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Abstract

We give a systematic treatment of caloric measure for arbitrary open sets. The caloric measure is defined
only on the essential boundary of the set. Our main result gives criteria for the resolutivity of essential
boundary functions, and their integral representation in terms of caloric measure. We also characterize
the caloric measure null sets in terms of the boundary singularities of nonnegative supertemperatures.
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1. Introduction

Caloric measure is sometimes called harmonic measure for the heat equation,
sometimes parabolic measure. It has been studied by many authors for particular
boundaries, for example in [2, 4–14, 18–20]. However, to my knowledge it has never
been given a systematic treatment for arbitrary open sets. In this paper we give such a
treatment, guided by the treatment for Laplace’s equation given in [1]. As usual, the
different behaviour of the temporal variable and the different form of the maximum
principle cause problems not encountered in the classical case.

We follow [16] in our definition of the essential boundary, and hence of the Dirichlet
problem itself. This seems to be the most elementary and natural way to proceed.
Assuming only that there is a caloric measure on the boundary, Suzuki [15] has proved
that it must be supported by the essential boundary. In our treatment, the caloric
measure is defined only on the essential boundary from the outset.

As in [16], the method of solution of the Dirichlet problem is that of Perron–
Wiener–Brelot (PWB). In Section 3 we present a series of new and essential lemmas
regarding upper and lower solutions. Caloric measure is introduced in Section 4, which
is mainly concerned with the resolutivity of essential boundary functions, and their
integral representation in terms of caloric measures. This culminates in our main result
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and its two corollaries, the latter of which gives equivalent conditions for resolutivity
in terms of caloric measure. Finally, in Section 5, we characterize the caloric measure
null sets in terms of the boundary singularities of nonnegative supertemperatures.

2. Preliminaries and the classification of boundary points

We use E to denote an arbitrary open subset of Rn+1 = {(x, t) : x ∈ Rn, t ∈ R}. The x
variables may be referred to as the spatial variables, and the t as the temporal variable.
All of our functions are extended-real valued.

D 2.1. For each (x, t) ∈ Rn+1 and c > 0, we put

∆(x, t; c) = B(x,
√

c)× ]t − c, t[,

where B(x,
√

c) denotes the open ball in Rn with centre x and radius
√

c. We call
∆(x, t; c) the heat cylinder with centre (x, t) and radius c. The set

∂n∆(x, t; c) = (B(x,
√

c) × {t − c}) ∪ (∂B(x,
√

c) × [t − c, t])

is called the normal boundary of ∆(x, t; c).

D 2.2. The mean value over normal boundary of the heat cylinder is defined,
for any function u such that the integral exists, by

L(u; x, t; c) =

∫
∂n∆(x,t;c)

u dµ(x,t),

where µ(x,t) is the caloric measure at (x, t) for ∆(x, t; c).

Since the caloric measure is invariant under translation and parabolic dilation, the
mean L(u; x, t; c) depends only on u, (x, t) and c.

Note that, by taking u = 1 in [17, Theorem 4], we obtain L(1; x, t; c) = 1 for all
(x, t) and c.

Given a point p0 ∈ E, we denote by Λ(p0; E) the set of points p for which there is
a polygonal path in E that joins p0 to p, along which the temporal variable is strictly
decreasing. By a polygonal path, we mean a path which is the union of finitely many
line segments.

We also denote by Λ∗(p0; E) the set of points p for which there is a polygonal path
in E joining p0 to p, along which the temporal variable is strictly increasing.

We define hypotemperatures in terms of the means L, in line with [17].

D 2.3. Let w be an upper finite and upper semicontinuous function on E.
Suppose that, given any point p ∈ E, the inequality w(p) ≤ L(w; p; c) holds whenever
∆(p; c) ⊆ E. Then w is called a hypotemperature on E. If, in addition, w(p) > −∞ on
a dense subset of E, then w is called a subtemperature on E.

D 2.4. If −w is a hypotemperature on E, we call w a hypertemperature on E.
If −w is a subtemperature, we call w a supertemperature.

https://doi.org/10.1017/S1446788712000389 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000389


[3] Caloric measure for arbitrary open sets 393

L 2.5. If w is a hypotemperature on E, and w(p) > −∞ for some point p ∈ E, then
w is a subtemperature on Λ(p; E).

P. Theorem 20 of [17] holds with (δ3) omitted and ‘subtemperature’ replaced by
‘hypotemperature’ throughout. It therefore follows from [17, Lemma 9] that w is
locally integrable on Λ(p; E), and hence finite on a dense subset of Λ(p; E). �

We now classify the various types of boundary point of E, using the following
notations for the upper and lower half-balls. Given any point p0 = (x0, t0) ∈ Rn+1 and
r > 0, we denote by H(p0, r) the open lower half-ball

Λ(p0; B(p0, r)) = {(x, t) : |x − x0|
2 + (t − t0)2 < r2, t < t0},

and by H∗(p0, r) the open upper half-ball

Λ∗(p0; B(p0, r)) = {(x, t) : |x − x0|
2 + (t − t0)2 < r2, t > t0}.

