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SANDWICH THEOREMS FOR SEMICONTINUOUS OPERATORS 

J. M. BORWEIN AND M. THÉRA 

ABSTRACT. We provide vector analogues of the classical interpolation theorems for 
lower semicontinuous functions due to Dowker and to Hahn and Katetov-Tong. 

RÉSUMÉ. Le but de cet article est de montrer que sous certaines conditions, les 
théorèmes d'interposition de Dowker, Hahn et Katetov-Tong ont des analogues pour 
des applications à valeurs vectorielles et semi-continues inférieurement. 

0. Introduction. One of the most flexible versions of the Tietze extension principle 
is Katetov-Tong's theorem [E], [Ja]. This asserts that when X is normal, f:X —• R and 
g\X —• R are respectively lower and upper semicontinuous while f(x) > g(x) for all 
x, then there is a continuous mapping h:X —> R with/(jt) > h(x) > g(x). There are 
two relevant refinements of Katetov-Tong's theorem for X paracompact (and Hausdorff). 
First, iff is allowed to take the value +00 and g the value —00 the result still holds and 
is due in the metric setting to Hahn [Sir]. Second, if actually/(JC) > g(x) for all x, there 
is a continuous mapping h: X —> IR with/(jc) > h(x) > g(x). This is due to Dowker [Str], 
[Du]. In this paper we allow/ and g to take extended values in a partially ordered vector 
space (Y,S) where S is an ordering convex cone, and give versions of Hahn's theorem 
and of Dowker's theorem in this setting. To do this we make appropriate definitions of 
semicontinuity for functions and for multifunctions. We are then able to apply Michael's 
selection theorem to the lower semicontinuous multifunctionH(x) :— \f(x) — S] D [g(x) + 
S] to obtain Hahn-type results. We provide a similar selection result for strongly lower 
semicontinuous multifunctions which we apply to K(x) := \f(x) — IntS] D [g(x) + IntS] 
to obtain Dowker-type results. In each case we place restrictions on S to insure that the 
selection theorem applies. 

1. Preliminaries. Throughout this paper X and Z denote Hausdorff topological 
spaces and Y denotes a real Hausdorff topological vector space partially ordered by a 
convex cone S. Int A (respectively ct A) will denote the topological interior (respectively 
the closure) of A. We write a >s b or a > b if a — b is in S and adjoin signed infinities to 
Y with 00 > y > - 00 for all y in Y. (FU {00}, SU {00}) and (YU {-00}, SU {-00}) 
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are denoted by (F*, 5*) and (F#, S.) respectively. We write a >s b or a > b if a — b is in 
IntS. See [Bo-Pe-Th] for details. 

Then [a, b]s or [a, b] will denote the order interval (b — S)n(a + S), i.e., {x G X : a < 
JC<Z?}. 

Let £2: X =3 Z be a set-valued (or multivalued) mapping, i.e., a mapping which assigns 
to every x E l a (possibly empty) subset £l(x) of Z. We denote by DomQ := {x G X : 
Q(JC) ^ 0}. Given Q:X =t Z, Intft and c£ Q are defined for each j c G l b y (IntQ)W := 
Int(Q(jc)) and (ct Q)(JC) := C£(Q(JC)), respectively. Given fti and Q2: X =t Z, Qi H Q2 

is defined for each x G X by (fti H ft2)W := ^ i W H Q2(JC). 

According to [Ku] or [Ber], Q:X =t Z is said to be LSC (lower semicontinuous) at 
x0 G Dom ft if for each open set U in Z, such that ft(jc0) H U ^ 0 then ftQc) H £/ ^ 0 for 
x near JCO. ft is called LSC if it is LSC at every point of its domain. 

We recall the following standard result: 

LEMMA 1.1. IfQ. is LSC and if A satisfies Q c A C c l Q , then A is LSC. 

