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A two-step estimation method of stochastic volatility models is proposed: In the first
step, we nonparametrically estimate the (unobserved) instantaneous volatility pro-
cess. In the second step, standard estimation methods for fully observed diffusion
processes are employed, but with the filtered/estimated volatility process replac-
ing the latent process. Our estimation strategy is applicable to both parametric and
nonparametric stochastic volatility models, and can handle both jumps and market
microstructure noise. The resulting estimators of the stochastic volatility model will
carry additional biases and variances due to the first-step estimation, but under regu-
larity conditions we show that these vanish asymptotically and our estimators inherit
the asymptotic properties of the infeasible estimators based on observations of the
volatility process. A simulation study examines the finite-sample properties of the
proposed estimators.

1. INTRODUCTION

We propose a general estimation strategy for SV jump-diffusion models that
combines a simple, model-free realized volatility estimator with the additional
structure imposed by the Markov diffusion model of the volatility process.
The resulting estimators are simple to implement and require little, if any,
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numerical optimization. The estimation strategy allows for both nonparametric
and fully parametric specifications of the SV model, and as such is very flexible.
The estimation method proceeds in two steps: First, a nonparametric estimator
of the spot (or instantaneous) volatility is computed. Second, the spot volatility
estimator is plugged into a given existing estimation method for fully observed
diffusion models.

The first step takes as input a given spot volatility estimator: A number of
spot volatility estimators have been proposed in the literature such as Fan and
Wang (2008), Kristensen (2010a), Hoffman, Munk, and Schmidt-Hieber (2012),
Malliavin and Mancino (2002, 2009), Mancini, Mattiussi, and Reno (2012), and
Zu and Boswijk (2014), amongst others. We do not restrict ourselves to a specific
volatility estimator, and allow for a broad class of spot volatility estimators to
be employed in our two-step procedure. In the second step, the volatility model
is estimated taking as input the chosen spot volatility estimator. We here con-
sider two leading volatility models with associated estimators: First, we consider
a nonparametric Markov model for the volatility with associated kernel estima-
tors as proposed by Bandi and Phillips (2003). As a second example, we analyze
(semi-) parametric Markov models with associated least-squares estimators akin
to the ones proposed in Prakasa Rao (1988) or Bandi and Phillips (2007). The
asymptotic theory that we develop assumes that the volatility process contains
no jump component. However, we show how the estimators can be modified to
handle jumps in volatility and discuss how our theory can be extended to cover
this case.

We show consistency and asymptotic normality for both the nonparametric and
parametric two-step estimators of the underlying volatility model. In the nonpara-
metric case, our two-stage estimation problem is similar to the one considered in
Sperlich (2009) where kernel regression with generated regressors is considered;
see also Newey, Powell, and Vella (1999), Xiao, Linton, Carroll, and Mammen
(2003), and Mammen, Rothe, and Schienle (2012). The parametric estimators
can be seen as a two-step semiparametric estimation procedure, where a paramet-
ric estimator relies on a preliminary nonparametric estimator; see e.g., Kristensen
(2010b) and Mammen, Rothe, and Schienle (2013).

The asymptotic properties of the two-step estimators are established under
regularity conditions with a key condition being that the first-step spot volatility
estimator is uniformly consistent over a growing time span with a known con-
vergence rate. This is a high-level assumption that needs to be verified for the
particular spot volatility estimator being employed. We verify this condition for
three particular spot volatility estimators that are consistent under different sce-
narios as described below. In all three cases, the proof of uniform consistency is
technically demanding due to two properties of the object of interest, the realized
sample path of the latent volatility process: First, it is not smooth, and second it is
potentially unbounded as time diverges. This is in contrast to standard nonpara-
metric estimation problems (e.g. density and regression estimation), and we have
to use some novel theoretical techniques in order to establish uniform rate results
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over an expanding time interval, including a new result on the global modulus of
continuity of stochastic processes.

Four scenarios are considered in the first-step spot volatility estimation: First,
the ideal situation where log-prices are observed without market microstructure
noise and do not contain jumps. In this case, the kernel-based estimator proposed
in Kristensen (2010a) is consistent, and we extend Kristensen’s rate results to
allow for an expanding time span. Second, noise is introduced and we propose a
novel spot volatility estimator based on preaveraging, similar to Podolskij and
Vetter (2009a, 2009b), to handle this case, and derive its uniform rate. Next,
we consider the case where jumps, but no noise, are present, and we derive the
rate of a kernel-weighted version of the threshold estimator of Mancini (2009).
Finally, by combining the estimation strategies from the second and third sce-
nario, we develop a jump and noise-robust spot volatility estimator; the analysis
of this estimator proves to be quite complex, and so we do not provide a complete
asymptotic theory for this. The estimators in the second and fourth scenarios are
both novel, and the uniform rate results of all estimators are new contributions to
the literature, and so should be of independent interest.

Our estimators rely on certain nuisance parameters that need to be chosen in the
implementation. In particular, bandwidths have to be chosen in the estimation of
the spot volatility. Our theoretical results offer some guidance regarding how this
and other parameters should be chosen. Based on these, we discuss in some detail
how the estimators can be implemented in practice. We also investigate the finite-
sample performance of our estimators through a simulation study with particular
emphasis on their sensitivity towards the choice of nuisance parameters. We find
that the estimators are quite robust and fairly precise for reasonable sample sizes.

Within the class of parametric Markov SV models, a number of different
estimation methods exist. If only low-frequency data are available, the estimation
problem is hard due to the volatility process being latent. In a few specific exam-
ples, one can derive analytical expressions of certain moment functions and use
these in the estimation (Chacko and Viceira, 2003), but in general numerical meth-
ods need to be used to deal with the latent variable problem (see e.g., Andersen
and Lund, 1997; Gallant, Hsieh, and Tauchen, 1997; Altissimo and Mele, 2009).
In the case where high-frequency data are available, a number of studies have
proposed to estimate parametric SV models by matching certain conditional mo-
ments of the integrated volatility with their estimated ones using GMM-type
methods. Examples of this approach are Barndorff-Nielsen and Shephard (2001),
Bollerslev and Zhou (2002), Corradi and Distaso (2006), Creel and Kristensen
(2014), and Todorov (2009). However, in general, closed form expressions of the
moments are not available, and as a result these estimation strategies will in gen-
eral require the use of simulation-based or other computationally burdensome
methods. We also note that the extension of these methods to nonparametric esti-
mation of SV models is not obvious.

In related studies, Comte, Genon-Catalot, and Rozenholc (2009), Reno (2006,
2008), and Bandi and Reno (2009) propose estimators similar to ours, but they
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only consider nonparametric volatility models and do not necessarily provide
a complete asymptotic theory. In particular, uniform consistency (and its rate)
of the first-step spot volatility estimator over a growing time interval is not es-
tablished. Comte et al. (2009) assume that the integrated volatility is observable
(if their setting is read in the context of the volatility estimation), while Reno
(2006) only provides simulation results. Reno (2008) only establishes consis-
tency of his spot volatility estimator over a fixed time interval, and so can only
show results for the estimation of the diffusion coefficient of the volatility model.
Furthermore, this consistency result relies on some strong assumptions on the
model, including compact support of the volatility process, thereby ruling out all
standard models found in the literature. Bandi and Reno (2009) avoid some of
these issues by imposing certain high-level assumptions on the volatility process,
but these seem difficult to verify in practice. On the other hand, their framework is
more general than ours in that they allow for the presence of jumps in the volatility
process.

The rest of the paper is organized as follows: In the next section, we outline
our proposed estimation method for the nonparametric and fully parametric case.
In Section 3, uniform rates of three different spot volatility estimators are de-
rived under regularity conditions. These rate results are then employed in Sec-
tions 4 and 5 to establish the asymptotic properties of estimators of SV models in
a nonparametric and parametric setting, respectively. The practical implementa-
tion of the estimator is discussed in Section 7. The results of a simulation study
investigating finite-sample properties of our estimators are presented in Section 8.
Section 9 concludes. Proofs of theorems and lemmas have been collected in
Appendices 9 and A.3, respectively, while tables and figures can be found in
Appendices C and D, respectively. Some details of proofs are provided online
at Cambridge Journals Online (journals.cambridge.org/ect) in supplementary ma-
terial to this article.

We use the following notations throughout: The symbols £ and & denote
convergence in probability and distribution, respectively. The abbreviation a.s. is
for “almost surely.” The transpose of a vector or matrix A is denoted AX. For a
vector or matrix B = [b,-, j], || B]| denotes Zi’j |b,-’ j | For definitional equations,
we use the notations: C := D and E =: F, where the former means that C is
defined by D, and the latter means that E is defined by F'.

2. A GENERAL ESTIMATION METHOD FOR SV MODELS

Let {X;} :={X, : t > 0} be a semimartingale that is a cadlag solution to

dXt = ,u;dt+a',dW[ +dJl

do? =a(o?)dt +p(c})dZ, ’ @D

where {W;} and {Z;} are two (possibly correlated) standard Brownian motions
(BM’s), while {#,} and {o,} are adapted, cadlag stochastic processes. The process
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{atz} is usually referred to as the (spot) volatility process of {X,}, while {u;}
is the drift process. The process {J;} is a pure-jump cadlag process with finite
jump activities (i.e., the number of jump occurrences in any finite time interval
is finite). Given the finite-jump-activity assumption, we can write J; = Z,]V;1 Kj,
where N, is the jump arrival process and x;, j = 1,2, ..., are the jump sizes.
The second part of the model in equation (2.1), stating the dynamics of the
volatility process, is referred to as a stochastic volatility (SV) model, and restricts
the volatility process to be a Markov diffusion process. We discuss in Section
6 how our results can be extended to the case where the volatility process is a
jump-diffusion.

We consider two different sampling scenarios: Either we have directly observed
X; at discrete time points 71, ..., #,, or only noise-contaminated observations of
the process are available due to, for example, market microstructure. In the latter
case, we only have observed Y1, ..., Y, where ¥; = X, +¢; (i =1,....,n) and {g;}
are the measurement errors. For notational simplicity, we will throughout assume
that equidistant observations are available so that the time distance between
observations is constant, A = t; —t;_1; all the subsequent results still hold with
nonequidistant observations with A now being the maximum time distance in the
sample.

Given observations of X; (or the noise-contaminated version of it) at discrete
time points, we wish to draw inference about the drift and diffusion terms of the
underlying SV model, a (-) and 2 (-). Since we have not observed the process
{atz}, the estimation of these two terms involves a latent stochastic process which
we need to learn about from data. To motivate our estimators, consider for the mo-
ment the counter-factual situation where {af} has been observed at discrete time
points. In this case, fully nonparametric kernel estimators of « (-) and 42 (-) have
been developed in Bandi and Phillips (2003), Florens-Zmirou (1993), and Jiang
and Knight (1997) amongst others. If parametric forms for drift and/or volatility
are specified, a number of estimators offer themselves; see, for example, Florens-
Zmirou (1989), Jacod (2006), Sgrensen (2009), and Yoshida (1992).

Now, let us return to the actual situation where the volatility is unobserved, in
which case all of the above estimators of a (-) and A2 (-) are infeasible. Instead,
we here suggest a two-step procedure, where in the first step an estimator of the
spot volatility is obtained from data which we denote &Tz, 7z > 0. This could, for
example, be any of the estimators proposed in the literature which we cited in
the Introduction. We can compute 53 at any given value of 7; in particular, we
can evaluate it at a given set of discrete time points z;, j = 1,..., N, chosen by
us. These time points are under our control and may potentially differ from the
actual time points at which X; (or Y;) has been observed. We, therefore, refer
to{rj:j=1,2,..,N} and J := 7j41 — 7; as pseudo-sampling times and time
distance, respectively. When deriving the asymptotics of our estimators, we will
impose certain restrictions on these.

In the second step, we simply replace the spot volatilities in any of the above es-
timation methods with the estimates obtained in the first-step. We will here focus
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on two particular estimation methods. For nonparametric estimation, we employ
the kernel estimators of Bandi and Phillips (2003) and obtain the following feasi-
ble estimates:

]C _ 2
a(x)= 25 b(a x)[a’“ ”]; 2.2)
> K (62 —x)[a —G21

p2 X) = Tj+1
A EOI Ky (&2 —x)
where ICp(x) = K(x/b)/b for some kernel function K : R — R and some band—
width b > 0. Similarly, for parametric estimators, we simply replace a by o a 7
in the objective function defining the estimators. We here follow Bandl and
Phillips (2007) and consider least-square estimators of the parameters. Suppose
that the drift and/or diffusion functions belong to some known parametric fami-
lies, a (-) = a(-; 0f) and/or p2() = ﬁz(o;ﬁz*) for two parameters 0] € @ C R%
and 05 € ®; C R%. We then specify our estimators as slightly modified versions
of the ones in Bandi and Phillips (2007):

) (2.3)

6 = argminQ (B;) for k=1,2, (2.4)
OO

where

0100=3""[62,, ~52)~a@E:009] 25)

0:00=3"[@2, 527 162 00] 26)

We here have proposed specific estimators in nonparametric and fully para-
metric settings. It should be clear though that the filtered spot volatility can be
combined with any other existing estimation methods for fully observed diffusion
models as cited above to obtain estimators for SV models.

3. SPOT VOLATILITY ESTIMATION

In the asymptotic analysis of the proposed two-step estimators that is presented
in the next section, we need to control the first-step estimation error in 5. More
specifically, we will impose the high level condition that the chosen spot volatil-
ity estimator satisfies maxj<j<y Ia -0 ]I = Op(9y) for some rate parameter
¥ — 0. In this section, we derive such rates for kernel-based spot volatility es-
timators that takes as starting point the basic estimator proposed in Kristensen
(2010a).

The arguments that we employ to establish such rate results are somewhat non-
standard since, in general, the target “function” in our case, 7 > 012, will be un-
bounded as T — oo. This is in contrast to the existing literature on uniform rate
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results of nonparametric estimators where it is routinely assumed that the func-
tion of interest is bounded. Our uniform convergence results may be useful in
other applications, and so we do not restrict the volatility process to be a Markov
diffusion (as imposed in equation (2.1)) in this section. Instead, we only require
that the drift and volatility processes, x; and atz, satisfy certain moment condi-
tions, and that the volatility process is sufficiently smooth. It could, for example,
be long memory type model (as found in Comte and Renault, 1996) or general
Brownian semimartingales and as such be used as an input in the estimation of
more general models. The smoothness condition rules out jumps in volatility; we
discuss in Section 6, how the spot volatility estimators can be modified to handle
this situation.

The specific estimator employed to learn about 0,2 in the first step depends
on whether data are noise-contaminated and/or contain jumps. We consider four
different scenarios in the subsequent four subsections: (i) Data contain no market
microstructure noise and no jumps; (ii) data are contaminated by noise, but not
jumps; (iii) data are contaminated by jumps, but not noise; and finally (iv) data
are contaminated by both noise and jumps. In each case, we develop an estimator
and analyze its properties.

3.1. Noise and Jump-free Case (¢ = J =0)

In the case of no noise and no jumps (¢; = J; = 0), X; is directly observed and
contains no jumps, and so the kernel estimator of Kristensen (2010a) can be em-
ployed:

R n
6:=2  _ Knli-i =X, =X, 1%, 3.1

where K}, (z) = K (z/h) / h, K is another kernel, and & > 0 is another bandwidth;
see also Fan and Wang (2008). That is, in the two-step estimation procedure out-
lined in the previous section, we set 52 = 6> where 62 is given above. To analyze
the asymptotic properties of &TZ, we impose the following conditions on K :

K.1 The kernel function K : R— R satisfies ffooo K (x)dx =1 and
ffooo [x]™| K (x)|dx < oo for m(> 1); and there exist some constants K,C <
(0, 00) such that sup, g |K (x)| < K, sup, yer |K (x) =K (y)| < K |x —yl,
and | K (x)]| is not decreasing on (—oo, —C] and not increasing on [C, 00).