Throughout this paper, the boundary of E is taken relative to the one-point
compactification of Rn+1. Thus ∂E contains the point at infinity if and only if E
is unbounded. Our classification is the same as that in [16], although some of the
terminology and notation are different.

D 2.6. Let q ∈ ∂E. We call q a normal boundary point if either:

(a) q is the point at infinity; or
(b) q ∈ Rn+1, and for every r > 0, H(q, r)\E , ∅.

Otherwise, we call q an abnormal boundary point.

If q is an abnormal boundary point of E, there is some r0 > 0 such that H(q, r0) ⊆ E,
and we define Λ(q; E) = Λ(q; E ∪ B(q, r0)). The abnormal boundary points are of the
following two kinds, according to whether they can be approached from above by
points in E.

D 2.7. If there is some r1 < r0 such that H∗(q, r1) ∩ E = ∅, then q is called a
singular boundary point. In this case, H(q, r1) = B(q, r1) ∩ E. On the other hand if, for
every r < r0, we have H∗(q, r) ∩ E , ∅, then q is called a semisingular boundary point.

The set of all normal boundary points of E is denoted by ∂nE, that of all abnormal
points by ∂aE, that of all singular points by ∂sE, and that of all semisingular points by
∂ssE. Thus ∂E = ∂nE ∪ ∂aE and ∂aE = ∂sE ∪ ∂ssE.

D 2.8. The essential boundary ∂eE is defined by

∂eE = ∂nE ∪ ∂ssE = ∂E\∂sE.

L 2.9. Let p0 ∈ E, and put Λ = Λ(p0; E). Then ∂eΛ ⊆ ∂eE and ∂ssΛ ⊆ ∂ssE. If
q ∈ ∂nΛ ∩ ∂aE, there is an open half-ball H(q, r1) such that H(q, r1) ∩ Λ = ∅.
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P. The first two parts are given in [16, Lemma 1], and its corollary.
For the last part, since q ∈ ∂aE, there is an open half-ball H(q, r0) ⊆ E. If there was

a sequence {qk} in H(q, r0) ∩ Λ such that qk→ q as k→∞, we would have

Λ(qk; H(q, r0)) ⊆ Λ(qk; E) ⊆ Λ(p0; E) = Λ

for all k, which implies that

H(q, r0) =

∞⋃
k=1

Λ(qk; H(q, r0)) ⊆ Λ,

contrary to the hypothesis that q ∈ ∂nΛ. Hence there is no such sequence, and so there
is r1 < r0 such that H(q, r1) ∩ Λ = ∅. �

3. Upper and lower PWB solutions

The next definition details what we mean by the Dirichlet problem for the heat
equation. It is the same as that in [16], but different from that in, for example, [3].

D 3.1. Let f ∈C(∂eE). We say that a temperature u on E is a classical
solution of the Dirichlet problem for f if both

lim
(x,t)→(y,s)

u(x, t) = f (y, s) for all (y, s) ∈ ∂nE,

and
lim

(x,t)→(y,s+)
u(x, t) = f (y, s) for all (y, s) ∈ ∂ssE.

Given this definition, our upper and lower classes for the PWB method are as given
in the following definition.

D 3.2. Let f be a function on ∂eE. The upper class determined by f , denoted
by UE

f , consists of all lower bounded hypertemperatures on E that satisfy

lim inf
(x,t)→(y,s)

w(x, t) ≥ f (y, s) for all (y, s) ∈ ∂nE,

and
lim inf

(x,t)→(y,s+)
w(x, t) ≥ f (y, s) for all (y, s) ∈ ∂ssE.

The lower class determined by f , denoted by LE
f , consists of all upper bounded

hypotemperatures on E that satisfy

lim sup
(x,t)→(y,s)

w(x, t) ≤ f (y, s) for all (y, s) ∈ ∂nE,

and
lim sup

(x,t)→(y,s+)
w(x, t) ≤ f (y, s) for all (y, s) ∈ ∂ssE.
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D 3.3. The function UE
f = inf{w : w ∈ UE

f } is called the upper solution for f
on E, and LE

f = sup{w : w ∈ LE
f } is called the lower solution for f on E.

For elementary results about upper and lower solutions, the reader is referred to [16,
Lemmas 24 and 26].

Let p0 ∈ E, and put Λ = Λ(p0; E). Then ∂eΛ ⊆ ∂eE by Lemma 2.9. Therefore, if f
is a function on ∂eE, the classes UΛ

f and LΛ
f are defined. Our next lemma shows that

these classes are related in a convenient and natural way.

L 3.4. Let f be a function on ∂eE, let p0 ∈ E, and put Λ = Λ(p0; E). Then UΛ
f

is precisely the class of restrictions to Λ of the members of UE
f , and LΛ

f is that of the

restrictions to Λ of the members of LE
f . Hence UΛ

f is the restriction to Λ of UE
f , and

LΛ
f is that of LE

f .

P. The result for the lower classes and lower solutions is the dual of that for the
upper classes and upper solutions, so we give details only for the latter.

