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Generalized Triple Homomorphisms and
Derivations

Jorge J. Garcés and Antonio M. Peralta

Abstract. We introduce generalized triple homomorphisms between Jordan–Banach triple systems as
a concept that extends the notion of generalized homomorphisms between Banach algebras given by
K. Jarosz and B. E. Johnson in 1985 and 1987, respectively. We prove that every generalized triple ho-
momorphism between JB∗-triples is automatically continuous. When particularized to C∗-algebras,
we rediscover one of the main theorems established by Johnson. We will also consider generalized
triple derivations from a Jordan–Banach triple E into a Jordan–Banach triple E-module, proving that
every generalized triple derivation from a JB∗-triple E into itself or into E∗ is automatically continu-
ous.

1 Introduction

During the last seventy years, a multitude of studies have been published proving
that a homomorphism T between Banach algebras (i.e., a linear map with T(ab) =
T(a)T(b) for all a, b) must be, under some additional conditions, continuous (cf. [9],
[10] and [28]). For example, it follows from Gelfand’s original theory that every ho-
momorphism from a Banach algebra to a commutative, semisimple Banach algebra
is automatically continuous. It is well known that every ∗-homomorphism between
C∗-algebras is continuous. It is due to B. E. Johnson that if a unital C∗-algebra has no
closed cofinite ideals (e.g., L(H), where H is an infinite dimensional Hilbert space),
then each homomorphism from it into a Banach algebra is continuous (cf. [19]).

Johnson and K. Jarosz considered generalized homomorphisms (also called ε-multi-
plicative linear maps or ε-isomorphisms) between Banach algebras in [18], [21] and
[20]. Let A and B be Banach algebras. A linear mapping T : A → B is a generalized
homomorphism if there exists ε > 0 satisfying ‖T(ab) − T(a)T(b)‖ ≤ ε‖a‖ ‖b‖,
for every a, b ∈ A. The first result in this line is due to Jarosz, who proved that
every generalized homomorphism from a Banach algebra into a unital abelian C∗-
algebra is necessarily continuous (cf. [18, Proposition 5.5]). Johnson established in
[20, Theorem 4] that a generalized homomorphism T between C∗-algebras is con-
tinuous if and only if the mapping a 7→ T(a∗)∗ − T(a) is continuous. A generalized
∗-homomorphism between Banach ∗-algebras A and B is a generalized homomor-
phism T : A→ B for which the mapping a 7→ T(a∗)∗ − T(a) is continuous.
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Every Banach algebra A can be regarded as an element in the class of Jordan–
Banach triples with respect to the product

(1) {a, b, c} :=
1

2
(abc + cba).

JB∗-triples constitute a subclass of the Jordan–Banach triples which contains all
C∗-algebras and plays a similar role of that played by the latter inside the class of
Banach algebras (see definitions in Section 2). However, according to our knowl-
edge, the automatic continuity of triple homomorphisms between Jordan–Banach
triples (i.e., linear mappings T satisfying T({a, b, c}) = {T(a),T(b),T(c)}, for ev-
ery a, b, c) have not been deeply studied. The forerunners in this line reduce to a
work of T. J. Barton, T. Dang, and G. Horn, where these authors prove the automatic
continuity of every triple homomorphism between JB∗-triples (see [3, Lemma 1]).

In Section 3 we define a generalized triple homomorphism between Jordan–Banach
triples E and F as a linear mapping T : E→ F for which there exists ε > 0 satisfying

‖T({a, b, c})− {T(a),T(b),T(c)} ‖ ≤ ε‖a‖ ‖b‖ ‖c‖,

for all a, b, c in E. We show that every generalized homomorphism between Ba-
nach algebras A and B is a generalized triple homomorphism when A and B are
equipped with the product defined in (1). We further prove that every generalized
∗-homomorphism between Banach ∗-algebras A and B is a generalized triple homo-
morphism when A and B are equipped with the product {a, b, c} := 1

2 (ab∗c + cb∗a)
(see Proposition 1). In this section we also study the basic properties of the separat-
ing space of a generalized triple homomorphism T between Jordan–Banach triples
E and F, proving that the separating space σF(T) is a closed triple ideal of the closed
subtriple of F generated by T(E) (compare Proposition 3).

In Section 4 we establish some theorems of automatic continuity of generalized
triple homomorphisms between Jordan–Banach triples. One of the main results
states that every generalized triple homomorphism between JB∗-triples is automat-
ically continuous (see Theorem 8). Since every generalized ∗-homomorphism be-
tween C∗-algebras is a generalized triple homomorphism, the aforementioned result
of Johnson (see [20, Theorem 4]) follows as a direct consequence. Theorem 14 pro-
vides necessary and sufficient conditions, in terms of the quadratic annihilator of the
separating space, to characterize when a generalized triple homomorphism from a
JB∗-triple to a Jordan–Banach triple is continuous. We also prove that every general-
ized triple homomorphism from a Hilbert space, regarded as a type I Cartan factor,
or from a spin factor into an anisotropic Jordan–Banach triple is automatically con-
tinuous (cf. Lemmas 15 and 16).

In the last section we consider generalized triple derivations from a Jordan–Banach
triple E to a Jordan–Banach triple E-module X. A conjugate linear mapping δ : E →
X is said to be a generalized derivation when there exists ε > 0 satisfying:

‖δ{a, b, c} − {δ(a), b, c} − {a, δ(b), c} − {a, b, δ(c)}‖ ≤ ε‖a‖ ‖b‖ ‖c‖,

for every a, b, c in E. In a recent paper, B. Russo and the second author prove that ev-
ery triple derivation from a real or complex JB∗-triple, E, into its dual space E∗ (i.e.,
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a conjugate linear map δ : E→ E∗ satisfying δ{a, b, c} = {δ(a), b, c} + {a, δ(b), c} +
{a, b, δ(c)}) is automatically continuous (compare [25, Corollary 15]). We comple-
ment this result by proving that every generalized triple derivation from a real or
complex JB∗-triple E into itself or into E∗ is automatically continuous (see Theo-
rem 18). When specialized to C∗-algebras, we show that every generalized triple
derivation from a C∗-algebra A to a Jordan–Banach triple A-module is automati-
cally continuous (compare Theorem 22). Our results are not mere generalizations of
those forerunners due to Johnson [20] and A. M. Peralta and Russo [25], the proofs
are completely independent and the theorems presented here are novelties of inde-
pendent interest even in the category of C∗-algebras.

2 Preliminaries

We recall that a complex (resp., real) (normed) Jordan triple is a complex (resp., real)
(normed) space E equipped with a continuous triple product

E × E × E→ E(xyz) 7→ {x, y, z}

that is bilinear and symmetric in the outer variables and conjugate linear (resp., lin-
ear) in the middle one and satisfying the so-called “Jordan Identity”,

L(a, b)L(x, y)− L(x, y)L(a, b) = L
(

L(a, b)x, y
)
− L
(

x, L(b, a)y
)
,

for all a, b, x, y in E, where L(x, y)z := {x, y, z}. If E is complete with respect to the
norm (i.e., if E is a Banach space), then it is called a complex (resp., real) Jordan–
Banach triple. Every normed Jordan triple can be completed in the usual way to
become a Jordan–Banach triple. Unless otherwise stated, the term “normed Jordan
triple” (resp., “Jordan–Banach triple”) will always mean a real or complex normed
Jordan triple (resp., “Jordan–Banach triple”).

For each element a in a Jordan triple E, Q(a) will denote the mapping defined by
Q(a)(x) := {a, x, a}.

Given an element a in a Jordan triple E and a natural number n, we denote a[1] =
a, and a[2n+1] := Q(a)n(a). The Jordan identity implies that a[5] =

{
a, a, a[3]

}
, and

by induction, a[2n+1] = L(a, a)n(a) for all n ∈ N. The element a is called nilpotent if
a[2n+1] = 0 for some n. Jordan triples are power associative, that is,

{
a[k], a[l], a[m]

}
=

a[k+l+m].
A Jordan triple E for which the vanishing of {a, a, a} implies that a itself vanishes

is said to be anisotropic. It is easy to check that E is anisotropic if and only if zero is
the unique nilpotent element in E.

A real (resp., complex) Jordan algebra is a (non-necessarily associative) algebra
over the real (resp., complex) field whose product ◦ is abelian and satisfies (a ◦ b) ◦
a2 = a ◦ (b ◦ a2). A normed Jordan algebra is a Jordan algebra A equipped with a
norm, ‖ · ‖, satisfying ‖a ◦ b‖ ≤ ‖a‖ ‖b‖, a, b ∈ A. A Jordan–Banach algebra is a
normed Jordan algebra whose norm is complete.

