actions a ∈ A they can

immediately trigger after performing a certain action sequence w ∈ A∗, i.e., based on their

ready pairs. It was originally defined as follows:

Definition 3.1 (R-equivalence (van Glabbeek 2001)). Let (X, δ : X → (PωX)A) be an LTS

and x, y ∈ X two states. States x and y are ready equivalent (R-equivalent) if and only if

they have the same set of ready pairs, that is R(x) = R(y).

Failure semantics identifies behaviours of states in X according to their failure pairs.

Definition 3.2 (F-equivalence (van Glabbeek 2001)). Let (X, δ : X → (PωX)A) be an LTS

and x, y ∈ X two states. States x and y are failure equivalent (F-equivalent) if and only

if F(x) = F(y), where

F(x) = {(w,Z) ∈ A∗ × PωA | ∃x′ ∈ X. x
w−→ x′ ∧ Z ∈ Fail(δ(x′))}.

The coalgebraic modelling of ready, respectively, failure semantics is obtained in a

uniform fashion, by instantiating the ingredients of Figure 2 as follows. For I ∈ {R,F},
oI : X → Pω(PωA) is defined as:

oR(x) = {I(δ(x))} oF (x) = Fail(δ(x)).

Intuitively, in the setting of ready semantics, the observations provided by the output

operation refer to the sets of actions ready to be executed by the states of the LTS.

Similarly, for failure semantics, the output operation refers to the sets of actions the states

of the LTS cannot immediately fire.

Remark 3.1. Observe that the codomain of ōR is Pω(PωA), and not PωA, as one might

expect. However, this is consistent with the intended semantics. For BI = BR = BF =

Pω(PωA), the final Moore coalgebra has carrier Pω(PωA))A
∗

which is isomorphic to

P(A∗ × Pω(A)) the type of R(x) and F(x). The unique homomorphism into the final

coalgebra will associate to each state {x} a function that for each w ∈ A∗ returns a set

containing all sets Rx′ of ready (resp. failed) actions triggered by all x′ such that x
w−→ x′,

for x, x′ ∈ X.

Next, we will prove the equivalence between the coalgebraic modelling of ready and

failure semantics and their original definitions, presented above. More explicitly, given an

arbitrary LTS (X, δ : X → (PωX)A) and a state x ∈ X, we want to show that �{x}� is

equal to I(x), for I ∈ {R,F}, depending on the semantics of interest.

The behaviour of a state x ∈ X is a function �{x}� : A∗ → Pω(PωA), whereas I(x) is

defined as a set of pairs in A∗ × PωA. We represent the set I(x) ∈ P(A∗ × PωA) by a

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1245

function ϕI
x : Pω(PωA)A

∗
, where, for w ∈ A∗,

ϕR
x (w) = {Z ⊆ A | x w−→ y ∧ Z = I(δ(y))}
ϕF
x (w) = {Z ⊆ A | x w−→ y ∧ Z ∈ Fail(δ(y))}.

Showing the equivalence between the coalgebraic and the original definitions of ready,

respectively, failure semantics reduces to proving that

(∀x ∈ X) . �{x}� = ϕI
x . (6)

Theorem 3.1. Let (X, δ : X → (PωX)A) be an LTS. Then for all x ∈ X and w ∈ A∗,

�{x}�(w) = ϕI
x (w).

Proof. For I ranging over {R,F}, the proof is by induction on words w ∈ A∗. We

provide the details for the case of ready semantics. A similar reasoning can be applied for

failure semantics.

— Base case. w = ε. We have:

�{x}�(ε) = o({x}) = {I(δ(x))}
ϕR
x (ε) = {Z ⊆ A | x ε−→ y ∧ Z = I(δ(y))} = {I(δ(x))}.

— Induction step. Consider w ∈ A∗ and assume, for all x ∈ X, �{x}�(w) = ϕR
x (w). We

want to prove that �{x}�(aw) = ϕR
x (aw), where a ∈ A.

�{x}�(aw) = �t({x})(a)�(w) =
⋃
x

a−→z

�{z}�(w)
IH
=

⋃
x

a−→z

ϕR
z (w)

ϕR
x (aw) = {Z | x aw−→ y ∧ Z = I(δ(y))}

= {Z | x a−→ z ∧ z w−→ y ∧ Z = I(δ(y))}
=

⋃
x

a−→z

ϕR
z (w).

Example 3.1. In what follows we illustrate the equivalence between the coalgebraic and

the original definitions of ready semantics by means of an example. Consider the following

LTS.

p0

a
��

a
��

p4 p2
c�� p1

b ��b�� p3
d �� p5

We write an to represent the action sequence aa . . . a of length n � 1, with n ∈ N. The set

of all ready pairs associated to p0 is:

R(p0) = {(ε, {a}), (an, {a}), (an, {b}), (anb, {c}), (anb, {d}), (anbc,�), (anbd,�) | n � 1}.

We can construct a Moore automaton, for S = {p0, p1, . . . , p5},

(PωS, 〈o, t〉 : PωS → Pω(PωA)× (PωS)A)

by applying the generalized powerset construction on the LTS above. The automaton will

have 26 = 64 states. We depict the accessible part from state {p0}, where the output sets

are indicated by double arrows. The output sets of a state Y of the Moore automaton in

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1246

{p0}
a
��

�� {{a}}

{p0, p1} ��

b
��a

��
{{a}, {b}}

{�} {p4}�� {p2, p3} ��

d

��
c�� {{c}, {d}} {p5} �� {�}

Fig. 3. Ready determinization when starting from {p0}.

Figure 3 is the set of actions associated to a certain state y ∈ Y which can immediately be

performed. For example, process p0 in the original LTS above is ready to perform action

a, whereas p1 can immediately perform b. Therefore, it holds that o({p0}) = {{a}} and

o({p0, p1}) = {{a}, {b}}.
By simply looking at the automaton in Figure 3, one can easily see that the set of action

sequences w ∈ A∗ the state {p0} can execute, together with the corresponding possible next

actions equals R(p0). Therefore, the automaton generated according to the generalized

powerset construction captures the set of all ready pairs of the initial LTS.

Example 3.2. The last example considered in this section shows how the coalgebraic

framework can be applied in order to reason on failure equivalence of LTSs. (Checking

ready equivalence complies to a similar approach.) Consider the following two systems.

p1 p0

a

��b�� c ��
a
�����

� a

���
��

� p2 q1 q0

a

��b�� c ��
a
�����

� a

���
��

� q2

p3a
��

b�����
�

c��

p4 a
��

c ��
f ���
��

� q3

b�����
�

c��

a

��

q4

c ��

f

���
��

�
a

��

p5 p6

d��

p7

e ��

p8 q5 q6

e��

q7

d ��

q8

p9 p10 q9 q10

Let Z = {a1, a2, . . . , an} be the set of actions a process fails executing as a first step. For

the simplicity of notation, we write [a1a2 . . . an] to denote the set of all non-empty subsets

Z ′ ⊆ Z . For example, if Z = {a1, a2}, then [a1a2] stands for {{a1}, {a2}, {a1, a2}}.
Note that p0 and q0 are F-equivalent, according to Definition 3.2, as they have the

same sets of failure pairs:

F(p0) = F(q0) = {(ε, [def]), (b, [abcdef]), (c, [abcdef])} ∪ {(an, [def]), (an, [bde]),
(anb, [abcdef]), (anc, [abcdef]), (anc, [abcef]), (anc, [abcdf]),

(anf, [abcdef]), (ancd, [abcdef]), (ance, [abcdef]) | n ∈ N, n � 1}.

The same conclusion can be reached by checking behavioural equivalence of the two

Moore automata generated according to the powerset construction, starting with {p0}
and {q0}. The fragments of the two automata starting from the states {p0} and {q0} are

depicted in Figure 4. The states {p0} and {q0} are Moore bisimilar, since the automata

above are isomorphic.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1247

{p0} ��
b

�����
���

���
a
��

c

����
���

���
� [def] {q0} ��

b

�����
���

���
a
��

c

����
���

���
� [def]

{p1}
��

{p0, p3, p4}
��

a
��

b

��

f

��

c

��

{p2}
��

{q1}
��

{q0, q3, q4}
��

a
��

b

��

f

��

c

��

{q2}
��

[abcdef] [def]∪[bde] [abcdef] [abcdef] [def]∪[bde] [abcdef]

{p1, p5}
��

{p2, p6, p7}
��

d

��

e

��

{p8}
��

{q1, q5}
��

{q2, q6, q7}
��

e

��

d

��

{q8}
��

[abcdef] [abcdef]∪
[abcef] ∪
[abcdf]

[abcdef] [abcdef] [abcdef]∪
[abcef] ∪
[abcdf]

[abcdef]

{p9}
��

{p10}
��

{q9}
��

{q10}
��

[abcdef] [abcdef] [abcdef] [abcdef]

Fig. 4. Failure determinization when starting from {p0} and {q0}.