PROOF. Let XQ be fixed and let O be open; let vo such that yo e OD A(JCO). Since 
jo G ci ft(;co)> 0 H ftQco) 7̂  0- Since ft is LSC, let U be a neighbourhood of xo such 
that O H ft(x) T̂  0 for each i G [/. In particular, O n A(JC) ^ 0 near xo and A is LSC as 
required. • 

In the setting of vector-valued mappings, there exist several non-equivalent forms of 
lower semicontinuity. For a mapping f:X —• (F*,S*), one natural way of saying that 
it is lower semicontinuous (l.s.c.) is that the set-valued mapping Hf:X =3 Y given by 
Hf(x) : — f(x) — S = {z G Z : z <$/(*)} is LSC. A mapping g is said to be u.s.c. if — g is 
l.s.c. Note that g may take the value — oo. This notion of lower semicontinuity coincides 
with the standard ones when the range space is the reals. The reader interested in these 
notions may for instance consult [Bo-Pe-Th] and the references therein. 

Let us notice that every l.s.c. mapping has a closed epigraph 

epif:={(x,y)eXxY:f(x)<sy}. 

The converse is false as the following simple example in R2 (with the usual topology and 
order) shows [Th]: 

fix) : = (0,0) if x = 0 and/(jc) := ( —r, - l ) otherwise. 
v|jc| / 

Then/ has clearly a closed epigraph while/ - 1 ( j (JC, y) : y > \ j is not open. 

LEMMA 1.2 [BO-PE-TH]. (a) If Y is a topological lattice then the supremum or infi-
mum of a finite family of l.s.c. mappings is l.s.c; 

(b) If Y is a Dini lattice (every increasing net with a supremum converges to this 
supremum), then the supremum of an arbitrary family of l.s.c. mappings is l.s.c. 

A set-valued mapping ft: X =3 Z will be said to be SLSC (strongly lower semi-
continuous) at XQ G Dom ft, if its values locally have nonempty interior at XQ and if 
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for each z G IntftOoX there exists some neighbourhood TV of xo such that z G Intft(;c), 
for each x G N. 

As usual, we say that ft is SLSC if it is SLSC at every point of its domain. 

LEMMA 1.3. (a) The intersection of a finite family of SLSC multifunctions is SLSC; 
(b) IfQ is SLSC, then Int ft is LSC but the converse fails to be true; 
(c) IfQ is LSC with an open graph, then ft is SLSC; 
(d) If ft is SLSC with convex values and which have nonempty interior, then ft is 

LSC. 

PROOF, (a) is immediate. 
(b) Let O be open and suppose yo G Int ft(;co) Pi O. Since ft is SLSC we may suppose 

that yo G Int £l(x) for x near JCO. Hence, O Pi Int ft(x) ^ 0 for x near xo and Int ft is LSC, 
as desired. 

It should be noticed that the converse of (b) fails to be true: if we take Û:R={ R 
defined by ft(0) := R and ft(jc) := R \ {1} for x ^ 0. Then Int ft is clearly LSC at 0 
while ft fails to be SLSC at 0. 

(c) Ifyo G Intft(xo), since the graph of ft is open, we may find a neighbourhood TV of 
xo and a neighbourhood V of yo such that V C ft(x) for each x G N. Hence, ft is SLSC 
as desired. 

(d) By virture of (b), Int ft is LSC. Since ft has convex images we have 

Int ft C ft C c£(ft) = c£(Intft), 

and by Lemma 1.1 we obtain that ft is LSC. • 
Let us remark that without any convexity assumption (d) is no longer true: take 

ft(0) :=]0, l[U{2} and ft(jc) :=]0, 1[ if x ^ 0. 
The following lemma provides an example of SLSC set-valued mapping: 

LEMMA 1.4. Suppose Int S ^ 0. Then,f\X —• (y*,5#) is l.s.c, if and only if the 
set-valued mapping x^X H(x) :=f(x) — Int S is SLSC (and therefore LSC on its domain 
(by Lemma 13 (d)). 

PROOF. Let yo G H(xo)\ since H has open images, we have to prove that yo G H(x) 
for x near xo. From the assumption we get/(jco) — yo + H> G S for w near 0; therefore if 
we pick e G Int S we may suppose that/(xo) — yo — 3se G S for some e > 0. Hence, for 
W := e[—e, e] (which is a neighbourhood of 0) we get 

(yo + 2 ^ + ttOn(A*o)-S))^0. 
Since/ is l.s.c. we derive that 

(yo + 2ee + W)n(f(x)-S) ^ 0 for x near x0. 