Given any hypertemperature w ∈ UΛ
f , we define a function w̄ on E by putting

w̄(p) =


w(p) if p ∈ Λ,

+∞ if p ∈ E\Λ,
lim inf
q→p,q∈Λ

w(q) if p ∈ ∂Λ ∩ E.

We claim that w̄ ∈ UE
f . Clearly w̄ is lower semicontinuous and lower bounded on E.

It remains to show that, given any point p ∈ E and any ε > 0, we can find a positive
number c < ε such that the inequality w̄(p) ≥ L(w̄; p; c) holds. Clearly this holds if
p ∈ E\∂Λ, so suppose that p ∈ E ∩ ∂Λ. Since ∂eΛ ⊆ ∂eE by Lemma 2.9, p ∈ ∂sΛ.
Therefore we can find r0 > 0 such that H(p, 2r0) = B(p, 2r0) ∩ Λ. We now choose
c0 > 0 such that the closed heat cylinder ∆(q; c) ⊆ Λ whenever q ∈ H(p, r0) and c ≤ c0.
Then, for any c ≤ c0,

w̄(p) = lim inf
q→p,q∈Λ

w(q) ≥ lim inf
q→p,q∈Λ

L(w; q; c) = lim inf
q→p,q∈Λ

L(w̄; q; c) ≥ L(w̄; p; c),

by Fatou’s lemma and the translation invariance of the caloric measures for heat
cylinders. Hence w̄ is a hypertemperature on E.

We now take any point (y, s) ∈ ∂eE. If (y, s) < ∂Λ, then

lim inf
(x,t)→(y,s)

w̄(x, t) = +∞≥ f (y, s).

If (y, s) ∈ ∂sΛ then (y, s) ∈ ∂ssE and

lim inf
(x,t)→(y,s+)

w̄(x, t) = +∞≥ f (y, s).

If (y, s) ∈ ∂ssΛ, then (y, s) ∈ ∂ssE by Lemma 2.9, and

lim inf
(x,t)→(y,s+)

w̄(x, t) = lim inf
(x,t)→(y,s+)

w(x, t) ≥ f (y, s).
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If (y, s) ∈ ∂nΛ, then

lim inf
(x,t)→(y,s)

w̄(x, t) = lim inf
(x,t)→(y,s)

w(x, t) ≥ f (y, s).

Hence w̄ ∈ UE
f , and so w is the restriction to Λ of a function in UE

f .
We now show that, given any hypertemperature v ∈ UE

f , its restriction to Λ belongs
to UΛ

f . Obviously v is a lower bounded hypertemperature on Λ. Let q = (y, s) ∈ ∂eΛ.
Then either q ∈ ∂ssΛ ⊆ ∂ssE, or q ∈ ∂nΛ ⊆ ∂eE, by Lemma 2.9. In the former case,

lim inf
(x,t)→(y,s+),(x,t)∈Λ

v(x, t) ≥ lim inf
(x,t)→(y,s+),(x,t)∈E

v(x, t) ≥ f (y, s).

If q ∈ ∂nΛ ∩ ∂nE, then

lim inf
(x,t)→(y,s),(x,t)∈Λ

v(x, t) ≥ lim inf
(x,t)→(y,s),(x,t)∈E

v(x, t) ≥ f (y, s).

Finally, if q ∈ ∂nΛ ∩ ∂ssE, then there is δ > 0 such that H(q, δ) ⊆ E, but for all r > 0
we have H(q, r)\Λ , ∅. If there is a sequence {qk} of points in H(q, δ) ∩ Λ such that
qk→ q as k→∞, then

Λ ⊇

∞⋃
k=1

Λ(qk; H(q, δ)) = H(q, δ),

a contradiction. There is therefore no such sequence, and hence there is a half-ball
H(q, η) contained in Rn+1\Λ. It follows that

lim inf
(x,t)→(y,s),(x,t)∈Λ

v(x, t) ≥ lim inf
(x,t)→(y,s+),(x,t)∈E

v(x, t) ≥ f (y, s).

Hence the restriction of v to Λ belongs to UΛ
f . �

We now recall [17, Theorem 10]. Here, and subsequently, by a circular cylinder we
mean a set of the form B × ]a, b[, where B is a ball in Rn and −∞ < a < b < +∞. The
result states that, if w is a subtemperature on E, and D is a circular cylinder such that
D ⊆ E, then the Poisson integral u on D\∂nD of the restriction of w to ∂nD exists, and
the function πDw, defined on E by putting

πDw =

{
u on D\∂nD,
w on E\(D\∂nD),

is a subtemperature which majorizes w on E, and is a temperature on D\∂nD. This is
used in the following definition, which is taken from [17, p. 210].

D 3.5. We call a nonempty family F of supertemperatures on E a saturated
family if it satisfies the two conditions:

(a) if v, w ∈ F , then v ∧ w ∈ F (where v ∧ w denotes the pointwise minimum of v
and w);

(b) if w ∈ F , and D is a circular cylinder such that D ⊆ E, then πDw ∈ F .
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The next lemma replaces [16, Lemma 23], whose proof I no longer find convincing.