3.2. (Complete) trace semantics

In this section, we model coalgebraically trace and complete trace semantics. Similar to

the previous section, we also show that the corresponding coalgebraic representations of

these semantics are equivalent to their original definitions.

Consider an LTS (X, δ : X → (PωX)A). Trace semantics identifies states in X according

to the set of words w ∈ A∗ they can execute, whereas complete trace semantics identifies

states x ∈ X based on their set of complete traces. A trace w ∈ A∗ of x is complete if and

only if x can perform w and reach a deadlock state y or, equivalently,

(∃y ∈ X) . x
w−→ y ∧ I(δ(y)) = �.

The difference between trace and complete semantics is that the latter enables an external

observer to detect stagnation, or deadlock states of a system.

Formally, trace and complete trace equivalences are defined as follows.

Definition 3.3 (T -equivalence (van Glabbeek 2001)). Let (X, δ : X → (PωX)A) be an LTS

and x, y ∈ X two states. States x and y are trace equivalent (T -equivalent) if and only if

T (x) = T (y), where

T (x) = {w ∈ A∗ | ∃x′ ∈ X. x w−→ x′}. (7)

Definition 3.4 (CT -equivalence (Aceto et al. 1999)). Let (X, δ : X → (PωX)A) be an LTS

and x, y ∈ X two states. States x and y are complete trace equivalent (CT -equivalent) if

and only if CT (x) = CT (y), where

CT (x) = {w ∈ A∗ | ∃x′ ∈ X. x w−→ x′ ∧ I(δ(x′)) = �}.

In what follows we instantiate the constituents of Figure 2 in order to provide the

associated coalgebraic modellings.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1248

For I ∈ {T , CT }, the output function oI : X → 2 is:

oT (x) = 1 oCT (x) =

{
1 if I(δ(x)) = �
0 otherwise.

Note that, for trace semantics, one does not distinguish between traces and complete

traces. Intuitively, all states are accepting, so they have the same observable behaviour

(i.e., oT (ϕ) = 1), no matter the transitions they perform. On the other hand, complete

trace semantics distinguishes between deadlock states and states that can still execute

actions a ∈ A.

Consider, for example, the following LTS:

p1 p0
a��

a ��
p2.

b
��

Observe that (ab)∗a is a complete trace of p0, as

p0
a−→ p2

b−→ p0
a−→ p2

b−→ . . .
b−→ p0

a−→ p1 (8)

where p1 cannot perform any further action.

The above behaviour, described in terms of transitions between states of the Moore

automaton derived according to the generalized powerset construction, can be depicted

as follows:

{p0}
a−→ {p1, p2}

b−→ {p0}
a−→ {p1, p2}

b−→ . . .
b−→ {p0}

a−→ {p1, p2}
where p1 is a deadlock state and p2 is not.

Intuitively, we can state that (ab)∗a is a complete trace of {p0}, as the deadlock state

p2 ∈ {p1, p2} can be reached from {p0} by performing (ab)∗a (see (8)).

Therefore, given Y1, Y2 ⊆ X and w ∈ A∗ such that Y1
w−→ Y2, we observe that w is a

complete trace of Y1 whenever there exists a deadlock state y ∈ Y2. Otherwise, w is not a

complete trace of Y1.

In the coalgebraic modelling, the above observations regarding (non)stagnating states

appear in the definition of the output function o : Pω(X) → 2. Note that, for example,

o({p1, p2}) = 1 and o({p0}) = 0 for the case of complete trace equivalence, as p1 is a

deadlock state and p0 is not. For trace semantics we have o({p1, p2}) = o({p0}) = 1.

Here, BI = 2 and the final Moore coalgebra in Figure 2 is the set of languages 2A
∗

over A (and the transition structure 〈ε, (−)a〉 is simply given by Brzozowski derivatives).

Therefore, we can state that the map into the final coalgebra associates to each state

Y ∈ PωX the set of all traces corresponding to states y ∈ Y , namely, the language:

L =
⋃
y∈Y
{w ∈ A∗ | (∃y′ ∈ X) . y

w−→ y′}.

The set P(A∗) is isomorphic to the set of functions 2A
∗
which enables us to represent the

set I(x) in terms its characteristic function ϕI
x : A∗ → 2 defined, for I ∈ {T , CT }, w ∈ A∗,

as follows:

ϕT
x (w) = 1 if ∃y ∈ X . x w−→ y ϕCT

x (w) =

{
1 if ∃y ∈ X . x w−→ y ∧ I(δ(y)) = �
0 otherwise.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1249

0 {w0}
a ���� {w0, w1}

a

��
�� 1 0 {w′0} a

��

Fig. 5. Complete trace determinization when starting from {w0}, {w′0}.

Proving the equivalence between the coalgebraic and the classic definition of (complete)

trace semantics reduces to showing that

(∀x ∈ X) . �{x}� = ϕI
x . (9)

Theorem 3.2. Let (X, δ : X → (PωX)A) be an LTS. Then for all x ∈ X and w ∈ A∗,

�{x}�(w) = ϕI
x (w).

Proof. The proof is by induction on words w ∈ A∗ (similar to the proof of Theorem 3.1).

Example 3.3. Consider the following two LTSs:

w1 w0
a�� a

��
w′0 a

��

Observe that w0 and w′0 are trace equivalent (according to Definition 3.3), as they output

the same sets of traces

T (w0) = T (w′0) = {ε} ∪ {an | n ∈ N, n � 1}

but they are not complete trace equivalent (according to Definition 3.4), as w′0 can never

reach a deadlock state, whereas w0 can reach the stagnating state w1.

The complete trace determinization contains the sub-automata starting from states {w0}
and {w′0} depicted in Figure 5. States {w0} and {w′0} are not behaviourally equivalent,

since {w0, w1} outputs 1, whereas {w′0} never reaches a state with this output. Hence, as

expected, we will never be able to build a bisimulation containing states {w0} and {w′0}.
On the other hand, in the setting of trace semantics, the determinized (Moore) automata

associated to w0 and w′0, respectively, are similar to those depicted in Figure 5, with the

difference that now all their states output value 1. This makes the aforementioned

automata bisimilar, hence providing a ‘yes’ answer w.r.t. T -equivalence of w0 and w′0, as

anticipated.

3.3. Possible-futures semantics

In what follows we provide a coalgebraic modelling of possible-futures semantics and

show that it coincides with the original definition in van Glabbeek (2001). We also give

an example on how the generalized powerset construction and Moore bisimulations can

be used in order to reason on possible-futures equivalence.

Let (X, δ : X → (PωX)A) be an LTS. A possible future of x ∈ X is a pair 〈w,T 〉 ∈
A∗ × P(A∗) such that x

w−→ y and T = T (y) (where T (y) is the set of traces of y, as in

Section 3.2).

Possible-futures semantics identifies states that can trigger the same sets of traces w ∈ A∗
and moreover, by executing such w, they reach trace-equivalent states.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1250

Definition 3.5 (PF-equivalence (van Glabbeek 2001)). Let (X, δ : X → (PωX)A) be an LTS

and x, y ∈ X two states. States x and y are possible-futures equivalent (PF-equivalent) if

and only if PF(x) = PF(y), where

PF(x) = {〈w,T 〉 ∈ A∗ × P(A∗) | ∃x′ ∈ X. x w−→ x′ ∧ T = T (x′)}.

The ingredients of Figure 2 are instantiated as follows.

The output function ōPF : X → P(PA∗), which refers to the set of traces enabled by

states x ∈ X of the LTS, is defined as

ōPF (x) = {T (x)}.

Here, BI = BPF = P(PA∗) and the behaviour of a state x ∈ X in the final coalgebra is

given in terms of a function �{x}� : A∗ → P(PA∗)A
∗
, which, intuitively, for each w ∈ A∗

returns the set of sets Ty of traces corresponding to states y ∈ X such that x
w−→ y.

Next we want to show that for each x ∈ X, �{x}� and PF(x) coincide.

First we choose to equivalently represent PF(x) ∈ P(A∗×P(A∗)) – the set of all possible

futures of a state x ∈ X – in terms of ϕPF
x ∈ (P(PA∗))A

∗
, where

ϕPF
x (w) = {T (y) | x w−→ y},

Showing the equivalence between the coalgebraic and the original definition of possible-

futures semantics reduces to proving that

(∀x ∈ X) . �{x}� = ϕPF
x . (10)

Theorem 3.3. Let (X, δ : X → (PωX)A) be an LTS. Then for all x ∈ X and w ∈ A∗,

�{x}�(w) = ϕPF
x (w).

