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1. Introduction. Suppose that a group G is the semidirect product of a subgroup N
and a normal subgroup M. Then the elements of G have unique expressions mn
(m e M, n e N) and the commutator function

(n, m) i-» [n, m] = nmn~1m~1

maps N x M into M. In fact there is an action (by automorphisms) of N on M given by

(n, m) •-» [n, m]m :N x M—> M.

Conversely, if one is given an action of a group A7 on a group M then one can construct a
semidirect product.

These results have been generalised in [1, 1]. Let A{1), . . . , A(k) be the subsets of a
finite set {1, . . . , n} listed in some arbitrary order. Suppose that MAW, . . . , MAik) are
groups and [ J i M ^ x M ^ ^ M ^ q u ^ ) are functions. Then [1] gives necessary and
sufficient conditions for there to be a group G with subgroups MAm, . . . , MA(k) such that

(i) the elements of G have unique expressions ax . . . ak{at€ MA(iy),
(ii) for each i and /, the function [, ]: MA(i) x MA(J)-^ MA(i)UA(J) is a restriction of the

commutator function in G.
There are topological applications [1, 2].

Semidirect products have also been constructed for monoids and semigroups [4, 5, 6],
and there is an analogous construction for categories, the split fibration (see [3, I.I] or
Section 7 below). This paper describes how the multiple semidirect product construction
works for monoids and categories. For topological purposes, the appropriate application
is to fundamental groupoids, which are special cases of categories. The ideas do not work
for semigroups, because one wants a generalized commutator [a, b] to be invertible (with
inverse [b, a]), and this makes no sense unless one has identities.

The theory for monoids is described in Sections 3 to 6, and the theory for categories
in Sections 9 to 11. Section 2 contains conventions on semilattices, which are used to
index the monoids and categories. In Section 7, we recall split fibrations of categories,
and, in Section 8, we describe "liftings", which are essentially multiple-valued functors.

I am grateful to the referee for some helpful comments.

2. Semilattices. In [1], the groups are indexed by the subsets of {1, . . . , n}. In fact
all one really needs for these subsets is the partial ordering by inclusion and the operation
of union. So the family of subsets of {1, . . . , n} will be replaced by a semilattice, that is, a
set with a partial ordering < in which any two elements A and B have a least upper
bound or join AvB. We now give some notation and recall some definitions.

Throughout this paper, Q will be a semilattice. If two elements A and B of Q are
incomparable (neither A < B nor B <A is true) then we write A \\ B. A subsemilattice of
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Q is a subset of Q closed under join. The family of subsemilattices of Q will be denoted
&"; it is partially ordered by set inclusion c . If <& and W are subsemilattices of Q then <J> is
an ideal in V, notation <I> < W, if $ c W and <I> is "closed below" in W: that is, A e <J>
whenever A eW and A s B for some B e O .

We shall use the subsemilattices of Q as indices; for instance, we shall
consider families of monoids M& (4> € &). If $> is a finite member of if, say
<I> = {A(l), . . . , A(k)}, then we shall write MAWA^k) for M&, and so on.

We note two facts.

PROPOSITION 2.1. If F is a finite subset of Q then it generates a finite subsemilattice of
Q, consisting of the joins of subsets of F.

PROPOSITION 2.2. Let Q> be a subsemilattice of Q. Then 4> has a total ordering < '
extending the partial ordering <.

Proof. Zorn's Lemma.

3. Families of monoids split over a semilattice. Suppose that a group G is a
semidirect product of a subgroup N and a normal subgroup M. One can regard this as a
system of groups {M*} indexed by the subsemilattices of a two-element semilattice
{U, V}, where U<V. Indeed the subsemilattices are {U, V}, {{/}, {V} and 0 , and we
take

MUiV = G, MV = N, MV=M, M 0 = l .

We then find that each Mo is set-theoretically the cartesian product of those MA for which
A e <J>. We note also that if <& c *P then there is in general a projection homomorphism
M>f,—>M<p precisely when O ^ W (to be explicit, this happens when $ = lP or when
* = 0 or when * = {£/}, V = {U, V}, but not when * = {V}, W = {U, V}).

By generalising these ideas, we obtain the following definition of our object of study.
Recall that 5̂  is the family of subsemilattices of the semilattice Q.

DEFINITION 3.1. A family of monoids M 0 (<J> e y) is split over Q if the following hold,
(i) Afo is a submonoid of Mw if <I> c V in y.

(ii) If <& e Ŝ  and < ' is a total ordering of <& extending the partial ordering < (see
2.2), then every element x of M* has a unique factorisation

with ateMA(i), A{\)>'. . .>'A(k) in O, a,,¥= 1.
(iii) If O < W in y then there is a homomorphism / * : Mw^> M<j, given by: if a e MA,

i e f then
ifAe<t>,

.1

REMARK 3.2. Let (M<j>) be a family of monoids split over Q such that the factors MA

(A e Q) are all groups. It is clear that all the monoids M^ are then groups. Also the
uniqueness requirement in 3.1(ii) is then redundant. To see this, suppose that 4> is a
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subsemilattice of Q with a total ordering < ' extending =£, and suppose that

x = di... a t = bi... b t i n M &

with ateMA^, &,eMfl0), A(l)>'. . . >'A(k) in <&, 5(1) > ' . . . >'B(l) in <D, a,,=* 1,
6, # 1. For C e $ , let G(C) = {D e O:D < C}. Then 0(C) < 4>; so we can apply/ | ( C ) to
the two factorisations of x. This gives

Now M0(C) is a group; so if

(i) {A(i):A(i) < C} = {*(/): *(/) < C}
and

(ii) a, = bj for y4(/) = B(j) < C
then

(i) C e {,4(1), . . . ,
and

(ii) ai = b; if A(i)

An inductive argument now shows that the two factorisations of x are the same, as
required.

