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ON BERNDT'S METHOD IN ARITHMETICAL FUNCTIONS 
A N D CONTOUR INTEGRATION 

BY 

P. V. KRISHNAIAH AND R. SITA RAMA CHANDRA RAO 

Introduction. If / is a suitable meromorphic function then, by a classical 
technique in the calculus of residues, one can evaluate in closed form series of 
the form 

oo oo 

(1.1) I a(n)f(n) or I (-1)7(«). 
n = —oo n = —oo 

Recently Bruce C. Berndt ([1]) considered using contour integration for the 
evaluation of series of the form 

oo oo 

(1.2) I /(«) or I (-l)"a(n)/(n). 
n = —°o n = —oo 

where / belongs to a suitable class of rational functions and a(n) is an 
arithmetical function. He developed a new method to transform series of type 
(1.2) above (and of slightly more general types) into series generally involving a 
different arithmetical function. As he claims his method is applicable to 
arithmetical functions a(n) which have the representation 

a(n)=Yég(d)h(d,n) 
din 

where g and h are arithmetical functions and for each fixed d, h(d, z) is a 
polynomial in z. In fact he illustrated his method (cf. [1], theorems 1, 2, 3 and 
4) by considering four well known arithmetical functions. 

In §2 of this paper we refine Berndt's method so as to be applicable to series 
of type (1.2) (and more general types also) where the arithmetical function 
a(n) and the rational function / are arbitrary subject to the only requirement 
that £/(n) and Y,a(n)fW are absolutely convergent. In §3, in addition to 
deducing theorems 1 through 4 of [1] as special cases of our theorem in §2, we 
further illustrate it by choosing particular rational functions while allowing a(n) 
to be arbitrary. In §4 we specialize a(n) to evaluate some series, involving the 
Môbius function [i{n), the Liouville's function A(n), the Jordan totient function 
J(n) and the well known Ramanujan's trigonometric sum cn(m), in closed 
form. 
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2. Main result. In the sequel we use the following notation: 
Let a{n) be an arithmetical function. For each positive integer n we define 

a(-n) to be a(n). We denote by a*(n) the unique arithmetical function 
satisfying a(n) = £ d | na*(d) or equivalently a*(n) = Y,d\nV(d)a(n/d) where JLL is 
the Môbius function. For any set X of positive integers we write ax(n) for 

IdeX,d|n a*(d). 
For complex z and positive integral d we write 

d - l [d/2] 

S(d, z) = £ Qxp(2irizj/d) and T{d,z) = £ exp(27riz//d) 
j = 0 ; = - [ ( d - l ) / 2 ] 

Clearly for integral n 

(2.1) S(d,n) = T(d,n) = | ^ 
d if d I n 

otherwise. 

If / is meromorphic in the complex plane we write P(=P(f)) to denote the 
set consisting of the origin and all the poles of / (when / is rational P is clearly 
finite). Also R(f(z):z = <o) stands for the residue of / at <o. We write 

/ x / x v n(ire-™S(n, z)f(z) \ 
s(n) = sf(n)= £ R[ . JJK :z=o)) 

*><=P \ Sin 7TZ J 
and 

/ x / x v̂  nf^rT(n, z)f(z) \ 
t(n) = tf(n)= £ R[ . J : z = co . 

^eP \ Sin7TZ / 

We now prove the following 

THEOREM. Let X be a set of positive integers, a(n) an arithmetical function 
and f a rational function such that £ / ( n ) and £a(n)/(rc) are absolutely 
convergent. Then 

(2-2) t a x ( n ) / ( n ) = - I ^ M n ) 

and 

n e X n 

(2-3) t (-irax(n)f(n)=-l^^^. 
n=—oo n e X ^ 

n£P 

We require the following 

LEMMA. Let a\n) denote £d|n |a*(d)|. Then, under the hypotheses of the 
theorem, £ a'{n) \f{n)\ converges. 
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Proof. The hypotheses imply that there is an integer p > 2 such that zpf(z) 
tends to a nonzero limit as z -*<». Thus it is enough to consider £n=i a'(n)n~p. 
We have 

a'(n)= X |a*(r)|< X X l«W)l = I Md)\r(nld) 
rs=n rs=n dS=r d\n 

where T(H) denotes the number of positive divisors of n. Since £n=i \a(n)\ n~p 

and Y,n=i T(n)n~p are convergent series of non-negative terms, their Dirichlet 
product series, namely 

f (l |a(d)|T(n/d))n-p , 
n = l M|n ' 

converges. The lemma now follows. 