Hence, if we take z in the last intersection we obtain: 

yo <s yo + ze <s yo + 2ee + w <s z <sf(x) 

and yo G H(x) for x near xo. 
Conversely, if H is SLSC then according to Lemma 1.3 (d) H is LSC as is cl (H) = Hf 

and therefore/ is l.s.c. as claimed. • 
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COROLLARY 1.5. Suppose IntS is nonempty, f:X —• (F*,S*) is l.s.c. and g\X —> 
(F#,S.) is u.s.c. Then Q(JC) := [g(x),f(x)]s defines a LSC multifunction at each x G X 
swc/i f t o g(x) <5 /(*). 

PROOF. By virtue of Lemmas 1.4 and 1.3 (a), the multifunction 

JC =t IntQ(jc) = \f(x) - IntS] H [g(jt) + IntS] 

is SLSC on its domain. Therefore by Lemma 1.3 (d), Q. is LSC at each JC G X such that 
g(x) </(*). 

A set-valued mapping Q: X =r F is said to be locally convex-valued at A G X, if £2(;t) 
is convex for JC near a. 

The next proposition provides another example of SLSC set-valued mapping: 

PROPOSITION 1.6. Let X be first countable and let Q: X =r W1 be a set-valued map­
ping which is LSC and locally convex at a G X and such that £l(a) has nonempty interior. 
Then £1 is SLSC at a. 

PROOF. If Q fails to be SLSC at a, then there exist b G Int Q(a), a sequence {xn;n e 
N} with limit a and a sequence {bn\ « G N } converging to b such that frn $ W(jcn) for 
each « G N. Since the range space is finite dimensional, there exists a continuous linear 
form <j>n with norm 1 such that 

sup (f)n(y) < <j>n(bn). 
yeQ(xn) 

On selecting a subsequence, we may suppose that {</>„; n E N } tends to </>o ^ 0 whence 

(*) lim sup </>n(y) < <t>0(b). 

If there exists y such that (j>o(y) > (f>o(b), then by lower semicontinuity of Q at a, for each 
sequence {xn; n G M} converging to a we may find a sequence {yn; n G N} converging 
to v such that y„ G Q(x„) for each n G N. Using (*) and the fact that (/>n(y„) tends to </>o(y), 
this yields 0o(y) < </>o(£) and a contradiction. Hence, 

sup <j)0(y) < <j>0(b) 
yeQ(a) 

which yields b $ Int Q(a) and a contradiction. • 
It should be noticed that when the assumption of local convexity fails to be satisfied, 

the proposition is no longer true: 
Take ft(0) := R and Q(x) := R \ {1} for x ^ 0. Then Q is LSC at 0 but is not SLSC 

atO. 
The following corollary deals with the question of when the intersection of multifunc-

tions is lower semicontinuous. We present this result here as an illustration of the concept 
of SLSC although it could also easily deduced from the proof Theorem 3.1 of [L-P]. 
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COROLLARY 1.7 [LEC-SPA]. Let X be first countable and let Slu Q2'^ R71 be LSC 
and locally convex at a. Suppose also that Int(Qi n£l2) is nonempty at a, then Q.\ D Q2 
is LSC at a. 

PROOF. By virtue of Proposition 1.6, £l\ and Q2 are SLSC at a, as is also £1 := 
Qi n ^2- It follows from Lemma 1.3 (b) that Int(Qi Pi Q2) is LSC at a and therefore by 
Lemma 1.1 that Q\ D Q2 is LSC at a as desired. • 

REMARK 1.8. Robert [Ro] has given a counter-example which shows that Corol­
lary 1.7 does not hold in infinité dimensions. 