REMARK 3.3. The condition in 3.1 (ii) that s ' should extend s could be replaced by
the condition that it should extend >. This would give a different but isomorphic theory.
For groups the results would coincide, by considering inverses. In fact, if one has a family
of groups split over Q then unique factorisation holds as in 3.1(ii) without restriction on
the total ordering ^ ' ; see 5.1 below.

REMARK 3.4. Suppose that (M*) is a family of monoids split over £2, that
<I> = {.-4(1), • • . , A(k)} is a finite subsemilattice of Q, and that O has a total ordering < '
extending ^ given by -<4(1) > ' . . . >'A(k). Then unique factorisation amounts to saying
that each element x of M& has a unique expression x = ax. . . ak with a, e MA(j), where
a, = 1 is permitted.

4. Actions and commutators. In this section we shall show how to describe a family
of monoids (Af<j,) split over Q in terms of the factors MA (A e Q).

PROPOSITION 4.1. Let (M*) be d family of monoids split over Q with factors MA. If
A<B in Q then there is a unique action

(a, b)^"b:MA x MB^>MB
of MA on MB such that

ab = "ba in MA B.

If A || B in £2 then there is a unique function

(a, b)^>[a, b]:MAxMB^MAvB
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such that
ab = [a, b]ba in MAjBAvB.

Proof. Take first the case A<B. Let aeMA, beMB. By unique factorisation in
MA,B (see 3.4), we have ab = b'a' for unique b'eMB, a'eMA. Applying fA

B to this
equation shows that a = a' (see 3.1 (hi)), and we define "b to be b'. This makes (a, b)^"b
the unique function such that ab = "ba. To see that we have an action of MA on MB, note
that "la = al = la (aeMA, leMB), "(b'b)a = ab'b = "b'ab =ab'"ba (aeMA,b',be
MB), lb\ = \b = b\ (1 eMA,be MB), (a'a)ba'a = a'ab =a'aba = a\ab)a'a (a1, aeMA,be
MB), and use unique factorisation to deduce "1 = 1, "(b'b) = ab'ab, xb = b, (a'a)b = a\ab).

The case A \\ B is similar. Give {v4, B , i v B } the total ordering A v # > ' B > ' Y 4
and let aeMA, b e MB. By unique factorisation in MABAvB, we have ab = cb'a' for
unique c e ^ v S , b'eMB, a'eMA. By applying /*•*-*"'* and f$-B-AvB, we find that
a' = a and b' = b. We define [a, 6] to be a

The action and commutator functions determine the entire family of monoids.

THEOREM 4.2. Let (A/*) be a family of monoids split over Q with factors MA. Then
for each $ s y the monoid M& can be obtained from the free product %• MA by applying
the relations Ae<s>

ab = aba (a e MA, b e MB, A<B in ®),

ab = [a, b]ba (a eMA, b e MB, A || B in <S>).

Proof. Let < ' be a total ordering of <I> extending the partial ordering < and let
(ax, . . . , ak) be any word with a, € MA(i), A(i) e <P. It suffices to show that {ax, . . . , ak)
can be transformed by use of the relations to a reduced word, i.e. one of the form
(bu . . . , b,) with bj e MBQ), B(l) >'. . . >' B(l), bj¥= 1. For two words representing the
same element of M& must then be transformable to the same reduced word, by unique
factorisation.

Now, if a word is not reduced then one can apply at least one of the following
operations:

(i) delete a if a = 1,
(ii) replace a, a' by aa' if a, a' e MA,
(iii) replace a, b by "b, a if a € MA, b e MB, A<B,
(iv) replace a, b by [a, b], b, a if a e MA, b e MB, A \\ B, A <'B.

It suffices to show that repeated application of these operations must reach a reduced
word in finitely many steps.

Note that, when we start with the particular word (ax, . . . , ak), there are only finitely
many members of 3> that can appear, namely those that lie in the subsemilattice W
generated by A(l), . . . , A(k) (see 2.1). Say that the elements of W are B(l), . . . , B{1)
with B(l) >'. . . >' B{1). Given a word (clt . . . , cm) with the cr in the MB(i), we assign to
it the (/ + l)-tuple of non-negative integers (ju, A1; . . . , A/) for which fi is the number of cr

which are equal to 1 and for which A, is the number of pairs cr, cs with r <s, cre MB(n,
cs e Affl(y), B(i)^' B{j). to complete the proof, one uses the following result.
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LEMMA 4.3. / / one of the operations (i)—(iv) is applied to a word with (/ + 1)—tuple
(jU, A1( . . . , A,) then the result is a word with (I + l)-tuple (//', X[, . . . , A,') such that
X\ = kh . . . , X'j+l = Ay+1, X) =£ Ay for some j or such that X\ = X,, . . . , X[ = Xu n' < n.

Indeed 4.3 implies by induction on / that the reduction process must terminate with
the (/ + l)-tuple (0, 0,. . . , 0), since the (/ + l)-tuples consist of non-negative integers. So
the process terminates with a reduced word as required.