Every real or complex associative Banach algebra (resp., Jordan Banach algebra)
is a real Jordan–Banach triple with respect to the product {a, b, c} = 1

2 (abc + cba)
(resp., {a, b, c} = (a ◦ b) ◦ c + (c ◦ b) ◦ a− (a ◦ c) ◦ b).
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A JB∗-algebra is a complex Jordan–Banach algebra A equipped with an algebra
involution ∗ satisfying ‖ {a, a∗, a} ‖ = ‖2(a ◦ a∗) ◦ a− a2 ◦ a∗‖ = ‖a‖3, a ∈ A.

A (complex) JB∗-triple is a complex Jordan–Banach triple E satisfying the follow-
ing axioms:

(JB∗ 1) For each a in E the map L(a, a) is an hermitian operator on E with nonnega-
tive spectrum.

(JB∗ 2) ‖{a, a, a}‖ = ‖a‖3 for all a in A.

We recall that a real JB∗-triple is a norm-closed real subtriple of a complex JB∗-triple
(see [17]).

We also recall that a subspace I of a normed Jordan triple E is a triple ideal (resp.,
a subtriple) if {E, E, I}+{E, I, E} ⊆ I (resp., {I, I, I} ⊆ I). The quotient of a normed
Jordan triple by a closed triple ideal is a normed Jordan triple. It is also known that
the quotient of a JB∗-triple (resp., a real JB∗-triple) by a closed triple ideal is a JB∗-
triple (resp., a real JB∗-triple) (compare [22]).

A real JB∗-algebra is a closed ∗-invariant real subalgebra of a (complex) JB∗-
algebra. Real C∗-algebras (i.e., closed ∗-invariant real subalgebras of C∗-algebras)
equipped with the Jordan product a◦b = 1

2 (ab+ba) are examples of real JB∗-algebras.

3 The Separating Space of a Generalized Triple Homomorphism

Let T : E → F be a (not necessarily continuous) linear mapping between normed
Jordan triples. We define Ť : E × E × E→ F by the rule

(a, b, c) 7→ Ť(a, b, c) = T({a, b, c})− {T(a),T(b),T(c)}.

The mapping Ť is symmetric and linear in the outer variables and conjugate linear in
the middle one (trilinear when E is a real Jordan triple). The mapping T is said to be
a generalized triple homomorphism if Ť is (jointly) continuous, equivalently, if there
exists C > 0 such that

‖Ť(a, b, c)‖ = ‖T({a, b, c})− {T(a),T(b),T(c)}‖ ≤ C‖a‖ ‖b‖ ‖c‖.

Let A,B be Banach algebras. We have already mentioned that a linear mapping
T : A→ B is a generalized homomorphism when the bilinear mapping

(a, b)→ T(ab)− T(a)T(b)

is continuous. Every Banach algebra is a Jordan–Banach triple when endowed with
the triple product

(2) 2{a, b, c} = abc + cba.

We will refer to this product as the elemental (Jordan) triple product of A.
A richer structure on the Banach algebra A provides richer ternary products. For

example, when A is a ∗-algebra we can consider the Jordan triple product given by

(3) 2{a, b, c} = ab∗c + cb∗a.
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Let A and B be Banach ∗-algebras. A linear mapping T : A → B is said to be a
generalized ∗-homomorphism if T is a generalized homomorphism and the mapping

a 7→ S(a) = T(a∗)∗ − T(a)

is continuous. Generalized ∗-homomorphisms were already considered by Johnson
in [20, Theorem 4].

Our next result explores the connections between generalized (∗-) homomor-
phisms and generalized triple homomorphisms between Banach (∗-)algebras.

Proposition 1 Let A,B be Banach algebras. Every generalized homomorphism
T : A→ B is a generalized triple homomorphism when A and B are equipped with the
elemental triple product 2{a, b, c} = abc + cba.

When A and B are Banach ∗-algebras and T is a generalized ∗-homomorphism, then
T is a generalized triple homomorphism with respect to the triple product 2{a, b, c} =
ab∗c + cb∗a.

Proof We start proving the first statement. Let T : A → B be a generalized ho-
momorphism between Banach algebras. We will show that T is a generalized triple
homomorphism when A and B are equipped with the triple product (2).

Throughout this proof, T̃ will denote the continuous bilinear mapping from A×A
into B defined by T̃(a, b) := T(ab)− T(a)T(b).

First, let us see that the (real) trilinear mapping (a, b, c) 7→ T(a)T̃(b, c) is con-
tinuous. Applying the uniform boundedness principle we see that a trilinear map-
ping from the cartesian product of three Banach spaces to another Banach space is
(jointly) continuous if, and only if, it is continuous whenever we fix two variables.
Since T̃ is continuous, the desired statement will follow as soon as we prove that the
linear mapping x 7→ T(x)T̃(b, c) is continuous whenever we fix b and c in A. Let (xn)
be a norm-null sequence in A, then

lim
n

T(xn)T̃(b, c) = lim
n

T(xn)T(bc)− T(xn)T(b)T(c)

= lim
n

T̃(xn, b)T(c) + T̃(xnb, c)− T̃(xn, bc) = 0,

which proves the desired continuity.
Now, the identity

T(abc)− T(a)T(b)T(c) = T̃(a, bc) + T(a)T̃(b, c)

implies that the assignment (a, b, c) 7→ T(abc) − T(a)T(b)T(c) defines a (jointly)
continuous trilinear mapping. It follows that the assignment

(a, b, c) 7→ T({a, b, c})− {T(a),T(b),T(c)}

=
1

2

(
T(abc) + T(cba)− T(a)T(b)T(c)− T(c)T(b)T(a)

)
=

1

2

(
T(abc)− T(a)T(b)T(c)

)
+

1

2

(
T(cba)− T(c)T(b)T(a)

)
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defines a continuous trilinear mapping, which gives the first statement.
Let us suppose now that T is a generalized ∗-homomorphism between Banach

∗-algebras A and B. By the first part of the proof, T is a generalized triple homo-
morphism when A and B are equipped with the triple product (2). We have actually
shown that the mapping

(4) (a, b, c) 7→ T(abc)− T(a)T(b)T(c)

is continuous. We will see that T is a generalized triple homomorphism when A
and B are endowed with the product defined in (3).

Let us write S(x) = T(x∗)∗ − T(x). Fix two elements a, c in A. We claim that the
(real) linear mapping

(5) x 7→ T(ax∗c + cx∗a)− T(a)T(x)∗T(c)− T(c)T(x)∗T(a)

is continuous. Clearly, it is enough to check that the restriction to Asa is continuous.
Let x be a self-adjoint element in A, then

T(axc)− T(a)T(x)∗T(c)

= T(axc)− T(a)T(x)T(c)− T(a)T(x)∗T(c) + T(a)T(x)T(c)

= T(axc)− T(a)T(x)T(c)− T(a)
(

T(x)∗ − T(x)
)

T(c),

and hence

T(axc + cxa)− T(a)T(x)∗T(c)− T(c)T(x)∗T(c)

=
(

T(axc + cxa)− T(a)T(x)T(c)− T(c)T(x)T(a)
)

−
(

T(a)S(x)T(c) + T(c)S(x)T(a)
)
,

which proves the claim.
Now, we fix a, b in A and claim that the linear mapping

(6) x 7→ T(ab∗x)− T(a)T(b)∗T(x)

is continuous. To this end, let (xn) be a norm null sequence in A. Then by (4),

lim
n

T(ab∗xn)− T(a)T(b)∗T(xn)

= lim
n

(
T(ab∗xn)− T(a)T(b∗)T(xn)

)
+
(

T(a)T(b∗)T(xn)− T(a)T(b)∗T(xn)
)

= lim
n

(
T(ab∗xn)− T(a)T(b∗)T(xn)

)
+ lim

n
T(a)T̃(x∗n , b)∗ + T(a)T(b)∗S(xn)

− T(a)T̃(b∗, xn)− T(a)S(b∗xn) = 0.
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Similarly, for every b, c in A the linear mapping

(7) x 7→ T(xb∗c)− T(x)T(b)∗T(c)

is continuous.
Combining (5), (6), and (7) with the uniform boundedness principle we deduce

that the (real) trilinear mapping (x, y, x) 7→ T(xy∗z)−T(x)T(y)∗T(z) is jointly con-
tinuous, and hence, T is a generalized triple homomorphism for the product defined
in (3).

The separating space of a linear mapping played an important role in many prob-
lems of automatic continuity (compare [2, 7, 13, 25, 26, 29], among others). Let
T : X → Y be a linear mapping between two normed spaces. We recall that the
separating space, σY (T), of T in Y is defined as the set of all z in Y for which there
exists a sequence (xn) ⊆ X with xn → 0 and T(xn) → z. It is well known that a
linear mapping T between two Banach spaces X and Y is continuous if and only if
σY (T) = {0}.