Proof. The proof is by induction on w ∈ A∗ (similar to the proof of Theorem 3.1).

Example 3.4. Consider the following LTSs.

p0
a

����
�� a

���
��

�

p1
b
�����

�
a ��

a

���
��

� p2

a ��
a

���
��

�

p3 p4
b
�����

�
c ��

p5

c ��

p6

c ��

p7

c ��
b
����

��

p8 p9

d ��

p10

e ��

p11

d ��

p12

e ��

p13

p14 p15 p16 p17

q0
a

����
�� a

���
��

�

q1
a

����
�� a��

q2
a

����
��a ��

b

���
��

�

q3
b
�����

�
c��

q4

c ��

q5

c ��

q6

c ��
b
����

��
q7

q8 q9

d ��

q10

e ��

q11

d ��

q12

e ��

q13

q14 q15 q16 q17

Note that p0 and q0 are possible-futures equivalent, as the traces both can follow

are sequences w ∈ {a, ab, aa, aab, aac, aacd, aace} and moreover, by triggering the same w

they reach states with equal sets of traces. The equivalence between p0 and q0 can be

formally captured in terms of a bisimulation relation R on the associated Moore automata

(generated according to the generalized powerset construction) depicted in Figure 6, where

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1251

{p0}
a
��

�� {T (p0)}

{�} {p8, p13}�� {p1, p2}
b ��

a

�����
��

�� {T (p1),T (p2)}

o1 {p4, p5, p6, p7}
b

!!

c
��

�� {p3} �� {�}

o2 {p9, p10, p11, p12}
d ��

e

����
���

�
��

{�} {p14, p16}�� {p15, p17} �� {�}

{q0}
a
��

�� {T (q0)}

{�} {q8, q13}�� {q1, q2}
b ��

a

�����
��

�� {T (q1),T (q2)}

o′1 {q3, q4, q5, q6}
b

!!

c
��

�� {q7} �� {�}

o′2 {q9, q10, q11, q12}
d ��

e

����
���

�
��

{�} {q14, q16}�� {q15, q17} �� {�}

Fig. 6. Possible-futures determinization when starting from {p0}, {q0}.
o1 = {T (p4),T (p5),T (p6),T (p7)}, o2 = {T (p9),T (p10),T (p11),T (p12)},
o′1 = {T (q3),T (q4),T (q5),T (q6)}, o′2 = {T (q9),T (q10),T (q11),T (q12)}.

R = {({p0}, {q0}), ({p1, p2}, {q1, q2}), ({p3}, {q7}), ({p8, p13}, {q8, q13}),
({p5, p5, p6, p7}, {q3, q4, q5, q6}), ({p9, p10, p11, p12}, {q9, q10, q11, q12}),
({p14, p16}, {q14, q16}), ({p15, p17}, {q15, q17}) }.

It is easy to check that R is a bisimulation, since both automata in Figure 6 are isomorphic.

(Note that equality of the outputs – which are sets of traces – can be established using

the framework introduced in Section 3.2.)

3.4. Ready and failure trace semantics

In this section, we provide a coalgebraic modelling of ready and failure trace semantics

by employing the generalized powerset construction. Similarly to the other semantics

tackled so far, we show (a) that the coalgebraic representation coincides with the original

definition in van Glabbeek (2001) and (b) how to apply the coalgebraic machinery in

order to reason on the corresponding equivalences.

Intuitively, ready trace semantics identifies two states if and only if they can follow

the same traces w, and moreover, the corresponding (pairwise-taken) states determined

by such w’s have equivalent one-step behaviours. Failure trace semantics identifies states

that can trigger the same traces w, and moreover, the (pairwise-taken) intermediate states

occurring during the execution of a such w fail triggering the same (sets of) actions.

Formally, the associated definitions are as follows:

Definition 3.6 (RT -equivalence (van Glabbeek 2001)). Let (X, δ : X → (PωX)A) be an

LTS and x, y ∈ X two states. States x and y are ready trace equivalent (RT -equivalent) if

and only if RT (x) = RT (y), where

RT (x) = { I0a1I1a2 . . . anIn ∈ Pω(A)× (A× Pω(A))∗ |
(∃x1, . . . , xn ∈ X) . x = x0

a1−→ x1
a2−→ · · · an−→ xn ∧

(∀i = 0, . . . , n) . Ii = I(δ(xi)) }.

We call an element of RT (x) a ready trace of x.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1252

Definition 3.7 (FT -equivalence). Let (X, δ : X → (PωX)A) be an LTS and x, y ∈ X

two states. States x and y are failure trace equivalent (FT -equivalent) if and only if

FT (x) = FT (y), where

FT (x) = { F0a1F1a2 . . . anFn ∈ Pω(A)× (A× Pω(A))∗ |
(∃x1, . . . , xn ∈ X) . x = x0

a1−→ x1
a2−→ . . .

an−→ xn ∧ Fi ∈ Fail(δ(xi)) }.

We call an element of FT (x) a failure trace of x.

In order to model these two equivalences coalgebraically we will have to apply the

generalized powerset construction, from Figure 2, not only by adding the output function

but also by changing the transitions of the LTS.

In particular, we have to add to transitions of shape x
a−→ y information regarding the

sets of actions ready to be triggered by x. In the new LTS, we consider transitions of

shape x
〈a,I(δ(x))〉
−−−−−→ y therefore enabling the construction of Moore automata ‘collecting’

states that have been reached not only via one-step transitions labelled the same, but also

from processes sharing the same initial behaviour. (Note that F ∈ Fail(δ(x)) whenever

F ⊆ A− I(δ(x)).)
We apply the generalized powerset construction to the decorated LTS:

X
〈oI ,δ〉

�� Pω(Pω(A))× Pω(X)A×Pω(A)

where δ is defined by first computing the set I and then appending it to every successor

of a state by using the strength of powerset:

δ = X
δ �� Pω(X)A

〈I,id〉
�� Pω(A)× Pω(X)A

st �� Pω(Pω(A)×X)A → Pω(X)A×Pω(A).

For I ∈ {RT , FT }, the output function ōI provides information with respect to the

actions ready, respectively, failed to be triggered by a state x ∈ X as a first step:

oRT (x) = {I(δ(x))} oFT (x) = Fail(δ(x)).

We need to show that for x0 ∈ X, there is a one-to-one correspondence between �{x0}�
and I(x0). Intuitively, for ready trace semantics, for example, each behaviour

�{x0}�(w̄) = {Zj
n | xa

w−→ xj}, with w̄ = 〈a1, Z0〉 · · · 〈an, Zn−1〉 ∈ (A× Pω(A))∗

and w = a1 . . . an ∈ A∗

corresponds to a set of sequences of shape

Z0a1Z1a2 . . . Zn−1anZ
j
n ∈ I(x0).

Given x ∈ X, for I ∈ {RT , FT }, we again represent I(x) ∈ P(Pω(A) × (A × Pω(A))∗)

by a function ϕI
x :

ϕRT
x (w̄) = {Z ⊆ A | x w̄−→ y ∧ Z = I(δ(y))}

ϕFT
x (w̄) = {Z ⊆ A | x w̄−→ y ∧ Z ∈ Fail(δ(y))}.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1253

Showing the equivalence between the coalgebraic and the original definition of ready and

failure trace semantics consists in proving that

(∀x ∈ X) . �{x}� = ϕI
x . (11)

Theorem 3.4. Let (X, δ : X → (PωX)A) be an LTS. Then for all x ∈ X and w̄ ∈ (A ×
Pω(A))∗, �{x}�(w̄) = ϕI

x (w̄).

Proof. The proof follows by induction on words w ∈ (A×Pω(A))∗ (similar to the proof

of Theorem 3.1).

Example 3.5. Consider the following two systems:

p0
a

�����
�� a

����
���

q0
a

�����
�� a

����
���

p1
b

�����
��c

��

p2

c
��

f

����
���

q1
b

�����
��c

��

q2

c
��

f

����
���

p3 p4

d ��

p5

e
��

p6 q3 q4

e
��

q5

d ��

q6

p7 p8 q7 q8

Note that they are not ready trace equivalent as, for example, {a}a{c, f}c{e} is a ready

trace of p0 but not of q0. Moreover, they are not failure trace equivalent as, for example,

{b, c, d, e, f}a{a, d, e, f}c{a, b, c, e, f}d{a, b, c, d, e, f} is a failure trace of p0 but not of q0.