Proof of 4.3. For operations (i)-(iii) this is easy, For (iv), suppose that one replaces
bt, b, by [bh b,], bj, bit where bt e MB(i), bj e MBU), [bit bj] e MB(u), B{i) \\ B(j),
B(i)<'B(j), B(u) = B(i) v B(j). The reversal of b( and bt makes X) < Xf. If the insertion
of [bh bj] e Ms(u) makes X'v different from Xv then one has B(v)>'B(u) = B(i) v B(j)>'
B(j); hence v <j. It follows that X\ = Xh . . . , X-+1 = Xi+1, X) < A,, as required.

5. The case of groups. In this section we justify Remark 3.3; that is, we show that if
(Af,,,) is a family of groups split over Q then unique factorisation holds in each M& for any
total ordering of O whatsoever.

PROPOSITION 5.1. Let (M9) be a family of groups split over Q. Let <J> be a
subsemilattice of Q and let ̂ ' be any total ordering of <£>. Then each element x of M& has a
unique expression

x = ax...ak (ajeMA(i),A(i)e<t
Proof. Uniqueness is as in 3.2. For existence one uses the method of 4.2, but one

uses operation (Hi) (a, b^>"b, a) only when a e MA, b e MB with A < B, A<' B, and one
also uses the operation:

replace a, b by b, 6~'a if aeMA, b eMB, B<A, A<'B.

6. Conditions for monoids to be factors in a split family. We now come to a deeper
question: given monoids MA (A e Q), actions of MA on MB (A <B in Q), and functions
[, ]:MA x MB—>MAvB (A \\ B in Q), what conditions must they satisfy in order to come
from a family of monoids split over Q? The answer is given by the following theorem.

THEOREM 6.1. A family of monoids split over Q is equivalent to the following:
(a) monoids MA (A e Q),
(b) actions (a, b)>~* "b of MA on MB for A< B in Q,
(c) functions (a, b)^[a, b]:MA x MB^>MAs/B (A \\ B in Q),

satisfying the identities in Table 1.

REMARK 6.2. Thus the identities in Table 1 can be regarded as a basic set of
commutator identities written without inverses (provided that one rewrites the first
identity as [a, b][b, a] = 1) and subject to "homogeneity" conditions requiring each
identity to lie entirely in some factor MAwB ((l)-(3)) or MAwBwC ((4)-(13)). The second
identity in (3) is redundant: it can be deduced from the identity in (1) and the first identity
in (3). Similarly the identity in (2) could be replaced by [a, b] = 1 if a = 1. I do not think
there are any other redundancies.
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TABLE 1. IDENTITIES IN A FAMILY OF MONOIDS OR CATEGORIES SPLIT OVER A SEMILATTICE

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

Condition

A\\B

A\\B

A\\B

A<B<C

A<B,A<C

AvB-=C

A v B<C

A<B,AvC = BvC

A<B

Av B=AvC = BvC

AyC = flvC

A<BvC

A,B,C,AvB
AvC,BvC,
AvBvC
distinct

Identity

[a, b] is invertible and [a, b]~* = [b, a]

[a, b] = 1 if a = 1 or b = 1

[a'a,b] = °'[a,b][a',b]
[a,b'b] = [a,b'f[a,b]

<*>(-c) = -(»c)

[ab, °c] = a[b, c]

[a,b]"Cc) = aec)[a,b]

{ab\b(ac)) = a("c)

(<*>[a, c][°b, c] = a[b, c][a, c]

l'b,[a,c]^[-b,c] = 'lb,c]

[a,b]b[a,c][b,c] = °[b,c][a,cY[a,b]

"•*'(*[«, c])"-*'[6, c] = "[ft, c][fl, c]tc [a, b]]

l"b\b, [a, c]][[a, b], [a, c]]la'cl(I<"'61[ft, c]) = "[6, 4"c\c, [a, b\]

{aM[b, [a, c]][[a, b\, [a c]]'--'][[«, fc], [b, c]][[a, c], [b, c]]
= [a, [b, c]?b^\c, [a, b]])

Note.—In this table A, B, C are elements of a semilattice Q and a,a'eMA, b,b'eMB,
ceMc, where (M0) is a family of monoids or categories split over Q. In (4)-(12), there are
no relations in the subsemilattice generated by A, B, C except those that can be deduced
from the condition given.

Proof of 6.1. We shall show how to get the data of 6.1 from a family of monoids split
over Q and vice versa; it will be obvious that the constructions are mutually inverse.

Obtaining the data of 6.1. Suppose that (A/*) is a family of monoids split over Q with
factors MA. Then, by Section 4, one has actions and functions [, ]. To see that they satisfy
the identities of Table 1, one uses unique factorisation. For identity (1), note that
[a, b\[b, a]ab = [a, b]ba = lab, so [a, b][b, a] = 1 (see Remark 3.4), and similarly
[b, a][a, b] = 1. For (2), note that [a, b]ba = ab = lba if a = 1 or if b = 1. For
the first identity in (3), note that [a'a, b]ba'a = a'ab = a'[a, b]ba = "[a, b]a'ba =
a[a, b][a', b]ba'a; the second identity in (3) is similar. For identities (4)-(13), one applies
the reduction process of the proof of 4.2 to the word (a, b, c) for the various
configurations of A, B, C. This requires a total ordering £ ' of the subsemilattice
generated by A, B, C extending the partial ordering <. In each case, we suppose
A<'B<"C. In most cases this suffices to specify < ' ; in the remaining cases < ' is specified
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by the following additional conditions:

(11) C<'A v8,

(12) C<'A v B<'A vC.