Many standard kernels satisfy these conditions, including the Gaussian one.
The monotone tail condition imposed in K.1 may be unfamiliar but is actually
satisfied by many kernels (e.g., the Gaussian kernel and any kernel with com-
pact support). This is useful in order to obtain sharp convergence rates. We allow
for one-sided kernels as discussed in Kristensen (2010a). The continuity and dif-
ferentiability conditions imposed on K simplify various parts of our subsequent
proofs (see, e.g., derivation of (B.7)), but excludes, for example, the uniform
kernel.
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Next, we impose conditions on the drift and volatility processes of {X,}:

A.1 There exist constants p > 0 and I} > 0: sup, .7 E[|u;[**?] = O (T") as
T — oo.

A.2 (i) There exist constants ¢ > 0 and I > 0: sup,.7 E[|o;|*"] = 0 (T")
as T — oo. (ii) There exist constants 1 > 0, p > 0 and C > 0 such that

4 1
E[|a,2—asz‘ 1< Clt—s|'t7.

The uniform moment conditions imposed in Assumptions A.1 and A.2(i)
are used to extend the uniform convergence results over the interval [0, T] of
Kristensen (2010a) from the case where T = T < oo is fixed to the case where
T — oo. If we only wanted to show convergence for fixed T < oo, these moment
conditions could be disposed of. However, we need T — oo in order to estimate
the drift function « (-), since it is not identified from data observed within a fixed
interval, c.f. Kristensen (2010a, Thm. 5).

If the drift is zero, u, = 0 for all 7, we can set /{ = —oo in Assumption
A.1. If {u;} is stationary, we can choose /1 = 0 in Assumption A.l. The condi-
tion is however also satisfied for nonstationary processes; an instructive example
of this is a standard BM, say {B;}: if 4, = B;, we can choose (p,[;) = (2,2)
(or (p,11) = (p, 1 + p/2) for any constant p > 0). Similarly, A.2(i) holds in great
generality: If {alz} is recurrent, Assumption A.2(i) can be easily satisfied as long
as the relevant moments exist (e.g., [ = 0 for stationary cases). The recurrent
case includes most parametric diffusion models found in the literature, including
Ornstein-Uhlenbeck (OU) and CIR/Feller’s square-root models, which have finite
moments of any order. Even null recurrent processes are included; for example, if
{0} is a diffusion process whose drift function has compact support and diffusion
term is (uniformly) bounded (see e.g. Has’minskii, 1980, Chap. IV), then it is null
recurrent and A.2(i) holds with I, < 14 ¢/2 for any g > 0.

Assumption A.2(ii) is a smoothness condition of {af} in the L ,-norm. A useful
implication of A.2(ii) is that it delivers bounds on the modulus of continuity of
the volatility process given by

2 2
ojo,71(A) = maxy refo,1); |1—s|<A lo; — 05,

where we recall that A > 0 denotes the fixed time distance between observations.
The properties of wjo,71(A) when {¢?} is a diffusion process are well-known for
T =T < oo fixed, c.f. Revuz and Yor (1999, Thm. 1.8 and 2.1, pp. 19, 26). How-
ever, we have not been able to find any results in the literature for the long span
case where 7' — oo. We therefore establish a new result showing that the standard
rate for the modulus of continuity can be extended to hold over an infinite time
interval [0,00); see Lemma A.l. In particular, we show that wjg o) (A) =
Ou5. (A7) forany y € [0,p/A) as A — 0. This result is often needed when one
considers nonparametric estimators for continuous-time processes under long
span asymptotics, and should be of independent interest; see Kanaya (2014) for
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related results. Assumption A.2(ii) is automatically satisfied with p = 1/2 — 1
if {07} is a stationary diffusion process whose drift and diffusion functions
satisfy E[|a (atz)ll] < oo and E[|ﬂ(o,2)|7“] < oo for some A > 2. These conditions
are in turn satisfied for any 4 > 0 if, for example, {o;} is an OU or CIR process.

We restrict the set of feasible bandwidth sequences that can be used to estimate
the trajectory of {0,2}:

B.1 The bandwidth 4 — 0 is chosen such that, as T/A(=n) - co and A — 0:

APPlog (1/ AT /h = 0 (1); (3.2)
24p

7 U+ 2+9)=G+0)2+p)  p(2+9)/2 [h A2 log(l/A)] =0(); (3.3)

hm—Zy T2+412/(2+q) — O(]), 3.4

where (p,l1), (¢,12), and m were introduced in Assumption A.1, A.2, and K.1,
respectively.

Equations (3.2) and (3.3) are used to control the bias of &,2 due to the presence
of the drift term {z,}. They imply that the bias incurred from this term has negli-
gible impact in the estimation uniformly as 7 — oo; and the existence of higher
order moments of x; (i.e., a larger value of p) allows for a more flexible choice
of & or a less frequent sampling. They can be thought of as a strengthening of the
classical condition of “rapidly increasing experimental design” normally used in
the estimation of diffusion models, AT (= Azn) — 0. This type of condition was
originally introduced in Prakasa Rao (1988) for the parametric estimation of dif-
fusion models, and is widely used to establish properties of diffusion estimators
under infill asymptotics, A — 0. In our case, since we are using local estimators,
we often need to require A to shrink faster than in the parametric case. The con-
dition in equation (3.3) involves ¢ and [, which is due to interactions between the
two components u; and o; (see the decomposition into five terms in the proof of
Theorem 3.1). If u; has sufficiently high moments (p > (1+/1) 2+¢q)/ (3+12)),
this condition is always satisfied. Note also that if the drift is not present then
equations (3.2) and (3.3) are automatically satisfied.

The last condition (3.4) in (B.1) is used to control smoothing biases near the
boundaries t = 0 and 7', where m regulates the tail behavior of the kernel K. This
is far from restrictive; for example, Gaussian and compactly-supported kernels
satisfy [%_|x|™|K (x)|dx < oo for any m > 0.

We are now able to establish a convergence rate of the spot volatility estimator
62

THEOREM 3.1. Suppose that Assumptions A.1-A.2, B.1, and K.1I hold. Then,
foranyy € (0,p/2):

SUP, o /.7 —vi 162 =071 = Op(I1.a) 3.5)
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as T/A (=n) — oo with A — 0, where

_ 2/C+q)
Or.a=h" +Jh=1Alog(1/A) x TH2/+0) [Tz/hAlog(l/A)] ”.

The first term of 1_97, A, h7, is the rate of the kernel smoothing bias which
depends on the degree of the continuity of {o—tz}; it coincides with the bias rate
in Kristensen (2010a, Thm. 3) for fixed T = T < oo. In the standard kernel
estimation case, such biases may be remedied by using higher-order kernels.
However, {0[2} is modeled as a general stochastic process here, which in gen-
eral does not have differentiable sample paths, and so higher order kernels would
not reduce this bias.

The second term of 1_97, A is the rate of the variance component. The first part,

Vh~='Alog(1/A), is the usual term found in many other studies deriving uni-
form rates of kernel regression estimators (see, e.g., Kristensen, 2010a, Thm. 3),

while the second part, 722/C+4) [T2 /hAlog(1/ A)]Z/(Hq), is nonstandard. The
second part owes to the fact that we here employ a Bernstein-type expo-
nential inequality for bounded martingales. Since the martingale component
of X, fé osd Wy, is unbounded, we truncate the process. Unfortunately, the
martingale property is not readily preserved under truncation and so the pre-
cise argument is quite involved and leads to the additional, nonstandard term.
Exponential inequalities combined with truncation are a standard tool for deriving
uniform rates; see, e.g., Hansen (2008), Kristensen (2009), Gao, Kanaya, Li and
Tj@stheim (2015), and Kanaya (2014). However, these papers assume a mixing
(or an i.i.d.) condition which makes the arguments simpler since truncated mixing
processes remain mixing. A more closely related paper is Wang and Chan (2014)
who derive uniform convergence results for kernel regression estimators with
martingale difference errors. If additional mixing and moment conditions were
imposed on {012} or {X,}, the rate of the variance component can be shown

to be /h—1Alog(1/A). However, in order to allow for nonstationary and
strongly dependent volatility processes, we do not impose these. When /5 is
small and ¢ is large (implying stronger moment conditions on 012), the rate
is close to \/h~!'Alog(l/A). Similarly, if {o;} is uniformly bounded over
[0, T'], which can be understood as ¢ = oo, the second term again reduces to
Vh=1Alog(1/A). We note that this rate can be also obtained when SUP;¢[0.7] o}
is of stochastically bounded (i.e., O, . (1)), which holds when the time span is
fixed.

The result is uninformative about how to choose 4 in finite samples for good
performance of the estimator since the uniform rate depends on /; and g, which
in general are unknown. However, this is not special to our setting. For example,
the rate derived in Hansen (2008, Thm. 5) depends on the mixing rate and the
number of moments, while the one of Wang and Chan (2014) involves certain tail
properties of the regressor.
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3.2. Noise Contaminated Case (¢ £ 0)

We here consider the case where data are contaminated by market microstructure
noise and therefore the estimator &TZ may no longer be consistent. We slightly

change notation and assume that we have observed M > 1 observations given by
Yi=X;, +e, i=1,....M, 3.6)

where {¢;} are measurement errors, s; = i7 /M are the sample time points, and
Ag :=s; —si—1 = T/M is the time distance between observations. Note the
differences in notation relative to the no-noise case where we had observed n
observations at time points 7, ?, ..., ;. The reason for this change in notation
is that it allows for a simpler comparison of the asymptotic properties of the
noise-free and noise-robust estimators. As before, we assume observations are
equidistant in time; this is imposed only for notational simplicity and can be
relaxed.

A number of different approaches have been developed in the estimation of
integrated volatility to handle noise contamination. We can in principle localize
any of these methods to obtain a noise-robust spot volatility estimator, and we
here choose to focus on a localized version of the preaveraging procedures de-
veloped in, amongst others, Jacod, Li, Mykland, Podolskij, and Vetter (2009) and
Podolskij and Vetter (2009a, 2009b): First, prewhiten (preaverage) data using a
kernel filter:

A T M
Xi=: > Lasi=DY; 3.7)

where L, (z) = L (z/a) /a, L is akernel function, and a > 0 is another bandwidth.
Second, replace the unobserved process X; by X, in equation (3.1) yielding the
following noise-robust (NR) volatility estimator:

n n N ~
iR = Zi:l Ky (tim1 — 1) [Xy, — Xy 1 3.8)

Note that in this setting, s, ...., sy are the actual observation times, while now
both 1, t1...,t, and 79, 71..., Ty are pseudo-sampling time points chosen by the
econometrician. Through this notation we can conveniently decompose the over-
all estimation error of 613112, . as &I%R’ . —ol= [&I%R’ . —621+1[62—02], where 62
is the infeasible estimator given in equation (3.1) assuming that we had directly
observed X, at the pseudo-sampling points 1, ..., .

As an alternative to the estimator in equation (3.8), one could develop local-
ized versions of the two-scale realized variance estimator (Zhang, Mykland, and
Ait-Sahalia, 2005), or the realised-kernel estimator (Barndorff-Nielsen, Hansen,
Lunde, and Shephard, 2008). For example, Zu and Boswijk (2014) analyze a lo-
calized version of the two-scale realized variance estimator. We note that up to
some approximation (of first order), the two-scale estimator can be re-written
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as the realised-kernel one with the Bartlett-type kernel, and the realised-kernel
estimator can be seen as a member of the class of preaveraging estimators.! Ac-
cordingly, localized versions of the two-scale and realized-kernel estimators can
be also re-written, up to some approximation, as our localized preaveraging esti-
mator in equation (3.8).

We impose the following conditions on L and the measurement errors:

K.2 L:R — R satisfies ffooo L (x)dx = 1, has compact support, and is continu-
ously differentiable.

A.3 {g;} are mutually independent and independent of {X,} with E [¢;] =0 and
sup; -1 Elle; |1+d5] < oo for some constant dg > 0.

The compact-support condition on L in K.2 excludes some kernels, such as the
Gaussian one, but simplifies some of the theoretical arguments (see, e.g., deriva-
tions of (B.1) and (B.2) in the proof of Theorem 3.2). It should be possible to re-
place this assumption by some tail decay conditions on L, but this will complicate
the proofs, and we maintain this condition. The assumption of no autocorrelation
in the errors can be relaxed to allow for {¢;} to be weakly dependent (such as
a-mixing). By controlling the degree of dependence appropriately, the following
rate results should carry over to the weakly dependent case. However, we rule out
autocorrelation here to avoid too lengthy proofs. The existence of the higher-order
moments of ¢; are used when applying exponential inequalities; see our previous
discussion on the exponential inequality and truncation. Finally, we impose the
following conditions on Ay and a:

B.2 The bandwidth a — 0 is chosen such that as Ay — 0:

any™% [log(1/A)] T4 = 0 (1); 3.9)

fa=1A,log (1/Ay) [T1+11/<2+p) + T(1/2)+lz/(2+q)] —0(): (3.10)
a?T?1* ) = 0 (1); (3.11)
a?T* ) [log (1/A)17H) = 0 (1), 3.12)

where (p, 1), (¢,12), and ds; were defined in Assumptions A.2—-A.3.

Equations (3.10)—(3.12) are slightly stronger than necessary but allow us to
obtain a relatively simple expression for the convergence rate of the noise-robust
estimator. Equations (3.10) and (3.11) are used to control the effect of the drift
term {u,}. Equation (3.10) may be regarded as a strengthening of the rapidly
increasing experimental design as discussed earlier. If T = T < 0o, equations
(3.11) and (3.12) are trivially satisfied. If {¢;}, {u,} or {o;} is uniformly bounded,
we can set corresponding parameters (d, p or g) as +00, in which case equations
(3.11) and (3.12) are trivially satisfied.
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Given these conditions, we are able to derive the following rate result for the
noise-robust estimator:

THEOREM 3.2. Suppose that Assumptions A.1-A.3, B.I-B.2, and K.1-K.2
are satisfied. Then,

~2 ~2
Supre[\/fz,T—«/fl] |UNR,1 —0; |

= ATV2(7 R )1/ CF) [ﬁ(T1+12/a)1/<2+4> —I—,/a—lAslog(l/Ax)] :

as A,Ag > 0, and T/A,T/As — o0, where &TZ is given in equation (3.1).
In particular,

SUD, ¢ V. 7— V] |6%R.. — 071 = OP('l?]I\{RA’ A (3.13)

where

O A =04+ ATVAT O jg)l/ D) [ﬁ(r‘“z/a)‘/(“q’ +\/a-lAslog(1/As)]

The rate 19¥ ALA, consists of two parts: The first is the same as for the noise-
free estimator, ﬂT,A, when we observe X; at sampling frequency A, while the

second component is due to the first-step filter X, which generates additional
errors. More specifically, we show in Lemma A.2 thatsup /7 7_ /5 1 X: — Xi| =

Op (\/E(T1+12/a)1/(2+q) +4/a —1A‘log(1/A‘ ) Not surprisingly, this rate re-

sult is similar to the one for a stated in Theorem 3.1 and the discussion fol-
lowing this theorem carries over to X, and its stated rate. The expression of
19¥,RA, A, suggests that, for a given A (as chosen by the econometrician) and 7,
we should choose & = h (A, T') to minimize 197, A as discussed previously, while
a=a(As,T)and A = A (Ag, T') should be chosen to minimize the second com-
ponent of 191}]}2, A, > precise guidelines for how to choose a and A seem difficult to
derive though.

Remarks similar to those made for Theorem 3.1 apply here: For example, if
{atz} is uniformly bounded over ¢ € [0, 00) or T =T < 00, we may set ¢ = oo and

convergence rates in the theorem are simplified, e.g., the second term of 19¥RA A,

simplifies to A™2[\/a +/a=!Aslog(1/Ay)]. In particular, when 7 = T fixed

and o; is a diffusion process, SUP_ [ /i T —/T] ‘&I%R . —0‘1_2 = Op ( 1/12) by

choosing a = O (V' Ay), h = O(A) and A = O(Asl/3). This is identical to the
pointwise rate derived in Zu and Boswijk (2014) for their alternative noise-robust
spot volatility estimator.