It is easy to check that by taking exactly the generalized powerset construction (starting

with {p0}, {q0}) without changing the transition function, as in Section 3.1, one gets two

bisimilar Moore automata (for both the case of ready and failure trace equivalence). This

would indicate that the initial LTSs are behavioural equivalent (which is not the case for

ready and failure trace!).

The change in the transition function generates the automata (with labels in A×Pω(A))

in Figure 7. Then, for both semantics studied in this section, the determinization derives

the two Moore automata in Figure 8.

For ready trace semantics it holds that:

o0 = o0 = {{a}} o12 = o12 = {{b, c}, {c, f}} o4 = o5 = {{d}} o5 = o4 = {{e}}
o3 = o6 = o7 = o8 = o3 = o6 = o7 = o8 = {�}.

Hence, the systems in Figure 8 are not bisimilar as, for example, both states {p4} and

{q4} can be reached via transitions labelled the same, but they output different sets of

ready actions – namely {{d}} and {{e}}, respectively. Therefore, we conclude that p0 and

q0 are not ready trace equivalent.

Similarly, for failure trace we have:

o0 = o0 = [bcdef] o12 = o12 = [adef] ∪ [abde] o4 = o5 = [abcef] o5 = o4 = [abcdf]

o3 = o6 = o7 = o8 = o3 = o6 = o7 = o8 = [abcdef].

As before, the automata in Figure 8 are not bisimilar as, for example, both {p4} and

{q4} are reached via transitions labelled the same, but have different outputs. Therefore,

we conclude that p0 and q0 are not failure trace equivalent.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1254

p0
〈a,{a}〉

����
��
�� 〈a,{a}〉

���
��

��
� q0

〈a,{a}〉

����
��
�� 〈a,{a}〉

���
��

��
�

p1
〈b,{b,c}〉

����
��
�� 〈c,{b,c}〉

��

p2

〈c,{c,f}〉
��

〈f,{c,f}〉

���
��

��
� q1

〈b,{b,c}〉

����
��
�� 〈c,{b,c}〉

��

q2

〈c,{c,f}〉
��

〈f,{c,f}〉

���
��

��
�

p3 p4

〈d,{d}〉
��

p5

〈e,{e}〉
��

p6 q3 q4

〈e,{e}〉
��

q5

〈d,{d}〉
��

q6

p7 p8 q7 q8

Fig. 7. Altered transition function before determinization.

{p3}
��

{p4}
〈d,{d}〉

��

��
{p7}

��
o3 o4 o7

{p0}
〈a,{a}〉

��

��
{p1, p2}

��

〈b,{b,c}〉

""

〈c,{b,c}〉

##

〈c,{c,f}〉
��

〈f,{c,f}〉
��

{p5}
��

〈e,{e}〉
�� {p8}

��
o0 o12 o5 o8

{p6} �� o6

{q3}
��

{q4}
〈e,{e}〉

��

��
{q7}

��
ō3 ō4 ō7

{q0}
〈a,{a}〉

��

��
{q1, q2}

��

〈b,{b,c}〉

""

〈c,{b,c}〉

##

〈c,{c,f}〉
��

〈f,{c,f}〉
��

{q5}
��

〈d,{d}〉
�� {q8}

��
ō0 ō12 ō5 ō8

{q6} �� ō6

Fig. 8. Determinization starting from {p0}, {q0}.

The purpose of changing the transition labels with sets of ready actions is to collect in

a Moore state only states of the initial LTSs that have been reached from ‘parents’ with

the same one-step (initial) behaviour. Or dually, to distinguish between states that have

‘parents’ ready, respectively, failing to trigger different sets of actions. This way one avoids

the unfortunate situation of encapsulating, for example, the states p4, p5, respectively q4, q5,

fact which eventually would lead to providing a positive answer with respect to both ready

and failure trace equivalence of p0 and q0.

In other words, the change in the transition function is needed in order to guarantee

that whenever two states of an LTS are ready/failure trace equivalent, the (pairwise-taken)

states determined by the executions of a given trace have the same initial behaviour.

4. Decorated trace semantics for GPSs via determinization

In this section, we show how the generalized powerset construction for coalgebras

f : X → FT (X) for a functor F and a monad T in (3) can be instantiated in order

to provide coalgebraic modellings of decorated trace semantics for GPSs. More explicitly,

we show how the determinization procedure can be applied in order to derive coalgebraic

representations of ready, (maximal) failure and (maximal) trace semantics, equivalent to

their standard definitions in Jou and Smolka (1990).

A GPS is similar to an LTS, but each transition is labelled by both an action and a

probability p. More precisely, the transition dynamics is given by a probabilistic transition

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1255

function μ : X × A×X → [0, 1] satisfying for all x ∈ X∑
a∈A
y∈X

μ(x, a, y) � 1, (12)

where X is the state space and A is the alphabet of actions. For simplicity, we write

μa(x, y) in lieu of μ(x, a, y) and we will use the notation x
a[v]
−−→ y for μa(x, y) = v. We

extend μ to words w ∈ A∗:

με(x, y) =

{
1 if x = y

0 if x �= y
μaw(x, y) =

∑
x′∈X

μa(x, x
′)× μw(x′, y).

Intuitively, μw(x, y) represents the sum of the probabilities associated to all traces w from

x to y. Moreover, we write

μ0(x, 0) = 1−
∑
a∈A
y∈X

μ(x, a, y)

for the probability of x to terminate, where 0 is a special symbol not in A, called the zero

action, and 0 is the (deadlock-like) zero process whose only transition is μ0(0, 0) = 1.

Similarly to the case of LTSs, the set of initial actions that can be triggered (with a

probability greater than 0) from x ∈ X is given by

I(x) = {a ∈ A | (∃y ∈ X) . μa(x, y) > 0},

whereas failure sets Z ∈ PωA satisfy the condition Z ∩ I(x) = �. We write Fail(x) to

represent the set of all failure sets of x.

The decorated trace semantics for GPSs considered in this paper can be intuitively

described as follows. Given two states x, y ∈ X, we say that x and y are equivalent

whenever traces w ∈ A∗

— lead, with the same probability, x and y to processes that trigger (respectively, fail to

execute) as a first step the same sets of actions, for the case of ready (respectively,

failure) semantics. Note that maximal failure semantics takes into consideration only

the largest sets of failure actions (i.e., A− I(x), A− I(y)).
— can be executed with the same probability from both x and y, for the case of trace

semantics and, moreover, lead x and y to processes that have the same probability to

terminate, for the case of maximal trace semantics.

For the coalgebraic modelling of the aforementioned semantics, we will model GPSs as

coalgebras (X, δ : X → (Dω(X))A) by setting δ(x)(a)(y) = μa(x, y).
† To these, we associate

decorated GPSs

(X, 〈oI , δ〉 : X → BI × (Dω(X))A)

‘parameterized’ by I , depending on the semantics under consideration.

† Note that the coalgebraic type directly corresponds to reactive systems (Bartels et al. 2004). The embedding

of generative into reactive is injective and poses no problems semantic-wise. In the sequel, when we write

‘Let (X, δ : X → (Dω(X))A) be a GPS’ we implicitly mean a coalgebra of this type originating from a GPS

defined by a probabilistic function μ : X × A×X → [0, 1] as in (12).

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1256

X
η

��

〈oI ,δ〉

��

Dω(X)
�−�

����������

〈o,t〉
�����

���
���

���
��

(BI)A
∗

〈ε,(−)a〉

��

BI × (Dω(X))A
idBI×�−�A

��������������� BI × ((BI)A
∗
)A

o = hI ◦Dω(oI)

t(ϕ)(a)(y) =
∑

x∈supp(ϕ)

δ(x)(a)(y)× ϕ(x)
[[ϕ]](ε) = o(ϕ)

[[ϕ]](aw) = [[t(ϕ)(a)]](w)

Fig. 9. The powerset construction for decorated GPSs.

Decorated GPSs can be determinized according to the generalized powerset construction

as illustrated in Figure 9, where T is instantiated with the probability distribution monad

(Dω, μ, η), as defined in Section 2, and F is BI× (−)A. Moreover, for each of the semantics

of interest the observations set BI has to carry a Dω-algebra structure, or, equivalently,

there has to exist a morphism hI such that (BI , hI : Dω(BI)→ BI) is a Dω-algebra.

The ingredients oI , BI and hI of Figure 9 are explicitly defined in the subsequent

sections for each of the coalgebraic decorated trace semantics. The latter are also proven

to be equivalent with their corresponding definitions in Jou and Smolka (1990).