(13) C<'A v B<'A v C<'B v C.

In each case, to get the left side one first moves a past b and c and then moves b to the
right hand end, while to get the right side one first moves b past c and then moves a to the
right hand end. In each case, the reduced words are the same on the two sides, except for
the first factors (that is, the factors in MAvBvC), and equating these two factors gives the
identity required.

For instance, for the left side of identity (4) the reduction is

(a, b, c)-*{'b, a, c)->{'b, ac, «)-> (("6)ac, "b, a)

and for the right side of (4) it is

(a, b, c)-» (a, "c, b)-> (a(bc), a, b)^(a(bc), ab, a).

In some cases, one has a choice of steps. To get the identities in Table 1, I have
taken the leftmost reduction where there is a choice. It is possible for alternative
reductions to end up with different first factors (I have found by exhaustive computation
that the remaining factors are always the same, however the reduction is done). In such
cases, one can see that the results are equivalent to those in the table by using the
properties of actions and earlier identities in the table. For instance, on the left side of
(11), one might get [ab\b[a, c][b, c]), which is the same as what is given since 1<jfcl( ) is a
homomorphism.

Constructing a split family from the data of 6.1. Suppose conversely that one is given
monoids MA (A e Q), together with actions and functions [, ] satisfying the identities of
Table 1. Then we construct a family (Mo) of monoids split over Q as follows: for •!> a
subsemilattice of Q, the monoid M* is the quotient of the free product of the MA (A e «&)
got by applying the relations

ab = "ba (a e MA, b eMB, A<B in 4>),

ab = [a, b]ba (a eMA, b eMB, A\\ B in 4>).

It is easy to check that one has homomorphisms f%: Mw—*• M& for O <\ W in if as required
by 3.1(iii). To complete the proof, it suffices to show that one has unique factorisation as
required by 3.1(ii) (this will imply that M^ is a submonoid of Mw for $ c f in y as
required by 3.1(i)).

Because of 2.1, if <& e & then Af* is the colimit of the Afo. with <J>' a finite
subsemilattice of <E>; so it suffices to prove unique factorisation for Mq, when <I> is finite.
We use induction on the size of <J>. The result is trivial when <J> has size 0 or 1. For the
inductive step, let $ be a finite subsemilattice of Q of size at least 2 with a total ordering
<' extending the partial ordering <. Let A be the first element of 4> in the total ordering
<' and let V be <&\{A}. Then W is a subsemilattice of Q; so the inductive hypothesis
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applies to Mw. We complete the proof by showing that M& is a semidirect product of Mw

and MA.
Indeed M& is got from the free product of Mv and MA by applying the relations

ab = aba (a eMA, b eMB, B eW, A< B),

ab = [a, b]ba (a eMA, b e MB, B e <P, A || B),

ba = [b,a]ab (a e MA, b e MB, B eW, A \\ B).

Because of identity (1) in Table 1, the third family of relations is redundant. So, to see that
M<j, is a semidirect product of Mw and MA, it suffices to show that there is an action
(a, x) *-* a*x of MA on Mw given by

aj)=ab (aeMA,beMB,BeW,A<B),

(a eMA, b eMB, B eW, A \\ B).

To do this we need to verify that
(i) for a e MA and BeW, a* :A/B—»My is a homomorphism,
(ii) for aeMA the a*:MB—»Afw are compatible with the relations of Mw, i.e. for

b e MB, c e Mc, B, CeWwe have

(iii) the resultant function a*-*a*:MA^YLn&Mxy is a homomorphism.

Proof of (i). If >1<5 then a^:MB~^Mw is a homomorphism because "( ) is an
endomorphism of MB. If A \\ B then a* :MB-*MW is a homomorphism by identities (2)
and (3) in Table 1: in Mw we have

a, l = [a, 1]1 = 1,

a*{b'b) = [a, b'b]b'b = [a, b']b'[a, b]b'b = [a, b']b'[a, b]b = (a^b'Xa^b)

for b', b eMB (here *'[a, 2>]b' = b'[a, b] by the defining relations of Mw).

Proof of (iii). Given (ii), it is clearly enough to show that 1*6 = b, (a'a)*6 = 0 ^ * 6 for
1, a', a e A/̂ 4, 6 e MB, B e V . This can be done as in the proof of (i).

Proof of (ii). Suppose first that A, B, C are in one of the configurations of identities
(4)-(13) in Table 1. Then reducing (a*6)(a*c) and a*(6c)(a*6) or a*[b, c^a^c^a^b) by
the method of the proof of 4.2, using the relations of M^,, will lead (assuming that one
makes the leftmost reduction where one has a choice) to expressions of the form lxx. . . xs

and rxx . . . xs, where / and r are the left and right sides of the appropriate identity in
Table 1. So the required equation follows from the identity in Table 1.

There are eight other possible configurations of A, B, C; that is, there are eight other
semilattices generated by three distinct elements A, B, C for which neither A>B nor

https://doi.org/10.1017/S0017089500007916 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007916


MULTIPLE SEMIDIRECT PRODUCTS 361

B > C is true. These semilattices have defining relations given by

(14) B<C,A v B=A vC,

(15) B<C,

(16) AvB = AvC,

(17) B<AvC,

(18) A<C,Av B = BvC,

(19) A < C,

(20) A v B = B v C,

(21) C<A vB.