L 3.6. Let f be a function on ∂eE. If there are points p0, q0 ∈ E such that q0 ∈

Λ(p0; E), UE
f (p0) < +∞, and UE

f (q0) > −∞, then UE
f is a temperature on Λ(q0; E).

P. We put Λ = Λ(p0; E), and note that, by Lemma 3.4, we need to show that UΛ
f

is a temperature on Λ(q0; Λ) = Λ(q0; E).
Since UE

f (p0) < +∞, we can find a hypertemperature w0 ∈ U
E
f such that w0(p0) <

+∞. By Lemma 2.5, w0 is a supertemperature on Λ. By Lemma 3.4, the restriction of
w0 to Λ belongs to UΛ

f , and so we can write UΛ
f = inf F , where F is the class of all

supertemperatures that belong to UΛ
f .

We show that F is a saturated family of supertemperatures on Λ. Let u, v ∈ F . Then
u ∧ v is a lower bounded supertemperature on Λ. Moreover, whenever (y, s) ∈ ∂nΛ and
(x, t)→ (y, s) with (x, t) ∈ Λ,

lim inf(u ∧ v)(x, t) = (lim inf u(x, t)) ∧ (lim inf v(x, t)) ≥ f (y, s);

and similarly whenever (y, s) ∈ ∂ssΛ and (x, t)→ (y, s+). Hence u ∧ v ∈ F . We now
take any function w ∈ F , and any circular cylinder D such that D ⊆ Λ. Then the
function πDw, defined relative to Λ, is a supertemperature on Λ, and is lower bounded
by the same lower bound as w. Furthermore, since the compact set D ⊆ Λ and πDw = w
on Λ\D, the boundary behaviour of πDw is the same as that of w. Therefore πDw ∈ F ,
and so F is a saturated family of supertemperatures on Λ.

Because q0 ∈ Λ and UΛ
f (q0) > −∞, it follows from [17, Theorem 11] that UΛ

f is a
temperature on Λ(q0; Λ) = Λ(q0; E), as required. �

C 3.7. Let f be a function on ∂eE. If there is a point p0 ∈ E such that LE
f (p0)

and UE
f (p0) are both finite, then LE

f and UE
f are temperatures on Λ(p0; E).

P. Since LE
f (p0) > −∞, we can find a hypotemperature u ∈ LE

f such that u(p0) >
−∞. By Lemma 2.5, u is a subtemperature on Λ(p0; E), and in particular is finite
on a dense subset F of Λ(p0; E). Therefore −∞ < u(q) ≤ LE

f (q) ≤ UE
f (q) for all

q ∈ F. Since UE
f (p0) < +∞, it follows from Lemma 3.6 that UE

f is a temperature on⋃
q∈F Λ(q; E) = Λ(p0; E).
Applying this result to − f , we obtain the result for LE

f . �

L 3.8. Let { f j} be an increasing sequence of functions on ∂eE, let f = lim j→∞ f j,
and suppose that UE

fm
> −∞ on E for some m. If p0 is a point in E such that

UE
f j

(p0) < +∞ for all j, then

UE
f = lim

j→∞
UE

f j

on Λ(p0; E).

P. The sequence {UE
f j
} is increasing on E, and UE

f j
≤ UE

f on E for all j. Therefore

lim j→∞ UE
f j
≤ UE

f on E, and we may suppose that UE
f j
> −∞ on E for all j.
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Suppose that p0 ∈ E and U f j (p0) < +∞ for all j. For each j, Lemma 3.6 and our
supposition that UE

f j
> −∞ on E imply that UE

f j
is a temperature on Λ(p; E) for all

p ∈ Λ(p0; E), and thus on Λ(p0; E) itself. We put Λ = Λ(p0; E), and note that by
Lemma 3.4, UE

f j
= UΛ

f j
on Λ. We take any p1 ∈ Λ and any ε > 0. For each j, we can

find a hypertemperature w j ∈ U
Λ
f j

such that

w j(p1) − UΛ
f j

(p1) < 2− jε.

Since each function UΛ
f j

is a temperature on Λ, lim j→∞ UΛ
f j

is a hypertemperature

on Λ. Moreover, since each function w j − UΛ
f j

is a nonnegative hypertemperature on Λ,

the same is true of
∑∞

j=1(w j − UΛ
f j

), and hence of the function

v = lim
j→∞

UΛ
f j

+

∞∑
j=1

(w j − UΛ
f j

).

For each k,
v ≥ UΛ

fk + (wk − UΛ
fk ) = wk,

so that v is lower bounded on Λ and

lim inf
p→q

v(p) ≥ fk(q)

for all q ∈ ∂eΛ, where the limits are taken in the appropriate sense according to whether
q ∈ ∂nΛ or q ∈ ∂ssΛ. It follows that (in the appropriate sense)

lim inf
p→q

v(p) ≥ f (q)

for all q ∈ ∂eΛ, so that v ∈ UΛ
f and hence v ≥ UΛ

f . In particular,

UΛ
f (p1) ≤ v(p1) ≤ lim

j→∞
UΛ

f j
(p1) +

∞∑
j=1

2− jε = lim
j→∞

UΛ
f j

(p1) + ε.

