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The article discusses statistical inference in parametric models for panel data. The
models feature dynamics of a general nature, individual effects, and possible ex-
planatory variables. The focus is on large-cross-section inference on Gaussian
pseudo maximum likelihood estimates with temporal dimension kept fixed, partially
complementing and extending recent work of the authors. We focus on a particular
kind of initial condition but go on to discuss implications of alternative initial con-
ditions. Some possible further developments are briefly reviewed.

1. INTRODUCTION

The proliferation of econometric panel data sets has prompted considerable devel-
opment in the modeling of such data and consequent methods of point estimation
and statistical inference, with associated theoretical justification. The literature
goes back a long way and includes also much work by statisticians under the
heading of longitudinal data. A fundamental monograph is Hsiao (2014).

In general, we describe a panel data set as a rectangular array of scalars yit ,
i = 1, . . . ,N, t = 0,1, . . . ,T, so we have observations on N cross-sectional units
at T + 1 consecutive, equally spaced points of time, along with perhaps observ-
able explanatory variables. Except for the very simplest of models, such as linear
regression under classical conditions, only asymptotic justification of statistical
models is feasible. Mirroring the longitudinal character of many data sets, where
T can be very small, even T = 2, it is often most reasonable to develop asymptotic
theory with N → ∞ but T kept fixed. However, theory that requires N to diverge
is problematic when, for example, the model for yit incorporates an additive, un-
observed, individual effect parameter or random variable ζi . Thus, the number of
unknowns increases with N, indeed there are precisely N such ζi . This is the ‘in-
cidental parameters’ problem pointed out by Neyman and Scott (1948), and sev-
eral approaches have been suggested for dealing with it, and with more general
versions of the problem. Typically, these involve some procedure for eliminating,
or approximately eliminating, the ζi (which are commonly regarded as nuisance
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parameters), leaving us to study features of interest in a transformed or modified
model.

These features typically include one or more of the following: explanatory vari-
ables (modeled parametrically or nonparametrically), instantaneous temporal ef-
fects (such as an unknown additive quantity varying over time), cross-sectional
dependence, and modeling of temporal dependence. Many econometric panel data
models have described the latter in terms of autoregressive (AR) models or autore-
gressive moving average (ARMA) models, to include the possibility of an I (1)
unit root, reflecting the preoccupation with unit roots in much of the macroecono-
metric time series literature. The literature on AR and ARMA panel data models
is now very well developed, including much work on unit root testing, modify-
ing econometric time series methods (for a recent review see Moon, Perron, and
Phillips, 2015). Some of it concerns asymptotics with N → ∞ but T kept fixed,
but also there is work, motivated by some data sets, which entails T → ∞ and N
fixed, or with both T → ∞ and N → ∞, including with N increasing at some
rate as a function of T or vice versa; the precise form of the model often dictates
what type of asymptotics is possible or desirable.

Despite the popularity of AR models, there is in principle any number of dy-
namic models, even any number which nest I (1) behaviour. One such class which
has been studied a good deal in the time series literature is that of fractional mod-
els. Whereas AR models cover certain I (0) processes (when the AR coefficient
lies in the stationary region) as well as certain I (δ) processes for any integer δ,
and also explosive processes, fractional processes describe certain I (δ) processes
for real values of δ. These can include negative δ, to describe antipersistence or
noninvertibility, but the main interest has been in moderately positive values of
δ, such as δ ∈ (0,2], where δ ∈ (0,1/2) implies stationarity and δ ≥ 1/2 implies
nonstationarity. The most striking difference between AR models and fractional
models with respect to statistical inference is as follows: whereas in an AR setting
the limit distribution as T → ∞ of statistics such as LS estimates of the AR co-
efficient α are asymptotically normally distributed with T 1/2 norming rate when
|α| < 1, and have a nonstandard limit distribution with rate T when α = 1 (and
different behaviours again when α= −1 and |α|> 1), in fractional models, on the
other hand, there exist estimates (which have an approximate Gaussian maximum
likelihood interpretation and corresponding efficiency properties) of the memory
parameter δ, which are asymptotically normal with norming rate T 1/2 whatever
the value of δ (see Hualde and Robinson, 2011a). This latter property is due to
an essential ‘smoothness’ of the fractional model. Thus, whereas testing α = 1
against α �= 1 typically involves a nonstandard approximate distribution, testing
δ = 1 against δ �= 1 involves a standard approximate distribution.

Motivated by this time series experience, Robinson and Velasco (2015, 2017)
have developed asymptotic statistical inference on certain panel data models with
fractional dynamics. All their asymptotics is based on T diverging, with N al-
lowed to be either fixed or increasing with T . The requirement that T → ∞ in
the simple model of Robinson and Velasco (2015) (hereafter RV) is due to the use
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of an approximation to the Gaussian pseudo likelihood and the need for the ef-
fect of an initial condition to be asymptotically negligible. The work of Robinson
and Velasco (2017) in a more general model needs T → ∞ not only for that same
reason but also because of the nonparametric modeling of (possibly time-varying)
individual effects and the nonparametric estimation of the cross-sectional covari-
ance matrix. Fractional modeling of panel data has also been studied by Hassler,
Demetrescu, and Tarcolea (2011). Fractional models might also be used in place
of AR and the ARMA ones used by, e.g., Ejrnaes and Browning (2014), for in-
come dynamics.

However, as with AR-based modeling, it is possible to develop theory that is
based on N diverging with T fixed, as in the classical longitudinal data setting.
This seems particularly feasible when there is no cross-sectional dependence,
whence we can appeal essentially to a central limit theorem for a weighted sum of
N independent random variables, rather than (in the T → ∞ theory) to a central
limit theorem for a sum of dependent or approximately whitened time series ob-
servations. It might be argued that in the time series ‘long memory’ literature, in
which fractional models have been extensively used, it is often considered natural
to expect that T be large. However, parametric fractional models generate formu-
lae for point estimates and other statistics for any T, just as AR models do, and it
seems equally legitimate to study them in the fixed T case. Using a similar esti-
mation approach to ours for a model with AR dynamics, Han and Phillips (2013)
found peculiarities in the objective function, with implications for asymptotic the-
ory with T diverging, that are removed in asymptotic theory with N diverging.

The distinctive properties of AR and fractional time series models alluded to
above all arise in the asymptotic T → ∞ regime, and when T is kept fixed in a
panel data setting they are no longer relevant. Thus, in the N → ∞, fixed T case
essentially similar asymptotic properties would arise from any number of param-
eterizations of time series dynamics. We consider a modeling strategy which is
general in this sense, extending work for particular parameterizations in the fixed
T case, and complementing some of the work which depends on a diverging T . In
particular, the article partly complements RV, like them incorporating individual
effects but also including explanatory variables as well as generalizing the dy-
namics and relying on diverging N rather than T ; the explanatory variables could
include period-fixed effects accounting for any potential trend or level change. As
usual, on the one hand, parsimony in modeling is desirable, on the other, mis-
specification is to be avoided, and our asymptotic theory can be applied in model
testing (e.g., by Wald, likelihood-ratio, and Lagrange multiplier type tests) as well
as in interval estimation.

One additional issue which we explore is the generalization of initial condi-
tions. A stationary time series process, such as a linear process, is typically mod-
eled over all time points in Z ={0,±1, . . .}. But allowance for nonstationary dy-
namics of a process requires initial conditions (on the process prior to the obser-
vation period) to ensure the variance remains finite at any time point t, even if
it diverges as t → ∞. For an AR(1) process (with a possible unit root in mind),
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it suffices to impose an initial condition on the process at a single t, e.g., that it
is zero at t = −1. But for fractional processes, possible nonstationarity requires
in general a condition on an infinite past, e.g., that the process takes zero values
for t < −1. (The ‘e.g.’ is important here, because the condition might equally
be imposed only for t < −m for any integer m ≥ 1.) But the choice of m is
part of the model specification in that an incorrect choice can lead to inconsis-
tent estimation of parameters of interest, particularly when T is kept fixed in the
asymptotics.

The following section describes our dynamic model with fixed effects and pos-
sible regressors (under the simplest, and most usual, kind of initial conditions that
cover fractional models, for example). Section 3 employs one of the standard ap-
proaches to eliminating individual effects, first differencing. Section 4 develops
Gaussian pseudo maximum likelihood estimation of unknown parameters, mo-
tivated by its asymptotic efficiency when Gaussianity holds and its retention of
consistency and asymptotic normality, with the same norming, under more gen-
eral conditions. The conditions, and strong consistency and asymptotic normal-
ity properties, are described in Section 5 (with proofs left to the final Sections
9 and 10, the latter focussing on the evaluation of the asymptotic variance ma-
trix under Gaussianity). Section 6 contains a Monte Carlo study of finite sample
performance, while Section 7 discusses modifications to the methodology under
alternative initial conditions. Section 8 summarizes and briefly lists possible ex-
tensions to modeling and inference.

2. DYNAMIC PANEL MODEL WITH INDIVIDUAL EFFECTS
AND REGRESSORS

The observable scalar array {yit } and q ×1 vector array {xit } are supposed to be
related by the model

λt (L; θ0)
(
yit − ζi − x ′

itβ0
) = εit , (1)

εit = 0, t < 0, (2)

xit = 0, t < 0, (3)

for i = 1, . . . ,N, t = 0,1, . . . ,T ≥ 2, with the prime denoting transposition.
The ingredients of (1) are described as follows. For each t , the εit are indepen-

dent and identically distributed (iid) across i = 1, . . . ,N. For each i , the εit are
uncorrelated across t = 0,1, . . . ,T, with mean zero and unknown, finite, positive
variance σ 2

0 . The ζi are unobserved fixed effects. The xit consists of explanatory
variables. The p ×1 vector θ0 and q ×1 vector β0 have unknown elements whose
estimation is of interest, though in an important special case β0 = 0 a priori, so
the model contains no explanatory variables. Denoting by L the lag operator, and
θ any admissible value of θ0, we define the operator
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λt (L; θ)=
t∑

j=0

λj (θ) L j ,

where the λj (θ) are known functions of θ with λ0 (θ) = 1 for all θ. The trun-
cation means that the yit need not be defined for t < 0. For fixed T , the λj (θ)
can be chosen quite arbitrarily, but leading choices are associated with regarding
λt (L; θ) as truncating the expansion

λ(L; θ)=
∞∑

j=0

λj (θ) L j , (4)

where λ(L; θ) is one of the AR operators originally arising in the stationary time
series literature, though here no stationarity assumptions are imposed on parame-
ters, especially as T remains fixed in our theory.