These configurations can be got from those in (4)-(13) of Table 1 by permuting A, B, C.
Indeed (14)-(17) are got from (8), (9), (11), (12) by substituting B, C, A for A, B, C and
(18)-(21) are got from (8), (9), (11), (17) by interchanging B and C.

Consider first (18)-(21), assuming that we already have the required result in (8),
(9), (11), (17). The assumption tells us that (a*c)(a*b) = a*[c> b](a*b)(a*c). Using
identity (1) gives (a*b)(a*c) = a*[b, c](a*c)(a*b), as required.

Next consider (14)-(17). From (8), (9), (11) or (12), we get

{b*c)[b, a]a = b*[c, a][b, a]a(b*c) in M&,

where @ = {A, C, A v B, A v C, B v C, A v B v C},

<bc (B < C)
,[b,c]c (B\\C),

and similarly for fr*[c, a] (note that in all these cases A || B and A || C; so it is correct to
write [b, a]a rather than ba, and so on). Hence

{bifC)\b, a]a = 6*[c, ci][b, a]a*(foi|ic)fl in M&

by the relations of M&. Now the inductive hypothesis can be applied to M& because
B $®, so that @ is smaller than 3>. We deduce that

(b*c)[b, a] = 6*[c, a][b, a]a*(fo*c)

in MQ by unique factorisation. Now M&\{A)cM& by the inductive hypothesis of unique
factorisation; so this equation holds in M&\{A), hence also in Mw since 0\{>1} e l* . We
now work on Mw. Using identity (1) of Table 1, we get

hence
[a, b\b.[a, c](b*c)b=a*(b*c)[a, b]b;

hence

https://doi.org/10.1017/S0017089500007916 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007916


362 RICHARD STEINER

by the relations of Mw, and this is

(a*b){a*c) = a*(b,,c)(a*b)

as required. This completes the proof.

7. Split fibrations of categories. We begin with some notation and conventions on
categories. Generally categories will be small. We write Ob G and Mor G for the objects
and morphisms of a category G, and if x is a morphism then we write Sx and Tx for its
source and target.

If / : G —* N is a functor then the kernel of / is the subcategory Ker/ of G given by

Ob Ker/ = Ob G,

Mor Ker/ = {me Mor G :fm = 1}.

Suppose that we have a functor from some category N to sets given by sets a(X)
(Xe Ob N) and functions n*: a(Sn)—> a{Tn) (n e Mor N). Suppose also that the sets a(X)
(X e Ob TV) are disjoint and have union A. Then we write N K A for the category with

Ob(NKA)=A,

Moi(Nt<A) = {(n, Y):neMotN, Yea(Sn)},

S(n, Y) = Y, T{n, Y) = n*Y for (n, Y) e Mor(Wtx A),

ly = (ljr. Y) for XeObN, Yea(X),

(n',n*Y)(n,Y) = (n'n,Y) for n',neMorN, Yea(Sn), Tn = Sn'.

We now recall the definition of a split fibration from [3, 1.1] (but recast it and change
the order of composition).

DEFINITION 7.1. A split fibration of categories consists of two categories G and N, a
functor / : G —*N, and functions n*:f~l(Sn)—*f~l(Tn) (n eMoiN) yielding a functor
from N to sets and so a category NxObG with Ob(A t̂K Ob G) = Ob G, such that

(i) N\< Ob G is a subcategory of G,
(ii) f{n, Y) = n for («, Y) e Mor(N x Ob G),
(iii) each morphism x of G has a unique factorisation m{n, Y) with m e Mor Ker/,

(n, Y)eMor(iVKObG).

This generalises the semidirect product construction for monoids, i.e. categories with
one object: in 7.1, if G and N are monoids then NK Ob G =N and G is the semidirect
product of N and Ker/.

The following result is well-known.

PROPOSITION 7.2. A split fibration is essentially equivalent to a functor with target the
category of categories and functors.
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Proof. Given a split fibration f:G^>N as in 7.1, one gets a functor F from N to
categories by: if X is an object of N then

Mor F(X) = {me Mor G :fm = 1*},

and if n is a morphism in N then the induced functor from F(Sn) to F(Tn) is given by n*
on objects and by m>-*nm on morphisms, where nm{n, Sm) is the unique factorisation of
(n, Tm)m.

Conversely, let F: N—> categories be a functor such that the Ob F(X) (X e Ob N) are
disjoint (this restriction accounts for the "essentially" in the statement of the proposi-
tion). Let A be the union of the ObF(X). By restricting to the objects of the F{X), we
get a functor from N to sets, hence a category NKA with objects A. The disjoint union
category II F(X) also has objects A. Let G be the category with objects A and with

XeObN

morphisms generated by those of II F(X) and N«A, subject to the relations

(n, Tm)m = F(n)(m)(n, Sm) {n e Mor N, me Mor F(Sn)).

Then there is a functor f:G-*N given by

f(Y) = X (X e Ob N, Y e Ob F(N)),

f(m) = \ x (XeObN,meMorF(X)),

f(n, Y) = n (ne Mor N, Y e Ob F(Sn)),

and it gives a split fibration.

8. Liftings. In the last section, we have considered functors on categories of the
form NKA. One can regard N«A as a "covering" of N; so functors on NKA can be
regarded as "multiple-valued functors" on N. We introduce some terminology to make
this more convenient.