When T : A → B is a generalized homomorphism between Banach algebras and
z ∈ σY (T) it is clear that T(a)z and zT(a) lie in σY (T), for every a ∈ A. This was
actually noticed and applied by Johnson to show that the separating space of T is
a closed two-sided ideal of the closed subalgebra of B generated by T(A) (compare
[20, Lemma 1]).

We are interested in the properties of the separating space of a generalized triple
homomorphism T between Jordan–Banach triples E and F. Clearly, the image of a
generalized triple homomorphism T : E → F and the image of Ť are both contained
in the subtriple of F generated by T(E). However, T(E) and Ť(E×E×E) need not be
Jordan subtriples of F. Moreover, it is not so easy to check that the separating space
of T is a closed triple ideal of the closed subtriple of F generated by the image of T.
The difficulties in the triple setting grow seriously. For this reason, we will require an
appropriate description of the subtriple of F generated by a subset.

In the following we need the notion of a triple monomial or an odd triple mono-
mial. Let x1, x2, . . . be a sequence of indeterminates. Then a triple monomial is a
term that can be obtained by the following recursive procedure:

(i) Every indeterminate xk is a triple monomial of degree 1.
(ii) If V1, V2, and V3 are triple monomials of degrees d1, d2, and d3 respectively, then

V := {V1,V2,V3} is a triple monomial of degree d1 + d2 + d3, where { · , · , · }
is a “formal triple product” in three variables.

Notice that this procedure is neither commutative nor associative in general, and the
degrees of triple monomials are always odd numbers. If the triple monomial V does
not contain any indeterminate x j with j > n, we also write V = V (x1, . . . , xn).
In that case, for every JB∗-triple E and every a = (a1, . . . , an) ∈ En the element
V (a) = V (a1, . . . , an) ∈ E is well defined—just specialize every xk to ak and the
“formal triple product” to the concrete triple product of E. In this sense V induces
a polynomial map En → E which is denoted by the same symbol (or by VE to avoid
confusion). Now, for each fixed odd integer n ≥ 1, denote by OPn the set of all triple
monomials V of degree n in which every xk with 1 ≤ k ≤ n occurs precisely once.
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Then V = V (x1, . . . , xn) and the induced map VE : En → E is multilinear for every
JB∗-triple E.

The symbol OP
2m+1

(E) will stand for the set of all multilinear mappings of the
form VE, where V runs in OP2m+1, while OP(E) will denote the set of all odd triple
monomials of any degree on E. It should be noted here that when F is another Jordan

triple, each triple monomial V in OP2m+1 induces an element VF in OP
2m+1

(F) by just
replacing the triple product of E in the definition of V with the corresponding triple
product on F.

Lemma 2 Let T : E → F be a generalized triple homomorphism between normed
Jordan triples and m a natural number. Let V be an odd triple monomial of degree

2m + 1, which can be regarded as an element in OP
2m+1

(E) or in OP
2m+1

(F) indistinctly.
Suppose V of the form V = { · ,W, P} (resp.,V = {W, · , P}), and let j = deg(W ).
Then

lim
n→∞

V
(

T(xn),T(a1), . . . ,T(a2m)
)
− T

(
V (xn, a1, . . . , a2m)

)
= 0,

(resp., lim
n→∞

V
(

T(a1), . . . ,T(a j),T(xn),T(a j+1), . . . ,T(a2m)
)

− T
(

V (a1, . . . , a j , xn, a j+1, . . . , a2m)
)

= 0),

for every norm-null sequence (xn) and a1, . . . , a2m in E.

Proof We will proceed by induction on m. Since T is a generalized triple homomor-
phism, the statement trivially holds for every odd triple monomial of degree 3. Now,
let us suppose that the statement is true for odd triple monomials of degree less or
equal than 2m− 1.

Let V be an odd triple monomial of degree 2m+1. We will assume V = { · ,W, P},
the case V = {W, · , P} follows similarly. Pick a norm-null sequence (xn) and
a1, . . . , a2m in E. The odd triple monomials W and P can be written in the form
W = {W1,W2,W3} and P = {P1, P2, P3} for some odd triple monomials Pi ,Wi ,
i = 1, 2, 3. Clearly 1 ≤ deg(Wi), deg(Pi) < 2m− 1.

Applying the Jordan identity we have

V (T(xn),T(a1), . . . ,T(a2m)) = {T(xn),W (T(ai)), P(T(a j))}

=
{

T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, {P1(T(a j1 )), P2(T(a j2 )), P3(T(a j3 ))}
}

=
{
{T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P1(T(a j1 ))}, P2(T(a j2 )), P3(T(a j3 ))

}
−

{
P1(T(a j1 )), {{W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))},T(xn), P2(T(a j2 ))}, P3(T(a j3 ))

}
+
{

P1(T(a j1 )), P2(T(a j2 )), {T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P3(T(a j3 ))}
}
.

(8)

We will treat the summands in the right-hand side independently. We claim that

lim
n

{
{T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P1(T(a j1 ))}, P2(T(a j2 )), P3(T(a j3 ))

}
− T

(
{{xn, {W1(ai1 ),W2(ai2 ),W3(ai3 )}, P1(a j1 )}, P2(a j2 ), P3(a j3 )}

)
= 0.

(9)
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Indeed, consider the monomial Q =
{{
· , {W1,W2,W3}, P1

}
, P2, P3

}
. It is clear

that deg(Q) ≤ 2m− 1, and{
T(xn),

{
W1

(
T(ai1 )

)
,W2

(
T(ai2 )

)
,W3

(
T(ai3 )

)}
, P1T

(
(a j1 )

)}
= Q

(
T(xn),T(ai1 ),T(ai2 ),T(ai3 ),T(a j1 )

)
.

(10)

Taking limits in n→∞ and applying the induction hypothesis we get

(11) lim
n

Q
(

T(xn),T(ai1 ),T(ai2 ),T(ai3 ),T(a j1 )
)
− T

(
Q(xn, ai1 , ai2 , ai3 , a j1 )

)
= 0.

Let zn := Q(xn, ai1 , ai2 , ai3 , a j1 ). It follows from the continuity of the triple product
that (zn) is a norm-null sequence in E.

Consider now the monomial Q ′ = { · , P2, P3}. Since deg(Q ′) ≤ 2m − 1 we can
apply the induction hypothesis to prove

lim
n

{
T(zn), P2

(
T(a j2 )

)
, P3

(
T(a j3 )

)}
− T

(
{zn, P2(a j2 ), P3(a j3 )}

)
= lim

n
Q ′
(

T(zn),T
(

(a j2 ),T(a j3 )
))
− T

(
Q ′(zn, a j2 , a j3 )

)
= 0.

(12)

Combining (10), (11), and (12) we have

lim
n

{
{T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P1(T(a j1 ))}, P2(T(a j2 )), P3(T(a j3 ))

}
− T

(
{{xn, {W1(ai1 ),W2(ai2 ),W3(ai3 )}, P1(a j1 )}, P2(a j2 ), P3(a j3 )}

)
= lim

n

{
Q(T(xn),T(ai1 ),T(ai2 ),T(ai3 ),T(a j1 )), P2(T(a j2 )), P3(T(a j3 ))

}
− T

(
{Q(xn, ai1 , ai2 , ai3 , a j1 ), P2(a j2 ), P3(a j3 )}

)
= lim

n
{T(zn), P2(T(a j1 )), P3(T(a j2 ))} − T

(
{zn, P2(a j1 ), P3(a j2 )}

)
= 0,

which proves the claim (9).
We can similarly prove that

lim
n
{P1(T(a j1 )), {{W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))},T(xn), P2(T(a j2 ))}, P3(T(a j3 ))}

− T
(
{P1(a j1 ), {{W1(ai1 ),W2(ai2 ),W3(ai3 )},T(xn), P2(a j2 )}, P3(a j3 )}

)
= 0

(13)

and

lim
n
{P1(T(a j1 )), P2(T(a j2 )), {T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P3(T(a j3 ))}}

− T
(
{P1(a j1 ), P2(a j2 ), {T(xn){W1(ai1 ),W2(ai2 ),W3(ai3 )}, P3(a j3 )}}

)
= 0.

(14)
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Finally, from (8), (9), (13), and (14) we obtain

lim
n

V
(

T(xn),T(a1), . . . ,T(a2m)
)
− T

(
V (xn, a1, . . . , a2m)

)
= (from the Jordan identity)

lim
n
{{T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P1(T(a j1 ))}, P2(T(a j2 )), P3(T(a j3 ))}

− T({{xn, {W1(ai1 ),W2(ai2 ),W3(ai3 )}, P1(a j1 )}, P2(a j2 ), P3(a j3 )})

− {P1(T(a j1 )), {{W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))},T(xn), P2(T(a j2 ))}, P3(T(a j3 ))}

+ T({P1(a j1 ), {{W1(ai1 ),W2(ai2 ),W3(ai3 )},T(xn), P2(a j2 )}, P3(a j3 )})

+ {P1(T(a j1 )), P2(T(a j2 )), {T(xn), {W1(T(ai1 )),W2(T(ai2 )),W3(T(ai3 ))}, P3(T(a j3 ))}}

− lim
n

T({P1(a j1 ), P2(a j2 ), {T(xn), {W1(ai1 ),W2(ai2 ),W3(ai3 )}, P3(a j3 )}}) = 0,

as we desired.