3.3. Jump Case (J #0)

We here consider the case where jumps on the form J, = Zsz’ | j are present, but
X, is not contaminated by noise. Given the same sampling scheme and notation
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as in the no-noise case, we propose the following jump-robust (JR) estimator of
2.
ol

R n
Gike = D, Kn (i1 =0 X, = X, PHIX, =X, P <r (A7), (3.14)

where r (A, T) is a thresholding parameter chosen by the econometrician. This
is a kernel-smoothed version of Mancini’s (2009) threshold estimator of the in-
tegrated volatility; see also Mancini et al. (2012). Through a suitable choice of
the thresholding parameter, Mancini (2009) shows that the effect of jumps can be
eliminated by the thresholding device so that the integrated volatility (over a finite
interval) can be consistently estimated. The same idea applies here.

To derive the uniform convergence result of &JZR,T, we make the following as-
sumptions regarding the jump component, which closely follows Mancini (2009).
We here let N;_ denote the left limit of the (realized) path of the counting process
at 7, so that Ny — N;— = 1 means a jump occurred at time 7.

A.4 {N,} is a Poisson process with bounded intensity, A, < Z, which is indepen-
dent of oy, 14, and W;. Furthermore, (i) Pr [N, —Ni—=1&kpy, = O] =0 for
any t > 0; (ii) there exist random variables C, and C,2, and a deterministic
function &7 so that

.
SUPj<j<p | f,,.'_l usds|

limsu <C,¢r; and
Ao, JAlog(/h) “
1 2
SUpj<ic, | | ofds|
limsup [=r=n ft'fl : < C,,zf%,
A—0 A

almost surely, as A — 0 and T/A — oo; (iii) the tresholding parameter
r (T, A) satisfies r (T, A) = 0 and [Alog(1/A)] x &r/r (T, A) — 0, as
A—0Oand T/A — 0.

Assumption A.4 includes the case of a compound Poisson process with
bounded jump intensity, and the jump sizes {x;} being an i.i.d. sequence inde-
pendent of {N;}, but more general jump behavior is allowed for: {x;} may not
necessarily be i.i.d., nor independent of {N;}. A.4 is very similar to the assump-
tions used to establish Theorem 1 of Mancini (2009). What is distinct is the intro-
duction of the sequence {{7}, which enables us to control the behavior of {x,} and
{atz} when 7T tends to oo. Such a sequence is not required in Mancini’s (2009)
setup, where only the fixed span case is considered. If T is fixed, we can set
¢r =1, Cy =sup,¢o 7yl el and Cp2 = sup, 0.7 |012 , both of which are almost
surely bounded by the cadlag condition, in which case we can set r (T, A) = A®
for any a € (0, 1), as discussed in Mancini (2009, p. 273).

For the case with T — oo, knowledge of {7 is needed in order to choose
r (T, A) to satisfy A.3(iii). This is similar to the issue of choosing the band-
width(s) employed in the estimation. For example, as discussed after Theorem 3.1,
h should be chosen relative to the behavior of certain higher-order moments of

https://doi.org/10.1017/50266466615000079 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466615000079

ESTIMATION OF SV MODELS 875

4y and 0,2 which are unknown. As pointed out there, this issue is not special to
our setting and is also found when kernel smoothers are employed in other settings
where data are dependent.

If |p¢] and atz are uniformly bounded by some Cy, we can choose {7 =1, C;, =
C,2 = Cp. More generally, if we know the growth rates of the extremal/maximal
processes sup, o, |#:| and sup, o 71 |0?| (as T — o0), the triplet is easily
chosen. However, this seems to be a difficult task in general. The behavior of
extremal processes of diffusion processes has been investigated in the literature
(e.g., Borkovec and Kliipperlberg, 1998), but existing results provide Op rates
(not a.s. rates) of extremal processes, and so do not seem to be directly applica-
ble. However, it is often possible to verify the condition for particular models.
As an instructive example, we can show that SUP;e[0.7] |Bs| = oa_s.(ﬁ logT)
as T — oo, where {B;} is a BM; see the online supplemental material for
a proof of this. Therefore, if {x} and {¢?} are transformation of BM’s, for
example, u; = B; and alz =co+ B,z with ¢ > 0 and {B,} being another BM,
then the condition holds with & = /T logT and C, = C,2 = co+ 1, and so we
can choose r (T, A) = {Alog(1/A) /T (log T)}¢! for any c; € (0, 1).

Assumption A.4 allows us to identify occurences of jumps from data by thresh-
olding:

LEMMA 3.1. Suppose that Assumption A.4 holds. Then, for any w (€ Q*; Q*
is an event with Pr [Q*] = 1), there exists some random variable A (w) > 0 such

that for any A < A (w),
H(Xy = Xy, P <7 (A, T)) = 1Ny, = Ny, =0}

This lemma tells us that we can identify jump occurrences through the thresh-
old parameter » (A, T). If T is fixed, the above result is simply Mancini (2009,
Thm. 1), but we here allow for 7 — oco. This in turn is used to derive the following
uniform rate result:

THEOREM 3.3. Suppose that Assumptions A.1-A.2, A.4, B.1, and K.I hold.
Then,

~2 2 JR
SUP, i 7—vi) 1OiR,c =07 | = Op (ﬁT,A) ,
as A — 0,and T/ A — o0, where
R =y A+ 0p (A (T/h) {Ap/(2+p)7~2(1+11)/(2+p) +[log (1/A)] T20+2)/a }) _

If T is fixed, we can show that the second term of ﬂJTRA is reduced to

Op(h~'Alog(1/A)) (we omit the proof of this claim for brevity; see discussions
that fol_lows Theorem 3.1, and also the proof of Theorem 1 of Mancini, 2009) and
isop (19T, A), which means the uniform rate of the noise-free and nonjump-robust
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estimator 6 2 coincides with that of the jump-robust estimator aJR If {u,} and

{07} are uniformly bounded as T — oo, U7, A = h’ +/h~!Alog(1/A) while
the second term of 19] 7. takes the form Op(Th~'Alog(1/A)). The presence of

“T”in Op(Th~ Alog(l/A)) comes from the fact that the number of Poisson
jump events over [0, T]is Op (T).

3.4. Jump and Noise Case (¢ £ 0, J #0)

In the case where both jumps and market microstructure noise are present in data,
we may combine the ideas of the noise- and jump-robust spot volatility estima-
tors developed in the previous two subsections. A naive approach would be to
simply take the jump-robust estimator in equation (3.14) and then replace X, by
the noise-filtered process X, given in equation (3.7) using, as before, additional
pseudo sampling time points #; with A =¢; —t;_1 being the time distance between
these. This approach still provides a pointwise consistent estimator of X; if the
kernel L used in the computation of X ¢ is a forward looking kernel; that is, L
has support on (0,+00). This is due to the fact that, even with jumps, X; is
cadlag. However, even with a forward-looking kernel, X, will smooth out jumps
and so will not be uniformly consistent. More specifically, the estimator is not
stochastically equicontinuous which is required for it to be uniformly consistent
(see Newey and McFadden, 1994, Sect. 2.7). To see this, recall that for X ; to be
stochastically equicontinuous on (0, 7°), then, for any #p € (0, 7") and any sequence

. .. 5 P . .
tm — to, it has to satisfy X;,, = X;,. Now, suppose that a jump occurred at time
to (Nt0+ — Nfo_ # 0): Choosing ty; = to — cay where ap; — 0 is the bandwidth

sequence used in the computation of X y and ¢ > 0 is a constant, we then have,
conditionally on {X,},

c T
Xy :/ Xto+aM(u—C)L(”)d”+/ Xigtay w—o)L ) du+op (1),
0

c

as May; — oo, where this expression can be derived in the same way as in Proof
of Lemma A.2 (recalling equation (3.6) and the independence between {X;} and
{ei}). Here, Xyy1ayu—c) — X"o_ if u € (0,c) while X;1ay,u—c) = Xt(;r if u e

[c, T). Thus, X;,, - [<L(u)du x X+ [T L@)dux X, # X, and so %,
cannot be stochastically equicontinuous. Given that our asymptotic analysis relies
on uniform consistency of X,, the naive approach is not viable.?

Instead, to detect jumps uniformly over [0, 7], we import techniques devel-
oped for nonparametric detection of jumps in regression functions. More specifi-
cally, we adopt a similar strategy to the one in Gijbels, Lambert, and Qiu (2007),
amongst others, and introduce a backward and forward looking filter,

—<T/M)Z Ly (si—0)Yi, f(f—(T/M)Z Fsi—0Y;,
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where L~ is a backward-looking kernel with support on (—o0,0) and L% is a
forward-looking kernel with support on (0, +00). These two estimators satisfy

fs_ P
for any ¢ € (0,7) and any sequences t, — ¢~ and t,7 — 1™, X~ — X,- and
ot P . . . ot

X;; — X+ In particular, with 1 < ... <15 denoting the time points where
jumps occurred on (0, T7'), and, with by = i;‘T/n and t;“j = (ij’.“ + 1)T/n being

. . - 5 P
the two nearest pseudo time points such that t; €lz, t: i (X tt -X_ )2 = zcjz
o, - ”

for j = 1,.., N, while for all other i ¢ {if,....i} ), (X, — X;)> 5 0.

We therefore expect the following generalization of Lemma 3.1 to hold as

Va(T' 12 /g)1/C+4) 5 0 and Ja='Aglog(1/As) — O:
X=X, 1> <r(A,T)}=1{N, —N,_, =0} with probability approaching 1.

Note that this is a weaker result compared to Lemma 3.1, where the latter holds
almost surely. However, this should suffice in order to show that

OiNR.¢ = Z:lzl Kp (ti—1 —T)[?A(,T—)A(,Tfl]zl{[)?j—)?;l]z < r(A,T)}

is a uniformly consistent estimator. A formal proof of this claim is left for future
research.

4. NONPARAMETRIC ESTIMATION OF THE SV MODEL

We here derive the asymptotic properties of the two-step nonparametric estimators
of the SV model given in equations (2.2)—(2.3). As noted earlier, these estimators
could in principle be implemented using any nonparametric spot volatility estima-
tor in the first step, such as the ones analyzed in the previous section. To establish
a general result that cover all these, and other, estimators, we here abstract away
from the particular features of the first-step estimators analyzed in the previous
section and only assume that the chosen estimator G2 satisfies

maxj <<y |&3j —a}j| = 0p(Wy), as N — oo (and 6 — 0), 4.1

for some error bound 9y — 0 which is specific to the estimator (note that ¥ y may
depend on 7', A and some other quantities such as Ay). For the noise- and jump-
free, noise-robust (NR), and jump-robust (JR) estimators analyzed in the previous
section, we can choose ¥y = 5‘7, A, 19¥’RA’ Ay and 19%1’2, respectively. Observe
that for these three estimators, [71, 7xy] C [\/E, T — «/Z] by letting 7; = jJ and
N < T — ¢ since v/h < ¢ under the assumptions imposed on ¢ below.

The estimation problem is similar to the one of kernel estimation with errors-
in-variables. The implications of this for kernel regression have been analyzed
in Mammen et al. (2012) and Sperlich (2009) in a cross-sectional framework.
We follow a similar strategy: We split up the total estimation error into two com-
ponents: One component due to the estimation of {0,2} in the first step, and a sec-
ond component due to the sampling error of the estimator based on the actual
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process. For example, for the nonparametric drift estimator & (x) proposed in
equation (2.2), we write the total estimation error as

ax)—a@x)=[ax)—a@)]|+[a@x) —a@)], 4.2)

where a (x) is the infeasible drift estimator based on observations of {0,2}. The
asymptotic properties of the second term follow from arguments as in Bandi
and Phillips (2003) under regularity conditions stated below. What remains to
be shown is that the first term converges to zero in probability at a sufficiently
fast rate when the number of grid points N — o0 is chosen appropriately. If the
rate can be chosen so that the first term is asymptotically negligible, the feasible
estimator will be asymptotically equivalent to the infeasible one.

For a given error bound ¥y, we constrain the set of feasible bandwidths and
pseudo-sampling points used in the second step to control the error arising from
the first step:

B-NDR Given ¥y in equation (4.1), 6 and b are chosen such that: (i) ¥y /0 — 0,
8" /b— 0and Th — oo; (i) 93N (b~ +b67") = 0,6°T = O (1) and
Thé* — 0.

B-NDI Given ¥ in equation (4.1), d and b are chosen such that: (i) 9y /6! ~7 —
0, 6" /b — 0 and Nb — oo; (i) INN (b~1 +b567212) — 0, b°N =
O (1) and Nb5*" — 0.

Assumption B-NDR and B-NDI are used to derive the asymptotic properties of
the drift and diffusion estimator, respectively. The parts of Assumptions B-NDR
and B-NDI that do not involve ¥y are similar to the ones imposed in Bandi and
Phillips (2003) for the case of stationary diffusion processes. In particular, obser-
vations over a growing time span (7' — o0) is required for the drift estimation, but
not necessarily so for the diffusion estimation. The additional assumptions involv-
ing ¥y are introduced to ensure that the error due to the preliminary estimation of
{atz} does not affect the asymptotic properties. If we use 63 as a preliminary es-
timator, roughly speaking, we need to set the first-step bandwidth /# smaller than
the second-step one b. Similar conditions are employed in Newey et al. (1999) and
Xiao et al. (2003) to establish theoretical results of their two-step nonparametric
estimators.

We impose the following additional assumptions on the volatility dynamics:

A.2> The process {0,2} has range I = (0,0), where ¢ < oo, and satisfies:
(1) a(x) and ﬂ2 (x) are twice continuously differentiable; (ii) /)’2 ¢) >
0 on [7; (iii) the scale measure S(x) = fcxs (y)dy, where s(y) :=
exp {—2 fcy a () 72 (u) du} for some constant ¢ € I, satisfies S (x) - —oo
(resp. +00) as x —> O (resp. &) and fj B2 (x)s (x)dx < oo; (iv) E [o/}] <

00, E[|a (0,2)|A] <ooand E[|p (alz)|)‘] < oo for some A > 2.
Assumption A.2’ is a strengthening of Assumption A.2 with g > 2. It is a fairly
standard regularity condition that is often imposed when deriving asymptotics
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of diffusion estimators. A.2’(i) and A.2’(ii) are sufficient for the existence of
a unique strong solution up to an explosion time (Karatzas and Shreve, 1991,
Thm. 5.5.15, Cor. 5.3.23). In conjunction with A.2’(i)-A.2’(ii), Assumption
A.2’(iii) is sufficient for the process to be nonexplosive, positive recurrent, and
for its invariant density to exist (see Karatzas and Shreve, 1991, Prop. 5.5.22;
Karlin and Taylor, 1981, Chap. 15). We will in the following let z (x) denote the
invariant density of {0,2}, and assume that the process has been initialized at this
distribution and so is stationary. We can then set /; = 0 in Assumption A.2 and in
the expressions for the uniform rates derived in the previous section.

The positive recurrence condition is not strictly necessary to derive asymp-
totic results for our estimators. We can extend our results to null recurrent volatil-
ity processes by using arguments similar to those in Bandi and Phillips (2003).
However, under null recurrence, the convergence rates of bandwidths and time
intervals become stochastic since they depend on the local time, and the required
conditions and proofs become much more complicated. We therefore maintain the
stationarity assumption for simplicity. Assumption A.2’(iv) imposes two moment
conditions on the volatility process. The condition is satisfied by many models,
including CIR and GARCH-diffusion models. If one is only interested in esti-
mating the drift of the volatility, and not its diffusion coefficient, A.2’(iv) can be
weakened to E [|a (c?) |] <ocoand E [ (0,2)] < oo.

Finally, we impose the following conditions on the kernel K used in the second
step:

K.3 K:R— Rsatisfies [*0 K (x)dx = [ x?K (x)dx =1, [72 xK (x)dx =
0 and ffooo K2 (x)dx < oo; it is continuously differentiable; and there

exist some constants K,C < (0,00) such that sup,.g|K(x)| < K,
SUP, cR |IC’ (x)| < K, and |K’ (x)] is not decreasing on (—oo, —C] and not
increasing on [C, 00).