For example, taking θj to be the j th element of θ :
(i) The autoregressive moving average or autoregressive integrated moving av-

erage operator

λ(L; θ)=
(

1 −
p1∑

j=1
θj L j

)(
1 +

p∑
j=p1+1

θj L j−p1

)−1

, (5)

where 0 ≤ p1 ≤ p, with the understanding that the first and second sums are,
respectively, void when p1 = 0 (the pure MA case) and p1 = p (the pure AR case).
The dynamic panel data literature has heavily stressed the AR(1) case p1 = p = 1,
in which there has been great interest in testing the unit root hypothesis θ01 = 1,
taking θ0 j to be the j th element of θ0.
(i i) The fractional operator (see Adenstedt, 1974)

λ(L; θ)=
θ, (6)

with 
= 1 − L, so p = 1. The operator
δ has the expansion


δ =
∞∑

j=0

πj (δ) L j , πj (δ)= �( j − δ)
�(−δ)�( j + 1)

,

for noninteger δ > 0, while for integer δ = 0,1, . . . ,
πj (δ)= 1( j = 0,1, . . . ,δ)(−1) j δ (δ− 1) · · · (δ− j + 1)/j !, taking 0/0 = 1. This
case has been studied by RV, as has the hybrid model
(i i i)

λ(L; θ)=
θ1

(
1 −

p1+1∑
j=2

θj L j−1

)(
1 +

p∑
j=p1+2

θj L j−1−p1

)−1

, (7)
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where the first and second sums are, respectively, void when p1 = 0 and p1 = p −
1. This is known as a fractional ARIMA model (FARIMA(p1,θ1, p − p1 − 1)) so
(6) is FARIMA(0,θ,0) .

Condition (2) is an initial condition, which ensures that yit − ζi − x ′
itβ0 has

bounded variance even if λt (L; θ0)
−1 εit has infinite variance when (2) does not

hold but instead the conditions on εit in the second paragraph of the current
section hold for all t = 0,±1,±2, . . . , as is the case for ‘nonstationary’ filters

λ(L; θ), for example in (5) when at least one zero of 1 −
p1∑

j=1
θj z j falls on or in

the unit circle on the complex plane or in (6) or (7) when θ ≥ 1/2 or θ1 ≥ 1/2,

respectively (for the latter model even when all zeroes of 1−
p1+1∑
j=2

θj z j−1 fall out-

side the unit circle). An initial condition such as (2) would not be needed were
we to assume λ(L; θ0) is a ‘stationary’ filter, but the dynamic panel literature has
paid a good deal of attention to the possibility of nonstationarity, in particular an
AR unit root. Condition (3) is a similar initial condition on xit .

We single out two important restrictions that are implied by our assumptions.
One is that each cross-sectional unit has the same dynamics. The other is that
conditional on the ζi and xit , yit is cross-sectionally independent. In this connec-
tion, our asymptotic theory entails N diverging while T is kept fixed, so the ζi

cannot be consistently estimated and their presence is an obstacle to consistent
estimation of θ0 and β0, indicating an incidental parameters problem which the
following section commences by eliminating.

3. DIFFERENCED MODEL

Of possible approaches to eliminate the ζi , we employ the popular one of first
temporal differencing. Given (1) and (2), and defining

vit = λ−1
t (L; θ0)εit , t = 0, . . . ,T, i = 1, . . . ,N, (8)

we solve and then take first differences,


yit −
x ′
itβ0 =
vit , t = 1, . . . ,T, i = 1, . . . ,N. (9)

In general, the 
vit are not white noise, so (as in RV in the fractional case) we
attempt a full whitening in order to estimate the parameters. For any θ, β, define

zit (θ,β)= τt−1 (L; θ)(
yit −
x ′
itβ

)
, t = 1, . . . ,T, i = 1, . . . ,N, (10)

where

τt (L; θ)= 1 +
t∑

j=1
τj (θ) L j ,

for

τj (θ)= λj (1; θ)=
j∑

i=0
λi (θ) ,
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so that τt (L; θ) truncates the expansion

τ (L; θ)=
∞∑
j=0
τj (θ) L j

of

τ (L; θ)= λ(L; θ)/
.
Then (cf. RV), for t ≥ 1,

zit (θ,β)= τt−1 (L ; θ)
x ′
it (β0 −β)+ τt−1 (L ; θ)
vit

= τt (L ; θ)
x ′
it (β0 −β)+ (

τt−1 (L ; θ)− τt (L ; θ))
x ′
it (β0 −β)

+τt (L ; θ)
vit + (
τt−1 (L ; θ)− τt (L ; θ))
vit

= λt (L ; θ) x ′
it (β0 −β)− τt (θ)
x ′

i0 (β0 −β)+λt (L ; θ)vit − τt (θ)
εi0

= λt (L ; θ){vit − x ′
it (β−β0)

}− τt (θ)
{
εi0 − x ′

i0 (β−β0)
}
, (11)

with the last step imposing (2) and (3). Thus,

zit (θ,β0)= λt (L; θ)vit − τt (θ)εi0 (12)

and

zit (θ0,β0)= εit − τt (θ0)εi0. (13)

As (13) indicates, the zit (θ0,β0) are not white noise across t . As noted in RV,
τt (θ) = O

(
t−θ1

)
as t → ∞, in the case of models (ii) and (iii) of the preceding

section (where, for example, τ (L; θ) = 
θ1−1 in (ii)). Thus in these cases this
corrupting term is negligible under stationary and nonstationary long memory,
θ1 > 0, as t → ∞, with faster the decay greater the memory, though on the
other hand for negative dependence, θ1 < 0 (not discussed by RV), the corrupting
term dominates as t → ∞, while for θ1 = 0, it is generally of exact order O(1).
The latter is also the case for stationary versions of model (i). In general, with T
fixed there is a nonnegligible source of bias incurred by employing methods that
assume the zit (θ0,β0) are uncorrelated across t .

If explanatory variables xit are present, then in view of (10) we adopt the con-
vention that in the original model (1) no element of xit is constant across t, so
that any intercept is incorporated in ζi . It is also important to acknowledge from
(9) that in the presence of xit , under the conditions we will impose to justify
the more elaborate estimates proposed in the following section, β0 can unsur-
prisingly instead be consistently and asymptotically normally estimated by, for
example, ordinary least squares regression of the 
yit on the 
xit . Moreover,
the norming factor in the central limit theorem under the same N → ∞, fixed T
regime is N1/2, like our estimates. In view of the autocorrelation in the errors vit

which the general dynamics in (1) anticipate, ordinary least squares will gener-
ally be inefficient, but generalised least squares, employing an estimated T × T
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error covariance matrix estimated simply from sums of squares and products of
N least squares residuals without recourse to the parametric dynamics imposed in
(1), will be asymptotically more efficient. Moreover, under conditions which im-
ply that the limiting covariance matrix of the estimates proposed in the following
section is block diagonal with respect to θ0 and β0, these estimates of β0 will be
asymptotically no more efficient than the computationally far simpler generalized
least squares. However, the estimates of the following section seem worthwhile
because the model (like RV’s) may not include any xit ; because estimation of pa-
rameters θ0 can help in inference on dynamics, such as possible nonstationarity
and might be used in forecasting; because with correct specification of dynamics
in (1) with p small relative to T our method may have better finite sample proper-
ties than the generalized least squares approach described above; and because (1)
allows a comparison between our asymptotics and those of RV.

4. GAUSSIAN PSEUDO MAXIMUM LIKELIHOOD ESTIMATION

Gaussian pseudo maximum likelihood estimation is widely used in statistics and
econometrics due to its asymptotic efficiency under Gaussianity and its consis-
tency robustness under much broader conditions. It has been used in panel data
models by, e.g., Hsiao, Pesaran, and Tahmiscioglu (2002). Given (10) define for
i = 1, . . . ,N the T ×1 vectors

zi (θ,β)= (zi1 (θ,β), . . . ,ziT (θ,β))
′

=ϒ (L; θ)(
yi −
xiβ),

with the T ×1 vector, T ×q matrix and T × T diagonal matrix operator


yi = (
yi1, . . . ,
yiT )
′ ,


xi = (
xi1, . . . ,
xiT )
′ ,

ϒ (L; θ)= diag (τ0 (L; θ), . . . ,τT −1 (L; θ)) .
From (13), zi (θ0,β0) has zero mean vector and covariance matrix σ 2

0�(θ0) ,
where

�(θ)= IT + τ (θ)τ ′ (θ) , (14)

introducing the T ×1 vector

τ (θ)= (τ1 (θ) , . . . ,τT (θ))
′

and with IT the T × T identity matrix. Thus, define (cf. RV)

σ̂ 2 (θ,β)= 1

NT

N∑
i=1

z′
i (θ,β)�(θ)

−1 zi (θ,β) (15)

and

L (θ,β)= |�(θ) |1/T σ̂ 2 (θ,β) . (16)
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The Gaussian pseudo maximum likelihood estimate (PMLE) is(̂
θ, β̂

) = arg min
θ∈�,β L (θ,β) , (17)

where � is a compact subset of Rp.
For computations note from RV that

�(θ)−1 = IT − τ (θ)τ ′ (θ)
|�(θ)| , (18)

|�(θ) | = 1 + τ ′ (θ)τ (θ), (19)

while of course we can concentrate out β, defining

β (θ)=
(

N∑
i=1
(ϒ (L; θ)
xi )

′�(θ)−1ϒ (L; θ)
xi

)−1 N∑
i=1
(ϒ (L; θ)
xi )

′�(θ)−1ϒ (L; θ)
yi ,

so that

θ̂ = argmin
θ∈� L

(
θ, β̂ (θ)

)
, β̂ = β̂

(̂
θ
)
.

5. ASYMPTOTIC STATISTICAL PROPERTIES

To establish strong consistency of
(̂
θ, β̂

)
, we introduce the following assumptions.

Assumptions A. (i) The {εit ,xit ,1 ≤ i ≤ N, 1 ≤ t ≤ T } are iid across i.

(ii) E (ε1t | x1s,1 ≤ s ≤ T )= 0, a.s., 0 ≤ t ≤ T .

(iii) E (ε1sε1t | x1r ,1 ≤ r ≤ T )= σ 2
0 δst , a.s., 0 ≤ s, t ≤ T, for σ 2

0 <∞ and δst

the Kronecker delta.

(iv) xit does not contain an intercept and E ‖x1t‖2 <∞, 0 ≤ t ≤ T .

(v) θ0 ∈�, which is compact.

(vi) For 1 ≤ t ≤ T , the λt (θ) are continuous in θ.

(vii) For at least one t ∈ [1,T ], λt (θ) �= λt (θ0) for all θ ∈�−{θ0} .
(viii) The matrix

E
(
(ϒ (L; θ0)
x1)

′�(θ0)
−1ϒ (L; θ0)
x1

)
is positive definite.

Assumption (i) ensures that a strong law of large numbers for iid random vari-
ables can be used. Assumptions (ii) and (iii) require strong exogeneity of xit . One
or more elements of xit might be deterministic and entail trending, e.g., linearly
in t (because T is fixed), but xit cannot include incidental tends. The first part
of assumption (iv) merely means that any intercept is regarded as incorporated in
the individual effects ζi , which are differenced out. Assumptions (v) and (vi) per-
mit uniform convergence arguments and are readily checked, and, for example,�
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can be chosen to cover the possibility of an AR unit root in model (5). Assump-
tions (vii) and (viii) ensure identifiability, with (viii) ruling out multicollinearity
in regressors and (vii) being automatically satisfied in case of model (6), and sat-
isfied in case of (5) and (7) if p ≤ T and the autoregressive and moving average
operators have no zeros in common.

THEOREM 1. Let (1), (2) and Assumptions A hold. Then, as N → ∞, almost
surely (a.s.)

θ̂ → θ0, β̂ → β0.