We recall that two elements a and b in a Jordan–Banach triple E are said to be
orthogonal (written a ⊥ b) if L(a, b) = L(b, a) = 0. A direct application of the
Jordan identity yields that, for each c in E,

a ⊥ {b, c, b} whenever a ⊥ b.

When E is anisotropic, a ⊥ b if and only if L(a, b) = 0. In case E is a real or complex
JB∗-triple, the relation of being orthogonal admits several equivalent reformulations
(cf. [6, Lemma 1]).

Given a subset M of a Jordan–Banach triple, E, we write M⊥
E

for the (orthogonal)
annihilator of M, defined by

M⊥E := {y ∈ E : y ⊥ x,∀x ∈ M}.

When no confusion arises, we will write M⊥ instead of M⊥
E

.
Let E be a Jordan–Banach triple and S ⊆ E. The norm-closed Jordan subtriple

of E generated by S is the smallest norm-closed subtriple of E containing S and will
be denoted by ES. Clearly, ES coincides with the norm-closure of the linear span of
the set

OPE(S) := {V (a1, . . . , a2m+1) : m ∈ N,V ∈ OP2m+1(E), a1, . . . , a2m+1 ∈ S}.

When a is an element in E, we write Ea instead of E{a}.

Proposition 3 Let T : E → F be a generalized triple homomorphism between two
Jordan–Banach triples. Let I and F̃ denote σF(T) and the norm-closed subtriple of F
generated by T(E), respectively. Then we have the following:

(i) I is a (closed) triple ideal of F̃.
(ii) I⊥

F̃
contains all the elements of the form Ť(a, b, c).

Further, if J is a closed triple ideal of F̃ containing I⊥
F̃

, then π ◦ T is a triple homo-

morphism, where π is the quotient map F̃ → F̃/ J ∩ F̃.
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Proof (i) Since I is a closed linear subspace of F, we only have to prove that
{F̃, F̃, I} + {F̃, I, F̃} ⊆ I. Since OPF

(
T(E)

)
is dense in F̃, it is enough to show that

V
(

I,T(E), . . . ,T(E)
)

+ V ′
(

T(E), . . . ,T(E), I,T(E), . . . ,T(E)
)
⊆ I,

where V and V ′ are arbitrary odd triple monomials of the form {W, · , P} and
{ · ,W ′, P ′}, respectively.

Let z be an element in I, then there exists a norm-null sequence (zn) in E such
that z = limn T(zn). Now let V = {W, · , P} and V ′ = { · ,W ′, P ′} be odd triple
monomials of degree 2m1 + 1 and 2m2 + 1, respectively, with j = deg(W ). Let us fix
a1, . . . , a2m1 , b1, . . . , b2m2 in E. By Lemma 2,

V ′
(

z,T(a1), . . . ,T(a2m1 )
)

= lim
n

V ′
(

T(zn),T(a1), . . . , a2m1

)
= lim

n
T
(

V ′(zn, a1, . . . , a2m1 )
)
,

and

V
(

T(b1), . . . ,T(b j), z,T(b j+1), . . . ,T(b2m2 )
)

= lim
n

V
(

T(b1), . . . ,T(b j),T(zn),T(b j+1), . . . ,T(b2m2 )
)

= lim
n

T
(

V (b1, . . . , b j , zn, b j+1, . . . , b2m2 )
)
.

By the continuity of the Jordan triple product xn = V ′(zn, a1, . . . , a2m1 ) and yn =
V (b1, . . . , b j , zn, b j+1, . . . , b2m2 ) are norm-null sequences in E, and thus

V ′
(

z,T(a1), . . . ,T(a2m1 )
)

= lim
n

T(xn) ∈ I

and
V
(

T(b1), . . . ,T(b j), z,T(b j+1), . . . ,T(b2m2 )
)

= lim
n

T(yn) ∈ I.

(ii) In order to see that I⊥
F̃
⊇ Ť(E, E, E), we will show that

L
(

I, Ť(a, b, c)
) ∣∣

F̃
= L
(

Ť(a, b, c), I
) ∣∣

F̃
= 0, ∀a, b, c ∈ E.

Let z = lim T(zn) in I, where (zn) is a norm-null sequence in E, V and odd triple
monomial of degree 2m + 1 and a, b, c, a1, . . . , a2m+1 in E. Then

L
(

z, Ť(a, b, c)
)(

V
(

T(a1), . . . ,T(a2m+1)
))

= lim
n

{
T(zn), Ť(a, b, c),V

(
T(a1), . . . ,T(a2m+1)

)}
= lim

n

{
T(zn),T({a, b, c}),V

(
T(a1), . . . ,T(a2m+1)

)}
−
{

T(zn), {T(a),T(b),T(c)},V
(

T(a1), . . . ,T(a2m+1)
)}

= (by Lemma 2)

= lim
n

T
({

zn, {a, b, c},V (a1, . . . , a2m+1)
})

− T
({

zn, {a, b, c},V (a1, . . . , a2m+1)
})

= 0.
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We can similarly show that L
(

Ť(a, b, c), z
)(

V (a1, . . . , a2m+1)
)

= 0. Therefore, it

follows from the density of OPF

(
T(E)

)
in F̃ and the continuity of the triple product

that L
(

I, Ť(a, b, c)
) ∣∣

F̃
= L
(

Ť(a, b, c), I
) ∣∣

F̃
= 0, which proves (ii).

Finally, to see the last statement we observe that, since I⊥
F̃

contains all the elements

of the form Ť(a, b, c), we have

0 = π
(

Ť(a, b, c)
)

= π
(

T({a, b, c})− {T(a),T(b),T(c)}
)

= π
(

T({a, b, c})
)
− π

(
{T(a),T(b),T(c)}

)
, ∀a, b, c ∈ E,

so π ◦ T is a triple homomorphism.

Let us suppose that, in the hypothesis of Proposition 3 above, F is assumed to
be a JB∗-triple. In this setting two elements a, b in F are orthogonal if and only if
{a, a, b} = 0 (cf. [6, Lemma 1]). Under these assumptions, let z be an element in I
and pick arbitrary a, b, c in E. Since there exists a null sequence (zn) in E such that
z = limn T(zn), by Lemma 2 and the uniform boundedness principle, we have

{z, z, Ť(a, b, c)} = lim
n

{
T(zn),T(zn),T({a, b, c}

}
−
{

T(zn),T(zn), {T(a),T(b),T(c)}
}

= 0,

which implies I⊥F ⊇ I⊥
F̃
⊇ Ť(E, E, E).

4 Automatic Continuity

4.1 Generalized Triple Homomorphisms Between Jordan–Banach Triples

A celebrated result of J. Cuntz states that a linear mapping T : A → X from a
C∗-algebra to a Banach space is continuous if and only if its restriction to any
C∗-subalgebra of A generated by a single hermitian element is continuous (cf. [8]).
Some years before A. M. Sinclair [27] established that a similar automatic continuity
result holds for homomorphism from a C∗-algebra to a Banach algebra. At this point,
the reader should be tempted to ask if a similar statement holds for linear mappings
whose domain is a JB∗-triple (by replacing C∗-subalgebras generated by a single her-
mitian element by JB∗-subtriples generated by a single element). Unfortunately, we
will see next that the answer to this question is negative.

Example 4 A complex Hilbert space H becomes a JB∗-triple when endowed with
the triple product defined by {a, b, c} = 1

2

(
(a|b)c + (c|b)a

)
, where ( · | · ) denotes

the inner product of H. It can be easily seen that every norm-one element e in E
is tripotent (i.e., {e, e, e} = e). Therefore, the JB∗-subtriple of E generated by a
single element a coincides with Ca. This implies that, for each Banach space X, the
restriction of any linear mapping T : H → X to any JB∗-subtriple of H generated
by a single element is continuous. When H is infinite-dimensional, we can easily
find a discontinuous linear mapping from H into a Banach space. We can similarly
consider a JB∗-triple E of infinite dimension with finite rank (e.g., all Ea have finite
dimensions, see [4, Section 3]).
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The above example shows that a simple translation to the setting of JB∗-triples
of the hypotheses assumed by Cuntz in [8] is not enough to guarantee that a linear
mapping from a JB∗-triple to a Banach space is automatically continuous. Finding
an assumption to avoid the previous counterexample, we will replace the subtriple
generated by a single element by the norm-closed inner ideal generated by a single
element. We recall that a subspace J of a JB∗-triple E is said to be an inner ideal if
{ J, E, J} is contained in J. Let a be an element in E and let E(a) denote the norm
closure of {a, E, a} in E. It is known that E(a) coincides with the norm-closed in-
ner ideal of E generated by a (cf. [5, pp. 19–20]). Let us notice that in the previous
Example 4, H(a) = H for every norm-one element a ∈ H.