The conditions imposed in K.3 are almost identical to the ones found in K.1,
and the discussion of the latter also applies here.
THEOREM 4.1. Let &3 be an estimator of O'.[z satisfying equation (4.1). Assume

that Assumptions A.2’ and B-NDR(i) hold, and K satisfies K.3. Then, a (x) KR
o (x). If additionally B-NDR(ii) holds, then

2
VTblé (x) —a (x) — bszlasa(x)]—>N( ﬂ()/lcz()dz)

where

oo (x) ologm (x) 1% (x)
ox ox 2 ax?

biasy (x) :=
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THEOREM 4.2. Let &Tz be an estimator of O'.[Z satisfying equation (4.1). Assume

that Assumptions A.2’ and B-NDI(i) hold, and K satisfies K.3. Then B (x) KR
p (x). If additionally B-NDI(ii) holds, then

4
VT 1b[B* (x) — B2 (x) — b* x biasp (x)] 4 N(O, 25" ) / K2 (z)dz),
7 (x)

where

op* (x) ologz (x) 182p%(x)
ox ox +§ ox?

biasp (x) :=

If the condition »°T = O (1) in B-NDR(ii) is strengthened to 5T — 0, the
bias component in Theorem 4.1 vanishes fast enough to have no impact on the
asymptotic distribution. Similarly in Theorem 4.2, if b> N — 0 then the bias term
can be ignored.

The above results show that the feasible estimators is first-order asymptoti-
cally equivalent to the infeasible ones based on actual observations of {atz} at the
pseudo-sampling points under the regularity conditions imposed. In particular, our
asymptotic results do not include additional bias and variance components due to
the first step in our estimation procedure. This is due to Assumptions B-NDR
and B-NDI, respectively, that ensure that the first-step estimation errors are
asymptotically negligible. In finite sample, the first step will obviously have
effects on the final estimators and it would be desirable to be able to quantify
these. However, we have not been able to derive explicit expression of the uniform
bias and variance of &12, and its impact on the second step. This is not special to
this paper. For example, in the literature on semiparametric two-step estimators in-
volving kernel estimation in the first step, all theoretical results are usually stated
such that the first-step bias and variance vanishes asymptotically. Similarly, the
theoretical results for the two-step nonparametric estimators developed in Newey
et al. (1999) and Xiao et al. (2003) do not include first-step estimation errors.

Furthermore, note that the estimation errors from the first step will be smaller
than those in the second step if we set the pseudo sampling distance ¢ of {&lz}
(in estimating o (x) and 2 (x)) to be larger than the actual time distance between
observations, A. A realistic scenario would be that intra-daily observations of
{X;} are available. Then by choosing ¢ corresponding to, for example, sampling
at a daily frequency, we expect the first-step estimation error to be negligible.
This is supported by Jiang and Knight (1999), and Phillips and Yu (2005) where
it is demonstrated that Nadaraya-Watson type estimators for (observable) diffu-
sion processes exhibit good performance even for relatively large choices of J. In
total, by choosing J larger than A, the above asymptotic distribution should be a
reasonable approximation even though it neglects the first step estimation error.
We will discuss the specific choice of ¢ in further detail in Section 7.
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5. PARAMETRIC ESTIMATION OF THE SV MODEL

We here give results for the parametric estimators of the SV model given in
equation (2.4). The proof strategy is the same as in the previous section: We
split up the total estimation error into two components, where the first part, due
to pre-estimation of {atz}, is shown to be negligible asymptotically under suit-
able conditions on the bandwidth and pseudo-sampling points. As for the fully
nonparametric estimators, we give results for any first-step spot volatility estima-
tor satisfying equation (4.1).

We impose the following conditions for the analysis of our estimators of the
drift parameters:

A-SDR (i) The true value 6 is an interior point of some compact subset ®; of
R91: and

/[a (x;0) —a ()7 (x)dx =06, =0;;
1

(ii) o (x; 1) is twice continuously differentiable in ;; there exists Ay (+)
satisfying E[A7 (62)] < 0o, k = 1,2, such that uniformly over 6; € ©,

>

| (x;01) —a (x;07)| < A1 (x)]61 —6;
‘ oo (x;6)) ‘+ 0%a (x;61)

00, 20,00
(iii) a (x;01), 9@ (x;01) and 6319*a(x;<91) are differentiable in x
1

< Ax(x);

for all 8, € ©q; there exists constants C > 0 and v; > 0 such that

E| ’012’201 ] < o0 and, uniformly over 6; € ©:
H GEVY Y FeiICTUY Y FCAICEUDY DOpT STy
ox 0x 06, ox00; 591* -

Assumptions A-SDR(i)-(ii) are standard for parametric diffusion estimation,
and are similar to those imposed in, for example, Jacod (2006) and Yoshida
(1992). A-SDR(i) ensures identification of 8; while A-SDR(ii) implies that the
objective function and its limit are twice differentiable functions of 8y, which
in turn enable us to use a standard Taylor expansion argument for deriving the
asymptotic distribution. The moment conditions are used to ensure that the vari-
to demonstrate that the error from replacing o; by &; in the estimation is asymp-
totically negligible. All the conditions are satisfied by standard volatility models
such as CIR and GARCH diffusion models.

The above conditions imply both consistency and asymptotic normality of the
estimator. If only consistency is of interest, the conditions could be weakened
considerably, but for simplicity we maintain A-SDR throughout.

https://doi.org/10.1017/50266466615000079 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466615000079

882 SHIN KANAYA AND DENNIS KRISTENSEN

Finally, we restrict the pseudo-sampling points and the bandwidth:

B-SDR Given ¥y in equation (4.1), J is chosen such that: (i) ¥y /d — 0; (ii)
VT [64+9y /5] — 0.

The conditions on the shrinking rates of the bandwidth % and the sampling time
J in Assumption B-SDR are simpler than the ones in B-NDR used for the nonpara-
metric estimation, since no smoothing parameter has to be chosen in the second
step. Without the first-step estimation, the condition would simplify to /79 — 0,
under which the discretization error of the infeasible estimator is negligible. Given
these conditions, we have the following theorem:

THEOREM 5.1. If Assumptions A-SDR and B-SDR(i) hold, then 0, EN 0.
If additionally B-SDR(ii) holds, then

VT (6 —67) N N(O, Hl*_IQ]‘Hl*_l) , where
Q) :=4E |:691a (atz; 9[‘) 0p, 0t (atz; 9[‘)*ﬁ2 (atz)i| , and

* 2. pn* 2 **
H :=2E 69105(@;01)69105(@;01) .

Similarly to the nonparametric case, this theorem gives conditions under which
91 is first-order equivalent to the infeasible estimator, 91. The shared asymptotic
distribution is completely standard for estimation of ergodic diffusion models, see
e.g., Sgrensen (2009) or Yoshida (1992). The asymptotic variance component of
the estimator can easily be estimated by replacing population moments and true
parameter values with sample moments and parameter estimates, respectively.

Next, we the derive properties of the estimator of the diffusion parameters under
the following conditions:

A-SDI (i) The true value 6 is an interior point of some compact subset ®; of
R%; and
2 2 2
[P oy -p @] 7 dx=0e0,=05:
1

(ii) B?(x;6) is twice continuously differentiable in 6, and there exist
functions By (-), k = 1,2, such that uniformly over 6, € ©,,

‘ﬂz (x;02) — B (x: 605)

3P (x;02)
06

< Bi(x)]|6,—6;

i

0% B% (x;05)
*
8(92692

< Ba(y),

where E[Bf (07)] < o0, k = 1,2; (iii) f?(x;62), 09,5 (x;62) and
6929* ,6’2 (x;6) are differentiable in x for each 6, € ®, There exist
2
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2 .
‘ 02] < 00, and, uniformly

constants C > 0 and v, > 0 such that E [’0';2
over 0 € O,

0> (x;6)
0x00,00X

8% (x;62)
0x06h

3P (x;62)
ox

< C[1+x]"2].

The conditions imposed here on the diffusion function are analogous to the
ones imposed on the drift, and we refer to the discussion following Assumption
A-SDR. We impose the following conditions on the pseudo-sampling points and
the bandwidth:

B-SDI Given ¥y in equation (4.1), ¢ is chosen such that: (i) ¥y /077 — 0;
(ii) VN [0+ 9N /677 ] > 0.

Again, these are similar to those for the drift estimation, except that now the
rates for the estimator, bandwidth /4, and the pseudo time distance are different due
to the faster convergence of the diffusion estimator. We here impose the classical
condition of “rapidly increasing experimental design,” ~/Nd(= /T ) — 0, while
for the drift estimator we only required VT5— 0.

THEOREM 5.2. If Assumptions A-SDI and B-SDI(i) hold, then 6 ﬁ) 05.
If additionally B-SDI(ii) holds, then

VNG =055 N (0,871 Q3 H; 1), where
03 =35 | 002 (o703 ) a0 (o105) " * ()|
H} :=2E [a@ﬁz (02;02*) 0, B (af;e;)*] .

Similarly to the parametric drift estimator, this theorem states that the two-step
estimator is first-order asymptotically equivalent to the infeasible estimator 65.
We also note that, analogous to the nonparametric estimators, the convergence
rate of the diffusion estimator is faster than that of the drift estimator. Again, the
two matrices Q3 and H can be estimated by standard moment estimators.

Note, however, that the conditions imposed on T and ¢ (N) for the drift and
diffusion cases are different. As discussed previously, the drift estimation requires
T — oo. This is stronger than the requirement N — oo for estimation of the
diffusion coefficient. On the other hand, the requirement T2 (=N 53) — 0 for the
drift may be seen as weaker than the requirement for the diffusion, 7d(= No%) —
0, where the latter is interpreted as a requirement of finer sample observations.

The above theoretical results are similar to the ones obtained in Todorov (2009),
where estimators of integrated volatility are used in the estimation of SV mod-
els: He gives conditions under which the first-step estimation error from using
estimated integrated volatilities instead of the actual ones does not affect the
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asymptotic distribution of his parametric GMM estimators, but refrain from a
higher-order analysis of the impact of the first-step estimation error.

6. EXTENSION TO SV MODELS WITH VOLATILITY JUMPS

We have so far focused on the situation where the volatility process contains no
jumps. We here outline how the estimation procedure can be extended to handle
the case where the volatility process is a jump-diffusion; a formal theory for the
resulting estimators is left for future research. Suppose that the volatility process
solves

dof =a(o?)dr+(c2)dZ+dJy,

where {J/ } is a finite-activity jump process of the form J7 = vaz’al x7, and there-
fore has the same structure as the jump component J; of X;. To handle this situa-
tion, we first have to modify the first-step estimators of atz developed in Section 3
since these estimators will smooth out jumps contained in 0't2; the reason for this
is similar to the spot volatility estimation with noise and jumps where we had to
modify the first-step smoother X, in order to handle jumps in X; (see discussions
in Section 3.4). More specifically, when K is chosen as a forward-looking kernel,
the proposed spot volatility estimators remain pointwise consistent but are not
stochastically equicontinuous. Consider, for example, the spot volatility estima-
tor in equation (3.1) when jumps and noise are not present in X;: By choosing
7, = 70 — ch, for any time point 7p where a jump occurred and for any constant
c>0,wefind62 = [ K (u)du x 030_ + [T K (u)du x afg +op (1) ash, — 0.

Thus, &Tz cannot be uniformly consistent. Given that our asymptotic results for the
two-step estimators rely on uniform consistency of the first-step estimator, mod-
ified spot volatility estimators are needed in order to extend the arguments em-
ployed to establish the theory in Sections 4-5 to the case of jumps in the volatility.

We use the same idea as in Section 3.4, and propose to construct a backward and
forward looking version, respectively, of each of the four spot volatility estimators
developed in Section 3. Again, for simplicity, we focus on the case without noise
and jumps in X;, and introduce

~ n

git =2 KNG —0)X, =X, P,

A~ —_— n —

0-12, :Zi:1 Kh (t[—l_T)[Xl,' _Xt[_l]za

where K and K~ are forward and backward looking kernels. These will satisfy

A2.— P
+, 021 - 03_ and

n

for any 7 € (0, T) and any sequences 7, — t~ and 7,7 — 7
R P o .
02;Jr - arz+. Thus, by the same arguments given in Section 3.4, we expect

n
N—-1 A AD — A ~ A
> K@t =062 =62 60t — 6071 <16 (A, T))

o N Kp@Ge =060 =60 12 <rp (A, T))

aR (x) =
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) SN K62, 0627 =62 PUGEF =627 <1y (A, T))
Pie (0) == e G2+ — 52
5Zj=1lcb(0'r, 1_x)1{ 0'7:] _0'1 |]2<ra (A, T)}

to be consistent estimators of the drift and volatility functions, where 1{[3%,+ —
6‘%’__1]2 < ry (A, T)} removes the parts of the volatility trajectory that contain
jumps as r, (A, T) shrinks to zero at a suitable rate.

Note that the above estimators do not impose any Markov structure on the jump
component. If we do assume that the jump intensity of J is a function of 0,2, this
can be also estimated by using the estimators developed in Bandi and Nguyen
(2003) for the case where 0,2 is observed, except that we here replace the unob-
served component [arzj - afj_ Iby [6%}_ — &sz’fl ].

7. BANDWIDTH SELECTION AND SAMPLING

All of the estimators analyzed in Sections 4 and 5 involve nuisance parameters
in the form of bandwidths and/or pseudo-sampling intervals. We here discuss
how these should be selected in practice. The purpose here is to propose practical
working rules. As such, we only provide an informal analysis since a full theoret-
ical description would be quite involved and outside the scope of this study. Some
of the proposed selection rules may give shrinking rates of bandwidths or sam-
pling intervals which violate some of the conditions stated for Theorems 4.1-5.2
to hold. However, it seems difficult to obtain simple data-driven selection rules
which are formally consistent with the theoretical conditions. This is often the
case in the literature on non- and semiparametric multi-step estimators.>

To compute the first-step volatility estimator, a natural, data-driven band-
width selection method is cross-validation. For the basic estimator in equa-
tion (3.1), there is only one bandwidth, &, to be chosen in the first
step. Kristensen (2010a) argues that the cross-validated bandwidth, hcy =
argminy,~ o CV ((AX)? /A, 62, h), should be asymptotically optimal where

CV((AX? /A% 0 =D T <1 < TI(AX)? =382, , 1%,

i=1

. 2 . .
for some 0 < T; < T, < T, with (AX,')2 = (X,Z,Jrl —th.) and o_; ;; being the
leave-one-out version of &,2 This criterion is tailored to minimize the integrated

squared error of the volatility estimator, fT [o, —0; 21%dt. Since the end goal is
to obtain precise estimates of the SV model, we should rather choose 4 to opti-
mize some criterion for the second step estimator (e.g., the mean squared error of
a(x), /;’2 (x), 0, or ). In this respect, hcy is not ideal. According to the theoret-
ical results, undersmoothing appears to be required, so we recommend that one
chooses an initial bandwidth by cross-validation which in turn is scaled down by
an appropriate factor.
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In the case of noise-robust estimator, we first have to choose two band-
widths, a and h. One simple way of doing so is to first choose a as acy =
argming-o CV (Y, X, a) and then hcy = argminy-o CV ((AX)?/A, 625, ). For
the jump-robust estimator, we have to choose the threshold parameter r. There
appears to be no theory for how to choose this, but Mancini et al. (2012) show
that simple rule-of-thumb selection rules work well. Finally, for the noise- and
jump-robust estimator, we propose to combine the selection rules for the noise-
robust and jump-robust estimators, respectively, as described above.

Once {5',2} has been obtained, we have to choose an additional bandwidth b and
a (pseudo) sampling frequency N (or equivalently J) for the computation of the
nonparametric drift and diffusion estimates. We here propose to choose J > 0 at
a daily frequency such that we use daily (estimated) volatilities in the second step
of our estimation procedure. The primary reason for this choice is that in practice
the volatility is known to have intradaily seasonal patterns; by choosing daily
frequencies in the second step, we can ignore these in the estimation. Moreover,
by choosing ¢ to correspond to daily observations, we hope that the additional
time series dependence in {&,2} due to the first-step estimation is controlled so
that the second-step estimation error dominates (as is the case in our theoretical
results). Given the choice of d > 0, we also propose to use cross-validation in the
second step; the precise procedure is described in Kanaya and Kristensen (2015)
who develop bandwidth selection procedures for diffusion processes. Their results
assume uncontaminated observations of the diffusion process, but we expect that
with J chosen at a daily frequency, the estimation error in {&l% :i=1,...,N}can
be ignored.