4.1. Ready and (maximal) failure semantics

In this section, we provide the detailed coalgebraic modelling of ready and (maximal)

failure semantics and show the equivalence with their counterparts defined in Jou and

Smolka (1990), as follows:

Definition 4.1 (ready equivalence (Jou and Smolka 1990)). The ready function Rp : X →
((A∗ × PωA)→ [0, 1]) is given by

Rp(x)((w, I)) =
∑
I=I(y)

μw(x, y).

We say that x, x′ ∈ X are ready equivalent whenever Rp(x) = Rp(x
′).

Definition 4.2 (failure equivalence (Jou and Smolka 1990)). The failure function Fp : X →
((A∗ × PωA)→ [0, 1]) is given by

Fp(x)((w,Z)) =
∑

Z∩I(y)=�

μw(x, y).

We say that x, x′ ∈ X are failure equivalent whenever Fp(x) = Fp(x
′).

Definition 4.3 (maximal failure equivalence (Jou and Smolka 1990)). The maximal failure

function MFp : X → ((A∗ × PωA)→ [0, 1]) is given by

MFp(x)((w,Z)) =
∑

Z=A−I(y)
μw(x, y).

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1257

We say that x, x′ ∈ X are maximal failure equivalent whenever MFp(x) = MFp(x
′).

Intuition: ready and (maximal) failure semantics, respectively, identify states which have

the same probability of reaching processes sharing the same sets of ready actions I , or

(maximal) sets of failure actions Z , respectively, by executing the same traces w ∈ A∗.
Consequently, appropriate modellings in the coalgebraic setting should capture sets of

traces w, together with some notion of observations based on execution probabilities of

such w’s and sets of ready/(maximal) failure actions.

As a first step we define BI , the observation set in Figure 9, as [0, 1]Pω(A), for ready,

failure and maximal failure semantics (for which, for consistency of notation, I will be

instantiated with Rp, Fp and MFp, respectively).

The associated ‘decorating’ functions oI : X → [0, 1]Pω(A) are defined for x ∈ X as:

oRp
(x)(I) =

{
1 if I = I(x)

0 otherwise.
oFp

(x)(Z) =

{
1 if Z ∩ I(x) = �

0 otherwise.

oMFp
(x)(Z) =

{
1 if Z = A− I(x)
0 otherwise.

For the generalized powerset construction for GPSs, BI = [0, 1]Pω(A) is required to carry

a Dω-algebra structure. This structure is given by the pointwise extension of the free

algebra structure in [0, 1] = Dω(1):

hI : Dω([0, 1]Pω(A))→ [0, 1]Pω(A)

hI(ϕ)(Z) =
∑

f∈supp(ϕ)

ϕ(f)× f(Z).

It is easy to check that, for I ∈ {Rp,Fp,MFp}, the output function o = hI ◦Dω(oI) is

explicitly defined, for ϕ ∈ Dω(X), as:

o(ϕ)(S) =
∑

x∈supp(ϕ)

ϕ(x)× oI(x)(S).

This enables the modelling of the behaviour of GPSs in terms of (final) Moore machines

with state space in (BI)A
∗

and observations in BI . More explicitly, given a GPS (X, δ),

the decorated trace behaviour of x ∈ X is represented in the coalgebraic setting by

[[η(x)]] ∈ (BI)A
∗

= ([0, 1]Pω(A))A
∗ ∼= [0, 1]A

∗×Pω(A), precisely the type of the functions in

Definitions 4.1–4.3. This paves the way for reasoning on ready and (maximal) failure

equivalence by coinduction, in terms of Moore bisimulations.

Example 4.1. Consider, for example, the following GPSs:

p′
a[x]

$$��
��
� a[1−x]

%%�
��

��
u′

a[1]
��

q′

a[1]
��

r′

a[1]
��

v′
a[y]

����
��
� a[1−y]

��	
		

		

s′ t′ w′ w′′

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1258

States p′ and u′ are ready equivalent, as their corresponding ready functions in Defini-

tion 4.1 are equal:

Rp(p
′)(ε,�) = 0 Rp(p

′)(ε, {a}) = 1 Rp(p
′)(a,�) = 0 Rp(p

′)(aa, {a}) = 0

Rp(u
′)(ε,�) = 0 Rp(u

′)(ε, {a}) = 1 Rp(u
′)(a,�) = 0 Rp(u

′)(aa, {a}) = 0

Rp(p
′)(a, {a}) = μa(p

′, q′) + μa(p
′, r′) = x+ (1− x) = 1

Rp(p
′)(aa,�) = μaa(p

′, s′) + μaa(p
′, t′) = x× 1 + (1− x)× 1 = 1

Rp(u
′)(a, {a}) = μa(u

′, v′) = 1

Rp(u
′)(aa,�) = μaa(u

′, w′) + μaa(u
′, w′′) = 1× y + 1× (1− y) = 1.

Intuitively, Rp(p
′)(ε,�) = 0 states that from p′, by executing the empty trace ε, the

probability to reach states that cannot further trigger any action is 0. This is indeed the

case, as p′ can always fire a as a first step. Similarly, Rp(u
′)(a, {a}) = 1 states that the

probability of performing a from u′ and reaching states with the ready set {a} is 1. This

because u′
a[1]
−−→ v′ and I(v′) = {a}.

The same answer w.r.t. the ready equivalence of p′ and u′ is obtained by applying the

coalgebraic framework. As illustrated below, the corresponding Moore automata derived

starting from p′ and u′, respectively, are bisimilar; they have the same branching structure

and equal outputs:

p′: ϕ1
a ��

��
ϕ2

a ��

��
ϕ3

��
u′: α1

a ��

��
α2

a ��

��
α3

��
oϕ1

oϕ2
oϕ3 oα1

oα2
oα3

The state spaces of the aforementioned Moore machines consist of the functions:

ϕ1 = η(p′) = {p′ → 1, q′ → 0, r′ → 0, s′ → 0, t′ → 0}
ϕ2 = {p′ → 0, q′ → x, r′ → 1− x, s′ → 0, t′ → 0}
ϕ3 = {p′ → 0, q′ → 0, r′ → 0, s′ → 1, t′ → 1}
α1 = η(u′) = {u′ → 1, v′ → 0, w′ → 0, w′′ → 0}
α2 = {u′ → 0, v′ → 1, w′ → 0, w′′ → 0}
α3 = {u′ → 0, v′ → 0, w′ → y, w′′ → 1− y}.

The associated observations are:

oϕ1
= oα1

= oϕ2
= oα2

= (� �→ 0, {a} �→ 1), oϕ3
= oα3

= (� �→ 1, {a} �→ 0.)

The functions ϕ2, ϕ3, α2 and α3 together with their outputs are easily determined based

on the operations of the corresponding Moore coalgebra (as depicted in Figure 9).

The connection between the behaviour, i.e., ready function of p′ (respectively, u′) and ϕi
(respectively, αi), for i ∈ {1, 2, 3}, is straightforward. Each of the functions ϕ1, ϕ2 and ϕ3

captures the behaviour of the system starting from p′, after executing the traces ε, a and

aa, respectively. Note that, for example, the values of the ready function for trace ε and

ready sets � and {a}, respectively, are in one to one correspondence with the assignments

in oϕ1
. Similarly for the case of u′.

By following the same approach, the coalgebraic machinery provides an “yes’ answer

w.r.t. (maximal) failure equivalence of p′ and u′ as well. This is also in agreement with the

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1259

results in Jou and Smolka (1990) stating that ready and (maximal) failure equivalence for

GPSs have the same distinguishing power.

The equivalence between the coalgebraic and the original definitions of the decorated

trace semantics I ∈ {Rp,Fp,MFp} in Jou and Smolka (1990) consists in showing that,

given a GPS (X, δ), x ∈ X, w ∈ A∗ and S ⊆ A, it holds that [[η(x)]](w)(S) = I(x)(w, S).

Theorem 4.1. Let (X, δ : X → (Dω(X))A) be a GPS and (Dω(X), 〈o, t〉) be its associated

determinization as in Figure 9. Then, for all x ∈ X, w ∈ A∗ and S ⊆ A, it holds

[[η(x)]](w)(S) = I(x)(w, S).

Proof. The proof is similar for all I in {Rp,Fp,MFp}, by induction on w ∈ A∗.
— Base case – w = ε: [[η(x)]](ε)(S) = oI(x)(S) = I(x)(ε, S).

— Induction step. Here, we will use the fact that the map into the final coalgebra is also

an algebra map and the equality

I(x)(aw, S) =
∑
y∈Y

μa(x, y)× I(x)(w)(S).

Consider aw ∈ A∗ and assume [[η(y)]](w)(S) = I(y)(w, S), for all y ∈ X. We want to

prove that [[η(x)]](aw)(S) = I(x)(aw)(S), for a ∈ A.