Let T : E → F be a generalized triple homomorphism between Jordan–Banach
triples and suppose that T is continuous when restricted to any norm-closed inner
ideal generated by a single (norm-one) element. Let z be an element in σF(T). Then
there exists a norm-null sequence (zn) in E such that z = limn T(zn). Pick a norm-
one element a in E. Then

{T(a), z,T(a)} = lim
n
{T(a),T(zn),T(a)} = lim

n
T({a, zn, a})− Ť(a, zn, a)

= lim
n

T|E(a)({a, zn, a})− Ť(a, zn, a) = 0,

since {a, zn, a} is a norm-null sequence in E(a) and Ť and T|E(a) are continuous by
hypothesis. Therefore {T(zn), z,T(zn)} = 0, for every natural n, and hence z[3] =
limn{T(zn), z,T(zn)} = 0, which affirms that all elements in σF(T) are nilpotents.

Definition 5 A Jordan–Banach triple E has Cohen’s factorization property (CFP) if
given a norm-null sequence (an) in E there exist a norm-null sequence (bn) and two
elements x, y in E such that an = {x, bn, y}, ∀n ∈ N.

Every Jordan–Banach algebra with a bounded approximate identity has Cohen’s
factorisation property (compare [1]). In particular, JB and JB∗-algebras have Cohen
factorisation property (see [16, Proposition 3.5.4]). It follows from [5, pp. 19–20]
(see also [12, Lemma 3.2]) that for every norm-one element a in a JB∗-triple E, E(a)
satisfies CFP.

Our next result is an extension of Sinclair’s result [27, Corollary 4.3].

Theorem 6 Let T : E → F be a linear mapping between two Jordan–Banach triples
and suppose that one of the following statements holds:

(i) T is a generalized triple homomorphism and F is anisotropic;
(ii) E has Cohen’s factorisation property.

If the restriction of T to any closed inner ideal generated by a single element is continuous,
then T is continuous.

Proof The proof under hypothesis (i) was already given in the paragraph preceding
Definition 5. Suppose E satisfies CFP. Let (yn) be a norm-null sequence in E and
let a ∈ E. Since T|E(a) is continuous, we have limn T{a, yn, a} = 0. Since a was
arbitrarily chosen, we deduce that

(15) lim
n

T({a, yn, b}) = 0,
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for every a, b ∈ E.
Let us pick z ∈ σF(T) and a norm-null sequence (zn) in E satisfying T(zn) → z.

By hypothesis, there exist a, b in E and a norm-null sequence (yn) ⊆ E such that
zn = {a, yn, b}. In such a case, by (15),

z = lim
n

T(zn) = lim
n

T({a, yn, b}) = 0.

Remark 7 Let T : E → F be a linear mapping between Banach spaces. A useful
property of the separating space σF(T) asserts that for every bounded linear map R
from F to another Banach space Z, the composition RT is continuous if and only if

σF(T) ⊆ ker(R). It is also known that σ(RT) = R(σ(T))
‖ · ‖

(see [28, Lemma 1.3]).

Based on the Commutative Gelfand Theory established by W. Kaup (cf. [22]),
T. J. Barton, T. Dang, and G. Horn proved the automatic continuity of triple homo-
morphisms between JB∗-triples (see [3, Lemma 1]). The natural extension of this
automatic continuity property to the setting of generalized triple homomorphisms is
contained in our next result.

Theorem 8 Every generalized triple homomorphism between JB∗-triples is continu-
ous.

Proof Let T : E → F be a generalized triple homomorphism between JB∗-triples.
The norm closed subtriple of F generated by T(E) will be again denoted by F̃, while
the symbol I will stand for the separating space σF(T). Since F̃ is a norm-closed
subtriple of F, then F̃ is a JB∗-triple itself. Proposition 3 (i) assures that I is a closed
ideal of F̃, and by [25, Lemma 4] I⊥

F̃
is a norm-closed triple ideal of F̃.

The final statement in Proposition 3 guarantees that the linear mapping π ◦ T :
E → F̃/I⊥

F̃
is a triple homomorphism. Since the quotient F̃/I⊥

F̃
is a JB∗-triple, the

triple homomorphism π ◦ T is continuous (cf. [3, Lemma 1]). By Remark 7, we have
I = σF(T) ⊆ ker(π) = I⊥

F̃
, and the latter implies that I = σF(T) = 0.

Since every C∗-algebra, endowed with the triple product given in (3), is a JB∗-
triple, Theorem 8, together with Proposition 1, allows us to rediscover the following
result, which is originally due to Johnson [20, Theorem 4].

Corollary 9 ([20, Theorem 4]) Every generalized ∗-homomorphism between C∗-
algebras is continuous.

Our next goal is to explore the automatic continuity of a generalized triple homo-
morphism from a JB∗-triple to a Jordan–Banach triple. To this end we will require
some additional concepts and tools.

Let E be a real or complex Jordan–Banach triple system. We will say that E is
algebraic if all singly generated (norm-closed) subtriples of E are finite-dimensional.
If in fact there exists m ∈ N such that single-generated subtriples of E have dimension
≤ m, then E is said to be of bounded degree, and the minimum of such an m will be
called the degree or the rank of E. For real and complex JB∗-triples algebraic and
bounded degree are the same (cf. [4, Section 3]).

Our next result owes much to the proof given in [25, Proposition 12] by Russo
and the second author.
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Theorem 10 Let T : E→ X be a linear mapping from a JB∗-triple to a Banach space.
Let JT := {a ∈ E : T ◦ Q(a),T ◦ L(a, a) are continuous}. Suppose that JT has the
following properties:

(i) JT + JT ⊆ JT .
(ii) {E, E, JT} + {E, JT , E} ⊆ JT .
(iii) If I is a norm-closed triple ideal containing JT , then E/I is algebraic of bounded

degree.

Then T is continuous if and only if JT is norm-closed.

Proof When T is continuous, JT coincides with E and nothing has to be proved.
Suppose now that JT is norm-closed. It follows from (i) and (iii) that JT is a norm-
closed triple ideal of E. We claim that the restriction of T to JT is continuous. Indeed,
the assignment (a, b, c) 7→ W (a, b, c) = T({a, b, c}) defines a (real) trilinear map-
ping W : JT × JT × JT → F. From (i) and the definition of JT , W is separately
continuous whenever we fix two variables. An application of the uniform bounded-
ness principle implies that W is jointly continuous. Therefore, there exists a positive
constant M such that ‖T{a, b, c}‖ ≤ M‖a‖ ‖b‖ ‖c‖, for every a, b, c in JT . Since JT

is a JB∗-subtriple of E, for each a in JT there exists b in JT such that b[3] = a. In this
case

‖T(a)‖ = ‖T({b, b, b})‖ ≤ M‖b‖3 = M‖{b, b, b}‖ = M‖a‖,

which shows that T| JT is continuous.
Finally, let us prove that JT = E. By hypothesis (iii), E/ JT is algebraic of bounded

degree m. Thus, for each element a + JT in E/ JT there exist mutually orthogonal
minimal tripotents e1 + JT , . . . , ek + JT in E/ JT and 0 < λ1 ≤ · · · ≤ λk with k ≤ m

such that a + JT =
∑k

j=1 λkek + JT . We will show that e1, . . . , ek ∈ JT , and hence,
a ∈ JT , which proves E = JT .

Let e + JT be a minimal tripotent in E/ JT . Henceforth, π : E → E/ JT will denote
the canonical projection. Take an arbitrary norm-null sequence (an) in E. For each
natural n, there exists a scalar µn ∈ C such that π

(
Q(e)(an)

)
= µn(e + JT). The

continuity of π and the Peirce projection P2(e + JT) assure that µn → 0. It follows
that Q(e)(an)− µne lies in JT and tends to zero in norm. Since, by hypothesis, T| JT is
continuous we have

T
(

Q(e)(an)
)

= T
(

Q(e)(an)− µne
)

+ µnT(e)→ 0.

The arbitrarity of (an) guarantees that T ◦ Q(e) is continuous, or equivalently, e lies
in JT .

The following auxiliary lemmas will be needed later.