A partially ordered space is said to be lattice-like if whenever x\, x2, y\, y2 with jc, >s v; 

/ J = 1 , 2 , there exists z in X such that X{ >s z >s yj-
The Riesz interpolation property is said to hold if the relation 

[0,* + y]5 = [0,*]5 + [0,;y]5 

is satisfied for each x,y > 0. (The addition sign on the right denotes the algebraic sum, 
i.e., the set of all x\ + x2 withjci G [0,x]s and^2 G [0,v]5). 

PROPOSITION 1.9. (a) Every vector lattice is lattice-like; 
(b) Every generating inductively ordered lattice-like space is a lattice; 
(c) A partially ordered space is lattice-like, if and only if S has the Riesz interpolation 

property; 

(d) IfX is a reflexive Banach space with a normal generating closed convex ordering 
cone, then X is a lattice if it is lattice-like. 

PROOF, (a) x\ A x2 > y\ V y2. Hence, any z which belongs to the order interval 
[yi V y2,x\ Ax2]s is as desired. 

(b) Let w,x\,x2 in X be given with x\ >s w,x2 >s w. Let W := {x G X : w <s x <s 
x\, w <s x <s x2}. Then W ^ 0 and every chain in W has a supremum by hypothesis, 
which must be in W. Thus by Zorn's lemma W has a maximal element y\. Let y2 lie in 
W; as X is lattice-like, we can find z >s y\> yi m W- Thus by maximality z — y\ >s y2 

and y\ — x\ l\x2. This suffices to show X is a lattice. 
(c) may be found in [Lux-Za]. 
(d) IfX is normal generating and lattice-like, it is well-known [Sch2] that (X*, S*) is a 

Banach lattice as is (X**, 5**). Since X is reflexive the proof is finished. • 

EXAMPLES 1.10. (1) When X is not reflexive assertion (d) may fail: let X be the 
space of all continuous real functionsx on [—1,1] such that x(l) +x(— 1) = x(0) with the 
usual ordering. Then X is lattice-like but is not a lattice [Schi], and the order is normal 
and generating. Note we may similarly prescribe n distinct points: 

X := C[-l, 1] H [x : ê Ai*C«) = *('<>), A,- > o). 
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(2) [Lux-Za, p. 77]: Let a and b be finite real numbers, and X be the ordered vector 
space of all functions of the form/(;c) = ^ defined on [a, b], where p, q are real poly­
nomials such that q(x) > 0 on [a, b] and where the algebraic operations and the partial 
ordering are pointwise. E is lattice-like but is not a lattice, and moreover, the ordering is 
generating. • 

COROLLARY 1.11. (a) In W1, S is lattice-like, if and only if, S is a lattice order for 
S - S; 

(b) If S has a bounded complete base, S is lattice-like, if and only if S is latticial i.e., 
S is a lattice order for S — S. 

2. Hahn-Katetov-Tong-type sandwich theorems. We will write/ > g iff(x) > 
g(x) for all x in X. Recall that S (or Y) is normal if there is a base of neighbourhoods U 
of the origin with U = (U — S) D (U + S). For instance, any Banach lattice is normal 
as is every convex pointed locally compact cone. We say (F, S) is locally decomposable 
if given a neighbourhood W of zero we may find a neighbourhood V of zero such that 
V C WnS—WnS. In particular, S is locally decomposable whenever S has nonempty 
interior or if S is latticial. It follows from the open mapping theorem [Boja] that when Y 
is a Fréchet space and S is closed, S is locally decomposable, if and only if, S is generating, 
i.e.,S-S= Y. 

THEOREM 2.1. Letf: X —> (Y*, S*) be U.c. and let g:X—+ (7., 5.) be u.s.c. such that 
g < / . Suppose further that (a) (Y, S) is locally decomposable while (b) S is normal and 
(c) S is lattice-like. Then the set-valued mapping Q: X =3 Y given by Q(JC) := [g(x),f(x)] 
is LSC. 

PROOF. Let W be a full neighbourhood of the origin in X such that by (b), 

W=(W+S)D(W-S). 