[[η(x)]](aw)(S) = [[δ(x)(a)]](w)(S)

=
∑
y∈Y

δ(x)(a)(y)× [[η(y)]](w)(S) ([[-]] is an algebra map)

=
∑
y∈Y

δ(x)(a)(y)× I(x)(w)(S) (IH)

=
∑
y∈Y

μa(x, y)× I(x)(w)(S) (μa(x, x
′) = δ(x)(a)(x′))

= I(x)(aw)(S).

4.2. (Maximal) trace semantics

In this section, we provide the coalgebraic modelling of (maximal) trace semantics

for GPSs. The approach resembles the one in the previous section: we first recall the

aforementioned semantics as introduced in Jou and Smolka (1990), and then show how to

instantiate the ingredients of Figure 9 in order to capture the corresponding behaviours

in terms of (final) Moore coalgebras. As a last step, we prove the equivalence between the

coalgebraic modellings and the original definitions in Jou and Smolka (1990).

Definition 4.4 ((Maximal) trace equivalence (Jou and Smolka 1990)).

The trace function Tp : X → (A∗ → [0, 1]) is given by

Tp(x)(w) =
∑
y∈X

μw(x, y).

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1260

The maximal trace function MT p : X → [0, 1]A
∗

is given by MT p(x)(w) = μw0(x, 0).

We say that x, x′ ∈ X are trace (resp. maximal) equivalent whenever Tp(x) = Tp(x′)
(resp. MT p(x) = MT p(x

′)).

From the definition above, it can be easily seen at an intuitive level that trace equivalence

identifies processes that can execute with the same probability the same sets of traces

w ∈ A∗. Moreover, maximal trace equivalence takes into consideration the probability of

not triggering any action after the performance of such w’s.

Therefore, we choose the set of observations BI (where I = Tp for trace and I = MT p

for maximal trace semantics) to denote probabilities (of processes to execute w ∈ A∗, or

stagnate after triggering such w’s) ranging over [0, 1].

We define the ‘decorating’ functions, for I ∈ {Tp,MT p}, oI : X → [0, 1] by

oTp (x) = 1 oMT p
(x) = μ0(x, 0).

The (Moore) output function o is given by, for all ϕ ∈ Dω(X),

o(ϕ) =
∑

x∈supp(ϕ)

ϕ(x)× oI(x).

We can now show the equivalence between the coalgebraic and the original definition of

(maximal) trace semantics.

Theorem 4.2. Let (X, δ : X → (Dω(X))A) be a GPS and (Dω(X), 〈o, t〉) be its associated

determinization as in Figure 9. Then, for all x ∈ X and w ∈ A∗:

[[η(x)]](w) = I(x)(w).

Proof. By induction on w ∈ A∗, similar to Theorem 4.1.

Consider, for instance, the systems p′ and u′ in Example 4.1. They are trace equivalent as

they both can execute traces ε, a and aa with total probability 1. Consequently, they are

maximal trace equivalent as well: for sequences ε and a, their associated maximal trace

functions compute value 0, whereas for aa the latter return value 1.

The same answer w.r.t. (maximal) trace equivalence of p′ and u′ is obtained by

reasoning on bisimilarity of their associated determinizations derived according to the

powerset construction. It is easy to check that in the current setting, the Moore automata

corresponding to ϕ1 and α1 in Example 4.1 output

— in the case of trace: oϕi = oαi = 1, for all i ∈ {1, 2, 3};
— in the case of maximal trace: oϕi = oαi = 0, for i ∈ {1, 2} and oϕ3

= oα3
= 1.

Therefore ϕ1 and α1 are bisimilar. Hence, p′ and u′ are (maximal) trace equivalent.

5. In a nutshell: decorated trace equivalences for LTSs and GPSs

Next we provide a more compact overview on the coalgebraic machineries introduced in

Sections 3 and 4. This also in order to emphasize on the generality and uniformity of our

coalgebraic framework.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1261

Recall that for each of the decorated trace semantics we first instantiate the constituents

of Figure 2 (summarizing the generalized powerset construction). Moreover, for the case

of LTSs, the original definitions of the semantics under consideration are provided with

equivalent representations in terms of functions ϕI
Y , paving the way to their interpretation

in terms of final Moore coaglebras.

All these are summarized in Figure 10, for an arbitrary LTS (X, δ : X → (PωX)A) and

an arbitrary GPS (X, δ : X → (DωX)A).

Once the ingredients of Figure 2 and, for LTSs, functions ϕI
Y are defined, we formalize

the equivalence between the coalgebraic modelling of I-semantics and its original

definition.

For the case of LTSs, for I ranging over T , CT ,F ,R,PF ,RT and FT , we show that

the following result holds:

Theorem 5.1. Let (X, δ : X → (PωX)A) be an LTS. For all x ∈ X, �{x}� = ϕI
x
∼= I(x).

Orthogonally, for the case of GPSs, for I ranging over Rp,Fp,MFp, Tp and MT p, we

prove the following:

Theorem 5.2. Let (X, δ : X → (DωX)A) be a GPS. For all x ∈ X, [[η(x)]] = I(x).

For each of the semantics under consideration, the proofs of Theorems 5.1 and 5.2,

follow by induction on words over the corresponding action alphabet. For more details

see the proof of Theorem 3.1 in Section 3.1 (for LTSs) and Theorem 4.1 in Section 4.1

(for GPSs), respectively.

Remark 5.1. It is worth observing that by instantiating T with the identity functor, F

with Pω(−)A and, respectively, Dω(−)A in (3) one gets the coalgebraic modelling of the

standard notion of bisimilarity for LTSs and, respectively, GPSs.

Concrete examples on how to use the coalgebraic frameworks are provided for each of

the decorated trace semantics. We show how to derive determinizations of LTSs and GPSs

in terms of Moore automata, which eventually are used to reason on the corresponding

equivalences in terms of Moore bisimulations.

6. Canonical representatives

Given a decorated system (X, 〈oI , δ〉), we showed in the previous sections how to construct

a determinization (T (X), 〈o, t〉), with T = Pω for the case of LTSs, and T = Dω for GPSs,

respectively. The map �−� : TX → BA
∗

I provides us with a canonical representative of the

behaviour of each state in TX. The image (C, δ′) of (TX, 〈o, t〉), via the map �−�, can be

viewed as the minimization w.r.t. the equivalence I .

Recall that the states of the final coalgebra (BA
∗

I , 〈ε, (−)a〉) are functions ϕ : A∗ → BI
and that their decorations and transitions are given by the functions ε : BA

∗

I → BI and

(−)a : B
A∗

I → (BA
∗

I)A, defined in Section 2. The states of the canonical representative (C, δ′)

are also functions ϕ : A∗ → BI , i.e., C ⊆ BA∗I . Moreover, the function δ′ : C → BI ×CA is

simply the restriction of 〈ε, (−)a〉 to C , that means δ′(ϕ) = 〈ϕ(ε), (ϕ)a〉 for all ϕ ∈ C .

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1262

I BI ōI : X → BI I BI ōI : X → BI

R Pω(PωA) oR(x) = {I(δ(x))} FT Pω(PωA) oFT (x) = Fail(δ(x))

F Pω(PωA) oF (x) = Fail(δ(x)) Rp [0, 1]Pω (A) oRp (x)(I) =

{
1 if I = I(x)

0 otherwise

T 2 oT (x) = 1 Fp [0, 1]Pω (A) oFp (x)(Z) =

{
1 if Z ∩ I(x) = �
0 otherwise

CT 2 ōCT (x) =

{
1 if I(δ(x)) = �
0 otherwise

MFp [0, 1]Pω (A) oMFp (x)(Z) =

{
1 if Z = A− I(x)
0 otherwise

PF P(PA∗) ōPF (x) = {T (x)} Tp [0, 1] oTp (x) = 1

RT Pω(PωA) oRT (x) = {I(δ(x))} MT p [0, 1] oMT p (x) = μ0(x, 0)

Fig. 10. The coalgebraic framework in a nutshell.

Finally, it is interesting to observe that for LTS BA
∗

I carries a semilattice structure

(inherited from BI) and that �−� : PωX → BA
∗

I is a semilattice homomorphism. From this

observation, it is immediate to conclude that also C is a semilattice, but it is not necessarily

freely generated, i.e., it is not necessarily a powerset. Similarly, for GPS BA
∗

I carries a

positive convex algebra structure (these are the Dω-algebras) and �−� : DωX → BA
∗

I is a

positive convex algebra homomorphism. Again, from this observation, we know that also

C is a positive convex algebra (not necessarily freely generated).