Proof of the theorem. For each positive integer m, we put 

m 

A(m,z)= X a*(d)S(d, z) d"1 

and 

B(m,z)= £ a*(d)T(d, z) d"1. 
d = i 

If N is a positive integer, let CN denote the positively oriented square with 
centre at the origin and sides of length (2N+1) parellel to the real and 
imaginary axes. For values of N large enough to ensure that P is contained in 
the interior of CN we consider the integrals 

u xn X f ^~" i2A(m, z)f(z) J 

I(m,N) = —-\ : dz 
2TTI JC sm 7TZ 

and 
1 f 7rB(m, z)/(z) , 

J(m,N) = —-\ : dz. 
2TTI JC„ sin 77-z 

By Cauchy's residue theorem, each of the above integrals equals the sum of 
the residues of the integrand at its poles in the interior of CN. If n is an integer, 
not in P, then 

/7re-™zA(m, z)f(z) \ A, 
R\ . : z = n)= A(m, n)f(n) 

\ Sin 7TZ / 
m 

= /(«) I a*(d) 
d = l 
d|n 
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in virtue of (2.1). Hence 

[June 

I(m,N)= £ A(m,n)f(n)+Y,R(-
n=-N w e P >• 

• : z = w 
Sin 7TZ 

N 

(2.4) 

If z = x + iy, 

= 2- A(m,n)/(n)+ 2. -
n=-N d=l 

néP 
d 

e~™A{m,z) 

sin irz 

2e^ I ? . ! 
a*(d) d - l " -2-rryj/d lUe 

,-n-V _ ^ , — i r y 

which is bounded as y —» ±<». Thus there exists a constant M = M(m), indepen­
dent of N, such that for all z e CN, 

e-^Ajm, z) 
sin7rz 

< M 

Since the convergence of £ \f(n)\ implies the existence of a fc>0 and of an 
integer c > 2 such that |/(z)|<fc|z|~c for all large |z|, we have 

|I(m,N)|<2Mk(2N+l)(N+») . 

Thus I(m, N)—»0 a s N - x » and from (2.4) we have 

v M \« \ v q*(d)s(d) 
2, A(m, n)/(n) = - ^ -j • 

néP 

Taking limits as m —» o° on both sides we obtain 

a*(n)s(n) 
(2.5) X a ( n ) / ( n ) = - I 

n = —oo 
néP 

since on the left side the above lemma allows us to take the limit on m inside 
the summation sign. Replacing a*(n) by its product with the characteristic 
function of X one obtains (2.2). The proof of (2.3) follows along the same 
lines. In particular we obtain 

(2.6) £ ( - i r a ( n ) / ( n ) = - Z ^ ^ l 
n = — oo 

ntÉp 

3. Applications. As mentioned in the introduction we deduce in this section, 
theorems 1 through 4 of [1] as special cases of the above theorem and record 
some more results illustrating that theorem. 
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For integers a > 0 , q>\ and (q,a) = l, put A(q, a) = {mq + a | m>0, m 
integral}. Let crv(n), <pr,s,((n), *(n), r(n) and A(n) be the arithmetical functions 
defined by 

<rv(n) = Z à\ iT W O = £ tf(d) <T<, 
d|n d\n 

x(n) = 0 or (-l) (n_1)/2 according as n is even or odd, 
r(n) = 4 Xd|n x(d) (the number of representations of n as a sum of two 

integral squares) and 
A(n) = log p or 0 according as n is a power of the prime p or not (known as 

von Mangoldt's function). Here r, s, t are positive integers with s < 2 and 
/utr(n) = jut(n1/r) or 0 according as n1/r is an integer or not (known as Klee's 
generalization of the Môbius function). 