DEFINITION 8.1. Let N and G be categories. A lifting (a,f):N—*G consists of the
following:

(a) a function / : Ob G -» Ob N,
(b) a functor from Af to sets which sends XeObN to the set f~1(X) and sends

n e Mor N to a function n* :f~l{Sn)^>f~l{Tn), and so yields a category N\x Ob G,
(c) a functor from A7* Ob G to G which is the identity on objects.

Thus a split fibration consists of a functor and a lifting satisfying suitable conditions.
In practice, instead of saying that (a,f) is a lifting from N to G, we will usually say

that a:N-*G is a lifting for/. Also the functor from AfxObG to G in 8.1(c) is usually
an inclusion: so it will be suppressed from the notation.

We record two obvious facts.

REMARK 8.2. Let N and G be categories and /:ObG—•ObA7 a bijection. Then a
lifting for/is just a functor from N to G which i s / " 1 on objects.
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PROPOSITION 8.3. Let N, P, Q be categories,

ObN -^ObP-^-ObQ

be functions, and let a:N—> P, /?: P—» Q be liftings for f and g. Then there is a composite
lifting Pa: N-> Q for fg given by

n*Z = (n, gZ)*Z in Ob Q, (n, Z) = ((», gZ), Z) in Mor Q

for n e Mor TV, Z e g~1f~1(Sn). With this composition, liftings form the morphisms of a
category whose objects are categories.

9. Families of categories split over a semilattice. A family (M<t)) of categories split
over Q should be like a family of monoids together with additional information about the
objects. As in 6.1, the categories M& (<I> a subsemilattice of Q) should be determined by
the factors MA {A e Q). Consider the case of a split fibration f:G—>N (see Section 7). As
for a semidirect product (see the beginning of Section 3), one can regard this as a family
of categories (Af*) indexed by the subsemilattices of {U, V}, where U < V. One takes

MUV=G, Mu = N, Mv = Ketf M0 = l,

where 1 denotes the trivial category on one object. Now Ob Mv = Ob G; so the functor
f:G^N gives a function ObMv —»ObMv, which can be interpreted as a contravariant
functor from ({£/, V}, s ) to sets. One then observes that the Ob Afo (0 a subsemilattice
of {U, V}) can be regarded as (inverse) limits:

Ob M& = lim Ob MA.

Also, if $ and W are subsemilattices of {£/, V} with ^ c i * then there is a canonical
projection q: Ob Mw—* Ob Mo and there is a lifting a: M&-* Mv for q (compare 3.l(i)); if
further 3> < W then there is a functor M^-^M^ given by q on objects (compare 3.1(iii)).

It is now obvious how to generalise the definition (3.1) of a split family of monoids.
The inclusions of 3.1(i) are replaced by liftings. Recall that $f is the family of
subsemilattices of Q.

DEFINITION 9.1. A family of categories M^ (4> e Sf) is split over Q. if the following
hold.

(i) There are functions pA: Ob MB —> Ob MA for A ^ B in Q forming a contravariant
functor from (Q, <) to sets such that

Ob Af* = lim Ob MA

for <& e !?; we write q%: Ob Mw—> Ob M& for the canonical projection if <& c V in Sf.
(ii) There are liftings a%:M<f,^>MiV for g!£ for <&cW in 5̂  forming a covariant

functor from (5 ,̂ c) to categories and liftings (see 8.3).
(iii) If O e if and < ' is a total ordering of <I> extending the partial ordering < (see 2.2)

then every morphism x in A/̂ , has a unique factorisation

x = (au Yi). . . (a*, y*)

with a,-e Mor Af̂ ,-), ^ (1 )> ' . . .>'/!(*;) in 4>, y;eObA/<j,, a,¥=l.
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(iv) If <!><l W in if then there is a functor /o:Mw—>MO which is q% on objects and
which is given on morphisms by: if A e W, a e Mor MA, Z e Ob Mw and q%Z = Sa then

\{a,qlZ) ifAe<&,

REMARK 9.2. In the notation (a, Y) for a morphism y, the letter Y indicates the
source of y. This is often determined by the context or irrelevant; so we shall sometimes
abbreviate {a, Y) to a.

REMARK 9.3. If (M<p) is a family of categories split over Q and <S> is a subsemilattice
of Q with a maximal element C (this happens, for instance, if <& is finite and non-empty)
then we shall identify Ob Mo with Ob Mc, using 9.1(i).

10. Properties of split families of categories. The properties described in this
section are the analogues of those in Sections 3-5, together with additional information
about objects. Throughout the section, (Mo) is a family of categories split over Q.

The analogues of 3.2-3.4 are simple.

REMARK 10.1 Suppose that the factors MA (A e Q) are all groupoids. Then, as in 3.2,
the M,,, are groupoids for all $ 6 ^ , and the uniqueness in 9.1(iii) is redundant. Also, as
in 5.1, one gets unique factorisation for any total orderings of the subsemilattices <I>
whatsoever; see 10.7 below.

REMARK 10.2. Just as in Remark 3.4, if (Mo) is a family of categories split over Q
and <& = {A(l), . . . , A(k)} is a finite subsemilattice of Q with a total ordering < '
extending < given by A(l)>'. . . >'A(k) then the morphisms of Mo have unique
factorisations

(al,Y1)...(ak,Yk)

(a, e Mor MA(i), Yt e Ob Mo), where the a, are permitted to be identity morphisms.

As in Section 4, we get actions when we have A < B in Q. Before considering the
actions, we give a basic fact about the behaviour of objects in this situation.