To develop a useful asymptotic normality result, as is standard we use Theorem
1 and the mean value theorem (see (A.10) in the proofs in Section 9 below) and
consider the vector of first partial derivatives of L (θ,β) evaluated at θ0,β0. Now
(cf. (A.12) of Section 9 below) define, for j = 1, . . . , p,

r1 j i (θ,β)= 1

T
|�T (θ)| 1

T

(
1

T
tr

(
�−1 (θ)� j (θ)

)
z′

i (θ,β)�(θ)
−1 zi (θ,β)

−z′
i (θ,β)�

−1 (θ)� j (θ)�−1 (θ) zi (θ,β)

+2 ż j ′
i (θ,β)�

−1 (θ) zi (θ,β)
)
. (20)

Here,

� j (θ)= (
∂/∂θj

)
�(θ)= τ̇ j (θ)τ (θ)′ + τ (θ) τ̇ j (θ)′ (21)

with

τ̇ j (θ)= (
∂/∂θj

)
τ (θ), (22)

and ż j ′
i (θ,β) is the j th row of

ż′
i (θ,β)= (∂/∂θ) z′

i (θ,β),

namely, the transpose of(
∂/∂θj

)
(ϒ (L; θ) (
yi −
xiβ))= � j (L; θ)(
yi −
xiβ),

where

� j (L; θ)= (
∂/∂θj

)
ϒ (L; θ)

= diag
(
τ̇

j
0 (L; θ), . . . , τ̇ j

T −1 (L; θ)
)

with τ̇ j
0 (L; θ)≡ 0 and for t ≥ 1

τ̇
j
t (L; θ)= (

∂/∂θj
)
τ t (L; θ)=

t∑
k=1
τ̇

j
k (θ) Lk ,
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in which the τ̇ j
k (θ) are given by τ̇ j (θ)=

(
τ̇

j
1 (θ) , . . . , τ̇

j
T (θ)

)′
. Next define (cf.

(A.13) of Section 9 below)

r2i (θ,β)= − 2

T
|�(θ)| 1

T (ϒ (L; θ)
xi)
′�(θ)−1 zi (θ,β),

and then,

ri (θ,β)= (
r1i (θ,β)

′,r21i (θ,β)
′)′ ,

and

C (θ,β)= 1

N

N∑
i=1

ri (θ,β)ri (θ,β)
′.

Now define, for j,k = 1, . . . , p,

b1 j ki (θ,β)= 1

T
|�(θ)| 1

T

(
σ̂ 2 (θ,β) tr

(
�−1 (θ)�k (θ)�−1 (θ)� j (θ)

)
− 1

T
σ̂ 2 (θ,β) tr

(
�−1 (θ)� j (θ)

)
tr

(
�−1 (θ)�k (θ)

)
−2żk′

i (θ,β)�
−1 (θ)� j (θ)�−1 (θ) zi (θ,β)

−2ż j ′
i (θ,β)�

−1 (θ)�k (θ)�−1 (θ) zi (θ,β)

+2ż j ′
i (θ,β)�

−1 (θ) żk
i (θ,β)

)
and the q ×q matrix

B2i (θ)= 2 |�(θ)| 1
T (ϒ (L; θ)
xi )

′�(θ)−1ϒ (L; θ)
xi/T .

Let B1i (θ,β) be the p × p matrix with jkth element b1 j ki (θ,β) and define the
block diagonal matrix

B (θ,β)= 1

N

N∑
i=1

(
B1i (θ,β) 0

0 B2i(θ)

)
.

Alternative formulae might be used in place of B1i (θ,β), but ours is a relatively
simple one. For computations note again (19), (18) and, for example,

�−1 (θ)� j (θ)�−1 (θ) = � j (θ)− τ (θ)τ (θ)′

|�(θ)| � j (θ0)−� j (θ0)
τ (θ)τ (θ)′

|�(θ)|
+ τ (θ)τ (θ)

′

|�(θ)|
(
τ̇ j (θ)τ (θ)′ + τ (θ) τ̇ j (θ)′

) τ (θ)τ (θ)′
|�(θ)|

= 1
|�(θ)|

(
τ̇ j (θ)τ (θ)′ + τ (θ) τ̇ j (θ)′

)
−2

τ̇ j (θ)′ τ (θ)
|�(θ)|2 τ (θ)τ (θ)′ ,
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tr
(
�−1 (θ0)�

j (θ0)
)

= tr

((
IT − τ (θ)τ (θ)′

|�(θ)|
)(
τ̇ j (θ)τ (θ)′ + τ (θ) τ̇ j (θ)′

))
= 2τ̇ j (θ)′ τ (θ)

(
1− τ (θ)′ τ (θ)

|�(θ)|
)

= 2
τ̇ j (θ)′ τ (θ)

|�(θ)| .

The proof of asymptotic normality is based on the following additional
conditions.

Assumptions B. (i) Eε4
1t <∞.

(ii) For 1 ≤ t ≤ T the λt (θ) are twice continuously differentiable in θ.

(iii) θ0 is an interior point of �.

(iv) In a neighbourhood of θ0,β0, the matrix E B (θ,β) is nonsingular.

(v) The matrix EC (θ0,β0) is nonsingular.

Condition (i) seems unavoidable. Condition (ii) can be verified by inspection.
Condition (iii) is standard. Our other conditions ensure existence of the matrices
in (iv) and (v), with (v) being a local identifiability condition, which, along with
(iv), may be checkable for specific choices of the λt (θ) .

THEOREM 2. Let (1), (2) and Assumptions A and B hold. Then, as
N → ∞,(

N B
(̂
θ, β̂

)
C

(̂
θ, β̂

)−1
B
(̂
θ, β̂

))1/2
(
θ̂ − θ0

β̂−β0

)
→d N(0, Ip+q),

where D1/2 denotes the unique nonnegative definite square root of a positive def-
inite matrix D.

Under normality of ε1t , θ̂ , β̂ are asymptotically effi-
cient and we may replace the studentizing factor in the

theorem by N1/2 (T/2) σ̂−1
(̂
θ
) ∣∣�T

(̂
θ
)∣∣− 1

T C
(̂
θ, β̂

)1/2
or by

N1/2 (T/2)1/2 σ̂−1
(̂
θ
)∣∣�T

(̂
θ
)∣∣− 1

2T B
(̂
θ, β̂

)1/2
, the additional normaliza-

tion for C and B correcting for L being proportional to a likelihood, instead of
being a log-likelihood (see Section 10 below). Furthermore, it would be possible
to use restricted versions replacing the elements not in the p × p and q × q
matrices spanning their main diagonals by zeroes, reflecting the asymptotic
independence of θ̂ and β̂. Comparison with Theorem 2 of RV, which covers
models (ii) and (iii) in Section 1 with T → ∞ (but without explanatory variables),
illustrates the much greater complexity of the asymptotic variance matrix based
on N → ∞ and fixed T asymptotics compared to T → ∞ asymptotics. This
can be better understood by inspecting the formulae for ∂L (θ0,β0)/∂θ in the
proof in Section 8, in particular the term (A.15), which is the i th summand
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in its j th element. It contains terms in ε2
it , t = 1, . . . ,T, which can be seen

to make an asymptotically negligible contribution, by a law of large numbers,
only as T → ∞. There are also the terms involving ε2

i0 for which this argument
does not apply, but collecting them together reveals that they make a negligible
contribution. The dominating term in (A.15) as T → ∞ is the penultimate one,
and this is the basis for the central limit theorem of RV. But though their formula
for asymptotic variance estimation is far simpler than ours, ours is still valid for
large T (if N also is large) and might be preferred in case T is feared too small
for RV’s formula to provide a good approximation.

6. FINITE-SAMPLE PERFORMANCE

In this section, we explore by Monte Carlo simulations finite sample performance
especially for estimation of θ0, including our asymptotic variance estimates de-
veloped for finite T in comparison with the asymptotic version of RV obtained
for increasing T, though we also compare our PMLE of β0 with GLS and OLS
estimation.

FIGURE 1. Asymptotic variance of PMLE estimates for the FARIMA(0,δ0,0)
model (6), δ0 ∈ [0,1.5] in horizontal axis, each line corresponds to T ∈
{3,4,5,7,10,15,20,40,100,1,000}, from top to bottom.
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TABLE 1. Simulated size t-test N = 100, model (6),
FARIMA(0,θ0,0) . Gaussian innovations. Nominal size
5%

θ0 T BC B C B (BC B)0 Asymp

0.0 20 3.68 2.32 2.51 2.47 9.07
10 4.38 2.78 2.95 2.72 14.53

5 5.48 2.96 3.41 2.56 21.89
4 5.81 3.46 3.65 3.01 24.85
3 7.13 4.58 4.26 3.44 29.07

0.6 20 5.65 5.09 5.07 5.07 11.92
10 5.91 4.93 5.06 5.06 17.91

5 6.51 4.50 5.08 4.72 28.23
4 7.34 4.81 5.77 5.64 33.94
3 6.94 4.69 5.23 5.13 39.75

1.0 20 5.47 4.75 4.82 4.86 6.91
10 6.05 4.79 5.20 5.19 9.05

5 5.54 4.37 4.61 4.65 12.56
4 6.19 4.76 5.18 5.05 15.35
3 5.50 4.35 4.65 4.67 18.70

1.4 20 5.68 4.63 4.92 4.94 6.32
10 6.07 4.94 5.10 5.18 7.89

5 5.54 4.65 4.73 4.83 9.13
4 6.39 4.77 5.32 5.26 11.27
3 6.23 4.83 5.15 5.17 12.91

We initially consider models without regressors, thus estimating θ0 only and
implying a focus on the first diagonal block in B and C.We consider the following
(alternative) studentization factors for θ̂ in Theorem 2:

1.
(

N B
(̂
θ
)

C
(̂
θ
)−1

B
(̂
θ
))1/2

as in Theorem 2, denoted as BC B .

2. N1/2 (T/2) σ̂−1
(̂
θ
) ∣∣�T

(̂
θ
)∣∣− 1

T C
(̂
θ
)1/2

, following the discussion after
Theorem 2 for Gaussian series (setting σ 2

0 = 1 wlog), the factor

(T/2)
∣∣�T

(̂
θ
)∣∣− 1

T correcting for L being only proportional to the likeli-
hood, denoted as C.

3. N1/2 (T/2)1/2 σ̂−1
(̂
θ
) ∣∣�T

(̂
θ
)∣∣− 1

2T B
(̂
θ
)1/2

, exploiting the proportionality
of B0 (θ0) and C0 (θ0) under Gaussianity, denoted as B.

4.
(

N B0
(̂
θ
)

C0
(̂
θ
)−1

B0
(̂
θ
))1/2 = N1/2 (T/2)

∣∣�T
(̂
θ
)∣∣− 1

T C0
(̂
θ
)1/2

= N1/2 (T/2)1/2
∣∣�T

(̂
θ
)∣∣− 1

2T B0
(̂
θ
)1/2

where C0 (θ0) and B0 (θ0) are the
expectations of C (θ0) and B (θ0) under Gaussianity as evaluated in Ap-
pendix B using the same normalizations as in 2. and 3., denoted as (BC B)0 .