By virtue of (a) we may find a neighbourhood V of zero such that 

vcwns-wns. 
Select vo E Q(JCO) ^ 0 and choose a neighbourhood U of XQ such that 

(s(x) + S ) n ( v o - V ) ^ 0 

(jrw-s)n(yo + v)^0 

for each x G U. Then, 

g(x) ey0- V-Smdf(x) e v0 +V + S 

from which we get 

g(x) <E y0 + (WnS) - S mdf(x) £ y0 - (WD S) + S. 
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This yields 

g(x) <s Jo + x\ and/(jc) >s yo — xi for some x\, x2 in W Pi Sy 

i.e., 
g(x) — x\ <s yo <sf(x) — X2 for each x E U. 

By (c) we may find z such that 

yo = z - w and g(x) <s z <sf(x\ -x2 <s w <s x\. 

Since W is full, w EW. Furthermore, since z E yo + W and z G Q(JC) we derive that Q is 
LSC at JCO, as desired. • 

This result permits us to extend to the vector setting Hahn's interpolation theorem 
established for extended real-valued functions on a metric space, and most cases of 
Katetov-Tong's interpolation theorem for real-valued lower semicontinuous functions 
on a normal space. See [Ja, p. 121], and [Str, p. 133]. 

THEOREM 2.2 (KATETOV-TONG-HAHN TYPE RESULTS). Under the assumptions of 

Theorem 2.1, if furthermore X is paracompact and Y is a Banach space, then for each 
xo EX and each yo E Y such that g (xo) <s yo <s f(xo) there exists a continuous mapping 
h:X—>(Y,S) such that h(xo) = yo and g(x) <s h(x) <s fix) for each x EX. 

PROOF. Since £2 in Theorem 2.1 has closed convex nonempty images and is LSC, 
Michael's selection theorem [Ho] applies and any continuous selection h from Q, such 
that h(xo) = yo is as desired. • 

COROLLARY 2.3. The preceding theorem applies whenever (i) Y is Banach, S — S = 
Y, and S is a closed lattice-like normal ordering cone; or in particular if (ii) Y is a Banach 
lattice. 

EXAMPLE 2.4. Let us consider the mean-value transformation T\:L{[—2,2] —> 
C[-h 1] defined for A E (0,1] by: 

Tx(f)(x):=^£X
xf(t)dt. 

As noticed by [Be], such mappings are used in the standard proof of the 
Fréchet-Kolmogorov theorem [Yo] and have also been used by [Ce]. As observed by 
[Be], these mappings are l.s.c. from L\[—2,2] to C[—l, 1] equipped with the metric of 
the convergence in measure and the norm of uniform convergence, respectively. There­
fore by virtue of Theorem 2.2, T\ admits a continuous minorant. 

COROLLARY 2.5. Under the assumptions of Theorem 2.2, suppose f:X —> (Y,S), 
i E {l,...,n} are l.s.c. and satisfies Ef=1// >s 0. Then, there exists hf.X —• (Y,S), 
i E {1,.,., n} continuous such that hi <sf and £"=1 hi = 0. 

PROOF. Since Y%I\fi >s —fn, by virtue of Theorem 2.2, (on noting that the fi­
nite sum of finite l.s.c. maps is l.s.c.) we may find a continuous mapping wn such that 
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YJÏZlfi >s -wn >s -U Let us define &;:=/• + ^ . Then, we have E?=/ kt > 0 and, by 
induction, there exists {^}/G{i,...,n-i} continuous such that tt < ki and Y%=\ ti = 0. Then, 
hi := ti — ^ j , hn \—wn are as required. • 

Recall that (F, 5) is (countably) Daniell if the infimum of a decreasing (sequence) net 
in S exists and is the topological limit. A Banach lattice is Daniell exactly when it is 
Dini, or equivalently when it has weakly compact order intervals [Scli2]. If (Y, S) has 
countably compact intervals and S is closed and pointed, then it is countably Daniell. It 
is the case if in particular S has a countably compact base and Y is locally convex, or 
if Y is locally convex and S is sequentially complete and has a bounded base. For these 
results, the reader is referred to [Bo]. 

COROLLARY 2.6. Letf: X —> (Y*, Sm) be l.s.c. with Xparacompact and Y satisfying 
(i) or (ii) of Corollary 2.3. Then, f(xo) = sup{h(xo) : h continuous, h < / } and the sup 
is attained when finite. 