Writing X = A(q,a) and taking a(n) = av(n)9r(n) and logn in turn in the 
theorem of §2, we obtain theorems 1, 3 and 4 of [1] (noting that 
logn=Yid\nA(d)). Further, taking a(n) = n~t(prst(n) and replacing f(z) with 
zlf{z) in the theorem of §2, we obtain theorem 2 of [1]. It may be noted that 
the condition that /(z) = 0(|z|~c) as |z|-»<» together with the inequality im­
posed on c in each of the theorems 1 through 4 of [1] is equivalent to the 
requirement of absolute convergence of the corresponding series £/(n) and 
I a(n)f(n). 

Now let a, /3, y, 8 be complex numbers such that a^ni, (S^n; y^n, 6>±1n 
and Si^P^n for all integers n where co =exp(27n/3) and P=exp(7ri/4). 

Taking /(z)=l/(z2+a2)and adding appropriate residues at 0, ia and -ia we 
obtain 

n - 1 ( 1 TT«(l-2j /n) . -<n-ot(l-2j/n)^ n - 1 ( i 

s(n)=lR+ 
j = 0 UK 

T r e ^ - ^ + Tre-

and 

K2 2iasimria 

= A — coth 1 
az\n n J 

[n/2] 
f 1 TTO~ 2iTotj7n_i_ 2ir«j/n^ 

J=_[(n î)/2] UK 2ia sm ma J 

n fTra , TTO / l + (-l)n ua\ J 
= —-z \—cosech — coshl - 1 \ 

a2 In n \ 2 n J i 
by a straight forward calculation. Hence by (2.5) and (2.6) we obtain 

/<-» -ix v a(rc) 1 v */ x/™ ^ na i \ 
(3.1) X 2 ; 2 = r i 1 * ( » ) ( — c o t h ! 
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and 

/* ,* v (-l)"a(n) 1 v */ ^ * * i / v i \ 

where chn(Q) = cothO/n or cosech 0/n according as n is even or odd. 
Taking 

fiz)=(dw2' ^ v and FÏ* 
in turn and proceeding as above, we obtain 

(3.2) V -—1-i^ = - 5 X a*(nHl —cosec — - l \ , 

(3.2-) ï <?m-k ï a-a(&^^)u^&)-i\ 
niloo (n + 0)2 0 »=1 L\ rc " / V 2 n / J 

Z a(n) 1 v* */ xf'n'T ^Y 
- T V ^ = ̂ ^ X a*(n) —rcot—r 

(3.3) + 2 Q » c o t Z ^ + ^ c o t ^ _ 3 l 
n J n n 

Z (-l)"a(n) 1 y f̂ Y 

(3 .3) + cn(7T7a>) + cn(7TYû>)-3f 

where cn(0) = cot 0/n or cosec 0/n according as n is even or odd, 

(3.4) £ 4 g b = i ï a * ( n ) { ^ œ t ^ + ^ c o t ^ ë - 2 ] 
rfi1n +8 48 n=! I n n n n ) 

and 

4. Evaluation of some series. In this section, by suitably specializing a(n), 
we deduce interesting formulae from the theorem of §2 as well as from the 
identities listed in §3. 

If a*(n) is the characteristic function of {x}, x a positive integer, we see that 
a(n) turns out to be the characteristic function of the set of all non-zero 
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multiples of x so that, by (2.5) and (2.6), we have 

(4.1) £ f(n)=-s(x)/x 
n ?* 0,n=0(mod x ) 

and 

(4.10 Z (-l)nf(n)=-t(x)lx 
n ^ 0,n =0(mod x ) 

If a*(n) is an arithmetical function vanishing outside a finite set then a*(n) is 
a (complex) linear combination of characteristic functions of singletons so that, 
in this case, one easily obtains formulae analogous to (4.1) and (4.1'). 