5. Asymptotic variance for T → ∞ from RV, denoted as Asymp.
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TABLE 2. Simulated size t-test N = 200, model (6),
FARIMA(0,θ0,0) . Gaussian innovations. Nominal size
5%

θ0 T BC B C B (BC B)0 Asymp

0.0 20 3.02 2.70 2.54 2.67 9.35
10 3.59 2.68 2.69 2.63 14.17

5 4.63 2.91 2.80 2.73 22.29
4 4.34 2.89 2.76 2.61 24.03
3 5.56 3.68 3.60 2.85 29.39

0.6 20 5.57 5.01 5.17 5.12 11.81
10 5.62 4.78 4.94 4.87 17.41

5 5.43 4.76 4.89 4.96 28.35
4 5.98 5.01 5.29 5.09 33.51
3 5.47 4.74 4.73 4.90 40.92

1.0 20 5.44 4.98 5.13 5.13 7.12
10 5.31 4.74 4.92 4.92 8.61

5 5.32 4.57 4.71 4.69 12.61
4 5.44 4.99 4.87 4.85 15.09
3 5.29 4.81 5.00 5.04 18.43

1.4 20 5.40 4.88 5.10 5.09 6.70
10 5.42 4.83 4.91 4.88 7.68

5 5.33 4.76 4.93 4.83 9.59
4 5.85 5.13 5.05 5.06 11.26
3 5.65 4.91 5.16 5.17 13.06

We first calculate in the simple fractional model (6), i.e., FARIMA(0,θ0,0) , the
asymptotic variance (BC B)0 of the PMLE of the memory parameter θ0 computed
for a grid of values of θ0 ∈ [0,1.5] and T ∈ {3,4,5,7,10,15,20,40,100,1,000}.
In Figure 1, we plot T B0 (θ0)

−1 C0 (θ0)B0 (θ0)
−1 to make possible comparisons

with the asymptotic variance of
√

NT
(̂
θ − θ0

)
as T → ∞. The (scaled) asymp-

totic variance decreases very fast with T until T = 20, so we focus in our
Monte Carlo simulations on these values, where the asymptotic variance based
on T → ∞ asymptotics severely underestimates the actual variability. There
is also an important (monotone) dependence of the asymptotic variance on the
persistence of the model for finite T since our estimation method is based on
predifferenced data. Thus, capturing with precision values of θ0 lower that 0.5
seems very challenging, while from about θ0 = 1 upwards the asymptotic vari-
ance shows an almost flat pattern, at least for T ≥ 5. For θ0 = 1.5 and T = 1,000,
the finite T variance (BC B)0 equals 0.6107, which is very close to the asymptotic
one (for T increasing), namely 6/π2 = 0.6079, but for T = 3 it equals 1.0059,
65% larger. However, for θ0 = 0, the finite T = 3 variance is about 13 times larger
than the asymptotic T → ∞ one.

We next explore the performance of the various studentizations in infer-
ence based on Theorem 2 by means of the simulated size of a nominal 5%
Wald test under different model designs. We consider two basic cross-section
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TABLE 3. Simulated size t-test N = 100, model (6),
FARIMA(0,θ0,0) . Exponential innovations. Nominal
size 5%.

θ0 T BC B C B (BC B)0 Asymp

0.0 20 4.36 2.81 2.84 2.37 9.04
10 4.65 3.74 2.88 2.84 14.70
5 6.09 5.24 3.63 3.36 22.45
4 7.14 6.92 4.49 4.26 27.06
3 7.62 10.04 6.30 6.28 32.13

0.6 20 5.77 5.69 5.16 5.20 12.20
10 6.85 7.54 6.59 6.64 20.45
5 6.36 8.22 6.05 6.70 31.71
4 7.03 9.26 6.92 7.49 37.52
3 6.85 9.92 6.50 7.50 45.10

1.0 20 6.14 5.07 5.04 5.10 7.04
10 6.46 5.05 5.17 5.20 9.11
5 7.11 4.44 4.82 4.80 12.62
4 6.88 4.25 4.44 4.47 14.48
3 7.13 4.45 4.76 4.77 18.39

1.4 20 5.84 4.98 4.88 4.91 6.45
10 6.59 5.30 5.44 5.55 8.03
5 6.88 6.13 5.80 5.94 11.03
4 6.69 5.83 5.41 5.55 11.99
3 7.08 6.21 5.98 6.02 14.46

sizes, N = 100,200, and five different values for the time series dimension
T ∈ {3,4,5,10,20}. First, we consider the FARIMA(0,θ10,0) model (6) with
p = 1 and θ10 ∈ {0.0,0.6,1.0,1.4} for Gaussian εit and also for highly asym-
metric exponential innovations for which the Gaussian standardization (BC B)0
should be inappropriate. Then, we consider the FARIMA(1,θ0,0) model (7) with
p = 2 for Gaussian εit and the same values of θ0 with θ20 ∈ {−0.5,0.5} .

In Tables 1 and 2, we report the simulated size for the t-test based on our five
possible standardizations for the Gaussian FARIMA(0,θ0,0)model and N = 100
and 200, respectively. Except for the asymptotic T →∞ standardization (which is
very oversized except for the largest value T = 20 and the most persistent models),
all provide reasonable approximations to the nominal 5% size for both values of
N . The T → ∞ standardization is particularly problematic in the zero-persistence
case θ0 = 0, likely due to bias in estimation based on initially differenced data and
the higher variance as reported in Figure 1.

Tables 3 and 4 deal with the same design but using (centred) exponential in-
novations for which the t-tests based on the first three finite T standardizations
work similarly as for Gaussian innovations. However, the (BC B)0 standardiza-
tion provides a marginally worse simulated size for both values of N , while the
asymptotic one remains unreliable.
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TABLE 4. Simulated size t-test N = 200, model (6),
FARIMA(0,θ0,0) . Exponential innovations. Nominal
size 5%.

θ0 T BC B C B (BC B)0 Asymp

0.0 20 3.06 2.86 2.24 2.51 9.45
10 3.61 3.71 2.72 2.77 14.44
5 4.23 4.79 3.12 3.26 22.36
4 4.84 7.18 4.06 4.45 27.08
3 5.86 9.97 5.43 6.01 32.36

0.6 20 5.41 5.93 5.30 5.44 12.33
10 5.55 6.63 5.89 5.88 19.49
5 5.85 8.77 6.66 7.07 32.26
4 5.60 9.50 6.59 7.16 37.68
3 5.62 11.16 6.94 7.98 46.23

1.0 20 5.59 5.09 4.97 5.03 7.05
10 5.79 4.77 4.79 4.86 8.57
5 5.99 4.72 4.71 4.74 12.18
4 6.43 4.82 4.75 4.79 14.67
3 6.48 4.39 4.59 4.84 18.01

1.4 20 5.80 5.13 5.12 5.12 6.68
10 5.24 5.26 4.98 4.89 7.64
5 6.31 6.26 5.83 5.84 10.77
4 6.39 6.89 6.13 6.25 12.97
3 6.22 6.90 6.02 6.10 15.19

Tables 5 and 6 provide the equivalent results for the Wald test corresponding to
testing the Gaussian FARIMA(1,θ10,0) model, with tables named “a” for θ20 =
0.5, and tables “b” for θ20 = −0.5. Here, the asymptotic standardization is again
unable to approximate the actual variability of the estimates, with the exception
of the (simultaneously) largest N , T , and θ10. The standardizations based on finite
T asymptotic theory have problems for the smallest N, the performance of BC B
being inferior to that of C or B, which in turn is similar to that of (BC B)0.

For the PMLE of β0, we consider the same experimental design and specifica-
tions as for Tables 1–2, while for each i, xit is generated as a univariate Gaussian
FARIMA(0,θx ,0) time series with θx = 0.6 (Tables 7a and 7b) and θx = 1.0 (Ta-
bles 8a and 8b) with innovations having variance equal to that of εit , the results
not being very sensitive to this choice. We do not report parallel results for PMLE
of θ0, because they are very similar to those of Tables 1 and 2, but consider two
alternative estimates of β0. These are OLS and GLS estimates based on first dif-
ferences
yi and
xi , with the GLS estimate using the OLS residuals to estimate
the covariance matrix of
yi −
xiβ.We report simulated bias for β0 = 1 for the
three estimates, relative efficiency with respect to the PMLE based on empirical
mean square error, and simulated size of a Wald test for β0 with 5% nominal size
using the results of Theorem 2 for the PMLE and direct adaptations for the GLS
and OLS estimates.
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TABLE 5a. Simulated size Wald-test N = 100, model
(7), FARIMA(1,θ10,0) , θ20 = 0.5. Gaussian innovations.
Nominal size 5%

θ10 T BC B C B (BC B)0 Asymp

0.5 20 14.55 8.18 8.89 8.26 31.89
10 12.60 7.93 7.21 7.90 34.81

5 14.16 7.69 6.82 7.42 41.45
4 17.46 8.46 8.13 8.18 44.60
3 21.10 9.90 9.95 9.97 49.57

0.6 20 11.68 10.12 10.62 10.56 23.54
10 14.94 12.31 13.25 13.10 34.56

5 14.07 11.63 12.35 12.29 39.08
4 15.07 12.56 13.40 13.49 42.54
3 15.59 12.75 14.27 14.43 43.54

1.0 20 10.80 9.48 9.56 9.63 18.64
10 14.71 12.39 12.94 13.04 29.15

5 13.37 11.02 11.55 11.75 33.68
4 14.23 11.75 12.48 12.43 36.98
3 15.11 12.34 13.45 13.21 38.83

1.4 20 10.54 9.27 9.55 9.59 18.49
10 15.13 12.66 13.23 13.20 28.95

5 13.19 10.90 11.44 11.56 33.22
4 13.54 11.51 12.10 12.13 35.91
3 14.06 11.67 12.45 12.41 37.66

In terms of bias, the three estimates perform similarly, both in terms of mag-
nitude and sign of the bias. The sign can shift with the values of T and θ0 and
the magnitude mainly falls with increasing T and N. The relative efficiency of
GLS is typically higher than 97% for the smallest values of T, but deteriorates
for T = 20 and N = 100, possibly due to the lack of precision in the estimation
of a moderately large covariance matrix of residuals, the results improving sub-
stantially for N = 200. OLS estimates can be very inefficient for θ0 = 0.0 due to
first differencing introducing strong (negative) correlation in the regression error
terms with efficiency deteriorating as T increases from 0.68 (resp. 0.61) for T = 3
to 0.36 (resp. 0.13) for T = 20 and θx = 0.6 (resp. 1.0). However, for other val-
ues of θ0, the relative performance of OLS is more stable across T . For θ0 = 1,
OLS estimation performs similarly to PMLE for both θx = 0.6 and 1.0, as in
this case first differencing is prewhitening exactly the errors. For the other values
of θ0, the relative performance of OLS estimation worsens for the larger value
of θx .