The semiparametric estimators only require the choice of the first-step band-
width, &, and the second-step sampling frequency, J. Given that our estimation
strategy corresponds to a two-step semiparametric estimation procedure, we ex-
pect in general that undersmoothing should be used in the first-step. Regard-
ing the choice of J, we now briefly analyze how this impacts on the MSE’s
of the parametric estimators. For this purpose, we also assume that the error
in the first step estimation can be ignored and consider the MSE of the infea-
sible estimators. First, the MSE for the estimator of the drift parameter, ék, is
given by MSEy, := E[| 0 — oF| |2] for k = 1,2. By a standard Taylor expansion,
Ok -0 =—[H +op (1)]_1§k(6)*, o?), for k = 1,2, where S’k is the score func-
tion (see Appendix A.3 for its expression) and H,’ is the limit of the Hessian
function evaluated at the true value ;" as defined in Theorems 5.1 and 5.2. Since
it is not easy to directly analyze MSEy, , we introduce an approximate version,

MSE}, :=tr [Hk*_lE [Sk (eg,az) S (6,;‘,02)*} H! ] , (7.1)

for k = 1,2, where tr{A} is the sum of diagonal elements of the matrix A. By the
same arguments as in the nonparametric case (see Kanaya and Kristensen, 2015),
this should be a good approximation to MSEg,. Our semi-parametric 6 has no
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smoothing bias unlike the nonparametric estimators (see Kanaya and Kristensen,
2015), and therefore we can decompose MSE;k into three terms:

MSE;;, = tr(Bg, By, } + tr(Vg, } +tr{Ca, ), (1.2)

where By, g5 is the discretization bias and V,, and Cy, are the variance and
covariance components, respectively. We then derive first-order asymptotic
approximations of these terms under the following assumptions:

C-SDR The functions ||691a (x;@f) \, Oxp, 0 (x;@f‘) , | Oxx0, 0. (x;@l*)| , Ja (x)],
la’ (x)], |@” (x)| and S? (x) are all bounded by some function y (x) sat-
. . 2\ (6
istying E[|y (¢2)["1 < o0.
C-SDI The functions | &g, 8% (x;65)]
B* (x), [6x i (x)
tion y (x) satisfying E[| W (03) |6] < 00.

E

o o (x303) [ [ 0xxeB? (x:65)
Ocx 2 (x)| and |a (x)| are all bounded by some func-

)

THEOREM 7.1. Suppose that Assumption A.2" holds. (i) If Assumptions A-
SDR and C-SDR are satisfied, then By, = 6By, + 0 (3), Cg, = O (%), and Vp, =
tr{Hl*_lQ’le*_l}/T+0(l/T), where

By, :=E [891(1 (atz; 9[‘) [a’ (0,2) a (atz) +a” (af) s (0,2) /2]] . (7.3
(ii) If Assumptions A-SDI and C-SDI are satisfied, then By, = 55’92 +0(9), Cy, =
0 (0%), and Vo, = tr{H; "' Q5 Hy ™"} /n + 0 (1/n), where

By, :=E [692[)’2 (0,2; 9;) [éxﬁz (03) a (0',2) + 05 i? (af) B (0,2) /2]] .

An immediate consequence of the above theorem is that MSE; = O (6°) +
O (1/T) and MSE;, = O (6*) + O (1/n) = O (6*) + O (6/T). From the above
expressions, we see that the optimal choice of J (for any given T') is always to let
it shrink to zero at the fastest possible rate. Again, in practice we will however
use the daily frequency in the second step since it allows us to ignore intradaily
patterns in the volatility.

8. A SIMULATION STUDY

We here examine the finite-sample performance of the implementation of our
non and semi-parametric estimators proposed in the previous section; this is done
in the ideal setting where jumps and noise are not present. We choose as data-
generating process the following stochastic volatility model:

dXt = O'tth

[ do? = p (o —o?)dt +xo2dZ,’ (8.1)
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where {W;} and {Z,} are independent standard Brownian motions. This is
the continuous-time limit version of the GARCH model (see Drost and
Werker, 1996), and satisfies the conditions imposed in Sections 3—5. We measure
time in days and consider the following two sample frequencies: A~ = 60 x 24
and 12 x 24 which correspond to sampling every 1 and 5 minutes, respectively.
We choose the parameter values as o = 0.476, f = 0.510, and k2 =0.0518, and
the time span as 7 = 3 x 250 days which roughly corresponds to 3 year with 250
business days per year. In order to simulate data from the model, we employ the
Euler discretization scheme (see Kloeden and Platten, 1999),

AXig = oG_1yav/de1
Aoty =Ba—of_p)d+rol_der;

where {&1,;} and {7 } arei.i.d. N (0, 1) with {&1; } and {&; } independent. Here,
d > 0 is the length of the discretization step; it is chosen as d = A /100, where
A~ =60 x 24 corresponds to the highest sampling frequency used in the simu-
lation study.

Throughout, we implement the first-step kernel estimator of 0'12 using a
Gaussian kernel. The bandwidth / is chosen as & = 0.10 for A~ = 60 x 24 and
h=0.14 for A~! = 12 x 24. These two bandwidth choices were found by running
the standard cross-validation procedure described in the previous section for five
trial Monte Carlo samples yielding /7, i = 1,..., 5. For all the subsequent Monte
Carlo samples that our simulation study is based on, we then fixed the bandwidth
at the average across these five cross-validated bandwidth choices divided by two,
h = h*/2, and are in effect undersmoothing in the first step. The reason for not
running the cross-validation procedure for each sample is that the procedure is
rather time-consuming.

In the second step, we have to choose the pseudo-sampling frequency, J, for
both the non and semiparametric estimator. We here experiment with three dif-
ferent choices: In the case where A~! = 60 x 24, we chose 0 = 1/8, d = 1/4
and 6 = 1/2, and for A~! = 12 x 24, we chose 0 = 1/2, 0 = 1 and = 2. Here,
0 = 1/2, for example, corresponds to two pseudo-observations per day. For the
nonparametric estimator, we also have to choose a second kernel, /C, and band-
width, b. The kernel K was chosen as the Gaussian one. As with the bandwidth
choice for b, we also here ran cross-validation procedure for five trial samples and
then fixed the bandwidth b at the average over these cross-validated bandwidths.
Again, this was done in order to speed up the simulation study.

As noted earlier, our two-step estimators suffer from double sampling error:
One component is due to the sample variation in the unobserved process {0[2}, and
a second one due to only observing (AX;)? /A which is a contaminated version
of 0,2. In order to evaluate how much of the resulting sampling error is due to the
contamination, we also computed the corresponding infeasible estimators using
the actual values of 052, 0225, 0325,
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To evaluate the performance of the nonparametric estimators, we com-
puted approximate integrated bias, variance and MSE for x = [0.3,0.8]
(the volatility process spent 95% of the time within that interval in our sam-

ples). The integrated squared bias of the drift estimates was estimated by

BIAS? = [o [ (x) —& (x)]*dx where & (x) = £ 3°5_ &, (x) and é, (x) was the

estimated drift in the s-th sample over S(= 400) Monte Carlo replications we
generated. Similarly, the integrated variance and MSE were estimated by VAR =
LS 986y (x) —a ()] dx and MSE = L 35| [0¥[a, (1) —a (1) dx =
BIAS? + VAR.

In Table 1, we report integrated squared bias, variance, and MSE of the drift and
diffusion estimators for the first sampling scheme, A~! = 60 x 24. In columns 1
and 2, the performance of the infeasible and feasible nonparametric drift estima-
tor is reported. As predicted by theory, the performance of the infeasible estimator
deteriorates as the sampling frequency 0~ decreases. As expected, this is not in
general the case for the feasible two-step estimator however: Too small or too
large choices of d~! yield poor estimates; here, d = 1/4 gives the best perfor-
mance of the three different choices. A similar pattern is found in columns 3 and
4 where the results of the diffusion estimators are reported: The MSE of the in-
feasible diffusion estimator increases with d, while the feasible one performs best
at the intermediate choice of 0 = 1.

In Figures 1-4, we have plotted the pointwise means of the infeasible and feasi-
ble estimators for J = 1/4 together with their 95% confidence intervals. The plots
mirror the results of Table 1 with little difference between the 1-step and 2-step
estimators, which is rather encouraging.

TABLE 1. Performance of infeasible and feasible nonparametric drift and diffu-
sion estimators, A = 1/(24 x 60). In each cell, integrated squared bias (x 10_4),
variance (x 10™%), and MSE (x 10™%) are reported

Drift Diffusion

Infeasible 1-step Feasible 2-step Infeasible 1-step Feasible 2-step

0.6036 5.0377 0.0110 0.2038
0=1/8 1.6332 0.6911 0.0147 0.0073
2.2368 5.7288 0.0257 0.2111
0.8503 0.6218 0.0258 0.0145
o=1/4 1.5776 1.3627 0.0220 0.0201
2.4279 1.9845 0.0478 0.0347
1.3417 0.7511 0.0607 0.0304
0o=1/2 1.3348 1.3689 0.0289 0.0353
2.6764 2.1200 0.0896 0.0657
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FIGURE 1. Infeasible 1-step estimator of o (x), A = 1/(24 x 60) and 6 = 1 /4.
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FIGURE 2. Feasible 2-step estimator of a (x), A = 1/(24 x 60) and 6 = 1/4.

In Table 2, we report the same results but now for the second sampling scheme,
A~! =12 x 24. In general, the performance of the feasible estimator is worse due
to less precise estimates of {0,2} in the first step. To control the added estimation
error in the second step, we here have chosen 6 = 1/2, 6 =1 and J = 2 in the
second step. The same picture appears as for the higher frequency. Again, the
intermediate choice of 6 = 1 yields the most precise estimates with too low or too
high choices of d reducing precision.

Two results of the simulation study that may seem surprising are: First, the
2-step estimators outperform the 1-step ones in some cases (A~! = 60 x 24 and
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FIGURE 3. Infeasible 1-step estimator of /)’2 (x), A=1/(24x60) and 6 = 1/4.
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FIGURE 4. Feasible 2-step estimator of ﬁ2 (x), A=1/(24 x60) and 6 = 1/4.

0=1/4; A1 =12 x 24 and 6 = 1). This seems to indicate that the presmoothing
of data actually improves on the performance of the Nadaraya-Watson estima-
tors in some cases. Second, the MSE of the drift estimator with A~! = 12 x 24
and 0 = 1 is lower than the one with A~! = 60 x 24 and 6 = 1/4. This is most
likely due to the fact that the bandwidths /4 and b in our simulation study have
been chosen in a rather ad hoc manner. It further emphasizes the importance of
developing good, data-driven bandwidth selection procedures for our estimators.
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TABLE 2. Performance of infeasible and feasible nonparametric drift and diffu-
sion estimators, A = 1/ (24 x 12). In each cell, integrated squared bias (x 10™%),
variance (X 10_4), and MSE (x 10_4) are reported

Drift Diffusion

Infeasible 1-step Feasible 2-step Infeasible 1-step Feasible 2-step

1.2184 3.3333 0.0536 0.6269
0=1/2 1.7283 2.2352 0.0393 0.0841
2.9466 5.5685 0.0929 0.7110
2.6679 0.2113 0.1250 0.0709
o=1 1.0454 1.1474 0.0500 0.0614
3.7132 1.3587 0.1749 0.1323
5.7818 4.1220 0.2703 0.1309
0=2 0.6394 0.6235 0.0613 0.0628
6.4211 4.7455 0.3316 0.1937

We next analyze the finite-sample performance of the parametric estimators.
We maintain the SV model in equation (8.1) as the DGP with the same parameter
values. For this model, the parametric least-squares estimators can be written in
the closed form: @ = —aoLs/boLs, ﬁ = —boLs, and #2 = coLs, where, with X =

(1,62)%,
-1
u 1[N N—1
oLs) _ L / AR2
b, ) ZXT./'XT_/ ZX/AO-TJ‘H >
OLS 4 £
j=1 j=1
[N 1 va
S ~8 A4 A2 N2
coLs = ZUTj o, (Ao . ))
j=1 Jj=1

Tables 3 and 4 report results for the cases A1 =60x24and A~ =12 x 24,
respectively. For both sampling frequencies, we chose, after some experimenta-
tion, three pseudo-sampling frequencies, 0 = 1/12, 1/6 and 1/4. We here note
that we use smaller pseudo frequencies compared to the nonparametric case.
It appears as if parametric estimators are less affected by the first-step error, such
that we can choose a smaller d.

In contrast to the nonparametric estimators, the infeasible estimators outper-
form our 2-step estimators in all cases. Otherwise, patterns similar to those for
the nonparametric estimators appear: First, more data available in the first step
(A =1/(24 x60) versus A = 1/(24 x 12)) improves the quality of the spot
volatility estimator which in turn leads to better performance of the final esti-
mators. Second, a small level of J is not necessarily optimal; for example, with
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TABLE 3. Performance of infeasible and feasible parametric drift and diffu-
sion estimators, A = 1/ (24 x 60). In each cell, squared bias (x 10™%), variance
(x10™*), and MSE (x 10~%) are reported

a s 2

Infeasible Feasible Infeasible Feasible Infeasible Feasible

0.0021 0.0023 0.3029 24.7633 0.0361 4.4861
o=1/12 0.6568 0.6650 19.0296 4.4351 0.0830 0.0815
0.6588 0.6673 19.3325 29.1984 0.1191 4.5676
0.0022 0.0026 2.3990 15.5280 0.1579 3.6615
0=1/6 0.6576 0.6627 18.4518 12.3283 0.1547 0.1514
0.6597 0.6652 20.8508 27.8563 0.3126 3.8129
0.0021 0.0026 6.2912 6.8481 0.3493 0.3609
o=1/4 0.6560 0.6623 17.3818 17.1802 0.2377 0.2497

0.6581 0.6650 23.6731 24.0283 0.5870 0.6106

TABLE 4. Performance of infeasible and feasible parametric drift and diffu-
sion estimators, A = 1/(24 x 12). In each cell, squared bias (x 10™#), variance
(x10™%), and MSE (x 10™#) are reported

a S K2

Infeasible Feasible Infeasible Feasible Infeasible Feasible

0.0021 0.0024 0.3029 23.9588 0.0361 4.5830
o=1/12 0.6568 0.6625 19.0296 7.2365 0.0830 0.1885
0.6588 0.6650 19.3325 31.1953 0.1191 4.7716
0.0022 0.0025 2.3990 14.4633 0.1579 21.2663
0=1/6 0.6576 0.6614 18.4518 22.1306 0.1547 0.3595
0.6597 0.6639 20.8508 36.6940 0.3126 21.6258
0.0021 0.0025 6.2912 24.5878 0.3493 58.6862
o=1/4 0.6560 0.6613 17.3818 33.3411 0.2377 0.5172

0.6581 0.6638 23.6731 57.9289 0.5870 59.2034

A =1/(24 x 12), the estimation results based on J = 1/6 generally outperform
the ones using J = 1/12. Otherwise, the performance of the parametric estima-
tors are somewhat mixed across the different parameters. The long-run level,
a, is estimated consistently well across all sampling schemes and is close to
the infeasible estimator based on observing the volatility process. On the other
hand, relatively large biases are incurred when implementing our estimator for
the mean-reversion parameter, f: For example, in the case with A =1/ (24 x 12)
and 6 = 1/6, the smallest squared bias of our estimator is 14.4633 x 1074
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compared to 2.3990 x 10~ for the infeasible estimator. Finally, the performance
of our estimator of x falls somewhere in between these two cases.

Before concluding this section, we note that Zu (2014) presents some simu-
lation results with various parameter settings, comparing our method (for para-
metric models) with the one based on the estimation of integrated volatility. His
investigation suggests good performances of our method.

9. CONCLUSION AND EXTENSIONS

We have proposed a method for the estimation of SV models in the presence
of high-frequency data. The asymptotic properties of the estimator were derived
and their finite-sample precision examined in a simulation study. Our theoreti-
cal results ignore the first-step sampling error. It would be useful to extend our
asymptotic results to include both first- and second-step sampling errors. A first
step in this direction has been made by Mammen et al. (2012) in a cross-sectional
setting.