PROPOSITION 10.3. IfA<BinQ and b e Mor MB then pASb = pATb.

Proof. There is a morphism (b, Sb) in MA B (see 9.3) and {A} < {A, B}; so there is
a morphism fA

B(b, Sb) in MA by 9.1(iv). By 9.1(iv), this morphism has source pASb and
target pATb, and it is an identity. Hence the result.

We now consider the actions. Suppose that A<B in Q. It is easy to check that
fA'B:MAB—>MA is a split fibration with lifting cfX,B'MA^>MAiB (see 7.1). By 7.2, this
gives a functor F'g from MA to categories and functors. Let a be a morphism in MA; then
we shall write "{ ) for F^a). Explicitly, this works out as follows. For every object Y in
MB such that pAY = Sa, there is an object "Y in MB such that pA{"Y) = Ta. And, for every
morphism b in MB such that pASb = pATb = Sa (note that pASb =pATb in any case, by
10.3), there is a unique morphism "b :aSb—>"Tb in MB such that

(a, Tb)(b, Sb) = ("b, aSb)(a, Sb):Sb^"Tb in MAtB
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(where we identify ObMA B and ObMB—see 9.3). Following 9.2, we may also write this
equation as ab = aba. The functoriality of "( ) and of F^ can be expressed by the familiar
equations

"1 = 1, a{b'b) = ab'ab, 1Y=Y, lb=b, (a'a)Y = "\aY), (a'a)b =a'(ab).

We can use the actions to describe the behaviour of the liftings a%:M^^>MyV for
®cW in Sf. Recall, from 9.1(i), that ObMp = lim ObMB, which is a subset of

B e *
II Ob MB; we write ZB for the fi-component of Z, where Z e Ob Mv and B € W.

fleW

PROPOSITION 10.4. Let ^ c W m 5̂ , let {a, Y) (a eMor MA, A e <I>) fee a generating
morphism of M&, let Z e Ob Afw be such that q%Z = Y, and let B eW. Then
(a, Y)*Z = a*Z and

{ Ta ifB=A,
a(ZB) ifB>A,
ZB otherwise.

Proof. By 9.1(ii), a$a% = a%, so (a,Y)*Z = alfZ by 8.3 Again, by 9.1(ii), oc%
is a lifting for qA; so qA'a*Z = Ta; that is (a*Z)A = Ta. Similarly, if B>A then
(x% = oc^Ba\tB\ so a*Z = (a, ZB)*Z, whence

qA
I,Ba*Z=T{a,ZB) = a{ZB);

that is, (a*Z)B = "(ZB) (we are identifying ObM A B and ObMB). Finally, suppose that
B>A is false. Let e = {Ce *V:C^B}. Then 0 < W and A$®; s o / I ( a , Z) = 1 by
9.1(iv) and, with further use of 9.1(iv),

q%a*Z =flT{a, Z) = Tf%{a, Z) = Sf%{a, Z) =ftS(a, Z) = 9 *Z.

On identifying Ob M@ and Ob MB, this gives (a*Z)B = ZB.

COROLLARY 10.5. Ler 4̂ < C and B^C in Q, and let a e Mor MA and Z € Ob Mc fte
such that pAZ = Sa. Then

{ Ta ifB=A,

a{p%Z) ifB>A,
p%Z otherwise.

Proof. In 10.4, let <I> be {A} and »P the subsemilattice of Q generated by A, B, C.
Then p%[(a*Z)c] = {a*Z)B by the description of Ob Mw as a limit (9.1(i)), and the result
follows on substituting the values from 10.4 for (a*Z)c and (a*Z)B.

We also get commutators. Now let A \\ B in Q. Let a eMorMA, b eMorMB,
ZeMorMAvB be such that pivBZ = Sa, pivBZ = Sb. Equate ObMAB,AvB with

B. In MABiAvB, we then have morphisms
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(note that pAvB(bZ) = pAvBZ = 5a by 10.5), and the composite (a, bZ)(b, Z) has a unique
factorisation of the form

(c, Z2)(b', Zx)(a', Z) (a' eMorMA, b' eMorMB, ceMorMA v B)

with Tc = "(bZ). Applying f%B'AvB and /£*•*"" shows that a'=a, b' = b, whence
Zj = aZ, Z2 =

 b(aZ). We write

[a,b\z:\
BZ)-+"{bZ)

in MAvB for c; it is then the unique morphism such that

(a, bZ)(b, Z) = ([a, b]z,
 b(aZ))(b, °Z)(a, Z):Z->°(bZ)

in MAyBtAslB. When possible, we shall abbreviate [a, b]z to [a, b], and this equation will
be written ab = [a, b]ba.

As in Section 4, the family of categories (M&) split over Q can be reconstructed from the
factors MA (A e Q), the functions pA: Ob MB-+ Ob MA, the actions and the commutators.
Let 3> be a subsemilattice of Q. The objects of Mo are determined from the pA by 9.1(i),
and the morphisms of Mq, are generated by the (a, Y) (a e Mor MA, A e 4>,
y6(gl)"'(So)) by 9.1(iii). The source of (a, Y) is Y and the target is a*Y, which is
determined by the actions as in 10.4. The liftings a% are determined from the actions on
the generating morphisms of M& by 10.4, and the functors/* are determined by 9.1(iv).
Finally, in analogy to 4.2, one can show that Mo is generated by the MA X Ob M& (A e O)
subject to the relations ab = "ba and ab = [a, b]ba. We state this formally as follows.