This holds for all ε > 0, so that

UΛ
f (p1) ≤ lim

j→∞
UΛ

f j
(p1) ≤ UΛ

f (p1).

Since p1 is an arbitrary point of Λ, the result is established. �

D 3.9. We say that a function f on ∂eE is resolutive for E if LE
f = UE

f and is a
temperature on E. In this case, we define S E

f = LE
f = UE

f to be the PWB solution for f
on E.

L 3.10. Let f be a function on ∂eE. If, for each point q ∈ E, we can find a point
p ∈ Λ∗(q; E) such that LE

f (p) and UE
f (p) are equal and finite, then f is resolutive for E.
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P. Because LE
f (p) and UE

f (p) are both finite, Corollary 3.7 shows that LE
f and UE

f
are temperatures on the neighbourhood Λ(p; E) of the arbitrary point q ∈ E, and hence
on the whole of E. Therefore the function v = LE

f − UE
f is a nonpositive temperature on

E. Since v(p) = 0, it follows from the strong maximum principle that v = 0 on Λ(p; E),
and hence v(q) = 0. Thus v = 0 on E, and so f is resolutive for E. �

4. The caloric measure on the essential boundary

Given any subset S of Rn+1, we denote by C(S ) the class of all continuous, real
valued functions on S .

The caloric measure arises in a familiar way.

T 4.1. Given any point p ∈ E, there is a unique nonnegative Borel measure µE
p

on ∂eE such that the equality

S E
f (p) =

∫
∂eE

f dµE
p

holds for every f ∈C(∂eE). Moreover, µE
p (∂eE) = 1.

P. Any function f ∈C(∂eE) has a PWB solution S E
f on E, by [16, Theorem 32].

If f , g ∈C(∂eE) and α, β ∈ R, then

S E
α f +βg = S E

α f + S E
βg = αS E

f + βS E
g ,

so that the mapping f 7→ S E
f (p) is a linear functional on C(∂eE). Furthermore, if f ≥ 0

and w ∈ UE
f , then

lim sup
(x,t)→(y,s)

w(x, t) ≥ f (y, s) ≥ 0

for all (y, s) ∈ ∂nE, and
lim sup

(x,t)→(y,s+)
w(x, t) ≥ f (y, s) ≥ 0

for all (y, s) ∈ ∂ssE, so that w ≥ 0 on E by [16, Theorem 30]. Hence UE
f ≥ 0 on E, so

that the linear functional is nonnegative. It now follows from the Riesz representation
theorem that there is a unique nonnegative Borel measure µE

p on ∂eE such that
S E

f (p) =
∫
∂eE

f dµE
p for every f ∈C(∂eE). In particular, if f (q) = 1 for all q ∈ ∂eE,

then S E
f = 1 on E, so that 1 = S E

f (p) =
∫
∂eE

dµE
p = µE

p (∂eE). �

D 4.2. Given any point p ∈ E, the completion of the measure µE
p of

Theorem 4.1 is called the caloric measure relative to E and p. It will also be denoted
by µE

p . A function on ∂eE will be called µE
p -measurable if it is measurable with respect

to the completed measure.

L 4.3. Let p0 ∈ E, and put Λ = Λ(p0; E). Then for any point p ∈ Λ, the caloric
measure µE

p is supported in ∂eΛ, and µΛ
p is the restriction to ∂eΛ of µE

p .
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P. Applying Theorem 4.1 on Λ,

S Λ
f (p) =

∫
∂eΛ

f dµΛ
p

for any point p ∈ Λ and any function f ∈C(∂eΛ). Since ∂eΛ is a closed subset of
∂eE, we can extend any such f to a function f̄ ∈C(∂eE). Then an application of
Theorem 4.1 on E gives

S E
f̄ (p) =

∫
∂eE

f̄ dµE
p .

By Lemma 3.4, S E
f̄
(p) = S Λ

f (p) for p ∈ Λ, and hence

S Λ
f (p) =

∫
∂eE

f̄ dµE
p .

This equality is independent of the choice of f̄ , so that µE
p (∂eE\∂eΛ) = 0 and

S Λ
f (p) =

∫
∂eΛ

f dµE
p .

The uniqueness of the caloric measure now gives the result. �

L 4.4. Let f be a lower finite, lower semicontinuous function on ∂eE. Then

LE
f (p) = UE

f (p) =

∫
∂eE

f dµE
p

for all p ∈ E, and if UE
f < +∞ on E then f is resolutive for E.

P. We take an increasing sequence { f j} of functions in C(∂eE) that converges
pointwise to f on ∂eE. By [16, Theorem 32 ], each function f j is resolutive for E
so that, in particular, S E

f j
is finite valued on E for all j. Therefore, by Lemma 3.8,

UE
f = lim

j→∞
S E

f j

on E. Furthermore, S E
f j
≤ LE

f on E for all j, so it follows that UE
f ≤ LE

f on E. Since we

always have LE
f ≤ UE

f on E, equality holds. By Theorem 4.1, for all p ∈ E,

LE
f (p) = UE

f (p) = lim
j→∞

S E
f j

(p) = lim
j→∞

∫
∂eE

f j dµE
p =

∫
∂eE

f dµE
p .