If a(n) is the characteristic function of a set X of positive integers, the 
corresponding function a*(n), usually called the inversion function of the set 
X, is denoted by jutxM- Formulae (3.1) through (3.4') may be specialized for 
this characteristic function. For example, one can write, in virtue of (3.1), 

(4.2) I - T T - " £ M n ) ( ^ c o t h ^ - l ) . 

Taking X = {1} we see that nx(n) = n(n) so that (4.2) yields 

(4.3) £ Mn)(^coth^-l) = 4 ^ - . 
n=i \n n J a +1 

If X is the set of all positive integers that are prime to a fixed positive integer 
m, one can easily verify that jmx(n) = ju,(n) or 0 according as n\m or not. 
Hence by (4.2) one has 

(4.4) t 1 - 1 5 ;^ („ ) (»«oo th25- l ) . 
„=i n2 + a2 2a2 £, ^n n ' 

(n,m) = l 

Taking X to the set of all integral squares we see that fi,x(n) = À(n) = 
(-l)n ( n ) (À is known as the Liouville's function) where ft(n) is the number of 
prime factors of n, counting repetitions. Now replacing a by 82 in (4.2) we 
obtain 

ÎHn)(^coth^-l) = 28<Z^-4 „f i \ n n I „ t i n 4 + 8 4 

(4.5) 
= \(7Tbp COt 7TÔp + TTÔp COt 7TÔp) — 1. 

Here we made use of (3.4) with a(n) = \ for all n (so that a*(n) = l or 0 
according as n = 1 or M > 1). 

Taking a*(n) = J(n) = <p1Aa(n) (see §3 above), known as Jordan's totient 
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function of order 2, we note that a(n) = n2. Now (3.4) yields 

(4.6) t J(n)(^ coA^cot^-l) 
n==1 \ n n n n ) 

~ n2 .- sinh TTÔ V2 - sin TT8 V 2 
= 4ô4 Y = TTV2Ô3 p P . 

n = 1 n 4 + Ô4 cosh TTÔ V2 - cos TTÔ V2 

The last step is obtained by writing n2/(n4 + ô4)=4(l /(n2 + P2S2) + 
l/(n2 + p2ô2) and applying (3.1) separately with a(n) = l for all n. 

Concerning the well known Ramanujan's trigonometric sum cn(m), defined 
to be the sum of the mth powers of the primitive nth roots of unity, it is known 
that Ysdin cd(m) = n or 0 according as n | m or not (cf. [2], §1.5). Hence, taking 
a*(n) to be cn(m) where m is a fixed positive integer in (3.1), we obtain 

(4.7) £ C n ( m ) ( ^ c o t h ^ _ 1 ) = 2a2 I n 
n=i \n n J X*n+a 

Incidentally we note, since cn(l) = jii(n), that (4.3) is a special case of (4.7). 
Dividing both sides of (4.7) by a 2 and letting a -» 0, one obtains 

(A ôï V c n( m ) 6 ( . (4.8) 2- — = — <r_1(m). 

Working similarly with results analogous to (4.7) that may be obtained from 
(3.1'), (3.4) and (3.4') respectively, we get 

(4.8') £ ( ~ 1 ) " ^ ( m ) = ^ (4E- 1 (m) -o - - 1 (m) ) > 
n = 1 H 7T 

(4.9) £ ^ - 2 ? < r _ , < m ) 
n = l n 7T 

and 

(4.90 I l " i ; C / m ; = ^ ( 1 6 E _ 3 ( m ) - a _ . 3 ( m ) ) 
n t \ n4 7T4 

where Ev(m) stands for L l |m(-l)nrc1 ' . Where as (4.8) and (4.9) are due to S. 
Ramanujan (cf. [2], §1.5), (4.8') and (4.9') are believed to be new. 
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