It would also be of interest to provide a complete asymptotic analysis of the
jump- and noise robust spot volatility estimator proposed in Section 3.4 and the
estimators proposed Section 6 allowing for jumps in the volatility.

NOTES

1. See Barndorff-Nielsen, Hansen, Lunde, and Shephard (2004, Thm. 6), and discussions in Jacod
et al. (2009, Remark 1, p. 2251).

2. Note that what indeed matters in our subsequent analysis is the uniformity over any pseudo
(discrete) sampling time points the number of which is finite but increasing as n — oo and A — 0,
rather than the uniformity over any ¢ in a continuum set (0, 7) as discussed here; however, we can see
the failure of uniform consistency even over such discrete points by the same reason as here.

3. For example, Xiao et al. (2003) consider bandwidth selection rules in their simulation study that
work well in practice, but do not satisfy conditions imposed in deriving their asymptotic results.
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APPENDIX A: Proofs of Theorems

A.1. Proofs for Section 3

We first state a result on almost sure Holder continuity of the process ¢ — 012 uniformly
over the infinite time interval [0, 00):

LEMMA A.1. Suppose that Assumption A.3 holds. Then, for any y € (0, p/1), there
exists some constant D (> 0) such that

_ 02 () — o2 (a))‘
Pr| we Q|3A (o) s.t. sup —_ <
lt—s]€(0,A(w)); s,t€[0,00)

D|=1. (A.D)

|t —s]”
Proof of Theorem 3.1. We expand the spot volatility estimator and analyze each of the

terms in this expansion. In what follows, we extend the processes {x;} and {O’tz} by setting
U = 0,2 =0for ¢ < 0. By Ito’s lemma for continuous semimartingales,

) 1t N s
(AXli) :2/ / ,uudu+/ oudWy, Vusds
fi—1 L1 Li—1
t; N s 1
+2/ (/ Hudu +/ UudWM)adeX +/ O‘SZdS.
ti—1 ti—1 ti—1 ti—1

Thus, SUP . o[/ T —/T] <2R{+2Ry+2R3+2R4+ R5, where

t N
Rl 1= sup Zlfl_th (l‘l'_l—l')/ (/ ,Uudu),usds
- fi ti—1

~2 2
07 —0¢

s

7€[0,T] ! i1

n t; s
Ry := sup C Kp(tio1—1 / / oudWy Jusds
1€[0,7] 2’22 ( ) aa\Ju, )T
n t; N
R3:= sup Zi—th (ti_l—r)/ / tudu YosdWs
- ti—1

s

s

7€[0,T] ti—1
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n t; S
Z' Ky (l‘i_] —‘L‘)/ / oudWy JosdWs
i=2 ti—1 \/ti-1

-1
1

Z:’zz Ky (Z,-_1 —r)/ afds—arz

L1

Ry := sup
7€[0,T]

s

Rs5 :=SuPre[ﬁ,T—JE]

We show below that
Ry =0p ( AT @210/ (2+p) h—2/(2+p)) : (A2)

Ry=0p (A1/2T’70 (T/h)fO); (A3)

Ry=0p (,/h—l Alog(1/A)AY2TM0 [Tz/hAlog(l/A)]fO); (A4)
(,/h—l Alog(1/A)T2/2+0) [Tz/hA log(1 /A)]Z/ (2+q)) ; (A.5)

Rs=0p (h7), (A-6)

where 1o :=11/ 2+ p)+1/(2+¢q) and fy:=1/2+ p)+1/(2+¢g). We note that R|
is of smaller order than R;, R3 is of smaller order than R4 by equation (3.2), and that R,

is of the same order as Ry since
2+p) 1/(2+4q)(2+p)
Ry = 0p(Ra) x {T(I‘HI)(2+q)—(3+12)(2+P)hp(2+q)/2 [hAzlog(l/A)] }

x [log(1/8)]**F0 — 5 (Ry),

where the last equality is due to equation (3.3). As a result, R4 and Rs5 are the dominant
terms, yielding the claimed result.
Proof of equation (A.2). By Jensen’s inequality and maxj<;<, MaXse[s;_; 4] ‘s —fi—l‘

<A,
1 s t 1 t 2

A wanfusas|< [* ([ wada Jiustas =( [ ustas
ti— L1 ti— L1 L1

1

< A/ ,u?ds.

ti—1

Thus, for a given sequence {¢7},

n li 2
Ri<A sup > |Kn(tici =0 | lusl Hlusl < ¢r)ds
te[0, 71 = ti
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#8 sup ST 1K G =0l [ P Ul > grids = Ru+ R (&)
re[0,7] <=2 fio)

Here, Ry is the truncated version of R and satisfies

oot s—t ti_1—s )
Rij=A sup ZE K +— s | H{lus| < ¢rlds
e[0,71; 5 " J1ii

h

(T—7)/h 5
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< Ag2 x/oo IK (u+ 0 (A/h))|du = O(A¢2). (A.8)
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Note that [° |K (u+ O (A/h))|du— [°3 |K (u)|du as A /h — 0by the bounded con-
vergence theorem. As for Rj»,

_1 [T
E[Ri2] SE[AKh/O s 1P 1 () s >¢T}dsi|

K ATI-H]
< — 5 AT sup E[ s | = o =—— ), (A.9)
hg¥ s<r he?

where the last equality follows from Assumption A.l. Now, choose ¢
TU+0)/(p+2)p=1/Z+P) " Then, equation (A.7)~(A.9) establish that R; =
0p ( AT @+20)/C+p) j,—2/+p)

Proof of equation (A.3). By an application of Holder’s inequality, we have R»

/R21 X Ry, where
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With {¢7} being as before: Ry = O (Aqﬁ%) +Op (AT(I‘Hl)/ (h¢¥)) by the same ar-
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any positive sequence {¢7}. Then, analogously to the analysis of R;2,
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The latter bound is due to the Burkholder-Davis-Gundy (BDG) and Jensen in-
equalities, and Assumption A.2. With ¢p = TUHD/QHP)p=1/Q+p) and §p =
AV 27 (+0)/2+q) p=1/2+q)
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1/2 1/2
AT+ 1 A4/2T 1+

{0 A¢T +OP(W)} {OP(A ¢T)+0P =T

=0p

=0p

1/2T[(1+11)/(2+P)+(1+lz)/(2+q)]h 1/(2+p)+1/(2+q)1)
( ‘/ZTWO(T/h)fO) (A.10)

Proof of equation (A.4). First, let T, :={t € [0,T]: |t — | < T/vp}, k=1,...,vr, be
a covering of [0, T'], where vy is the number of intervals and 7z is the center of each 7.
We also let I (s,4,_1) == (ft‘;_l pudu)og and T (s,4;-1) =T (s, t;—1) {|T (s, ti—1)| <
o7} for a sequence of positive real numbers {¢7}7~ that are specified below. Then, R3 is
bounded by -

]

Z,r-;z [Kn (tim1 —7) = K (ti-1 _Tk)]/ U7 (s,6-1)d Wy

ti—1

R3 <  max  sup
kefl,...vr} reTp

ti
K _ I ) dW.
+k€{1,a)§ur} z h(tl 1 k)/t;-_l T(S,l‘l 1) s
1
+ sup Z;’_th(ti—l—T)/ T (s,ti—1) L{|T (s, ti—1)| > o1} dW;
7€[0,T] = fi

=: R3]+ R3+ R33.

Using Holder’s inequality, Lipschitz continuity of K and
- 2
E[X0, (fi Tr(s.tim1)dWs)“] < To7,

Ry< max s (3 [Kn et =)= Kn (oo~ )] 0 (VTor)

kefl,..vr}reTy

o1

Next, define o (s) :=1t;_1 if s € [t;_1,1;), and

k- el (tici— ) [ =
MT (r).:zizzK(lT)/t I'r (S,[[_l)dWS

i—1

rT _
:/ K (79 ) T") 7 (5,0(s) dWs.
0 h

Note that {M? (r)} 0.4] is a continuous martingale for each (k, T') which vanishes at
relo,

. . T —\ =
zero and has quadratic variation <M];>r = Or K? (Q(s)hirk) F% (s,0(s))ds. Thus, for
any ¢ > 0 and any sequence {V7},

Pr(‘M% (1)‘ > c) < Pr(‘M’}(l)‘ > e, (M{;)l < VT) +Pr((M§>1 > VT), (A.12)

Applying the exponential inequality for continuous martingales (see, e.g., Dzhaparidze
and van Zanten, 2001 or Exercise 3.16 in Revuz and Yor, 1999, Chap. 1V),
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k k 2 :
Pr(‘MT(I)‘ > e, <MT>1 < vT) < ZCXp{—c /(2VT)},whlle
T
k 2(5 "% 2
<MT>1 5/0 K ( . +0(A/h))ds><(pT
o0
gh/ K (u+ 0 (A/h))du x 93 < Cprho#, (A13)
—00
for some constant Cy; > 0. With Vp = Ctho%, this yields Pr(’M? (1)‘ > c) <
2exp [—02/ (2VT)}. Thus, setting ¢ = J b, for some constant J > 0 and some sequence

J2b2h
Pr(R3y > Jby) < ZZT_IPr()MI’; (1)‘ > JbTh) <2vp exp{—zc ;2 }
_ ol

With vy = T2p7 /h2 AV 2by and o7 = by /h/log (1/A), we obtain R3; = Op (br) and
Pr(R3y > Jbr) < ZUTAJZ/ZCM. Since vy = T3/2/h,/A10g(1/A) < A€, for some ¢ >
0, which can be checked by the rate condition in (B.1), we have Pr(|R3y| > Jbr) — O for
J large enough, implying R3» = op(b7). Finally, by using the BDG, Jensen and Holder

{b7} tending to zero,

inequalities,
nkKA'/? 1/Q2+p) 1/(24¢)]@+r0)/2
E[R3] < — 5 [A {supug E[|qu|2+p]} {SUPsg E[|os|2+q]} ]
h(pT
2
=0 ( AU+0)/2 1410(24+70) /2 / ho?! ) (A.14)

where we have set ro = (1/fp) —2=1[1/Q2+p)+ 1/(2+q)]_1 —2,and fp and 59 were
defined previously. Therefore, for the term R33 to have same rate, b7, as R31 and R3p, we
require

AU+r0) /2 14n0(24r0) /2

hw?/z

=br &by

1/2+
= \/h=1 A tog(1/4)A Y2770 [72 /A Tog (1/4)] /o).

where the equivalence is due to the above choice of ¢7. This establishes the desired result.
Proof of equation (A.5). The convergence rate of R4 can be derived analogously to
that of R3. Construct a covering of [0, 7], {L{k}ZTzl, where each U} has the radius
T/vr from the center 7;. Let H(s,t,-_l) = (ft‘?_l oudWy,)os and T7 (s,t,'_l) =
I (s, t;—1) 1{|TI (s,;—1)| < w1} for some sequence {y7}7 1. Then,

L

S [Kn (o1 =)~ K (t,-_l—rk)]/t; fiy (s.11_1) dWs

R4 < max sup
ke{l,...or} reldy

ti _
Frelior) DI Tk)/zH M7 (svti1) s
1
+ sup Z?_lKh(ti_]—rk)/ (s t5—1) [T (52 t5—1)] > w7} dWs
7€[0,T] - ti—1
=: R41 + Rap + Ry3, (A.15)
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2
By the same arguments as for R3;, R41 = Op (hz—zl%); with op =
T
T2 WT/h2A1/2bT, R41 = Op(br). Define a continuous martingale N% r) =
i Tk (w 7 (s, 0 (s))d Wy whose quadratic variation process (N?)r is computed
analogously to (M ? )r and satisfies (N ];)1 <Cpnh z//% for some constant Cpy > 0. Therefore,
by the same arguments as for R3p and with w7 = b /h/log(1/A),

J2b2h
Pr(|R4p| > Jby) < ZUTexp{—ZC r } < ZvTAlz/ch.

NV
Since vy = T2/h3/2\/m and it is bounded by A~ for some ¢ > 0, Pr(|R42| >
JbT) — 0 for J large enough (as A — 0) so that Rgp = op(br). Finally, similarly to
the moment bound for R33 in equation (A.14), E[R43] = O (A/’O/4T1+12/2/(h z//;()ﬂ)),
with pg := (24 ¢) /2 — 2. Therefore, given the above choice of w7, for R43 = Op (br),
we set by = /h~TAlog(1/A) [T(2+lz)/hA10g(1/A)]1/(2+p0). This establishes the de-

sired result.
Proof of equation (A.6). Withk (s) :== (o (s)—s)/hand p (s) =t;_1 fors € [t;_1,1;),

R (T_r)/hK( (uh ))[ 2 2]4
5 < sup / ut+rxuh+rt))|o -0 u
cef0,71]/=1/h uhte Tt
(T-7)/h
+ sup / Ku+xWwh+7))du
celVh,T—vh |/ =?/h
o0
—/ K (u+x (uh+7))du| sup o
—00 7€[0,T]
=: R51 4+ Rs7. (A.16)

Assumption A.2 and Lemma A.1 imply that there exists A > 0 such that for
any A < A and |t —s| < A, los —os| < D|t —s|” as. Therefore, Rs; <

Dh? ffooo|K(u+0(A/h))||u|ydu:Oa.s.(hy)sinceffooo|K(u+0(A/h))| u|ydu§
ffoooK*(u)|u|ydu < 0o, where
K if lul < C+e,
K*(u) =y KOIZK (314K if Jul € (C+5,C +27], (A17)
K (u—25)| if Ju > C+ 27,

for some constant £ > 0. To bound Rsp, we first bound sup,¢jo, 77 o2: Let {Vk}zzl be
a finite covering of [0, T'], where Vy has center 7; and radius 7 /wr. Then, with wr =

Tlog(1/h),
2 _ 22 2 o T y wro 3
Sup 00 = k) Sup Jor —on |+, max on s as. (T /0r)+D " of
= Ous. (1102 (1/ W) 7) +Tllog (1/1)] x Op (")
—0p (T1+2’2/<2+‘1> log (1 /h)), (A.18)
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where we have used SUps<T E[olz] =0 (TZIZ/(2+(1)) (see Assumption A.2). Next, ob-
serve that

(T—7)/h 00
/ K(u+k(uh+r))du—/ K@u+k(uh+1))du

sup
telVh,T—n) |7 =7/h —%
) 1/Vh
5/ |K(u+k(uh+r))|du+/ |K (u+k uh+1))|du. (A.19)
1/vh —o0

The two terms on the RHS are both O (h (m+c)/ 2) for some ¢ > 0. To see this, note that
there exists some ¢ > 0 such that |K (x)| < ]x|_m_1_c for |x| large enough since

ffoooxml{(x)dx <oo and that x(r)=O0(A/h)=o0(1). Thus, ff/oﬁlK(u +r(uh+1))|

du = O(|1//h|~™=¢) = O(h(m"'c)/z). The term f_lég/ﬂl{(u +k(uh+1))|du can be
treated in the same way. In total, Rsp) = Op (h(m+c)/2T1+212/(2+‘1) log(1/h)) =o0p(h?),
where we have used log(1/h)h/2 = o(1) and h™~27 T2+42/(2+49) = O (1) as imposed in
Assumption B.1. This yields the desired result. u

For the proof of Theorem 3.2, we first derive the uniform convergence rate of X — Xq1:

LEMMA A.2. Suppose that Assumptions A.]—A.:? and B.1-B.2 and K.1-K.2 are satis-
fied. Then, as A, Ag — 0, and T/A,T/Ag — oo, Xy defined in equation (3.7) satisfies

Supre[\/ﬁ,T—«/ﬁ] |Xt - th

=0p (da’(r“lzm)“ @+ 4\ Ja=1Ag 1og(1/As)) : (A.20)

Proof of Theorem 3.2. Observe that
n n ~ ~ 2
G_I%IR,T = Zi:l Kh (ti—l - T) I:(Xl,' _Xl,',l)"'(Xt,' _Xtifl) - (Xti _Xfifl):l
n n ~ ~ 2
= 01'2 +Zi:1 Kh (Zi—l - T) I:(Xt,' - th-,l) - (Xl,' _Xt,;l):l
n A A
=2 Kn(tim1—7) (Xy = Xi_,) I:(Xti = X)) — Xy, _Xti—l)]
=:624U) (1) —2Us (1),
where

SUP, e[ /a7 —a) [U1 (O] < supeeio.r) D | K (ti-1 = 7)| A

=0(1)

x (4/ D) sup, e a7 — a1 Xt = Xl

SUP; e /a,7—/a) U2 (D] < suprejo, 7 Z:lzl |Kn (ti—1— 1)

1 1
X |:/ [pslds + / osdWs :|
ti—1 ti—1

XZSuple[ﬁ,T_ﬁ] }Xt —X,|.
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By the same arguments as those for R and R» in the proof of Theorem 3.1, and by equation
(3.12),

I 1
sup Z?:l‘Kh (ti—l—r)\[/ |slds + | o‘desl:|

7€[0,T] ti—1 ti—1

Given  this  expression and Lemma A2, sup, el J/a,T—/al |Ui (7)) =
OP(SUPTe[ﬁ r—ya)ll2 (1)) and so (3.13) holds. Finally, to derive the rate of
SUP [Vt T —/R] }&I%R . —UTZ ,note that A=lg — 0 .and A~ A — 0 since 191T\IRA AT 0.