PROPOSITION 10.6. Let <& be a subsemilattice of Q. Then Mo is generated by the
MA K Ob M® (A e <&) subject to the relations

(i) (a,b»Y)(b,Y) = (ab,a*Y)(a,Y) for A<B in <&, aeMorMA, beMovMB,
Ye(qt)-\Sb),pBSb = Sa,

(ii) (a, b*Y)(b, Y) = ([a, b]z, b*a*Y)(b, amY)(a, Y) for A \\ B in O, aeMorMA,
beMorMB, ZeObMAvB, Ye(q%vB)-\Z), pivBZ = Sa, pAvBZ = Sb.

REMARK 10.7. As in Section 5, one can now prove that if each factor MA (A e Q) is a
groupoid then one gets unique factorisation in the Mo for any total orderings whatsoever.

11. Conditions for categories to be factors in a split family. We conclude with the
analogue of Theorem 6.1.

THEOREM 11.1. A family of categories split over Q is equivalent to the following:
(a) categories MA (A e Q),
(b) functions pA:ObMB-+ObMA (A<B) yielding a contravariant functor from

(Q, <) to sets such that ifA<B then pASb = pA Tb for b e Mor MB,
(c) functors Fj) from MA to categories and functors for A<B in Q such that if

X e Ob MA then F^{X) is the full subcategory of MB on the objects in (pA)~1(X) (we write
aY for Fi(a)(Y) and "b for Fi{a)(b), where aeMoiMA, YeObMB, beMorMB and
pBY = Sa, pUSb = Sa),
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(d) morphisms [a, b\z = [a, b]:b(aZ)^a(bZ) in MAvB for A || B in Q, a eMorMA,
b e Mor MB, Z € Ob MAvB with pA

>vBZ = Sa, piwBZ = Sb, such that
(i) if A, B, CeQ, a e Mor Ad and ZeObMc are such that A<C, B^C and

pAZ = Sa, then

{ Ta ifB=A,

°(pc
BZ) ifB>A,

p%Z otherwise,
(ii) the identities of Table 1 hold wherever they make sense.
Proof. Essentially the same as for 6.1. It is straightforward to check that if (M®) is a

family of categories split over Q then the factors MA (A e Q) have the structure described;
see 10.3 and 10.5 in particular.

Conversely, given the factors MA (A e Q) with the structure described, one can
construct a family (Af*) of categories split over Q as follows.

One takes ObM* (<& e Sf) to be limObM^, so as to satisfy 9.1(i). Write
q%:ObMv—*ObM& for the canonical projection, where $ c f are subsemilattices of
Q.

Given <5 e if, A e 4>, a e Mor MA and Y e Ob M$> such that qA Y = Sa, one defines an
object a*Y in Ob A/o by the formulae of 10.4; it follows from ll.l(b) and ll.l(ii) that this
gives a well-defined function

an:{qt)-\Sa)^{qtr\Ta)

and that these functions give a functor from MA to sets. This gives categories MA « Ob Mo

(̂ 4 € <&), and Mo is to be generated by them, subject to the relations of 10.6.
In order for this to make sense, we must check that the sources and targets of the

morphisms involved match up. For instance, in relation 10.6(i) we require

q%b*Y = Sa, qta*Y = S(ab), (a*b*Y)c = ((ab)*a*Y)c for Ce<D.

Most of these verifications are easy. There are two cases which may not be obvious:
(a) in relation 10.6(i),

(a»&.r)c = (("&)•«•*% for C e $ with B<C,

(b) in relation 10.6(ii),

(a*fc*y)c = (([a, &]z)**>*a*}0c for C e $ with AvB<C.

The verifications use identities (4) and (7) respectively from Table 1, and run as follows:
for (a),

(a*b*Y)c = °(b(Yc)) = T("(b(lYc))) = TC\"(lYc))) = ("b\aYc) = ((abU*Y)c,

and for (b),

(a.b.Y)c = "(bYc) = T(a(b(lyc))) = r(l"'T(-(lyc)))) = (([a, b]z).b,a*Y)c.
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It is now straightforward to check that the M& can be made into a family of
categories split over Q. The liftings <x%:M^,—»M^ for the ^ ( ^ c 1 ! * subsemilattices of Q)
are given on generators as follows. Let y = (a, Y) (a e Mor MA, A e <J>, Y e (qA)~l(Sa))
be a generating morphism of M&. Then _y* : (q%,)~l{Sy)^> (q%)~\Ty) is the restriction of
a*:{q*)-\Sa)^{q*y\Ta) and

(y, Z) = (a, Z):Z^>y*Z in My

for Z e (q%)~\Sy). It is straightforward to check that the a$ give a well-defined functor
from (if, c ) to categories and liftings as required by 9.1(ii). It is also straightforward to
check that for $ < W in if one has functors fZ-Mw—>M<s> satisfying the conditions of
9.1(iv). Finally, one verifies unique factorisation (9.1(iii)) much as in the proof of 6.1: one
shows inductively that if 4> is a finite non-empty subsemilattice of Q with a total ordering
<' extending < and A is the minimal element of * in the total ordering, then
/A'.M&^MA is a split fibration with kernel M^\{A). Indeed, we already have the lifting
a$,:MA^>Mq,, and we verify the required unique factorisation (7.1(iii)) as in the proof of
6.1.

This completes the proof.
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