Finally, since UE
f ≥ S E

f1
> −∞ on E, it follows from Lemma 3.6 that UE

f is a
temperature on E if it is upper finite, so that f is resolutive for E in this case. �

L 4.5. Let p0 ∈ E, and let f be a function on ∂eE. Given any number A > UE
f (p0),

we can find a lower finite, lower semicontinuous function g on ∂eE, such that f ≤ g on
∂eE and UE

g (p0) < A. Given any number B < LE
f (p0), we can find an upper finite, upper

semicontinuous function h on ∂eE, such that h ≤ f on ∂eE and LE
h (p0) > B.
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P. Since UE
f (p0) < A, we can find a function w ∈ UE

f such that w(p0) < A. We
define a function g on ∂eE by putting

g(y, s) = lim inf
(x,t)→(y,s)

w(x, t)

for all (y, s) ∈ ∂nE, and
g(y, s) = lim inf

(x,t)→(y,s+)
w(x, t)

for all (y, s) ∈ ∂ssE. Then g is lower bounded and lower semicontinuous on ∂eE. Since
w ∈ UE

f , we also have g ≥ f on ∂eE. Finally, we note that w ∈ UE
g , which implies that

UE
g (p0) ≤ w(p0) < A.
The second part follows by applying the first part to − f . �

T 4.6. Let p ∈ E, and let f be a function on ∂eE.

(a) If
∫
∂eE

f dµE
p exists, then

UE
f (p) = LE

f (p) =

∫
∂eE

f dµE
p . (4.1)

(b) Conversely, if UE
f (p) = LE

f (p) and is finite, then f is µE
p -integrable (and (4.1)

holds).

P. (a) We prove that (4.1) holds for increasingly general classes of functions.
If f is the characteristic function χA of a relatively open subset A of ∂eE, then (4.1)

follows from Lemma 4.4.
We denote by B the σ-algebra of all Borel subsets of ∂eE, and by F the class of all

sets A ∈ B for which (4.1) holds when f = χA. We prove that F = B. We know that F
contains all the relatively open subsets of ∂eE, so we can prove that F = B by showing
that F is a σ-algebra. Clearly ∂eE ∈ F . Suppose that A ∈ F , so that

µE
p (A) =

∫
∂eE

χA dµE
p = UE

χA
(p) = LE

χA
(p).

We denote by Ac the complement of A in ∂eE. Then, using Theorem 4.1,

µE
p (Ac) = 1 − µE

p (A) = 1 − UE
χA

(p) = LE
1 (p) + LE

−χA
(p) ≤ LE

χAc (p) ≤ UE
χAc (p)

≤ UE
1 (p) + UE

−χA
(p) = 1 − LE

χA
(p) = 1 − µE

p (A) = µE
p (Ac).

Therefore equality holds throughout, and hence

LE
χAc (p) = UE

χAc (p) = µE
p (Ac) =

∫
∂eE

χAc dµE
p .

Thus Ac ∈ F . We now let {F j} be an expanding sequence of sets in F , and put
F =
⋃∞

j=1 F j. Then 1 = LE
1 ≥ LE

χF
≥ LE

χF j+1
≥ LE

χF j
≥ LE

0 = 0 for all j. Since UE
χF j

is finite
on E for all j, it therefore follows from Lemma 3.8 that

LE
χF

(p) ≥ lim
j→∞

LE
χF j

(p) = lim
j→∞

UE
χF j

(p) = UE
χF

(p) ≥ LE
χF

(p).
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Hence

LE
χF

(p) = UE
χF

(p) = lim
j→∞

UE
χF j

(p) = lim
j→∞

µE
p (F j) = µE

p (F) =

∫
∂eE

χF dµE
p ,

so that F ∈ F . It follows that F is a σ-algebra, and hence F = B.
Now we extend (4.1) to the characteristic functions of all µE

p -measurable sets. Let A
be a µE

p -measurable set. Then we can write A = F ∪ Y for some Borel set F and some
subset Y of a Borel set Z with µE

p (Z) = 0. Then µE
p (A) = µE

p (F), and

LE
χF

(p) ≤ LE
χA

(p) ≤ UE
χA

(p) ≤ UE
χF∪Z

(p) ≤ UE
χF

(p) + UE
χZ

(p).

Since Z, F ∈ B,

UE
χZ

(p) =

∫
∂eE

χZ dµE
p = 0,

and (4.1) with f = χF . Hence

LE
χA

(p) = UE
χA

(p) = UE
χF

(p) =

∫
∂eE

χF dµE
p = µE

p (F) = µE
p (A) =

∫
∂eE

χA dµE
p .

Thus (4.1) holds with f = χA.
Our next step is to extend (4.1) to all nonnegative, µE

p -measurable, simple functions
on ∂eE. Suppose that f can be written in the form f =

∑k
i=1 αiχAi , for some positive

numbers α1, . . . , αk and µE
p -measurable sets A1, . . . , Ak. Then (4.1) holds for each

function χAi , and therefore

k∑
i=1

αiµ
E
p (Ai) =

k∑
i=1

αiL
E
χAi

(p) ≤ LE
f (p) ≤ UE

f (p) ≤
k∑

i=1

αiU
E
χAi

(p) ≤
k∑

i=1

αiµ
E
p (Ai).