These in turn imply that a/h — 0 and [vh, T — h) C [/a,T — /a). Therefore, the
result of Theorem 3.1 and the triangular inequality imply the desired result. n

Proof of Theorem 3.3. We write the continuous component of X; as X; = fé Usds +
fé osdWs. Thus, we have X; = X} +Z;V:’11cj. By Lemma 3.1, we have for A small
enough, '

b —0l = Z:l:l Kp (11 =) X} = X;_ PA{N;, = Ny, =0} — o2
— {&3—03} —Z?Zl K (i1 =) [X] = X7 PU{Ny = Ny, #0},

2
T

SUPr e[/, T—/h]

2
t; 1

N7 max Kh(ti_l—r)/ ,usds+/ osd Wy
i€{2,...,n} ti—q ti—q

2N7K fi fi
§hT|:A max / lus>ds+ max | adeS|2i|, (A.21)

where 67 is the no-jump and no-noise estimator based on observing X, and so

&,2 — 01.2 = Op (YA ). The second term is bounded by

ie{2,...,n} Jt;_4 ie(2,...,n} Jg_,

where we have used (A+B)2 < 2(A2+B2) and Jensen’s inequality. We note that

E[Nr] < AT and can show max;e(2, ) ftf’_] lus|>ds = Op (AP/(2+p)T2(1+11)/(2+1’))
in the same way as equation (B.6) was derived. To find a bound of max;c(2, . n)
| ftf: ' osd Wg|, we use the exponential inequality for continuous martingales (Exercise 3.16
in Revuz and Yor, 1999, Chap. IV),

1
Pr(max,-e{zw’n}/ osd Wy >J)
li-1
i l 'l 'l
SZ Pr / osdWy 2],/ afdsgnT +Pr / Uszds>nT
i=2 li-1 li-1 Jli-1

< 2nexp [—J2/211T] +nACTD/2gp E [|05|2+q:| n;q/z.

s<T

O(M/2T'+11 n;q/z)
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By letting 7 = JZAT2041)/q and J = J_(l“"])\/[Alog(l/A)] 72(+1)/4 forany J > 0,
we have

t; _
Pr(max,-e{z,.‘.,n} | / asdWy| > J<1+q>/ [Alog(1/4)] T2<1+’2>/q)
Jli—

<2mAUDT 4 o (j74).

Having J large enough, the majorant side can be made arbitrarily small as A — 0 and
T/A — oo (by the rate condition in (B.1)), and thus

fi
maxje2, | [ osdWsl = 0p(/[Alog(1/A)] T20+2)/a), -

ti—1

A.2. Proofs for Section 4

The following lemmas will be used in the proofs:

LEMMA A.3. Assume 5‘3 satisfies equation (4.1) and Assumptions A.2° and K.3 are
satisfied. If there exists some § > 0 such that (9 /D)1 = O (b), then, as T — 00,  — 0 and
b—0,

a(x)—a(x)=0p (19N/b51/2)+0p (WIn/5). (A22)
LEMMA A.4. Assume that Assumptions A.2" and K.3 hold. If 67 /b — 0 and Tb — oo,
then & (x) 55 a (x). If in addition Th62" — 0 and Tb® = O (1), then
VTBG (x) — a (x) — b x biasg (x)] 5 N (0, B (x) / e (2) dz) ,
—00
where biasg, (x) is given in Theorem 4.1.

LEMMA A.5. Assume &Tz satisfies equation (4.1) and Assumptions A.2" and K.3 are
satisfied. If there exists some g (> 0) such that (95 /b)1 = O (b), then, as N — oo and
b,d = 0O withdx /3 ~7 =0,

@)= 2 (x) = 0p Wy /b)+0p (VU /0'77).

LEMMA A.6. Assume that Assumptions A.2" and K.3 hold. If N — oo, b — 0 with
87 /b= 0 and Nb — oo, then B2 (x) 55 B2 (x). If in addition Nb&® — 0 and Nb> = (1),
then

o0
VNBIB? (x) = B (x) = b* x bias 2 (x)] 4 N (o, 482 (x) / K2 (2) dz) ,
—0Q

where biasﬂz (x) is given in Theorem 4.2.

Proof of Theorem 4.1. As in equation (4.2), we split up a (x) —a (x) into two terms.
The first term of the RHS of equation (4.2) converges to zero by Lemma A.3 under
Assumption B-NDR(i). Note that since y € (0, 1/2) and 67 /b — 0, we have 61/2 <67 <b
(for 6 and h small enough), and 9y /8 > 9y /87 61/% > O /b'/2. Therefore, 9 /6 — 0
and 07 /b — 0 lead to ¥ /b5'/? — 0. Noting also that 9 /b5'/2 — 0 and 6 /b — 0
respectively imply ¥ /b < 61/2 and 61/2 < b1/27 | the condition of Lemma A.3 below is
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satisfied with ¢ = 1/2y . The convergence of the second term is investigated in Lemma A.4
below. Assumption B-NDR(ii) ensures that the first term @ (x) — & (x) has no effect such
that the asymptotic distribution is completely determined by a (x) — a (x). n

Proof of Theorem 4.2. We follow the same strategy as in the proof of Theorem
4.1: First, write A2 (x) — B2 (x) = [B2 (x) — B2 (x)] + [B2 (x) — B2 (x)], where the two
terms on the RHS are analyzed in Lemmas A.5 and A.6 (see below), respectively. Note

1=y
that ¥ /6' =7 — 0 and 67 /b — 0 respectively imply 9y < 6!~V and 6'=7 <b 7,

1=y 1=2y
and thus dy/b <b 7 ' p7 = 0 since y € (0,1/2). Therefore, the condition

of Lemma A.5 is satisfied with ¢ = (1—2y)/y. Assumption B-NDI(ii) ensures that
B%(x) — f2(x) = 0op(1/+/ND), and thus the asymptotic distribution is determined by

VNB [0 - () . m
A.3. Proofs for Sections 5-7

To derive the asymptotic results for the proposed estimators, we re-define the objective
functions. Instead of Qy (6) (for k = 1,2) in equation (2.5), we consider the following
objective functions:

~ 1 N—-1
2 2 2 2 2
Ry (01,0 ) == E =1 a(aTH_];01)[a(a,j+1;01)6—2(01j+1 —arj)],

N 1 N-1
2. 2.2 . 2.2 . 2 252
Ro(02.0%) =2 D B (ol ) [ B2, 1000 -2007, —a2)’].
The maximizer of Ry (6,52) is equal to the original estimator 0 defined in equation
(2.4) as the maximizer of O (6). Moreover, in contrast to Oy (), Ri(01,02) has
a well-defined asymptotic limit, kK = 1,2, given by Rl((-)l) = fla(y;f)l)[a (y;Hl) -

2a(y)]7(y)dy and R, (62) = [, B2(v:02) [ (v:62) — 282 (»)]7 (y)dy. The first and
second order derivatives of Ry (6, 02), k=1,2,are

3’1 (01,02) = %Z;V:_llagla (0,2]_;191) [a (03;01)5— (J%H —O'sz):l,
I-All (91,02) T= %ZJN:_]I {6491(1 (0%;91)631(1 (a%;@l)*é
0y w0 (03:00) [ (73:07) 3= (03, =)

H (01): = 2E [66106 (o:61) 0, (af;el)*] :
and
& 2 2N (2 2(.2 2 2)?
A)) (92,'7 )1=;Zj:1 0,8 (Ufj;az) [ﬁ (Ufj;92)5—(01j+1—01j) };
i (6,07) i = %Z;V:_ll {692[32 (02:02) 20,2 (afj;az)*cs
W (7330) |8 (o3:05) = (o3 =o2)’ ]

Hy (02): =2E [%ﬂz (o:62) 20, (o ez)*] :
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We first state the asymptotic distribution of the infeasible estimators:
LEMMA A.7. Suppose that Assumption A.2’ is satisfied.
(i) If A-SDR holds, then

sup |Ri(Ok,0%) — Re(@)| =op (1); and sup HI:Ik(ek,Uz)_Hk (Hk)H
OOy Ok €Oy
=op(l), (A.23)

with k = 1 and thus 671 £> 6’1*. Moreover, ifTﬁ2 — 0, then
VT (07.0%) 5 N©.QD; and VTI —0715 N©, BT @y H,

where Q] and H{ are given in Theorem 5.1.

(ii) If A-SDI holds, then the results (A.23) hold with k = 2 and thus (-52 i)> 8; . Moreover,
if To— 0, then
VNS, (03.62) 5 NO,Q3); and VNIGy— 0315 N, H; ™' Q3 H; ™,

where Q3 and H3 are given in Theorem 5.2.

Next, we derive the stochastic difference between the feasible and infeasible objective
function and its derivatives:

LEMMA A.S. Let 512 be an estimator of 0{2 satisfying equation (4.1). Suppose that
Assumptions A.1, A.2’, B.1’ and A-SDR(iii) are satisfied. Then,

sup ‘1%1 (91,&2)—1%1 (91,02)‘ — 0p(Iy/9), (A.24)
0,€0
ﬁ”sl (0;‘,&2) -8 (af,az) H — 0p(T?0y/5), (A.25)
sup H 28 (91,&2) _A (9],02) H — 0p(In/0). (A.26)
916@1

LEMMA A.9. Let &Tz be an estimator of 012 satisfying equation (4.1). Suppose that
Assumptions A.1, A.2°, B.1" and A-SDI(iii) are satisfied. Then,

sup ‘1@2 (92, &2) Ry (92,02)‘ —0pWy/5\77), (A.27)
6e®y
VN H 3 (0;, &2) - % (0;, 02) H — 0p(VNIy /6", (A.28)
sup H 28 (92,&2) A (02,02) H —0p(Wy /5. (A.29)
6,e®y

We are now ready to prove Theorems 5.1-5.2:

Proof of Theorem 5.1. To prove consistency, we verify the conditions in Newey and
McFadden (1994, Thm. 2.1): (i) compactness of the parameter space; (ii) continuity of
the objective function and its limit function; (iii) uniform convergence of the objective
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function; and (iv) identifiability. Conditions (A-SDR.i) and (A-SDR.ii) imply (i), (ii) and
(iv), and we only need to show uniform convergence. Write

i3 (01,52) R (0)) = [1@1 (01,52) — R (01,02)] + [1%1 (91,02) —R (01)], (A.30)

where the two terms on the RHS converge uniformly by Lemma A.8 and A.7 respec-
tively. By a Taylor expansion, ﬁ[él —0;‘] = 1’511_1 (9_1,&2) VTS, (01*,&2), where
A is on the line segment connecting 91 to 9;‘ . By (A.25) in Lemma A.9 and As-
sumption B-SDR, ﬁ[&l (91*,&2) -8 (0?,02)] = op (1) while the Hessian satisfies
H, (91,52) —H (0) = [1:11 (91,52) — H, (91,02)] + [1:11 (91,02) —H, (91)] 5o

uniformly 61 by Lemmas A.8 and A.7. Thus, 6 has the same asymptotic distribution as
the infeasible estimator #1, which is given in Lemma A.7. u

Proof of Theorem 5.2. This follows along the same lines as the proof of Theorem 5.1,
and so is omitted. u

Proof of Theorem 7.1. The details of the proof are provided at Cambridge Journals
Online in supplementary material to this article. Readers may refer to the supplementary
material associated with this article, available online. |

APPENDIX B: Proofs of Lemmas

Proof of Lemma A.1. From Assumption A.3 and Lemma D.1 (the details of Lemma
D.1 are provided online at Cambridge Journals Online in supplementary material to this
article), there exists a continuous modification {512} of {alz} which is a.s. Holder globally
over [0, 00). Identifying {atz} with {57}, we have equation (A.1). u

Proof of Lemma A.2. Use that X; = f(;,uudu + f(;auqu to  write
SUP 1z 7—yay 1 Xt = Xt] < S1+S2+ 83+ S4.+ S5+ Se, where

T s t
S = sup / Ly(s—1) (/ ,uudu)ds—/ Huydul;
telva,T—yal|/0 0 0
T N t
Sy = sup / Ly(s—1) (/ auqu)ds—/ oy dWy|;
te[ﬁ,T—ﬁ] 0 0 0
M iAg s
S3:= sup _ La(si—1) (/ u d“)ds ;
1€[0,7] Z'=1 o i-as Ji-na, "
ZM iAg s
S4:= sup . La(si—1) (/ UdW)dS;
refo,ry[<i=1 i-a, Ji—na, "
M il
S5:= sup Z'—l/ [La (Sl' —t)—Lg (S—t)] Xgds|;
1€[0,T] == Ay
Se:= sup (T/M)ZM La(si—t)e
1€l0,T] i=1 4 l
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By following the same steps as those for equations (A.2) and (A.3), S3 =
0p (A, T/ CHP) g=1/C4P)y and 5, = 0 p (ALY 2T (1+2)/(2+4) 4=1/C+9)) while we
show below that:

S =0p (a(1+p)/(2+p)T(1+ll>/(2+p)); (B.1)
(ﬁ(Tle/a)l/(Z-l-q)); (B.2)

—0p (Asa—l [T1+11/(2+p) T T1/2+12/(2+q)]), (B.3)

= op( —IAslog(1/As )) (B.4)

The first rate condition in equation (3.10) of B.2(ii) yields S5 = Op(Sp).

It also implies that T'T1/2+P) = 0(1/,/As/a(ogT)), and so S3 = Op(Ss) x
=(1+p)/2+p) 4 1/(2+q) .

TMW,M (logT) = 0p(S4). Given the rates of S4 and Sg, S4 = Op(S¢) X

(a9 T2(+0) /11og (1/Ag)12H49}1/2@+9) | This expression, together with equation (3.12)
of B.2(ii), implies that S4; = Op(Sg). Thus, Sg is dominant among the four
terms S3, S4, S5 and Sg. Finally, by equation (3.11) of B.2(ii), S| = Op(S) %
(aP T2AH0)1/2QHP) ¢ (q/T1H2)1/2+9) = o p(S,). This yields the desired result of
equation (A.20).