Simulated size is very good for the Wald tests based on the PMLE and OLS es-
timate, improving with N, but not being monotone with T . The GLS-based test is
seriously oversized for the largest values of T (and small N), related with the effi-
ciency problems associated with the dimension of the residual sample covariance
matrix.
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TABLE 5b. Simulated size Wald-test N = 100,model (7),
FARIMA(1,θ10,0) , θ20 = −0.5. Gaussian innovations.
Nominal size 5%

θ10 T BC B C B (BC B)0 Asymp

0.0 20 6.39 3.16 3.84 3.21 10.60
10 8.49 3.79 5.05 3.79 17.71
5 12.27 4.20 5.98 3.86 28.34
4 14.05 5.12 6.29 4.38 32.02
3 16.73 6.82 7.84 5.61 37.52

0.6 20 6.62 5.10 5.24 5.19 13.34
10 7.38 5.23 5.60 5.44 22.89
5 11.00 4.81 6.46 5.09 42.54
4 14.24 5.39 7.62 5.38 50.57
3 21.55 6.41 10.50 6.37 64.83

1.0 20 6.32 5.02 5.12 5.12 7.97
10 6.70 5.20 5.26 5.34 11.33
5 6.08 4.44 4.74 4.73 20.17
4 5.88 4.08 4.23 4.20 27.10
3 7.14 4.39 5.02 4.68 41.06

1.4 20 6.32 5.03 5.16 5.17 7.09
10 6.52 5.14 5.15 5.16 9.39
5 6.44 4.55 4.89 5.06 14.44
4 6.54 4.62 4.76 4.87 18.59
3 6.51 4.52 5.01 4.89 29.18

7. GENERALIZATION OF INITIAL CONDITIONS

Condition (2) is quite drastic, requiring εit = 0 for all t < 0, motivated by non-
stationary versions of fractional models (6) and (7) whereas for the nonstationary
AR(1) covered by (5) it is only necessary to impose a condition on εit for a single
t (for an extensive discussion of initial values in the AR(1) case see Anderson
and Hsiao, 1981). The time series version of (2) (see e.g., Hualde and Robin-
son, 2011a) has sometimes been imposed in the fractional literature with little
discussion, whereas in fact it plays a crucial role in model specification, and con-
sequent asymptotic statistical properties. Also, in a time series context, Johansen
and Nielsen (2010) instead treat initial conditions as bounded constants.

Here, we consider the impact on our panel model by replacing (2) by the con-
dition

εit = 0, a.s. t <−m, (23)

for a specified positive integer m. This condition was considered in a time series
context by Hualde and Robinson (2011b) and Johansen and Nielsen (2016). The
larger m, the closer one appears to get to the initial-condition-free setup usual in
the stationary time series literature. However, (23) for m ≥ 1 is not really a milder
assumption than (2), rather, it replaces εit = 0, −1 ≤ t ≤ −m by the assumption
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TABLE 6a. Simulated size Wald-test N = 200, model
(7), FARIMA(1,θ10,0) , θ20 = 0.5. Gaussian innovations.
Nominal size 5%

θ10 T BC B C B (BC B)0 Asymp

0.0 20 12.82 8.46 8.98 8.41 34.01
10 10.37 7.83 6.84 7.68 37.47

5 10.33 7.27 6.35 7.11 43.07
4 11.67 7.36 6.55 6.86 46.65
3 14.81 7.52 7.42 7.41 52.36

0.6 20 9.19 8.32 8.32 8.33 23.02
10 13.82 12.50 12.92 12.96 37.82

5 13.49 12.27 12.60 12.72 44.75
4 14.19 12.88 13.16 13.15 46.27
3 15.52 13.73 14.39 14.30 45.30

1.0 20 8.01 7.03 7.28 7.32 17.32
10 13.73 12.23 12.82 12.79 31.59

5 13.10 11.60 12.25 12.36 39.93
4 13.86 12.44 12.75 12.79 41.73
3 14.21 12.66 13.17 13.18 41.85

1.4 20 7.89 6.94 7.18 7.18 16.97
10 13.69 12.54 12.97 12.90 31.07

5 13.24 11.70 12.18 12.21 39.34
4 13.66 12.22 12.69 12.69 40.79
3 13.61 12.10 12.60 12.51 40.75

that these εit are iid across i with the same distribution as the iid nondegenerate εit

for t ≥ 0.We retain the initial condition (3) on xit .We now require that T ≥ m +2.
Corresponding to (23), we write in place of (1)

λt+m (L; θ0)
(
yit − ζi − x ′

itβ0
) = εit , (24)

for i = 1, . . . ,N, t = 0,1, . . . ,T, where λt+m (L; θ) = ∑t+m
j=0 λj (θ) L j truncates

λ(L; θ). Now redefine

vit = λ−1
t+m (L; θ0)εit , (25)

and (cf. (11))

zit (θ,β)= τt−1 (L; θ)
x ′
it (β0 −β)+ τt−1 (L; θ)
vit

= τt+m (L; θ)
x ′
it (β0 −β)+ (τt−1 (L; θ)− τt+m (L; θ))
x ′

it (β0 −β)
+τt+m (L; θ)
vit + (τt−1 (L; θ)− τt+m (L; θ))
vit

= λt+m (L; θ)x ′
it (β0 −β)−

t+m∑
j=t
τj (θ)
x ′

i,t− j (β0 −β)

+λt+m (L; θ)vit −
t+m∑
j=t
τj (θ)
vit− j

= λt+m (L; θ){vit − x ′
it (β−β0)

}− τ t+m
t (θ)′
vm

i + τt (θ)x ′
i0 (β−β0) ,
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TABLE 6b. Simulated size Wald-test N = 200, model
(7), FARIMA(1,θ10,0) , θ20 = −0.5. Gaussian innova-
tions. Nominal size 5%

θ10 T BC B C B (BC B)0 Asymp

0.0 20 5.06 3.63 3.74 3.58 11.42
10 6.74 3.53 4.08 3.58 17.83
5 9.25 4.22 5.10 3.78 28.96
4 10.53 4.12 5.04 3.67 32.00
3 12.35 5.51 6.04 4.27 37.92

0.6 20 6.01 5.19 5.16 5.25 13.48
10 6.22 5.09 5.08 5.10 22.92
5 8.29 5.24 6.00 5.22 41.33
4 9.57 4.79 6.03 4.88 49.91
3 15.32 5.71 8.42 5.69 64.41

1.0 20 5.86 5.24 5.08 5.13 8.11
10 5.68 4.77 4.93 4.96 10.99
5 5.48 4.79 4.77 4.78 19.55
4 5.48 4.36 4.51 4.51 25.35
3 5.90 4.59 4.80 4.69 40.57

1.4 20 5.77 5.23 5.28 5.27 7.24
10 5.76 4.85 4.91 4.95 8.71
5 5.51 4.73 4.90 4.83 14.17
4 5.66 4.82 4.95 4.93 17.52
3 5.97 4.80 5.00 4.94 28.66

where

τ t+m
t (θ)= (τt (θ) , . . . ,τt+m (θ))

′

and


vm
i = (


vi0, . . . ,
vi,−m
)′.
.

Thus,

zit (θ,β0)= λt+m (L; θ)vit − τ t+m
t (θ)′
vm

i ,

zit (θ0,β0)= εit − τ t+m
t (θ0)

′
vm
i . (26)

Now for −m ≤ t ≤ 0,


vit = λ−1
t+m (L; θ0)εit −λ−1

t+m (L; θ0)εi,t−1

=
m+t∑

0
φj (θ0)εi,t− j −

m+t−1∑
0

φj (θ0)εi,t− j−1

= εit +
m+t∑

1

(
φj (θ0)−φj−1 (θ0)

)
εi,t− j , (27)
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TABLE 7a. Estimation of slope coefficient β0 : N = 100, xit ∼
FARIMA(0,0.6,0), λ(L; θ) ∼ FARIMA(0,θ0,0) . Gaussian innovations.
Nominal size 5%

Bias Rel. efficiency Size Wald-test
θ0 T PMLE GLS OLS GLS OLS PMLE GLS OLS

0.0 20 0.0002 0.0001 0.0001 0.7957 0.3511 5.47 12.39 5.57
10 –0.0003 –0.0003 –0.0003 0.9081 0.4514 5.24 8.36 5.52
5 –0.0009 –0.0009 –0.0009 0.9574 0.5773 5.58 6.75 5.10
4 0.0004 0.0004 0.0007 0.9633 0.6124 5.42 6.73 5.17
3 –0.0002 –0.0002 –0.0018 0.9726 0.6743 5.69 6.28 5.87

0.6 20 0.0001 0.0000 0.0001 0.8551 0.8574 5.77 11.57 5.67
10 –0.0002 –0.0002 –0.0002 0.9229 0.8629 5.40 7.82 5.39
5 –0.0004 –0.0004 –0.0004 0.9533 0.8752 5.49 6.64 5.00
4 0.0011 0.0010 0.0011 0.9667 0.8828 5.14 5.92 5.01
3 –0.0004 –0.0003 –0.0010 0.9723 0.8969 6.03 6.66 5.85

1.0 20 0.0000 –0.0000 0.0000 0.8622 1.0005 5.69 11.23 5.71
10 –0.0001 –0.0002 –0.0001 0.9260 1.0006 5.30 7.81 5.35
5 –0.0001 –0.0001 –0.0001 0.9511 1.0032 5.40 6.55 5.35
4 0.0013 0.0011 0.0013 0.9664 1.0036 5.15 6.15 5.05
3 –0.0007 –0.0006 –0.0006 0.9718 1.0061 6.06 6.83 5.82

1.4 20 –0.0000 0.0000 –0.0000 0.8532 0.8255 5.44 11.32 5.62
10 –0.0001 –0.0002 –0.0000 0.9233 0.8135 5.26 7.70 5.22
5 0.0000 0.0000 0.0002 0.9500 0.8169 5.36 6.62 5.29
4 0.0012 0.0011 0.0014 0.9654 0.8012 5.03 5.92 5.02
3 –0.0006 –0.0006 –0.0004 0.9715 0.8114 5.94 7.06 5.77

TABLE 7b. Estimation of slope coefficient β0 : N = 200, xit ∼
FARIMA(0,0.6,0), λ(L; θ) ∼ FARIMA(0,θ0,0) . Gaussian innovations.
Nominal size 5%

Bias Rel. efficiency Size Wald-test
θ0 T PMLE GLS OLS GLS OLS PMLE GLS OLS

0.0 20 –0.0003 –0.0004 0.0001 0.9081 0.3571 5.18 7.78 5.03
10 0.0002 0.0002 0.0002 0.9467 0.4409 5.15 6.49 5.32
5 –0.0003 –0.0004 –0.0006 0.9756 0.5654 5.20 5.71 5.32
4 0.0000 0.0002 0.0002 0.9770 0.6092 5.44 5.76 5.41
3 –0.0001 –0.0001 –0.0005 0.9880 0.6767 5.29 5.57 5.00

0.6 20 –0.0001 –0.0001 0.0000 0.9208 0.8541 5.03 7.43 4.97
10 –0.0000 –0.0001 –0.0001 0.9503 0.8553 5.30 6.75 5.32
5 –0.0003 –0.0004 –0.0004 0.9715 0.8657 5.18 5.94 5.33
4 0.0004 0.0005 0.0004 0.9769 0.8786 5.42 5.86 5.46
3 –0.0007 –0.0007 –0.0008 0.9855 0.8907 5.18 5.54 5.10

1.0 20 0.0000 0.0000 0.0000 0.9220 1.0004 5.02 7.40 4.99
10 –0.0002 –0.0002 –0.0002 0.9532 1.0011 5.08 6.50 5.09
5 –0.0002 –0.0003 –0.0002 0.9704 1.0001 5.65 6.20 5.62
4 0.0005 0.0006 0.0005 0.9766 1.0002 5.19 5.68 5.14
3 –0.0009 –0.0009 –0.0009 0.9850 1.0032 4.99 5.51 4.96