Hence

LE
f (p) = UE

f (p) =

k∑
i=1

αiµ
E
p (Ai) =

k∑
i=1

αi

∫
∂eE

χAi dµE
p =

∫
∂eE

f dµE
p ,

so that (4.1) holds for f .
We now consider the case where f is an arbitrary nonnegative, µE

p -measurable
function on ∂eE. We write f as the limit of an increasing sequence {g j} of nonnegative,
µE

p -measurable, simple functions on ∂eE. Since (4.1) holds for each function g j,

UE
g j

(p) =

∫
∂eE

g j dµE
p →

∫
∂eE

f dµE
p .

Moreover,
LE

f (p) ≥ lim
j→∞

LE
g j

(p) = lim
j→∞

UE
g j

(p).

Each function UE
g j

is bounded, and hence Lemma 3.8 can be used to show that
lim j→∞ UE

g j
(p) = UE

f (p) ≥ LE
f (p). It follows that (4.1) holds in this case.
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Finally, we let f be an arbitrary µE
p -measurable function for which

∫
∂eE

f dµE
p exists.

Then (4.1) holds for the positive and negative parts of f , so that∫
∂eE

f dµE
p = UE

f +(p) − LE
f −(p) = UE

f +(p) + UE
− f −(p) ≥ UE

f (p),

and also ∫
∂eE

f dµE
p = LE

f +(p) − UE
f −(p) = LE

f +(p) + LE
− f −(p) ≤ LE

f (p) ≤ UE
f (p).

Now (4.1) follows in the general case.
(b) Since UE

f (p) is finite, it follows from Lemma 4.5 that, given any positive integer
j, we can find a lower finite, lower semicontinuous function g j on ∂eE such that f ≤ g j

on ∂eE and

UE
g j

(p) < UE
f (p) +

1
j
.

Furthermore, because LE
f (p) is finite, Lemma 4.5 also shows that we can find an upper

finite, upper semicontinuous function h j on ∂eE such that h j ≤ f on ∂eE and

LE
h j

(p) > LE
f (p) −

1
j
.

We put
g = inf

j
g j, h = sup

j
h j.

By Lemma 4.4,

UE
f (p) = inf

j
UE

g j
(p) = inf

j

∫
∂eE

g j dµE
p ≥

∫
∂eE

g dµE
p ,

and

LE
f (p) = −UE

− f (p) = −inf
j

UE
−h j

(p) = −inf
j

∫
∂eE

(−h j) dµE
p

= sup
j

∫
∂eE

h j dµE
p ≤

∫
∂eE

h dµE
p .

Hence

LE
f (p) ≤

∫
∂eE

h dµE
p ≤

∫
∂eE

g dµE
p ≤ UE

f (p) = LE
f (p) ∈ R,

so that h = g µE
p -almost everywhere on ∂eE. Since g and h are Borel measurable, it

follows that there is a Borel set Z such that µE
p (Z) = 0 and h = f = g on (∂eE)\Z. All

subsets of Z are µE
p -measurable, so that f is a µE

p -measurable function and

LE
f (p) ≤

∫
∂eE

f dµE
p ≤ UE

f (p) = LE
f (p) ∈ R.

Thus f is µE
p -integrable. �
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C 4.7. Let f be a Borel measurable function on ∂eE. If both UE
f and LE

f are
finite on E, then f is resolutive for E and

S E
f (p) =

∫
∂eE

f dµE
p

for all p ∈ E.

P. We choose any point p ∈ E. If f is Borel measurable, then f + is µE
p -measurable,

so that Theorem 4.6(a) gives

UE
f +(p) = LE

f +(p) =

∫
∂eE

f + dµE
p .

Since UE
f (p) < +∞, there is a hypertemperature w ∈ UE

f such that w(p) < +∞, and since
w is lower bounded on E, there is a number α such that w + α ∈ UE

f + . Therefore
UE

f +(p) < +∞, and obviously UE
f +(p) > −∞. Since p is an arbitrary point of E,

Lemma 3.6 now shows that UE
f + is a temperature on E, so that f + is resolutive for

E, and

S E
f +(p) =

∫
∂eE

f + dµE
p . �

This result holds if f is replaced by − f . Therefore f = f + − f − is resolutive, and

S E
f (p) = S E

f +(p) − S E
f −(p) =

∫
∂eE

f + dµE
p −

∫
∂eE

f − dµE
p =

∫
∂eE

f dµE
p .

C 4.8. Let f be a function on ∂eE. The following statements are equivalent:

(a) f is resolutive for E;
(b) given any point q ∈ E, we can find a point p ∈ Λ∗(q; E) such that f is µE

p -
integrable;

(c) f is µE
p -integrable for all p ∈ E.

If these statements hold, then

S E
f (p) =

∫
∂eE

f dµE
p

for all p ∈ E.