7. Bisimulation up-to

As previously stated in the beginning of this paper, when reasoning on behavioural

equivalence it is preferable to use relations as small as possible, that are not necessarily

bisimulations, but contained in a bisimulation relation. These relations are referred to as

bisimulations up-to (Sangiorgi and Rutten 2011).

In what follows, we exploit the generalized powerset construction summarized in Fig-

ure 2 and define bisimulation up-to context in the setting of decorated LTSs determinized

in terms of Moore automata. This comes as an extension of the recent work in Bonchi

and Pous (2013). Similar observations hold also for GPSs, but we do not exploit them

here.

Let Ldec = (X, 〈oI , id〉 ◦ δ : X → BI × (PωX)A) be a decorated (possibly ‘preprocessed’)

LTS and (PωX, 〈o, t〉 : PωX → BI × (PωX)A) its associated Moore automaton, as in

Figure 2. A bisimulation up-to context for Ldec is a relation R ⊆ (PωX)× (PωX) such that:

X1 R X2 ⇒
{
o(X1) = o(X2)

(∀a ∈ A) . t(X1)(a) c(R) t(X2)(a)
(13)

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1263

where c(R) is the smallest relation which is closed with respect to set union and which

includes R, inductively defined by the following inference rules:

� c(R) �
X R Y

X c(R)Y

X1 c(R)Y1 X2 c(R)Y2

X1 ∪X2 c(R) Y1 ∪ Y2
(14)

Remark 7.1. Observe that by replacing c(R) with R in (13) one gets the definition of

Moore bisimulation.

Theorem 7.1. Any bisimulation up-to context for decorated LTSs is included in a

bisimulation relation.

Proof. The proof consists in showing that for any bisimulation up-to context R, c(R) is

a bisimulation relation (recall that R ⊆ c(R)). The result follows by structural induction,

as shown below.

Let Ldec = (X, δ
 : X → BI × (PωX)A) be a decorated LTS and (PωX, 〈o, t〉 : PωX →
BI × (PωX)A) be its associated Moore automaton, derived according to the powerset

construction. Let R be a bisimulation up-to context for Ldec .

In what follows we want to prove that c(R) is a bisimulation relation (that includes R,

by (14)).

We have to show that

X c(R) Y ⇒
{
o(X) = o(Y)

(∀a ∈ A) . t(X)(a) c(R) t(Y)(a).
(15)

We proceed by structural induction.

1. Let X R Y . Then (15) holds by definition.

2. Let X = X1 ∪X2 and Y = Y1 ∪Y2 such that X1 c(R) Y1 and X2 c(R) Y2. By induction,

we have that o(X1) = o(Y1) and o(X2) = o(Y2). We now need to prove that o(X) = o(Y).

o(X) = o(X1 ∪X2) = o(X1) ∪ o(X2)
IH
= o(Y1) ∪ o(Y2) = o(Y1 ∪ Y2) = o(Y).

We also have, by induction, that, for all a ∈ A

t(X1)(a) c(R) t(Y1)(a) and t(X2)(a) c(R) t(Y2)(a).

Hence, for all a ∈ A, we can easily prove that t(X)(a) c(R) t(Y)(a):

t(X)(a) = t(X1 ∪X2)(a) = t(X1)(a) ∪ t(X2)(a) (IH)

c(R) t(Y1)(a) ∪ t(Y2)(a)

= t(Y1 ∪ Y2)(a) = t(Y)(a).

Hence, c(R) ⊇ R is a bisimulation relation, as (15) holds for all (X,Y) ∈ c(R).

Remark 7.2. Based on (1), (2) and Theorem 7.1, verifying behavioural equivalence of two

states x1, x2 in a decorated LTS consists in identifying a bisimulation up-to context Rc

relating {x1} and {x2}:
�{x1}� = �{x2}� iff {x1}Rc {x2}. (16)

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1264

Also note that Theorem 7.1 is not a very different, but useful generalization of Theorem

2 in Bonchi and Pous (2013) to the context of decorated LTSs.

Example 7.1. We provide an example of applying the generalized powerset construction

and bisimulation up-to context for reasoning on decorated trace equivalence of LTSs.

Consider the following systems, where n is an arbitrary natural number:

v1

a,b

�� b ��

a
&&

v2
b ��

a,b

��

a
&&

. . . b �� vn

a,b

��

a
&&

x

a,b

&&
b ##������

a ����
��� y

a,b

��

u1

a,b

�� a
��

b

''

u2

a,b

�� a
��

b

''

. . .
a

�� un

a,b

��

b

''

It is easy to see that x and y are bisimilar: intuitively, all the states of the automata

depicted above can trigger actions a and b as a first step and, moreover, all their subsequent

transitions lead to states with the same behaviour. Therefore x and y are also I-equivalent

for I ranging over T , CT ,F ,R,PF ,RT and FT , according to the lattice of semantic

equivalences in Figure 1.

The coalgebraic machinery provides an ‘yes’ answer w.r.t. I-equivalence of the two

LTSs as well. After determinization, {x} can reach all states of shape: {x} ∪ ui, {x} ∪ vi,
{x}∪ui∪vi, for i ∈ {1, . . . , n} and {x}∪uj∪{v1}, {x}∪vj∪{u1}, respectively, for j ∈ {2, . . . , n}.
(We write, for example, ui in order to represent the set {u1, u2, . . . , ui}.)

Consequently, the generalized powerset construction associates to x a Moore automaton

consisting of 5n−1 states, whereas the determinization of y has only one state. Hence, the

(Moore) bisimulation relation R including ({x}, {y}) consists of 5n− 1 pairs as follows:

R = {({x}, {y})} ∪ {({x} ∪ ui ∪ {v1}, {y}), ({x} ∪ vi ∪ {u1}, {y}) | i ∈ {2, . . . , n}} ∪
{({x} ∪ ui, {y}), ({x} ∪ vi, {y}), ({x} ∪ ui ∪ vi, {y}) | i ∈ {1, . . . , n}}. (17)

For a better intuition, we illustrate below the determinizations starting from x and y, for

the case n = 3:

{x}
a

((�����
����� b

))����
�����

� {y} a,b

{x, u1}a

b
))����

��� {x, v1}a
((�����

�� b
�����

��

{x, u1, u2}

a

��

b

**

{x, u1, v1}a
((����� b

))����
� {x, v1, v2}

b

��

a

++

{x, u1, u2, v1}

a

�� b
))���

{x, u1, v1, v2}

b

��a
((���

{x, u1, u2, v1, v2}

a,b

��

It is easy to see that the bisimulation relating {x} and {y} consists of all pairs (X, {y}),
with X ranging over the state space of the Moore automaton derived according to the

generalized powerset construction, starting with {x}.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1265

Observe that all the pairs in R in (17) can be ‘generated’ from ({x}, {y}), ({x} ∪ ui, {y})
and ({x} ∪ vi, {y}) by iteratively applying the rules in (14). Therefore, for an arbitrary

natural number n, the bisimulation up-to context stating the equivalence of x and y is:

Rc = {({x}, {y})} ∪ {({x} ∪ ui, {y}), ({x} ∪ vi, {y}) | i ∈ {1, . . . , n}}

and consists of only 2n+ 1 pairs.

8. Conclusions and future work

In this paper, we have proved that the coalgebraic characterizations of decorated trace

semantics for labelled transition systems and GPSs, respectively, are equivalent with the

corresponding standard definitions in van Glabbeek (2001) and Jou and Smolka (1990).

More precisely, we have shown that for a state x, the coalgebraic canonical representative

�{x}�, given by determinization and finality, coincides with the classical semantics I(x),

for I ranging over T , CT ,R,F ,PF ,RT and FT , representing the traces, complete traces,

ready pairs, failure pairs, possible futures, ready traces and respectively failure traces of

x in a labelled transition system. Similar equivalences have been proven for I ranging

over Rp,Fp,MFp, Tp and MT p representing the ready, failure, maximal failure, trace and

maximal trace functions for the case of probabilistic systems.

In addition, we have illustrated how to reason about decorated trace equivalence using

coinduction, by constructing suitable bisimulations up-to context. This is a very efficient

sound and complete proof technique, and represents an important step towards automated

reasoning, as it opens the way for the use of, for instance, coinductive theorem provers

such as CIRC (Rosu and Lucanu 2009). Last, but not least, we showed that the spectrum

of decorated trace semantics can be recovered from the coalgebraic modelling.

Bisimulation up-to is a technique that has recently received renewed attention (Bonchi

and Pous 2013; Rot 2013). The coalgebraic treatment thereof was originally studied by

Lenisa (Cancila et al. 2003; Lenisa 1999) and further explored by Bartels (2004).