Proof of equation (B.1). Since L has compact support, f(T n/a L(@®)dvo—1=0 fora
S = sup

small enough. Thus,
(T—t)/a t+oa
/ L(v) (/ ,uudu) dv
tela,T—/a]|/~t/a !
(T—1)/a t
+ / L(@)do—1 / Hydudo
—t/a 0

[ee} t+coa
< / ILO)ldo sup / il di ®.5)
- t

te[0,T]/t—coa

With ¢T — (T1+11/a)]/(2+p)’

t+coa t+coa
S“P/ lpuldu < sup/ lul Hlpul < pr}du
te[0,T]/t—coa t€[0,T]/t—coa

T
+/0 el Ll > ) du

< 2cgagr + Op(T x T /o)
=0p (a(1+17)/(2+17)T(1+11)/(2+[7)). (B.6)

fj +r oudWy
should be interpreted as — fst o, dW, if s > t. Then,

Proof of equation (B.2). Let I'y := SUP|r|<coa , where the integral jts oudWy
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]

T
< or SuptE[O’Tl/O [La(s—0)lds+E [Suptelo,T]

T
/ Ly,(s—1)Tsds
0

E[S|<E |:sup,e|0,T|

T
/ La(s =0T 1Ty > pr}ds
0

)

o0

= 2. 1

<or / IL (0)ldv + (RT /a)sup,cqo. 1 EITZH1 /0%
-0

1
= O(pr +a??T'+2 g1,

where the first equality holds for @ small enough, c.f. the analysis of equation (B.5),
the second inequality holds since I's (a) < ¢7 4+ [s1{I's (@) > ¢}, and the last equal-
ity uses the BDG and Jensen inequalities. With ¢7 = ﬁ(T1+12/a2)1/(2+q), S =
Op(Va(T'*h ja)l/C+a),

Proof of equation (B.3). By the differentiability of L, Assumptions A.1-A.2 and the BDG

inequality,
T s
Ss < Aga™? sup / L (—+ 0 (Ay /a)) ds / |y | du + sup / oudWy
1€[0,T] 0 s<T /o
—0p (Asa_l [T1+11/(2+P) + T1/2+12/(2+q)]) ) (B.7)

go.e]
< Aga~! / L' (u+ 0 (Ag/a))du x Op (T1+l'/(2+”) + T1/2+12/(2+q))

Proof of equation (B.4). For grid points on the interval [0, T]: ug < uj <--- <uy,
(withug =0,uy, =T, ujy1—uj=T/Jp,and (T/Jp) —> 0), and for 77 > 0, define
Zi7 (uj) :=La (si —uj) ei1{le;| < n7}— E[La (si —uj) &i1{le;| < n7}];
Zir (uj):=La (s —uj)ei1{le;| > n7} — E [La (s; —uj) &;1{le;] > n7}]; and

nr = ilM?/y/abslog (1/A5)1"/(4HD. (B.8)
Since E[g;] =0,

Se < max sup  (T/M) La (si —u;) = La (s; — )| I
ls-jSJTl‘E[uj_l’u] Z | a ]) a \S; ! i

M
/M) max (3T Zi )|+ max a3 |z ()]
=: 861 +Se2 + Se3- (B.9)

Here, |La(si—uj) — La(si=DI < (T/JTaz)L/(Sj/d + O(T/Jra))  and
max|<;<py le;| = Op (M), and thus

o
Se1 < (1/JTa)/ L'(v+O0(T/Ma+T/Jra))dv x maxq<j<py l&il
—00

=O0p (M/Jra)=0p(yJa~1 Aslog(1/Ay)), (B.10)

where we have set J; = M/\/aAslog(1/As). We wish to apply Bernstein’s inequal-
ity on Sgp (see Van der Vaart and Wellner, 1996, p. 102) and to this end, compute
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the variance bound
M
Var[zi Zir (u;) ] < 2/ Ay )Z —uj)ASEI:SiZ]
2 2 . 2
< (2/Asa )/0 L ((s—uj)/a—l—O(As/a))dssupizlE[si]
o0
< O(I/Asa)/ L?>(+ 0 (As/a))du < C/Aga,
J =00

for some constant C > 0. Given this and the fact that |Z,~,T (u,)| < 2K 57 /a, Bemstein’s
inequality implies that

Pr <S62 > inJa A log(l/A_g))

Jr M - _\/_17
< j=1Pr{ I.=IZ,',T(MJ') >(M/T)in/a Aslog(l/As)]
<37 2expq — 7> (M/T)*[a”" Aslog(1/A4)]/2
e S Var[Zor (uy)]+(1/3) (2K nr fa) ¢ (M) T) Ja=TA, log(1/ Ay)

)
in"[log(1/As)1/2 ] - 0. (B.11)

= { ©C+(2Ke/3) xnry/ATog(1/A,)/a

The convergence in the last line occurs for 7 large enough (as 7 — ©0), since Jr

T/,/aA?log(]/As) grows at most at polynomial order of 1/A; (note that a~!

A~Y2T and T < A=°2 for some ¢y, ¢y > 0, both of which follow from equation (3.10)),
and since n7+/aAglog(1/As) = i1 x O(1) by equation (3.9). Next, consider Sg3: First,

E [(T/M)Z?i] |La (si —uj)eil{lei| > nr}\]
< (T/M) Zf; |La (s = uj)| sup [lei |+

IN

(T-uj)/a
< / [IL+O0(/aM+T/aM))|dv x O(n_d‘) = O(;y;d“) uniformly over j,

—uj/a

where I’];ds =7"% x o(v/Ja~TAzlog(1/Ay)) since n;ds/\/a_l Aglog(1/As) =0(1) by

equation (B.8). Therefore, for any # and for any 7' large enough,

Pr (s63 > \/m)
I [(T/M)Z?il |La (51 ;) 1 {leil > n7)]| > (1/2)Jm]

" ZZIP{W (55 =) les U llei] > np)l > (1/2T) a-lAslog(l/As)}

J:
<> S Brllerl > nr) < JrMsupay Elled 1 nyt = 0 M/

=0(1/i't%), (B.12)
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which can be made arbitrarily close to zero by choosing 7 large enough. This completes
the proof. |

Proof of Lemma 3.1. The proof proceeds along the same lines as that of Mancini (2009,
Thm. 1). The only difference between ours and her setup is that we allow for 7 — oo,
and so we only point out the modifications. Her original proof relies on three preliminary
results/assumptions: (i) the modulus of continuity of the Brownian motion { W;} over [0, T']
with 7' < oo fixed; (ii) the Brownian time-change technique of continuous martingales, i.e.,
the Dambis-Dubins-Schwarz theorem; and (iii) a certain uniform boundedness condition,
which is stated in Mancini (2009, eqn. 14), which is implied by her conditions (1)—(3) of
Theorem 1. We extend (i)—(iii) to allow for T — oo. Re. (i): The Brownian modulus-of-
continuity result can be extended in the following manner:

Pr [thUPA N0 SUP; sef0,00); [1—s|<A Wi = Ws|/v/2Alog (1/A) = 1] =1,

as shown in Kanaya (2014). Re. (ii): The Brownian time-change arguments hold irrespec-
tively of whether T is fixed or diverges (see Revuz and Yor, 1999, Thm. 1.6, 1.9, and 1.10,
Chap. V). Re. (iii): The sequence {7} in A4(ii)—(iii) controls the behavior of {x;} and

{0,2} as T — o0, and allows us to obtain a uniform boundedness condition analogous to
her in equation (14). The rest of Mancini’s proof remains unchanged. u

Proof of Lemma A.3. Write a (x) —a (x) = A| + Ay + A3, where

L WDESK (02 =x) (o2, =02)  WDXS' K (02 =) (02, =02)

A] . 5
O/ TN Ky (52— ) O/ T)EN Ky (02 - )
e WX k@2 =)= Kp(02 =0)| (02, —o2)
O/ TSN Kp(62 ) ’
po /NI K@ -0 |62, -2 - 62, —a?,)].

O/ TV XL Kp(@2 =)

We show below that A; = Op (0 /b), Ay = Op (19N/b51/2) and A3 = Op(dy /),
which establish the result stated in equation (A.22). The proofs of these bounds will use
the following result repeatedly:

5 9
= Z;V:l [ic,,(g}j —x)— K32 —x)] —0p (%) . (B.13)

Proof of equation (B.13). Observe that

the LHS of equation (B.13)

I <N 1,
2 -1 2 ~2y7,—1 2 ~2y7,—1
=— - o —x)b" —wj(cl —6-)b xwi(ocZ —o2)b
N £—j=1 bIC (( 7 ) i 7 fJ) ) i ( 7 fz)
< sup wj|o, =67 (b7
1<j<N cY

K ((afj —0b™! —wj(0? —&sz)b_l)‘l{mﬂafj ~52p' <@)

1
¥ 25
p
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N
ﬁzl ]C/(a —x)b™ l_w/(U - )b )ll{w,a —6; |b‘ >E}]<Op(’[9N/b)
j=1
- 1 1 &k (sup1<,-<Nw,‘|aZv—&3|bl)‘?
Z’ K (g —p )+ 5 2o x| ————— (B.14)
e (o) (22
K b
=O0p (In/b) x [OP OR (G—q) } , (B.15)

where the first equality holds by the mean-value theorem for some random variables 0 <
wj < 1, j=1,..., N. The inequality (B.14) holds by equation (4.1) and

(ic/ (02—~ 4w (2 _&%)b—l)‘l{wﬂgrzj 2p<a

<K* ((afj —x)b—l) (B.16)

where IC* is some function and € > 0, such that SUp|¢|<e |IC’((UT2j —x)b_1 +e)| <
K* ((a% —x)b™1). By the last condition in K.3, such C* and  exist by the same arguments

used in the proof of Theorem 3.1 with KC* () being constructed in the same way as K™ (1)
in equation (A.17). The equality in equation (B.15) holds since N~ ZJNII ICZ (a% —x) =
Op (1) and wj( 2 _ ~z)b_1 = Op (Jy/b) (uniformly over j), where the former fol-
lows from the posmve recurrence of the process {‘71 } and standard arguments for kernel

estimators given the properties of C*.

Convergence of A1. The term A can be re-written as

/)X Ky(0f =)0, —02)

T DI K62 —0) x O/ TV Z Kp(oZ —x)
1

XNZL [’Cb(af, -x) —Kp Gz —x)].

By equation (B.13), and the two following equations, we have A| = Op (¥ /b):

1
T 21 K:b(O'T, x)(a,ﬁl O'TJ) o) (x)4+op(1); (B.17)
?ijlle(azj—x)=7r(x)+0p(l). (B.18)
1
Convergence of Ay. Write T Zﬁvz_ll [IC;,(&TZJ. —x)— IC;,(GTZJ. —x)] (o2 Oty ™ ) =A%+

A’z’g where

nu._
Ayl =

:_11 [Kb(&rzj —X) —Kb(arzj —x)] /TTH—] o (0'32) ds,

J

>
A= %Z;V: (K52 =)~ Ky (o2 —x)]/m—] B(o2)az,.
T

J
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Similarly to equation (B.15) and the proof of equation (B.13),

K b
A5 =0p (IN/b) x [OP M+ x0p () x Op (g?)} =0p(@Wn/b),
K b
AL = 0p (I /b) X {op (5—1/2) +5 X 0p (5—1/2) x Op (2)] . (B.19)

The denominator of Ay is 7 (x) 4+ op (1) which, combined with equations (B.13) and
(B.18), yields

A A Op N /b)+0p (I /b0'2)
T x(x)+op(l) T (x)+op(1)

2 =0p (191\]/[751/2).

Convergence of A3. By analogous arguments, we have

W/ ENS G2, =0l x (25up1 <<y 02 —521)

Ar <
’ O/T) 2 Kp(@2 =)

=0p(IyN/9). |

Proof of Lemma A.4. This follows from Ait-Sahalia and Park (2013, Thm. 2). |
Proof of Lemma A.5. As in the proof of Lemma A.3, 2 (x) — f?(x) = By +
B> + B3, where

T+l Tit1

@/ T) X0 K32 — ) O/ T) X1 K02 —x)
(1/T)Zj.v:‘1l [IC,,(&E/_ —X) —ICb(afj —x)] (‘73,-+1 —63,.)2

/DX K02 —x)(02, —02)?  (1/T) ) K02 —x) (02, —02)
1= —

B : s
’ O/ T) X Ks (62 —x)
WD) 25 K2, =) [G2,, =52 = (02, —02)?]
B3 = - - .

/YN Ky (72 —x)

By the same arguments as in the proof of Lemma A.3, By = Op (¢ /b). The numerator
of B, is bounded by

2

5 _ 1 N-1 Og; —X
sup |75, — a7 b IX[EZH ’C*( D )(UTZM_U%)2

1<j<N-1

— ) 02 =2 —1\4
+5211\1—1(02 o2 x SUp|<j<N—1Wjlog —az|b
Th &=j=1 " T+l 7j €

=0p@n/b)x [OP(1)+§ x0p(1)x Op (i)]

cq

where we have used the mean-value theorem, the same arguments as those for equation
1 N—-1 2 2 2y2 _ 1 N—-1,_2 242
(B.14), szzl IC;;(O'T]. —)c)(aerrl —UT],) = 0p(1), and i1 (Grj_H _Urj) =
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Op (1). The denominator of By can be shown to be 7 (x) +op (1) by equations (B.13)
and (B.18)). Thus, By = Op (¥ /b). Finally,

~2 ~2\2 2 252
<2 sup |5'2, —0’2.| X |2 sup |52, —02,|+2 sup |02_ —0‘2.|
1<jsn 0T 1<jsn 0T Tigjen—r O
—0p (ﬂ,zv) +0p Wy) X Ous. (97), (B.20)
where we have used equation (4.1) and Lemma A.l. Note that 7~ IZN ! Kp (a,j .
X) = Op (5—1), and 9y/0!77 = 0 implies y/0" — 0. Thus, ¥36~! =
In/SVT7 x ON /87 < 9n/8' 7, which, together with equation (B.20), establishes
=0p (19N/51_y). u
Proof of Lemma A.6. This follows from Ait-Sahalia and Park (2013, Thm. 4). u

Proof of Lemma A.7. This follows along the same lines as in Sgrensen (2009) or
Yoshida (1992). |

Proof of Lemma A.8. We only prove equation (A.24) since the proofs of equations
(A.25)~(A.26) are analogous. Write R (01 , &2) — R (61 : 62) —a(0)) —2b(9)), where

1 N—-1
a(el):zfzjzl [az( 01)—05 ( ,,91)]5
b(el):?ZJ:] [ ( ’L’ 561)( TI‘H 0-’[/') ( ‘[ ’01) (UTI+1 UTj :|
We below derive the convergence rate of each term. By the mean-value theorem,
I V-t 2201 ~2 201
@) < > C[1+10g P + 1o |x 0p@n)=0p@x).

where we have used Assumption A-SDR(iii), (A + B)"! < Cy, (AP + |B|2”1) for some

constant Cy, (> 0), and that N~ IZN 1 |g‘ |201 = Op (1) which follows by E[
2

| =
T

20y
03 1<

00, and |JT]_ Op () uniformly over j. Similarly

1 N—1 B
|b(«91)|gﬁz,_l |a<a?,;91)|x2 sup |67 =07 /0
j_ J S.<
+— Z ‘aya(a +w](a a%);@l)‘x sup |5r2,-_0r2,-|

1<j<N

~2 ~2
X sup |a‘[j+1_o-fj|/5
I<j<N-1

= 0p Wn/0)+0p Iy [In+0"]/0) = 0p (0N/51—V),
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where the last equality holds since N1 Z]N:_ll laya(a% +w; (&% - a%_);é)l) =0p(1)
uniformly over 81 by A-SDR(iii), and

sup |51'2j+1 _512]" <2 sup |Ersz —arzj|+ sup |U12/_+| _072]"
1<j<N-1 I<j<N I<j<N-1 =
=0p@nN)+ Og.s. (57). (B.21)

|
Proof of Lemma A.9. We only prove equation (A.27). Equations (A.28) and (A.29) can
be shown analogously. Write Iéz (92, 52) - Iéz (92, 02) =c(6h) —2d(6), where

1 N—1 _
c):=5 > |6 =Bl o)]:

| N-17 0,22 ) “2\2 2,2 2 2.2
A0 =5 > 12620062, a2 = pA6 06l —a2)?).

Similar to the analysis of a (#) in the proof of Lemma A.8, ¢ (6») = Op (¥ ), while

1 N-1 - -
@O < 5 D 0205 +wilog —32):00) x sup 137 — o7

I<j<N
=0p(1)
-2 -2
X sup |arj+| _Gr/-| /6
1<j<N-I -
+iZN—1ﬂ2(az .0))  su }(52 _52)2 (52 _02)2‘/(5
N &j=1 Tj41° 72 1<j<£,_1 41~ %7 41~ %)
—0p(1)

= 0p () x 0p (103 +671/6) +[0p (V}) + O In) x Ous. (57)] /0
=0p (19]\//5]_}/);

where we have employed equations (B.21) and (B.20). u
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