In particular, if y is a Daniell Banach lattice/ is l.s.c, if and only if,/ is the supremum 
of a family of continuous mappings. 

PROOF. Apply Corollary 2.3 withg(x) = - c o for x ^ xo and g(xo) = yo for arbitrary 
yo in Y such that yo < /(*o)- • 

COROLLARY 2.7 (TIETZE EXTENSION-TYPE RESULT). Let A be closed in X with X 
paracompact, let Y satisfy (i) or (ii) of Corollary 2.3, and let h:A G X —> [a, b]s G Y be 
continuous. Then there exists a continuoush:X—+ [a,b]s such thatÏI\A — h. 

PROOF. Set/Qc) = h(x) if x G A,/(x) = b if x g A, and g(x) = h(x) if x G A, 
g(x) — a if x $ A. Then, clearly g < / , / is l.s.c, and g is u.s.c. Hence, we may apply the 
Sandwich Theorem 2.2 to conclude. • 

For the sake of completeness we record the following consequence of Michael's the­
orem. 

LEMMA 2.8. Let X be paracompact, let Xo G X be a closed subset and let Yo be 
a closed convex subset ofY. Let f'.Xo —* Yo G Y be continuous. Then Q,(x) := fix) if 
x G Xo and Q(JC) := Yo ifx $ Xo is LSC. 

PROOF. Let O be open and set A := {x G X : Çl(x) H O ^ 0}. Then clearly, 

f A = {x G X0 : f(x) G O H Y0} U {x G X : x g X0} if F0 H O ^ 0 
i A = 0 i fy o HO = 0 

and therefore A is open. • 
Thence we obtain a more general form of Corollary 2.7. 

COROLLARY 2.9. Let Xo be a closed subset of a paracompact space X, and suppose 
Y is a Banach space. Let Yo be a closed convex subset ofY, and let h: Xo G X —> Yo G Y 
be continuous. Then there exists a continuous mapping h:X—>Yo such that h\x0 = h. 

PROOF. Apply Lemma 2.8 and Michael's selection theorem. • 
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If we apply the preceding result to YQ := F, this given unboundedly continuous ex­
tensions for a continuous operator defined on a closed subspace. 

REMARK 2.10. Let X be paracompact and Y Banach, Q: X =! Y be SLSC with closed 
convex images. Suppose/:X—> (Y*,S*) is l.s.c. andg:X—> (Ym,Sm) is u.s.c. and Int S is 
nonempty. Suppose there exists an arbitrary selection a of Q such that 

a(x) G Q(JC) and/(x) > a(x) > g(x) for each x in X. 

Then there is a continuous selection w of Q such that 

w(x) G £l(x) with/(jc) > w(x) > g(x) for each x in X. 

PROOF. By virtue of Lemmas 1.3 and 1.4, A: X =t Y given by A(x) := (f(x) — 

Int 5 j H (g(;c) + Int S) D Q(JC) is SLSC on X with convex nonempty images, as is clA. By 

Lemma 1.3 (d), A is LSC as also is cl A. Then apply Michael's selection theorem. • 
A trivial example is produced by setting Q(x) := C for C closed convex with non­

empty interior in Y. 

3. Open interpolation results. 

LEMMA 3.1. Let X be paracompact. IfQ.X^t Y is SLSC and convex-valued with 
Int Q(JC) ^ 0/or each x G X, then Int Q admits a continuous selection. In particular, if is 
Q SLSC with convex open nonempty images then Q. admits a continuous selection. 

PROOF. Set 0(y) = {x G X : y G IntQ(jc)}. By paracompactness, we may find 
a locally finite refinement {Vi}ieI of 0(y) for y G Y and a subordinate partition of the 
unity denoted by {p,-},-e/. For each / in / select y(i) such that Vt C 0(v(/)) and let/(x) := 
T,ieiPi(x)y(i)' Then/ is continuous and if x G V/theny(0 G Int Q(x). Thus, since Int £l(x) 
is convex and E/e/A'W = 1 we derive that/(x) necessarily belongs to Int£2(x). • 

COROLLARY 3.2. Suppose X is paracompact, £l:X =r F /ÎAS cow vex images with 
nonempty interior and is SLSC. For each yo G lntQ.(xo) and each given open neigh­
bourhood N(yo), there exists a continuous selection h o/Q such that h(x) G IntQ(x) and 
h(xo) G N. 