A coalgebraic characterization of the spectrum, not based on the powerset construction,

was attempted in Monteiro (2008). The approach in Monteiro (2008) is based on an

abstract notion of ‘behaviour object’ that has similar properties with final objects. It is not

clear, however, how this approach could be modularly extended so to treat probabilistic

decorated traces.

A similar idea of system determinization was also applied in Cleaveland and Hennessy

(1993), in a non-coalgebraic setting, for the case of testing semantics where must testing

coincides with failure semantics in the absence of divergence. The approach in Cleaveland

and Hennessy (1993) is very similar to ours but it is restricted only to the case of testing

semantics. Our use of coalgebraic techniques allows us to treat more decorated traces and

also decorated probabilistic traces in essentially the same manner. Still in the context of

must testing, a coalgebraic outlook is presented in Boreale and Gadducci (2006) which

introduces a fully abstract semantics for CSP. The main difference with our work consists

in the fact that Boreale and Gadducci (2006) build a coalgebra from the syntactic terms

of CSP, while here we build a coalgebra starting from LTSs via the generalized powerset

construction (Silva et al. 2010). Moreover, they only consider must testing and leave

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1266

as future work capturing other decorated traces. In another paper (Bonchi et al. 2013),

we have shown that must testing can also be captured using the generalized powerset

construction. An important point is that our approach puts in evidence the underlying

semilattice structure which is needed for defining bisimulations up-to whereas this is not

at all considered in their paper. An interesting direction for future work would be to

explore combinations of both approaches: on the one hand, apply up-to techniques to

the their work; on the other hand, consider in our setting processes specified by a certain

syntax and generate the (determinized) LTS directly from the expression specifying the

process’ behaviour. This would yield a coinductive approach to denotational (linear-time)

semantics of different kinds of processes calculi.

There are several other possible directions for future work. One option is to investigate

whether we can derive efficient algorithms implementing the proof techniques for reasoning

on decorated trace equivalences of labelled transition systems and GPSs, in an uniform

fashion.

Orthogonally, it would be worth investigating whether there exists a coalgebraic

representation of system equivalences characterized by testing scenarios, or temporal

logics, along the lines in van Glabbeek (2001).

Moreover, we aim at providing coalgebraic modellings for the remaining semantics

of the spectrum in van Glabbeek (2001), and come up with a new representation of

possible-futures semantics. The latter is motivated by the current drawback of storing

for each state of the LTSs the corresponding set of traces. In this context it might be

more appropriate considering the definition of possible-futures semantics given in terms

of nested bisimulations (Hennessy and Milner 1985), rather than the set-theoretic one

in van Glabbeek (2001).

Acknowledgments

We thank the anonymous reviewers, Luca Aceto and Anna Ingólfsdóttir for their

constructive comments and references to the literature. The work of Georgiana Caltais

has been partially supported by a CWI Internship and by the project ‘Meta-theory of

Algebraic Process Theories’ (nr. 100014021) of the Icelandic Research Fund. The work of

Alexandra Silva is partially funded by the ERDF through the Programme COMPETE and

by the Portuguese Government through FCT – Foundation for Science and Technology,

project ref. PTDC/EIA-CCO/122240/2010 and SFRH/BPD/71956/2010.

References

Aceto, L., Fokkink, W. and Verhoef, C. (1999) Structural operational semantics. In: Handbook of

Process Algebra, Elsevier 197–292.

Awodey, S. (2010) Category theory, Oxford Logic Guides, Oxford University Press.

Bartels, F. (2004) On Generalised Coinduction and Probabilistic Specification Formats, Ph.D. thesis,

CWI, Amsterdam.

Bartels, F., Sokolova, A. and de Vink, E. P. (2004) A hierarchy of probabilistic system types.

Theoretical Computer Science 327 (1–2) 3–22.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

A coalgebraic view on decorated traces 1267

Bonchi, F., Bonsangue, M. M., Caltais, G., Rutten, J. J. M. M. and Silva, A. (2012) Final semantics

for decorated traces. Electronic Notes in Theoretical Computer Science 286 73–86.

Bonchi, F., Caltais, G., Pous, D. and Silva, A. (2013) Brzozowski’s and up-to algorithms for must

testing. In: Chieh Shan, C. (ed.) Asian Symposium on Programming Languages and Systems.

Springer Lecture Notes in Computer Science 8301 1–16.

Bonchi, F. and Pous, D. (2013) Checking NFA equivalence with bisimulations up to congruence.

In: Giacobazzi, R. and Cousot, R. (eds.) Principles of Programming Languages, ACM 457–

468.

Boreale, M. and Gadducci, F. (2006) Processes as formal power series: A coinductive approach to

denotational semantics. Theoretical Computer Science 360 (1–3) 440–458.

Cancila, D., Honsell, F. and Lenisa, M. (2003) Generalized coiteration schemata. Electronic Notes

in Theoretical Computer Science 82 (1) 79–93.

Cleaveland, R. and Hennessy, M. (1993) Testing equivalence as a bisimulation equivalence. Formal

Aspects of Computing 5 (1) 1–20.

Doberkat, E.-E. (2008) Erratum and addendum: Eilenberg–Moore algebras for stochastic relations.

Information and Computation 206 (12) 1476–1484.

Hasuo, I., Jacobs, B. and Sokolova, A. (2007) Generic trace semantics via coinduction. Logical

Methods in Computer Science 3 (4).

Hennessy, M. and Milner, R. (1985) Algebraic laws for nondeterminism and concurrency. Journal

of the ACM 32 (1) 137–161.

Jou, C.-C. and Smolka, S. (1990) Equivalences, congruences, and complete axiomatizations for

probabilistic processes. In: Baeten J. and Klop, J. (eds.) International conference on concurrency

theory Theories of Concurrency: Unification and Extension. Springer Lecture Notes in Computer

Science 458, 367–383.

Lenisa, M. (1999) From set-theoretic coinduction to coalgebraic coinduction: Some results, some

problems. Electronic Notes in Theoretical Computer Science 19 2–22.

Lenisa, M., Power, J. and Watanabe, H. (2000) Distributivity for endofunctors, pointed and co-

pointed endofunctors, monads and comonads. Electronic Notes in Theoretical Computer Science

33 230–260.

Milner, R. (1989) Communication and Concurrency, Prentice Hall.

Monteiro, L. (2008) A coalgebraic characterization of behaviours in the linear time – branching

time spectrum. In: Corradini, A. and Montanari, U. (eds.) Workshop on Algebraic Development

Techniques. Springer Lecture Notes in Computer Science 5486 251–265.

Park, D. M. R. (1981) Concurrency and automata on infinite sequences. In: Deussen,

P. (ed.) Theoretical Computer Science. Springer Lecture Notes in Computer Science 104 167–

183.

Rot, J., Bonsangue, M. M. and Rutten, J. J. M. M. (2013) Coalgebraic bisimulation-up-to. In: van

Emde Boas, P., Groen, F. C. A., Italiano, G. F., Nawrocki, J. R. and Sack, H. (eds.) SOFtware

SEMinar. Springer Lecture Notes in Computer Science 7741 369–381.

Rosu, G. and Lucanu, D. (2009) Circular coinduction: A proof theoretical foundation. In: Conference

on Algebra and Coalgebra in Computer Science, 127–144.

Rutten, J. J. M. M. (2000) Universal coalgebra: A theory of systems. Theoretical Computer Science

249 (1) 3–80.

Sangiorgi, D. and Rutten, J. (2011) Advanced Topics in Bisimulation and Coinduction, Cambridge

Tracts in Theoretical Computer Science, Cambridge University Press.

Silva, A., Bonchi, F., Bonsangue, M. M. and Rutten, J. J. M. M. (2010) Generalizing the powerset

construction, coalgebraically. In: Lodaya, K. and Mahajan, M. (eds.), Conference of Foundations

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

F. Bonchi, M. Bonsangue, G. Caltais, J. Rutten and A. Silva 1268

of Software Technology and Theoretical Computer Science. Leibniz International Proceedings in

Informatics 8 272–283.

Silva, A., Bonchi, F., Bonsangue, M. M. and Rutten, J. J. M. M. (2013) Generalizing determinization

from automata to coalgebras. Logical Methods in Computer Science 9 (1).

van Glabbeek, R. (2001) The linear time – branching time spectrum I. The semantics of concrete,

sequential processes. In: Bergstra, J., Ponse, A. and Smolka, S. (eds.) Handbook of Process

Algebra, Elsevier 3–99.

https://doi.org/10.1017/S0960129514000449 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129514000449