1.4 20 0.0000 0.0001 0.0001 0.9210 0.8289 4.91 7.43 5.09
10 –0.0002 –0.0003 –0.0003 0.9522 0.8202 5.00 6.13 5.37
5 –0.0001 –0.0002 –0.0001 0.9718 0.8110 5.45 6.23 5.29
4 0.0005 0.0006 0.0005 0.9778 0.8237 5.15 5.39 4.92
3 –0.0010 –0.0009 –0.0010 0.9866 0.8296 5.09 5.44 4.80
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TABLE 8a. Estimation of slope coefficient β0 : N = 100, xit ∼
FARIMA(0,1.0,0), λ(L; θ) ∼ FARIMA(0,θ0,0) . Gaussian innovations.
Nominal size 5%

Bias Rel. efficiency Size Wald-test
θ0 T PMLE GLS OLS GLS OLS PMLE GLS OLS

0.0 20 0.0001 0.0001 0.0001 0.6832 0.1338 5.52 15.46 5.54
10 –0.0002 –0.0001 –0.0003 0.8884 0.2534 5.60 8.60 5.42
5 –0.0006 –0.0006 –0.0010 0.9562 0.4423 6.04 7.13 5.19
4 0.0001 0.0002 0.0002 0.9611 0.5005 5.59 6.73 5.40
3 –0.0004 –0.0004 –0.0021 0.9765 0.6059 5.95 6.49 5.69

0.6 20 0.0001 0.0001 0.0001 0.8376 0.6514 5.79 11.93 5.78
10 –0.0003 –0.0003 –0.0003 0.9190 0.7220 5.25 8.09 5.34
5 –0.0005 –0.0004 –0.0007 0.9536 0.7984 5.60 6.76 5.20
4 0.0008 0.0007 0.0008 0.9691 0.8313 5.34 6.27 5.04
3 –0.0005 –0.0004 –0.0012 0.9759 0.8584 5.87 6.31 5.56

1.0 20 0.0001 –0.0000 0.0001 0.8605 1.0020 5.58 11.48 5.58
10 –0.0003 –0.0004 –0.0003 0.9228 1.0017 5.38 7.62 5.36
5 –0.0004 –0.0004 –0.0004 0.9519 1.0038 5.28 6.80 5.21
4 0.0012 0.0010 0.0012 0.9671 1.0050 5.02 5.89 5.00
3 –0.0008 –0.0006 –0.0008 0.9735 1.0081 6.16 6.64 6.03

1.4 20 0.0000 –0.0000 –0.0000 0.8397 0.6030 5.50 11.68 5.55
10 –0.0002 –0.0003 –0.0004 0.9187 0.6422 5.32 7.82 5.19
5 –0.0002 –0.0002 –0.0001 0.9495 0.7044 5.42 6.65 5.28
4 0.0013 0.0012 0.0015 0.9646 0.7036 5.08 6.19 5.36
3 –0.0008 –0.0006 –0.0005 0.9719 0.7589 6.15 7.11 6.05

TABLE 8b. Estimation of slope coefficient β0 : N = 200, xit ∼
FARIMA(0,1.0,0), λ(L; θ) ∼ FARIMA(0,θ0,0) . Gaussian innovations.
Nominal size 5%

Bias Rel. efficiency Size Wald-test
θ0 T PMLE GLS OLS GLS OLS PMLE GLS OLS

0.0 20 –0.0002 –0.0002 0.0000 0.8588 0.1335 4.91 8.39 5.14
10 0.0000 0.0000 0.0003 0.9473 0.2452 5.03 6.40 5.42
5 –0.0001 –0.0001 –0.0006 0.9794 0.4288 5.51 5.95 5.18
4 –0.0004 –0.0003 –0.0003 0.9796 0.5010 5.41 5.68 5.26
3 0.0002 0.0002 –0.0002 0.9869 0.5986 5.39 5.54 5.24

0.6 20 –0.0002 –0.0002 –0.0001 0.9182 0.6546 5.19 7.71 5.22
10 0.0001 0.0001 0.0001 0.9499 0.7128 5.23 6.51 5.42
5 –0.0002 –0.0003 –0.0004 0.9763 0.7862 5.24 5.83 5.12
4 –0.0000 0.0000 0.0000 0.9792 0.8215 5.61 6.01 5.35
3 –0.0006 –0.0006 –0.0007 0.9851 0.8537 5.23 5.65 5.18

1.0 20 –0.0001 –0.0001 –0.0001 0.9229 1.0009 5.19 7.51 5.16
10 –0.0000 –0.0001 –0.0000 0.9518 1.0025 5.19 6.61 5.12
5 –0.0003 –0.0004 –0.0003 0.9733 1.0018 5.51 6.14 5.37
4 0.0002 0.0003 0.0002 0.9770 1.0007 5.40 5.86 5.36
3 –0.0011 –0.0010 –0.0010 0.9842 1.0035 5.26 5.68 5.25

1.4 20 0.0000 0.0000 0.0000 0.9173 0.6026 5.04 7.63 4.82
10 –0.0002 –0.0002 –0.0002 0.9517 0.6505 5.07 6.43 5.30
5 –0.0002 –0.0003 –0.0002 0.9710 0.6980 5.52 6.34 5.46
4 0.0004 0.0005 0.0002 0.9769 0.7424 5.32 5.73 5.02
3 –0.0012 –0.0011 –0.0014 0.9857 0.7703 4.98 5.34 4.89
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where the moving average weights φj (θ) are defined by

λ(L; θ)−1 =
∞∑
0
φj (θ) L j (28)

and the second term in (27) is absent for t = −m. Then, we can write


vm
i = U (θ0)ε

m
i ,

where we introduce

εm
i = (

εi0,εi,−1, . . . ,εi,−m
)′

and the (m + 1)× (m + 1) upper-triangular matrix

U (θ)=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 φ1 (θ)− 1 φ2 (θ)−φ1 (θ) . . . φm (θ)−φm−1 (θ)

0 1 φ1 (θ)− 1 . . . φm−1 (θ)−φm−2 (θ)

0 0 1 . . . φm−2 (θ)−φm−3 (θ)

. . . . . . . . . . . . . . .

0 0 0 . . . φ1 (θ)− 1

0 0 0 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It follows from (26) that

zi (θ0,β0)= εi − τm (θ0)U (θ0)ε
m
i ,

where

τm (θ)=
(
τ 1+m

1 (θ) , . . . ,τ T +m
T (θ)

)′
.

Thus, zi (θ0,β0) has covariance matrix σ 2
0�(θ0) , with (14) replaced by

�(θ)= IT + τm (θ0)U (θ0)U (θ0)
′ τm (θ0)

′ . (29)

We can thus employ the same definition of pseudo likelihood L (θ,β) (16) with
the same formula (15) for σ̂ 2 (θ,β) in both cases redefining �(θ) as (29), and
thence the formula (17) for the estimates θ̂ , β̂ that are now based on the initial
condition (23) in place of (2). Writing Wm (θ)= τm (θ)U (θ) , note that by Wood-
bury’s identity

�(θ)−1 = IT − Wm (θ)
(
Im+1 + Wm (θ)

′ Wm (θ)
)−1

Wm (θ)
′

and by Silvester’s identity

|�(θ)| = ∣∣Im+1 + Wm (θ)
′ Wm (θ)

∣∣ ,
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thereby reducing relevant computations to the inverse and determinant of a
(m + 1)× (m + 1)matrix. Asymptotic properties analogous to those of Theorems
1 and 2 will follow under slightly modified assumptions.

If asymptotics with T → ∞ are instead pursued it may be possible to allow
m → ∞ simultaneously. But in practice m must be chosen and the implications
of increasing m will typically be an increase in the variance of yit conditional on
ζi and xit – in particular there will be a monotonic increase with m if all moving
average weights are nonnegative, as in the AR(1) case of (5) with positive θ01 (as
under a unit root) or the long memory case θ0 > 0 of (6). The models for varying
m, m = 0,1, . . . , are nonnested and, for given λ(L; θ), m might be determined
by a suitable model-selection procedure.

There are other possible implications for the choice of initial conditions that
might be studied in our model setting. Hahn (1999) compared semiparametric
efficiency bounds under rival initial conditions. Moon, Perron, and Phillips (2007)
compared initial conditions in unit root testing in panel models with incidental
trends, where T diverges with N. Instead of the zero initial conditions assumed
above, one might consider ones that are heterogeneous across i.

To explore the latter possibility, assume now

εi,−1 = ξi , εit = 0, a.s. t <−1, (30)

where as we plan to eliminate it, no assumptions are required on ξi , as was the
case with ζi . (An analogous argument to that below can apply to the alterna-
tive setting εi0 = ξi , εit = 0, a.s. t < 0, and to ones with more than one het-
erogeneous initial condition.) With the notation in (28), vit = λ−1

t (L; θ0)εit =
∞∑

j=0
φj (θ0)εi,t− j , see (8), we have yit −ζi − x ′

itβ0 =ψit (θ0)+φt+1 (θ0)ξi , where

ψit (θ)=
t∑

j=0
φj (θ)εi,t− j . Thence, from (9),


yit −
x ′
itβ0 =
ψit (θ0)+
φt+1 (θ0)ξi , t = 1, . . . ,T . (31)

If 
φt+1 (θ0) = 0, ξi is eliminated, but assuming that is not the case, form(

yit −
x ′

itβ0
)
/
φt+1 (θ0) = 
ψit (θ0)/
φt+1 (θ0)+ ξi , whence after further

differencing



{(

yit −
x ′

itβ0
)
/
φt+1 (θ0)

} =
{
ψit (θ0)/
φt+1 (θ0)} , t = 2, . . . ,T .

(32)

Noting that
ψit (θ)= εit +
t∑

j=1

φj (θ)εi,t− j , after rearrangement the right-hand

side of (32) can be expressed as


{
ψit (θ0)/
φt+1 (θ0)} =
t∑

j=0
χj t (θ0)εi,t− j ,

where
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χ0t (θ)= 1/
φt+1 (θ) ,

χ1t (θ)=
(

φ1 (θ)


φt+1 (θ)
− 1


φt (θ)

)
,

χj t (θ)=
(

φj (θ)


φt+1 (θ)
− 
φj−1 (θ)


φt (θ)

)
, j = 2, . . . , t .

Now form the (T − 1)×1 vectors

wi (θ,β)=
(



{(

yi2 −
x ′

i2β
)
/
φ3 (θ)

}
, . . . ,


{(

yiT −
x ′

iT β
)
/
φT +1 (θ)

})′
,

γi (θ)=
(

2∑
j=0

χj2 (θ)εi,t− j , . . . ,
T∑

j=0
χ j T (θ)εi,t− j

)′
.

Now γi (θ0) has zero mean vector and covariance matrix σ 2
0� (θ0) , where � (θ)

has (l,m)th element

min(l,m)+1∑
j=0

χj,l+1 (θ)χj+|l−m|,m+1 (θ) .

A PMLE of θ0,β0, based on the transformed model (32) and under the het-
erogeneous initial condition (30), thus minimizes |� (θ) |1/(T −1)σ̃ 2 (θ,β), where

σ̃ 2 (θ,β) = 1
N(T −1)

N∑
i=1
w′

i (θ,β)� (θ)
−1wi (θ,β), cf. (15), (16). Its asymptotic

properties can be derived from similar arguments to those used in proving The-
orems 1 and 2 with the important exception of the identifiability argument. With
respect to this, note that under the simple fractional model (6) for λt (L; θ) with
a fractional unit root, θ0 = 1, in (1) we have 
φt+1 (θ0) = 0 for all t so that ξi

is eliminated from (31). But the practitioner would not know that θ0 = 1 and so
would be inclined to use the procedure based on (32). But this clearly breaks
down at θ = 1 so � must exclude θ = 1 and so it must be assumed that θ0 �= 1.
However, we can cover the possibility of a fractional unit root under, say, the
FARIMA(1,θ1,0) structure (7), where� can be chosen to include θ1 = 1 so long
as it also entails 0< |θ2|< 1.