Lemma 11 Let E be a real JB∗-triple and J a subset of E satisfying that when-
ever we have two sequences (xn), (yn) in E such that Q(yn)Q(xn) = Q(xn) and
Q(yn)Q(xm) = 0 for n 6= m, then the xn lie in J except (perhaps) for finitely many n.
Suppose I is a norm-closed triple ideal of E containing J then E/I is algebraic of bounded
degree.
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Proof Since I contains J then I also has the property assumed in the hypothesis.
Let us write F = E/I. As noticed in the proof of Corollary 8 in [25] for a = a + I

we have Fa = Ea/(Ea ∩ I).
The commutative JB∗-triple Ea is triple isomorphic to some C0(L) (cf. [22, Sec-

tion 1]). We will identify Ea with C0(L). It is known that Fa+I
∼= C0(Γ) where

Γ = {t ∈ L : b(t) = 0,∀b ∈ Ea ∩ I}.

We claim that Γ is finite. Otherwise, there exists an infinite sequence (tn) in Γ and
a sequence of open disjoint sets {Un}n. By local compactness we can find open sets
Vn,Wn with Vn and Wn compact, such that tn ∈ Vn ⊆ Vn ⊆Wn ⊆Wn ⊆ Un.

By Urysohn’s lemma, for each natural n, we can find fn ∈ C0(L) with tn ∈
supp( fn) ⊆ Wn and gn ∈ C0(L) such that gn ≡ 1 in Wn and vanishing outside Un.
Since fn(tn), gn(tn) 6= 0, ∀n ∈ N, then fn, gn /∈ I, ∀n ∈ N. In this case the sequences
( fn), (gn) verify that Q(gn)Q( fn) = Q( fn) and Q(gn)Q( fm) = 0 for n 6= m, and they
do not lie in I, which is a contradiction.

It follows that Γ is finite and therefore Fa+I is finite dimensional. Since a + I was
arbitrary chosen, the statement of the lemma follows from [4, Theorem 3.8].

Lemma 12 Let T : E → F be a generalized triple homomorphism between real
Jordan–Banach triples, and let (xn), (yn) be sequences of elements in E such that
Q(yn)Q(xn) = Q(xn) and Q(yn)Q(xm) = 0 for n 6= m. Then Q(T(xn))T and TQ(xn)
are continuous for all but a finite number of n.

Proof Let us suppose that Q
(

T(xn)
)

T is discontinuous for infinitely many n in N.

By passing to a subsequence if necessary, we can assume that Q
(

T(xn)
)

T is discon-
tinuous for all n in N. We observe that, since T is a generalized triple homomorphism
the identity

{T(xn),T(b),T(xn)} = T({xn, b, xn})− Ť(xn, b, xn),

holds for every b ∈ E and n ∈ N. It is then clear that Q
(

T(xn)
)

T is continuous if
and only if TQ(xn) is. So, we may assume that TQ(xn) is discontinuous for all n in N.
Choose (an) in E such that ‖an‖ ≤ 2−n‖xn‖−2 and

‖TQ(xn)(an)‖ ≥ 2n
(

1 + ‖T(yn)‖2
)

+ ‖Ť‖ ‖yn‖2.

Let a =
∑

m≥1{xm, am, xm}. Since {yn, a, yn} = {xn, an, xn} we have

2n
(

1 + ‖T(yn)‖2
)

+ ‖Ť‖ ‖yn‖2 ≤ ‖TQ(xn)(an)‖

= ‖TQ(yn)(a)‖ =
∥∥Q
(

T(yn)
)(

T(a)
)

+ Ť(yn, a, yn)
∥∥

≤ ‖T(yn)‖2 ‖T(a)‖ + ‖Ť‖ ‖yn‖2 ‖a‖ ≤
(

1 + ‖T(yn)‖2
)
‖T(a)‖ + ‖Ť‖ ‖yn‖2.

So we have that ‖T(a)‖ ≥ 2n, ∀n ∈ N, which is impossible.
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Let T : E → F be a generalized triple homomorphism between Jordan–Banach
triples. Following the notation employed in Proposition 3, the symbol F̃ will denote
the norm-closed subtriple of F generated by T(E).

According to the notation defined in [25], for each subset B of a Jordan–Banach
triple F, we define its quadratic annihilator, AnnF(B), as the set

{a ∈ F : Q(a)(B) = {a,B, a} = 0}.

The quadratic annihilator will be used later in a more general setting.
If we set J := T−1

(
AnnF

(
σF(T)

))
, it not hard to see, from the basic proper-

ties of the separating space, that J coincides with the set
{

a ∈ E : Q
(

T(a)
)

T is

continuous
}

(compare Remark 7), and since T is a generalized triple homomor-
phism, the latter equals {a ∈ E : TQ(a) is continuous} (compare the proof of
Lemma 12). The following result follows straightforwardly from Lemmas 12 and 11
and the above comments.

Proposition 13 Let T : E → F be a generalized triple homomorphism from a real
JB∗-triple to a Jordan–Banach triple. The following statements hold:

(i) If I is a norm-closed triple ideal containing T−1
(

AnnF

(
σF(T)

))
, then E/I is

algebraic of bounded degree.
(ii) Let K be a triple ideal of E. The linear mapping

x ∈ E 7→ {T(a),T(x),T(a)}

is continuous for all a in K if, and only if, K is contained in T−1
(

AnnF

(
σF(T)

))
.

We can establish now the main result of this section.

Theorem 14 Let T : E → F be a generalized triple homomorphism from a JB∗-triple
to a Jordan–Banach triple and let J = T−1

(
AnnF

(
σF(T)

))
. The following statements

are equivalent:

(i) J is a norm-closed triple ideal of E and{
AnnF

(
σF(T)

)
,AnnF

(
σF(T)

)
, σF(T)

}
= 0.

(ii) T is continuous.

Proof The implication (ii)⇒ (i) is clear. We will prove (i)⇒ (ii). We already know,
by Proposition 13 (ii), that for each element a in J, the linear mapping

x ∈ E 7→ {T(a),T(x),T(a)}

is continuous. Let us fix a, b in J. Since J is a linear subspace of E, then a + b also lies
in J, that is, the mapping x 7→ {T(a + b),T(x),T(a + b)} is continuous. The identity

2{T(a),T(x),T(b)} = {T(a + b),T(x),T(a + b)}

− {T(a),T(x),T(a)} − {T(b),T(x),T(b)},
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guarantees that the mapping x 7→ {T(a),T(x),T(b)} is continuous, or equivalently
(because T is a generalized triple homomorphism), TQ(a, b) is continuous.

Since
{

AnnF

(
σF(T)

)
,AnnF

(
σF(T)

)
, σF(T)

}
= 0, the linear mapping

x ∈ E 7→ {T(a),T(b),T(x)}

is continuous for every a, b ∈ J. Applying that T is a generalized triple homomor-
phism, we deduce that the linear mapping x ∈ E 7→ T({a, b, x}) also is continuous
for every a, b ∈ J. This shows that the trilinear mapping W : E × E × E, given by
(a, b, c) 7→ W (a, b, c) = T({a, b, c}) is continuous whenever we fix two variables
in J. An application of the uniform boundedness principle proves that W | J× J× J is
jointly continuous. Following the argument given in the proof of Theorem 10, we
show that T| J : J → F is continuous.

Proposition 13 (i) implies that E/ J is algebraic of bounded degree. The proof
concludes applying the argument given in the final part of the proof of Theorem 10.

The above Theorem 14 admits a more detailed statement in the particular setting
of some Cartan factors. We recall that a complex Hilbert space H can be regarded as
a type I Cartan factor with its natural norm and the product given by

2 {a, b, c} := (a|b)c + (c|b)a, (a, b, c ∈ H),

where ( · | · ) denotes the inner product of H.

Lemma 15 Let H be a complex Hilbert space regarded as a type I Cartan factor, F an
anisotropic Jordan–Banach triple and T : H → F a generalized triple homomorphism.
Then T is continuous.

Proof Let F̃ denote the norm-closed subtriple of F generated by T(E). It is enough
to prove that T : H → F̃ is continuous. Replacing F with F̃, we may assume, by
Proposition 3, that σF(T) is a norm-closed triple ideal of F and F is generated by T(E).
It follows from our hypothesis that the mapping

Ť(a, b, c) =
1

2

(
(a|b)T(c) + (c|b)T(a)

)
− {T(a),T(b),T(c)} , (a, b, c ∈ H),

is continuous. Let z be an element in σF(T), there exists a norm-null sequence (xn) ⊂
H such that T(xn) → z. If we fix two arbitrary elements a, c in H, by the continuity
of Ť and the triple product of F we have

0 = lim
n

1

2

(
(a|xn)T(c) + (c|xn)T(a)

)
− {T(a),T(xn),T(c)} = −{T(a), z,T(c)} .