P. If statement (a) holds, then Theorem 4.6(b) shows that statement (c) holds also.
If (c) holds, then obviously (b) holds too. Now suppose that (b) holds, and let q ∈ E.
Then we can find a point p ∈ Λ∗(q; E) such that f is µE

p -integrable, so that

LE
f (p) = UE

f (p) =

∫
∂eE

f dµE
p
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by Theorem 4.6(a), and the integral is finite. It now follows from Lemma 3.10 that (a)
holds, and so the equivalence of the three statements is established.

Finally, if statement (a) holds, then

S E
f (p) =

∫
∂eE

f dµE
p

for all p ∈ E, by Theorem 4.6. �

It follows from Corollary 4.8 that, if A is a subset of ∂eE which is µE
p -measurable

for all p ∈ E, then its characteristic function χA is resolutive and S E
χA

(p) = µE
p (A) for

all p ∈ E. Therefore, if µE
p0

(A) = 0 for some point p0 ∈ E, then µE
p (A) = 0 for all

p ∈ Λ(p0; E), by the minimum principle.

5. Caloric measure null sets

Caloric measure null sets are the negligible subsets of the essential boundary.

D 5.1. A subset Z of ∂eE is called a caloric measure null set for E if µE
p (Z) = 0

for all p ∈ E.

Any polar subset Z of ∂eE is a caloric measure null set for E. For, by [16,
Lemma 25] (which remains true if E is unbounded), UE

χZ
= UE

0 = 0 on E, so that χZ is
resolutive. Therefore Theorem 4.6(b) shows that χZ is µE

p -integrable and

0 = UE
χZ

(p) =

∫
∂eE

χZ dµE
p = µE

p (Z)

for all p ∈ E.
If Z is any caloric measure null set for E, then Theorem 4.6(a) shows that χZ is

resolutive, with S E
χZ

(p) = 0 for all p ∈ E.
We now give a criterion for a set to be a caloric measure null set in terms of the

boundary singularities of supertemperatures.

T 5.2. Let Z be a subset of ∂eE. Then Z is a caloric measure null set for E if
and only if the following condition is satisfied.

For each point p0 ∈ E, there is a nonnegative supertemperature u on Λ(p0; E) such
that

lim
(x,t)→(y,s)

u(x, t) = +∞ (5.1)

for all points (y, s) ∈ Z ∩ ∂nΛ(p0; E), and

lim
(x,t)→(y,s+)

u(x, t) = +∞ (5.2)

for all points (y, s) ∈ Z ∩ ∂ssΛ(p0; E).
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P. We fix a point p0 ∈ E, and put Λ = Λ(p0; E). If there is a function u on Λ as
described in the statement, then for every ε > 0 we have εu ∈ UΛ

χZ
. Therefore UΛ

χZ
≤ εu,

and if we make ε→ 0 we obtain UΛ
χZ

= 0 on the dense set of points of Λ where u
is finite. It now follows from Lemma 3.6 that UΛ

χZ
is a temperature on Λ, so that

UΛ
χZ

(p) = 0 for all p ∈ Λ. By Lemma 3.4, UΛ
χZ

is the restriction to Λ of UE
χZ

, and
so it follows that UE

χZ
= 0 on Λ(p0; E) for every p0 ∈ E, and thus on E itself. Now

Theorem 4.6 shows that

µE
p (Z) =

∫
∂eE

χZ dµE
p = UE

χZ
(p) = 0

for all p ∈ E, so that Z is a caloric measure null set.
Now we suppose, conversely, that Z is a caloric measure null set for E. If p0 ∈ E,

then S E
χZ

(p0) = 0 so that, for each j ∈ N, we can find u j ∈ U
E
χZ

such that u j(p0) < 2− j.
We put u =

∑∞
j=1 u j on E, and note that u(p0) ≤ 1. Then u is a hypertemperature on

E, and a supertemperature on Λ = Λ(p0; E) by Lemma 2.5. If (y, s) ∈ Z ∩ ∂nΛ, then
either (y, s) ∈ ∂nE or (y, s) ∈ ∂ssE, by Lemma 2.9. In the former case,

lim inf
(x,t)→(y,s),(x,t)∈Λ

u(x, t) ≥
∞∑
j=1

lim inf
(x,t)→(y,s),(x,t)∈E

u j(x, t) = +∞,

so that (5.1) holds. In the latter case, we put q = (y, s) and note that there is an
open half-ball H(q, r1) such that H(q, r1) ∩ Λ = ∅, by Lemma 2.9. Therefore, if
(x, t)→ (y, s) with (x, t) ∈ Λ, then (x, t)→ (y, s+). Hence

lim inf
(x,t)→(y,s),(x,t)∈Λ

u(x, t) ≥
∞∑
j=1

lim inf
(x,t)→(y,s+),(x,t)∈E

u j(x, t) = +∞,

so that (5.1) again holds. Finally, if (y, s) ∈ Z ∩ ∂ssΛ, then (y, s) ∈ Z ∩ ∂ssE by
Lemma 2.9, and (5.2) follows by a similar estimation. �
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