8. FINAL COMMENTS

We have discussed inference in panel data models with general parametric dy-
namics, individual effects and possible linearly involved explanatory variables,
with asymptotic theory based on cross-sectional dimension N diverging but tem-
poral dimension T remaining fixed. For T → ∞ similarly desirable asymptotic
properties are available but typically with simpler formulae for the large sample
variance matrix of estimates. Obviously, one might wish to consider a modified or
more general panel data model, and given the literature and range of potential ap-
plications, the possibilities are too numerous to list in full. But we briefly mention
some possible developments in connection with our model.
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1. An alternative form of inference is prompted by the rather cumber-
some covariance matrix of Theorem 2. A suitable bootstrap procedure
can avoid this, and since it may achieve an Edgeworth correction is li-
able to have better finite sample properties than first-order asymptotic
inference.

2. Though Theorem 2 does not assume normality of the εit , if normality does
not hold one expects greater efficiency to be achievable by maximum likeli-
hood estimates with respect to a correctly specified nonnormal distribution.
However, not only may these be inconsistent if the density of εit is mis-
specified but also the joint density of the εit − τt (θ0)εi0, t = 1, . . . ,T, is a
convolution of the underlying density of εit , and is thus potentially compli-
cated. In principle, at least, it would be possible to construct semiparametric
estimates that achieve equal efficiency without parameterizing the density of
εit , being adaptive in the sense of Stone (1975) and involving nonparametric
estimation of the relevant density or score function.

3. Our iid (across i) assumption on εit ,xit allows strong consistency of es-
timates to be established under minimal moment conditions. But there is
concern for robustness to departures from some of our assumptions. For ex-
ample, it should be straightforward to extend our proof of consistency to
allow for unconditional heteroscedasticity across i of the εit (heteroscedas-
ticity across t can be incorporated in the model for fixed T ). But our limiting
covariance matrix estimate in Theorem 2 can be robustified with respect to
unconditional heteroscedasticity across i via the nonparametric approach of
Eicker (1963). On the other hand, unanticipated heteroscedasticity entails
loss of efficiency, so more ambitiously one could develop asymptotically
efficient estimates in a semiparametric extension of our model with condi-
tionally (on xit ) heteroscedastic εit , with conditional variances estimated by
nonparametric smoothing (as in, say, Robinson, 1987). Our estimates should
also be consistency-robust to cross-sectional dependence, but valid large-
N, fixed T inference would likely require specification and estimation of a
parametric model for the N × N cross-sectional covariance matrix of the εit ,
based perhaps on a factor or spatial mode1. Likewise relaxation of, respec-
tively, identity of distribution and independence of the xit across i would be
possible. Though we do not assume the εit are independent of the xit , if our
strong exogeneity assumption were relaxed to orthogonality generalized-
method-of-moments estimates can be considered, albeit with some loss in
efficiency.

4. The linearity of the regression component x ′
itβ0 reflects popular practice, but

in our setting it is easily extended to a general nonlinear parametric compo-
nent, since our general dynamics require implicitly defined extremum esti-
mation in any case so our asymptotic proofs can be straightforwardly mod-
ified. Nonparametric regression would entail a more challenging extension,
but here we might consider a series approximation to the regression com-
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ponent, where, in asymptotic theory, the number of terms would increase
slowly with N.

5. Arellano and Bonhomme (2012) considered a static regression model, i.e.,
with λt (L; θ0)≡ 1 in (1), but with possibly AR errors εit , in which our indi-
vidual effect term ζi is generalized to z′

itϕi , where zit is a vector of observ-
able explanatory variables and ϕi a vector of unknown individual-specific
parameters. They discussed inter alia, nonparametric identification and es-
timation of the conditional distribution of ϕi . It may be of some interest
to develop an extension to our dynamic model. Of course, many paramet-
ric, semiparametric, and nonparametric approaches can be applied to panel
data, bearing in mind the need to reconcile issues of correct specification,
parsimony, and curse-of-dimensionality, and reflecting absolute and relative
sizes of N and T .

6. Fractional modeling could be applied to errors of static models, in place
of the popular ARMA modeling. In particular, issues of identification and
estimation might be studied when the shocks to the errors comprise both
a permanent and transitory component, as in e.g., Ejrnaes and Browning
(2014).

7. Our ζi could also be extended to incidental or heterogeneous trends (see
Moon and Phillips, 1999; Moon, Perron, and Phillips, 2007). Here, for ex-
ample, a polynomial trend with individual-specific slope might be elimi-
nated by higher order differencing and then a modification of our PMLE
developed.
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APPENDIX A: Theorem Proofs

Proof of Theorem 1. We have

σ̂ 2 (
θ, β̂ (θ)

) = 1

N T

N∑
i=1

(
ϒ (L; θ)(
yi −
xi β̂ (θ)

))′
�(θ)−1 (

ϒ (L; θ)(
yi −
xi β̂ (θ)
))
,

which straightforwardly equals

1

NT

N∑
i=1

(ϒ (L ; θ)
yi )
′�(θ)−1 (ϒ (L ; θ)
yi )

− 1

NT

N∑
i=1

(ϒ (L ; θ)
yi )
′�(θ)−1ϒ (L ; θ)
xi

×
(

1

NT

N∑
i=1

(ϒ (L ; θ)
xi )
′�(θ)−1ϒ (L ; θ)
xi

)−1

× 1

NT

N∑
i=1

(ϒ (L ; θ)
xi )
′�(θ)−1ϒ (L ; θ)
yi

= A(y, y,θ)− A(y, x,θ)A(x, x,θ)−1 A(x, y,θ), (A.1)
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where, for example,

A(x, y,θ)= 1

NT

N∑
i=1

(ϒ (L ; θ)
xi )
′�(θ)−1ϒ (L ; θ)
yi .

With the same kind of notation, (A.1) straightforwardly equals

A(v,v,θ)− A(v, x,θ)A(x, x,θ)−1 A(x,v,θ).

Assumption A(vi) and finiteness of T implies the τt (θ) are continuous in θ, and thus
uniformly continuous on the compact set �. Also, from (18), (19), �(θ)−1 is continuous
in θ, and thus uniformly continuous on the compact set �.

Now, from finiteness of T and conditions Assumptions A(i)–(vi), as N → ∞, uniformly
in θ ∈�, a.s.

A(v,v,θ)→ E A(v,v,θ), A(v, x,θ)→ E A(v, x,θ)= 0, A(x, x,θ)→ E A(x, x,θ),

(A.2)

where the last expression is positive definite from condition (viii). Here, pointwise conver-
gence follows from Assumption A(1), while equicontinuity, and thus uniform convergence,
follow since Assumption A(vi) and finiteness of T implies the τt (θ) are continuous in θ,
and thus uniformly continuous on the compact set �, while from (18), (19), �(θ)−1 is
continuous in θ, and thus uniformly continuous on the compact set �. It follows that as
N → ∞, uniformly in θ ∈�, a.s.

σ̂ 2 (
θ, β̂ (θ)

) → E A(v,v,θ). (A.3)

Now,

E A(v,v,θ)= 1

T
tr

(
�(θ)−1 Ezi (θ,β0) z′

i (θ,β0)
)
,

where

zi (θ,β0)= (zi1 (θ,β), . . . , ziT (θ,β))
′

= V (θ)εi + (ν (θ)− τ (θ))εi0, (A.4)

defining the T × T upper-triangular matrix

V (θ)=

⎛⎜⎜⎜⎜⎜⎝
1 ν1 (θ) ν2 (θ) . . . νT −1 (θ)

0 1 ν1 (θ) . . . νT −2 (θ)

0 0 1 . . . νT −3 (θ)

. . . . . . . . . . . . . . .

0 0 . . . . . . 1

⎞⎟⎟⎟⎟⎟⎠ , (A.5)

where the νj (θ) are given by

ν (L ; θ,θ0)= λ(L ; θ)/λ(L ; θ0)=
∞∑

j=0

νj (θ)L j , (A.6)
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and the T ×1 vector

ν (θ)= (ν1 (θ) ,ν2 (θ) , . . . ,νT (θ))
′ . (A.7)

The evaluation (A.4) follows because

zit (θ,β0)= τt−1 (L ; θ)
vit

= λt (L ; θ)vit − τt (θ)εi0,

= λt (L ; θ0)
−1 λt (L ; θ)εit − τt (θ)εi0

=
t∑

j=0
νj (θ)εi,t− j − τt (θ)εi0

=
t−1∑
j=0
νj (θ)εi,t− j + (νt (θ)− τt (θ))εi0.

From (A.4)

Ezi (θ,β0) zi (θ,β0)
′ /σ 2

0 = V (θ)′ V (θ)+ (ν (θ)− τ (θ))(ν (θ)− τ (θ))′ ,
and so

E A(v,v,θ)/σ 2
0 = 1

T
tr

(
�(θ)−1 (

V (θ)′ V (θ)+ (ν (θ)− τ (θ)) (ν (θ)− τ (θ))′)) . (A.8)

By the inequality between arithmetic and geometric means, the last expression is no less
than∣∣∣�(θ)−1 (

V (θ)′ V (θ)+ (ν (θ)− τ (θ))(ν (θ)− τ (θ))′)∣∣∣1/T
. (A.9)

It is readily seen from (A.5) and (A.7) after evaluating the νj (θ) from (A.6) (eg ν1 (θ) =
λ1 (θ)− λ1 (θ0)) that V (θ)′ V (θ)+(ν (θ)− τ (θ))(ν (θ)− τ (θ))′ equals�(θ) plus a sym-
metric matrix all of whose elements are functions of λt (θ)− λt (θ0) , t = 1, . . . ,T and θ0
only, such that all eigenvalues of �(θ)−1 (

V (θ)′ V (θ)+ (ν (θ)− τ (θ))(ν (θ)− τ (θ))′)
are equal, and thence the lower bound (A.9) is attained, when and only when λt (θ) =
λt (θ0) , j = 1, . . . ,T . But from condition (vii) the latter holds only when θ = θ0.