It follows from the arbitrariness of a and c that {T(E), σF(T),T(E)} = 0. Similarly,
let V and W be odd triple monomials of degree 2m1 + 1 and 2m2 + 1, respectively,
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and let us fix a1, . . . , a2m1 , b1, . . . , b2m2 in H. By Lemma 2,{
V
(

T(a1), . . . ,T(a2m1+1)
)
, z,W

(
T(b1), . . . ,T(b2m2+1)

)}
= lim

n

{
V
(

T(a1), . . . ,T(a2m1+1)
)
,T(xn),W

(
T(b1), . . . ,T(b2m2+1)

)}
= lim

n
T
(
{V (a1, . . . , a2m1+1), xn,W (b1, . . . , b2m2+1)}

)
= lim

n

1

2

(
V (a1, . . . , a2m1+1)|xn

)
T
(

W (b1, . . . , b2m2+1)
)

+
1

2

(
W (b1, . . . , b2m2+1)|xn

)
T
(

V (a1, . . . , a2m1+1)
)

= 0.

Since we have assumed that F is the Jordan–Banach triple generated by T(E), it fol-
lows by linearity and from the continuity of the product of F that {F, σF(T), F} = 0.
Finally, F being anisotropic implies that σF(T) = 0 and hence T is continuous.

A (complex) spin factor is a complex Hilbert space S provided with a conjugation
(i.e., a conjugate linear isometry of period 2) x 7→ x, triple product

{a, b, c} =
1

2

(
(a|b)c + (c|b)a− (a|c̄)b̄

)
,

and norm given by ‖a‖2 = 1
2 (a|a) + 1

2

√
(a|a)2 − |(a|a)|2, for every a, b, c ∈ S.

Lemma 16 Let S be a (complex) spin factor, F an anisotropic Jordan–Banach triple
and T : S→ F a generalized triple homomorphism. Then T is continuous.

Proof Let S be a spin factor. The corollary in [11, p. 313] and the proof of the
proposition on p. 312 in the just-quoted paper assure that S is the norm closed linear
span of a “spin grid” {ui , vi , u0}i∈Γ, where (ui |u j) = (vi |v j) = (ui |v j) = (ui |vi) =
(u0|ui) = (u0|vi) = 0, ‖ui‖ = 1, ‖vi‖ = 1, ‖u0‖ = 1 or 0, ui = vi , and u0 = u0, for
every i 6= j in Γ. Let S1 (resp., S2) denote the norm-closed subspace of S generated
by {ui : i ∈ Γ} (resp., {vi : i ∈ Γ}). Clearly S = S1 ⊕ S2 ⊕ Cu0. It is easy
to see that S1 and S2 are norm-closed subtriples of S (i.e., {Si , Si , Si} ⊂ Si) and
{a, b, c} = 1

2

(
(a|b)c + (c|b)a

)
, for every a, b, c in Si (i = 1, 2). Therefore S1 and S2

are Hilbert spaces equipped with structure of type I Cartan factors. Lemma 15 shows
that T|Si : Si → F is continuous for every i = 1, 2. Finally, the continuity of the
natural projections of S onto S1, S2 and Cu0 assures that T is continuous.

According to the comments given before Proposition 17 in [25], the proof of
Theorem 10 (and hence the proof of Theorem 14) is only valid for complex JB∗-
triples, the reason being that, in the real setting, a minimal tripotent e in a real JB∗-
triple E need not satisfy that E2(e) = Re. Actually, there exist examples of minimal
tripotents e for which E2(e) is infinite dimensional. The extension of Theorem 14
to the real setting is not a trivial consequence of the result proved in the complex
case and constitutes a result of independent interest which remains open in this pa-
per. However, there exists a subclass of real JB∗-triples for which the statements of
Theorems 10 and 14 remain true. A real JB∗-triple E is called reduced whenever
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E2(e) = Re (equivalently, E−1(e) = 0) for every minimal tripotent e ∈ E. Reduced
real JB∗-triples were considered in [24], [23], [14] and [25]. We note that the proof
of Theorem 14 is valid for reduced real JB∗-triples.

4.2 Generalized Triple Derivations from a JB∗-Triple

Russo and the second author carried out in [25] a pioneer study on automatic con-
tinuity of ternary derivations from a JB∗-triple E into a Jordan–Banach triple E-
module. The concept of Jordan–Banach triple module is introduced in the just-
quoted paper, where it is also established that every triple derivation from a real or
complex JB∗-triple into its dual space or into itself is automatically continuous. It
seems natural, at this stage, to consider generalized triple derivations in the context
of JB∗-triples, studying the automatic continuity of these mappings.

Jordan triple modules over Jordan triples were introduced as appropriate exten-
sions of bimodules over associative algebras and Jordan modules over Jordan alge-
bras (cf. [25]). The concrete definition reads as follows: Let E be a complex (resp.,
real) Jordan triple, a Jordan triple E-module (also called a triple E-module) is a vector
space X equipped with three mappings

{ · , · , · }1 : X × E × E→ X, { · , · , · }2 : E × X × E→ X,

and { · , · , · }3 : E × E × X → X

satisfying the following axioms:

(JTM1) {x, a, b}1 is linear in a and x and conjugate linear in b (resp., trilinear),
{a, b, x}3 is linear in b and x and conjugate linear in a (resp., trilinear) and
{a, x, b}2 is conjugate linear in a, b, x (resp., trilinear).

(JTM2) {x, b, a}1 = {a, b, x}3, and {a, x, b}2 = {b, x, a}2 for every a, b ∈ E and
x ∈ X.

(JTM3) Denoting by { · , · , · } any of the products { · , · , · }1, { · , · , · }2, and
{ · , · , · }3, the identity

{a, b, {c, d, e}} = {{a, b, c} , d, e} − {c, {b, a, d} , e} + {c, d, {a, b, e}} ,

holds whenever one of the elements a, b, c, d, e is in X and the rest are in E.

When E is a Jordan–Banach triple and X is a triple E-module which is also a Ba-
nach space, we will say that X is a Banach (Jordan) triple E-module when the products
{ · , · , · }1, { · , · , · }2 and { · , · , · }3 are (jointly) continuous. From now on, the
products { · , · , · }1, { · , · , · }2 and { · , · , · }3 will be simply denoted by { · , · , · }.

Every real or complex associative algebra A (resp., Jordan algebra J) is a real Jordan
triple with respect to {a, b, c} := 1

2 (abc + cba), a, b, c ∈ A (resp., {a, b, c} = (a ◦ b) ◦
c + (c ◦ b) ◦ a− (a ◦ c) ◦ b), a, b, c ∈ J). It is not hard to see that every A-bimodule X
is a real triple A-module with respect to the products {a, b, x}3 := 1

2 (abx + xba) and
{a, x, b}2 = 1

2 (axb + bxa), and that every Jordan module X over a Jordan algebra J is
a real triple J-module with respect to the products

{a, b, x}3 := (a ◦ b) ◦ x + (x ◦ b) ◦ a− (a ◦ x) ◦ b and

{a, x, b}2 := (a ◦ x) ◦ b + (b ◦ x) ◦ a− (a ◦ b) ◦ x.
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The dual space, E∗, of a complex (resp., real) Jordan–Banach triple E is a complex
(resp., real) triple E-module with respect to the products:

{a, b, ϕ} (x) = {ϕ, b, a} (x) := ϕ {b, a, x}

and

{a, ϕ, b} (x) := ϕ {a, x, b},

∀ϕ ∈ E∗, a, b, x ∈ E (cf. [25]).
Given a triple E-module X over a Jordan triple E, the space E⊕X can be equipped

with a structure of real Jordan triple with respect to the product

{a1 + x1, a2 + x2, a3 + x3} = {a1, a2, a3} + {x1, a2, a3} + {a1, x2, a3} + {a1, a2, x3} .

The Jordan triple E ⊕ X will be called the triple split null extension of E and X.
Let X be a Jordan triple E-module over a Jordan triple E. A triple derivation from

E to X is a conjugate linear map δ : E → X satisfying δ {a, b, c} = {δ(a), b, c} +
{a, δ(b), c} + {a, b, δ(c)}.

Let E be a real (resp., complex) Jordan–Banach triple and let X be a Jordan–Banach
triple E-module. A (conjugate) linear mapping δ : E → X is said to be a generalized
derivation when the mapping δ̌ : E × E × E→ X,

(a, b, c) 7→ δ̌(a, b, c) := δ{a, b, c} − {δ(a), b, c} − {a, δ(b), c} − {a, b, δ(c)}

is (jointly) continuous.
Arguing as in [25], we will associate with each generalized derivation from a JB∗-

triple E into a Jordan–Banach triple E-module a generalized triple homomorphism,
in such a a way that the continuity of these two mappings is mutually determined.

Let δ : E → X be a generalized derivation. The symbol E ⊕ X will stand for the
triple split null extension of E and X equipped with the `1-norm. We define the
mapping

Θδ : E→ E ⊕ X,

a 7→ a + δ(a).