PROOF. Let ClN(x) := £l(x) if x ^ x0 and Q.N(x) := W(yo)nintQ(*b) if JC = x0. Then 
Qyv is also SLSC and therefore we may apply Lemma 3.1 to derive the result. • 

THEOREM 3.3 (DOWKER-TYPE RESULT [DU; P. 171]). Let X be paracompact and let 
Y be an ordered topological vector space with lut S ^ 0. Assume thatf'.X —• (Y*, S') 
is l.s.c. and g\'.X —• (F#, S.) i G { 1 , . . . , n} are u.s.c. such that gi(x) <s f{x)for each 
x G X. Then, there exists a continuous mapping h:X—> Y such that gt(x) <s h(x) <sf(x) 
for each x G X and each i G { 1 , . . . , w}. 
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PROOF. Set Q(x) := fl?=i [(/(*) -IntS) n (gi(x) + IntS)]. Then, £1 has convex open 
nonempty images and is SLSC by virtue of Lemmas 1.4 and 1.3 (a). Apply Lemma 3.1 
to derive the result. • 

Note that Theorem 3.3 does not require that Y be Banach or lattice-like, while Theo­
rem 2.2 does not require that the cone have nonempty interior. 

We recall that/: X —• Y is Baire class 1 if/ is the limit (pointwise) of a sequence of 
continuous mappings. 

COROLLARY 3.4. Suppose X is paracompact and (Y,S) is countably Daniell with 
IntS non-empty. Iff, —g are l.s.c. and satisfies g < f, then there exists a mapping h 
which is Baire class I, such that g <s h <sf-

PROOF. Given e G Int S, set/o : = / and/„ : = / + ^. We may always define recursively 
a sequence {hn\ n G N} of continuous mappings such that 

g <s hn+\ <sfn and g <s hn+\ <s hn. 

Then, h := infwGN hn exists, is Baire class 1 and satisfies g <s h <sf. • 
Finally, we show that in the complete latticial setting (with interior) Hahn-Katetov-

Tong's interpolation theorem may be also derived directly from our open selection re­
sults. 

COROLLARY 3.5. Let S be a normal, complete latticial ordering cone with nonempty 
interior in Y, let X be a paracompact space. Suppose f: X—>(Ym,Sm)is l.s.c. andg: X —> 
(Y., Sm) is u.s.c. with g <s f. Then there exists a continuous mapping h such that g <s 
f<sh. 

PROOF. The proof follows the lines of Jameson [Ja; p. 123]. Let e be in Int S. We 
build a sequence {fn\ n G N} such that both of the following conditions hold: 

(*) \%-fn-l\\<(ly 

and 

f2\n f2\n 

(**) g~\3J e<^fn<sh+[-) e. 

Indeed, since g <s f and e is in IntS, we have g — \e <s h + \e and Dowker's 
Theorem 3.3 ensures the existence of a continuous mapping f\ such that 

2 , 2 
g- ^e <sf\ <sh + -e. 

Assume now that/1,/2,... ,fn have been defined so that the preceding conditions (*) and 
(**) hold. 

Since 

g <sfn + (^ ) e and/„ <sh+ ( - ) e 
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we have 

gVfn<shAfn + (^ye. 

Again, using Theorem 3.3, we obtain a continuous mapping fn+\ such that 

gVfn<sfn+l<shAfn + ( 3 ) % . 

Therefore we get, 

g ~ V 3 7 e<sfn+i<sh+{-) e 

and the desired conditions (*) and (**). By (*) and the completeness of Y it follows that 
{fn',n G N} converges uniformly to a continuous/. Now (**) yields g <s f <s K as 
desired. • 
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