Since (A.9) equals
(
1+ τ ′ (θ0)τ (θ0)

)−1/T = |�(θ0)|−1/T at θ = θ0 we have shown that

L (θ,β (θ))/σ 2
0 converges uniformly a.s. to a function that is bounded below uniquely by

the limit, 1, of L (θ0,β (θ0))/σ
2
0 , since σ̂2 (

θ0, β̂ (θ0)
) → σ 2

0 a.s. from (A.3). Thus, by a
standard argument (see e.g., Jennrich, 1969) it follows that θ̂ → θ0 a.s. Using this prop-
erty and some of the arguments above, finally, β̂ = β̂

(̂
θ
) = A(x, x, θ̂ )−1 A(x, y, θ̂)→ β0

a.s. �

Proof of Theorem 2. By Assumptions B (ii) and the usual mean value theorem argu-
ment

∂

∂
(
θ ′,β′)′ L

(̂
θ, β̂

) = ∂

∂
(
θ ′,β′)′ L (θ0,β0)+ M̃

(
θ̂ −θ0

β̂−β0

)
, (A.10)

where M̃ is the matrix derived from

M (θ,β)= ∂2

∂
(
θ ′,β′)′ ∂ (θ ′,β′) L (θ,β) (A.11)
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by evaluating the j th row at θ = θ̃
( j )
, β = β̃

( j )satisfying
∥∥∥̃θ( j )−θ0

∥∥∥ ≤ ∥∥̂θ −θ0
∥∥ ,∥∥∥β̃( j )−β0

∥∥∥ ≤ ∥∥β̂−β0
∥∥ . Now for j = 1, . . . , p,

∂

∂θj
L (θ0,β0)= 1

NT

N∑
i=1

r1 j i (θ0,β0), (A.12)

and

∂

∂β
L (θ0,β0)= 1

N

N∑
i=1

r2i (θ0,β0). (A.13)

The expression (A.12) follows by noting that from the proof of Theorem 4.4 of RV the left
hand side is

|�(θ0)|
1
T

(
σ̂2 (θ0,β0)

T
tr

(
�−1 (θ0)�

j (θ0)
)

− 1

NT

N∑
i=1

z′
i (θ0,β0)�

−1 (θ0)�
j (θ0)�

−1 (θ0) zi (θ0,β0)

⎞⎠
+ 2

NT

N∑
i=1

ż j ′
i (θ0,β0)�

−1 (θ0) zi (θ0,β0) ,

and applying (15) and (20).
To analyze the right side of (A.12), we make heavy use of expressions in the proof of

Theorem 4.4 of RV, reproducing them here because their central limit theorem is based
on T → ∞ whereas ours is based on N → ∞; hence, the representation in (A.13) as an
arithmetic mean over i = 1, . . . ,N, instead of one over t . First, we have

σ̂ 2 (θ0,β0)= 1

NT

N∑
i=1

T∑
t=1

(
εit − τ0

t εi0

)2 − 1

NT S0
ττ

N∑
i=1

⎛⎝ T∑
t=1

τ0
t

(
εit − τ0

t εi0

)⎞⎠2

where

S0
ττ = |�(θ0)| = 1+ τ0′τ0,

and from RV

E σ̂ 2 (θ0,β0)= σ 2
0 .

Also, defining

S0
τ τ̇ j = τ0′τ̇0 j , τ̇0 j = τ̇ j (θ0) ,

we have

z′
i (θ0,β0)�

−1 (θ0)�
j (θ0)�

−1 (θ0) zi (θ0,β0)

= 2

S0
ττ

⎛⎝ T∑
t=1

(
εit − τ0

t εi0

)
τ0

t

⎞⎠⎛⎝ T∑
t=1

(
εit − τ0

t εi0

)
τ̇

0 j
t

⎞⎠
−2

S0
τ τ̇ j

S02
ττ

⎛⎝ T∑
t=1

(
εit − τ0

t εi0

)
τ0

t

⎞⎠2

,
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which has expectation tr
(
�−1 (θ0)�

j (θ0)
)
. Finally, ż j ′

i (θ0,β0) is the j th row of

ż′
i (θ0,β0)= fi − τ̇ 0εi0, (A.14)

in which we have the p × T matrices τ̇0 = τ̇ (θ0) =
(
τ̇01′, . . . , τ̇0p′)′

and fi =
( fi1, . . . , fiT ) , where

fit =
t−1∑
j=0

χt− j (θ0)εi j ,

with the vectors χj (θ) defined by

χ (L ; θ)= ∂

∂θ
logλ(L ; θ)=

∞∑
j=0

χj (θ)L j .

The representation (A.14) follows from

∂

∂θ
zit (θ,β)= ∂

∂θ
λt (L ; θ){vit − x ′

it (β−β0)
}− ∂

∂θ
τt (θ)

{
εi0 − x ′

i0 (β−β0)
}

= χ (L ; θ)λ(L ; θ)λ−1
t (L ; θ0)εit −χ (L ; θ)λ(L ; θ) x ′

it (β−β0)

−τ̇ t (θ)
{
εi0 − x ′

i0 (β−β0)
}
,

and hence,

∂

∂θ
zit (θ,β0)= χ (L ; θ)λ(L ; θ)λ−1

t (L ; θ0)εit − τ̇ t (θ)εi0,

∂

∂θ
zit (θ0,β0)= χ (L ; θ0)εit − τ̇ 0

t εi0

= fit − τ̇ 0
t εi0.

Then, with f j
it the j th element of fit ,

ż j ′
i (θ0,β0)�

−1 (θ0) zi (θ0,β0)

=
T∑

t=1

(
f j
it − τ̇ 0 j

t εi0

)(
εit − τ0

t εi0

)
− 1

S0
ττ

T∑
t=1

(
f j
it − τ̇ 0 j

t εi0

)
τ0

t

×
⎛⎝ T∑

t=1

(
εit − τ0

t εi0

)
τ0

t

⎞⎠ ,
which, as shown by RV, has expectation σ 2

0 S0
τ τ̇ j/S0

ττ .
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Altogether we have, writing S0
τ̇τ =

(
S0
τ τ̇1, . . . , S0

τ τ̇ p

)′
,

T r1i (θ0,β0) = S0
τ̇ τ(

S0
ττ

)1−1/T

⎧⎪⎨⎪⎩ 1

T

T∑
t=1

(
εit − τ0

t εi0

)2 − 1

T S0
ττ

⎛⎝ T∑
t=1

τ0
t

(
εit − τ0

t εi0

)⎞⎠2
⎫⎪⎬⎪⎭

− 2(
S0
ττ

)1−1/T

⎛⎝ T∑
t=1

(
εit − τ0

t εi0

)
τ0

t

⎞⎠⎛⎝ T∑
t=1

(
εit − τ0

t εi0

)
τ̇0

t

⎞⎠

+2
τ̇0′τ0(

S0
ττ

)2−1/T

⎛⎝ T∑
t=1

(
εit − τ0

t εi0

)
τ0

t

⎞⎠2

+2
(

S0
ττ

)1/T T∑
t=1

(
fit − τ̇0εi0

)(
εit − τ0

t εi0

)

− 2(
S0
ττ

)1−1/T

⎛⎝ T∑
t=1

(
fit − τ̇0

t εi0

)
τ0

t

⎞⎠⎛⎝ T∑
t=1

(
εit − τ0

t εi0

)
τ0

t

⎞⎠ , (A.15)

and Er1 j i(θ0,β0) = 0. The r2i (θ0,β0) can be similarly but more simply expressed and it
is readily confirmed that Er2i (θ0,β0) = 0, and then from Assumptions A, conditions (i)
and the central limit theorem for iid random vectors,

N1/2 ∂

∂
(
θ ′,β′)′ L (θ0,β0)→d N (0,EC (θ0,β0)) .

Next, using also Theorem 1 and Assumption B(ii)–(v), it follows much as in the proof
of (A.2) that we have uniform convergence on a neighbourhood of (θ0,β0) of B (θ,β),
C (θ,β) and M (θ,β), whence

C
(̂
θ, β̂

) →p EC (θ0,β0) ,

B
(̂
θ, β̂

) →p E B (θ0,β0) ,

M̃ − M (θ0,β0)→p 0

and

M (θ0,β0)= B (θ0,β0)+op (1)→p E B (θ0,β0) ,

the op (1) terms including negligible ones such as those in second derivatives of elements
of �(θ), zi (θ,β). �

APPENDIX B: Evaluation of the Asymptotic Variance of
θ̂ under Gaussianity

Here, we pursue closed form expressions for the asymptotic variance of θ̂ that can be
estimated by replacing θ0 by θ̂ when there are no regressors in the model. We suppress
dependence of β in the notation and write z0

i = zi (θ0)= zi (θ0,β0)= εi − τ (θ0)εi0, with
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a similar interpretation for ż0 j
i = ż j

i (θ0) , its derivative with respect to θj . We also write

�−1
0 =�−1 (θ0) and � j

0 =� j (θ0) .

We first evaluate the variance of the score of L for Gaussian data, setting σ 2
0 = 1 wlog,

E
[
C (θ0)

]
j,k = E

[
r1i (θ0)r1i (θ0)

′]
j,k

= 1

T 2
|�T (θ0)|

2
T

3∑
a,b=1

E
[(
w0

a j i − E
[
w0

a j i

])(
w0

bki − E
[
w0

bki

])]

= 1

T 2
|�T (θ0)|

2
T

3∑
a,b=1

E
[
w0

a j iw
0
bki

]
− E

[
w0

a j i

]
E

[
w0

bki

]
for coordinates j,k = 1, . . . , p, where

w0
1 j i = 1

T
tr

(
�−1

0 �
j
0

)
z′

i�
−1
0 z0

i

w0
2 j i = −z0′

i �
−1
0 �

j
0�

−1
0 z0

i

w0
3 j i = 2ż0 j ′

i �−1
0 z0

i ,

and E
[
w0

1 j i

]
= −E

[
w0

2 j i

]
= tr

(
�−1

0 �
j
0

)
because

E
[
z0′

i �
−1
0 z0

i

]
= E

[
(εit − τt (θ0)εi0)

′�(θ0)
−1 (εit − τt (θ0)εi0)

]
= tr

{
�−1

0 E
[
(εit − τt (θ0)εi0)

′ (εit − τt (θ0)εi0)
]}

= tr {IT } = T

while

E
[
w0

2 j i

]
= −E

[
z0′

i �
−1
0 �

j
0�

−1
0 z0

i

]
= −tr

(
�−1

0 �
j
0 E

[
z0′

i �
−1
0 z0

i

])
= −tr

(
�−1

0 �
j
0

)
and E

[
w0

3 j i

]
= tr

(
�−1

0 E
(

z0
i ż0 j ′

i

))
= 0 from the proof of Theorem 4.4 in RV.

Next,

E
[
w0

1 j iw
0
1ki

]
= 1

T 2
tr

(
�−1

0 �
j
0

)
tr

(
�−1

0 �k
0

)[(
z0′

i �
−1
0 z0

i

)2
]

=
(

1+ 2

T

)
tr

(
�−1

0 �
j
0

)
tr

(
�−1

0 �k
0

)
because using Gaussianity, see Nagar (1959), with E

[
(εi − τ (θ0)εi0) (εi − τ (θ0)εi0)

′] =
�0,

E

[(
z0′

i �(θ0)
−1 z0

i

)2
]

= E

[(
(εi − τ (θ0)εi0)

′�(θ0)
−1 (εi − τ (θ0)εi0)

)2
]

= tr
{
�−1

0 �0

}2 +2tr
{
�−1

0 �0�
−1
0 �0

}
= tr (IT )

2 +2tr (IT )= T 2 +2T .
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Next, using again Gaussianity,
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the arguments in the proof of Theorem 4.4 of RV.
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Finally, the covariance terms are
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where �−1 = �−1 (θ) , � j = � j (θ) , Aj = Aj (θ) and � = �(θ) are evaluated at θ

instead of �−1
0 , etc., which are evaluated at θ0.
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For the evaluation of the probability limit of the Hessian, B1i (θ0) , we define b0
1 j ki (θ)

as b1 j ki (θ) with σ̂ 2 (θ) replaced by σ 2
0 (= 1 wlog), j,k = 1, . . . , p, so that
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i ż j ′
i

]))
where E(θ)

[
zi ż j ′
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the additional factors correcting for the fact of L being only proportional to the likelihood.
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