It is clear that δ is continuous if and only if Θδ is continuous. Furthermore, the
identity

δ̌(a, b, c) = δ{a, b, c} − {δ(a), b, c} − {a, δ(b), c} − {a, b, δ(c)}

= Θδ {a, b, c} − {Θδ(a),Θδ(b),Θδ(c)} = Θ̌δ(a, b, c),

shows that Θδ is a generalized triple homomorphism. According to this notation, we
set ∆ := Θδ(E) = {a + δ(a) : a ∈ E}. Let (E ⊕ X)∆ be the norm closed subtriple of
E⊕X generated by ∆. Since Θδ is a generalized triple homomorphism, by Lemma 3,
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the separating space σE⊕X(Θδ) is a triple ideal of (E ⊕ X)∆. It is not hard to see that
σE⊕X(Θδ) coincides with {0} × σX(δ).

A subspace S of a triple E-module X is said to be a Jordan triple submodule or a
triple submodule if {E, E, S} ⊆ S and {E, S, E} ⊆ S. Every triple ideal J of E is a
Jordan triple E-submodule of E.

Let a + x and b + y be elements in (E⊕X)∆ and z ∈ {0}×σX(δ) = σE⊕X(Θδ). By
the definition of the triple product in E ⊕ X and the just-quoted fact that σE⊕X(Θδ)
is a triple ideal of (E ⊕ X)∆ we have

(16) {a, b, z} = {a + x, b + y, z}

and

(17) {a, z, b} = {a + x, z, b + y}

Since (E ⊕ X)∆ contains ∆, it follows from (16) and (17) that {E, E, σX(δ)} ⊆
σX(δ) and {E, σX(δ), E} ⊆ σX(δ). Since σX(δ) is always a linear subspace, it is also a
triple E-submodule of X.

For each subset A of a triple E-module X, we define its quadratic annihilator,
AnnE(A), as the set {a ∈ E : Q(a)(A) = {a,A, a} = 0}.

We will also make use of the following equality:

AnnE⊕X

(
σE⊕X(Θδ)

)
= AnnE

(
σX(δ)

)
⊕ X.

Remark 17 The quadratic annihilator of a submodule S of a triple module X need
not be, in general, a linear subspace (cf. [25]). However, it is known that when E
is a JB∗-triple and X = E or X = E∗ then, for each submodule S of X, AnnE(S)
is a linear subspace, and hence a norm-closed triple ideal of E (see Lemma 1 and
Proposition 2 in [25]). Further, Proposition 2 (or Remark 3) in [25] shows that, in
this case, {AnnE(S),AnnE(S), S} = 0 in the triple split null extension E ⊕ X.

From now on, we assume that E is a JB∗-triple and X denotes E or E∗. In this
case, Remark 17 and the fact that σX(δ) is a triple E-submodule of X prove that
AnnE

(
σX(δ)

)
is a norm-closed triple ideal of E.

The strategy for obtaining results on automatic continuity for generalized triple
derivations will consist in applying Theorem 14 to the generalized triple homomor-
phism Θδ . In order to do this, we will first check that

J := Θ−1
δ

(
AnnE⊕X

(
σE⊕X(Θδ)

))
is a norm-closed triple ideal of E. It is not hard to see that AnnE⊕X

(
σE⊕X(Θδ)

)
=

AnnE

(
σX(δ)

)
⊕ X and

Θ−1
δ

(
AnnE

(
σX(δ)

)
⊕ X

)
= AnnE

(
σX(δ)

)
.
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This proves that J is a norm-closed triple ideal of E (see Remark 17). On the other
hand, {

AnnE⊕X

(
σE⊕X(Θδ)

)
,AnnE⊕X

(
σE⊕X(Θδ)

)
, σE⊕X(Θδ)

}
=
{

AnnE

(
σX(δ)

)
,AnnE

(
σX(δ)

)
, σX(δ)

}
= 0

(compare the final statement in Remark 17). Theorem 14 proves the continuity of Θδ

and hence the continuity of δ.

Theorem 18 Let E be a real or complex JB∗-triple and δ : E → X a generalized triple
derivation, where X = E or E∗. Then δ is continuous.

The statement concerning real JB∗-triples can be derived from the complex case
applying Remark 14 in [25].

Since every triple derivation is a generalized triple derivation we get the following.

Corollary 19 ([25, Corollary 15]) Let E be a real or complex JB∗-triple and let
δ : E→ X be a triple derivation, where X = E or E∗. Then δ is continuous.

4.3 Generalized Triple Derivations Whose Domain is a C∗-algebra

We have already mentioned that every C∗-algebra belongs to the class of JB∗-triples.
We will conclude this paper by applying some of the previous results to C∗-algebras.
The results obtained this way are interesting by themselves.

Lemma 20 Let T : Asa → X be a linear mapping from the self-adjoint part, Asa, of
an abelian C∗-algebra, A, to a Banach space. Suppose that JT := {a ∈ Asa : TQ(a)
is continuous } is a norm-closed subset of Asa with {a,Asa, a} ∈ JT , for every a ∈ JT .
Then JT is a triple ideal of Asa.

Proof It is easy to see that every norm-closed inner ideal of the selfadjoint part of an
abelian C∗-algebra A is a triple ideal in Asa (norm-closed by assumption). Therefore,
we only have to prove that JT is a linear subspace. To this end, it is enough to show
that a + b ∈ JT whenever a, b ∈ JT .

Let a and b be two elements in Asa. First we observe that, since Asa is abelian,
L(a + b) = Q(a + b). Obviously, the linear mapping Lb : Asa → Asa, c 7→ cb = bc
is continuous. Since Asa is abelian we have L(a2, b) = Q(a)Lb = LbQ(a). Therefore
TL(a2, b) = TQ(a)Lb is continuous for every a ∈ JT , b ∈ Asa.

Let us pick a ∈ JT . We write a in the form a = a1 − a2 where a1, a2 are or-
thogonal positive elements in Asa. Since Q(a)Asa ∈ JT , a3

1 lies in JT , and hence
a6

1Asa = Q(a3
1)Asa ⊆ JT . This implies that JT contains the norm-closed ideal of

Asa generated by a6
1, which guarantees that JT contains a1 and a

1
2
1 . Similarly, we show

that JT contains a2 and a
1
2
2 . Now

TL(a, b) = TL(a1, b)− TL(a2, b) = TL
(

(a
1
2
1 )2, b

)
− TL

(
(a

1
2
2 )2, b

)
,
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and thus TL(a, b) is continuous for every b ∈ Asa. Finally, the equality

TQ(a + b) = TL(a + b) = TL(a, a) + TL(b, b) + 2TL(a, b)

shows that TQ(a + b) is continuous for every a, b ∈ JT .

Proposition 21 Let δ : A→ X be a generalized derivation from an abelian C∗-algebra
to a Jordan–Banach triple A-module. Then δ is continuous.

Proof We will only prove that δ|Asa
is continuous. Let Θδ0 : Asa → Asa ⊕ X be the

generalized triple homomorphism associated to δ0 := δ|Asa . We have already shown
that J = Θ−1

δ0

(
AnnAsa⊕X

(
σAsa⊕X(Θδ0 )

))
coincides with AnnAsa

(
σX(δ0)

)
(see the

comments prior to Theorem 18). Therefore, J is the quadratic annihilator of a closed
submodule of X, and hence J is norm closed and satisfies {a,Asa, a} ∈ J, for every
a ∈ J (cf. [25, Section 2.3]).

It is easy to see that J coincides with {a ∈ Asa : Θδ0 Q(a) is continuous}. Now,
Lemma 20 proves that J = Θ−1

δ0

(
AnnAsa⊕X

(
σAsa⊕X(Θδ0 )

))
is a norm-closed triple

ideal of Asa, and since A is abelian,{
AnnAsa⊕X

(
σAsa⊕X(Θδ0 )

)
,AnnAsa⊕X

(
σAsa⊕X(Θδ0 )

)
, σAsa⊕X(Θδ0 )

}
=
{

AnnAsa

(
σAsa (δ0)

)
,AnnAsa

(
σAsa (δ0)

)
, σAsa (δ0)

}
= 0.

Having in mind that Asa is a reduced real JB∗-triple and the validity of Theorem 14
for reduced real JB∗-triples, we conclude that δ|Asa is continuous.

A celebrated result of J. Cuntz (see [8]) establishes that a linear mapping from a
C∗-algebra A to a Banach space is continuous if and only if its restriction to each
subalgebra of A generated by a single hermitian element is continuous. We finish this
note with a consequence of Cuntz’ theorem and Proposition 21.

Theorem 22 Every generalized triple derivation from a real or complex C∗-algebra A
to a Jordan–Banach triple A-module is continuous.
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