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Abstract
Imagine, you enter a grocery store to buy food. How many people do you overlap with in this store? How much
time do you overlap with each person in the store? In this paper, we answer these questions by studying the overlap
times between customers in the infinite server queue. We compute in closed form the steady-state distribution of the
overlap time between a pair of customers and the distribution of the number of customers that an arriving customer
will overlap with. Finally, we define a residual process that counts the number of overlapping customers that overlap
in the queue for at least 𝛿 time units and compute its distribution.

1. Introduction

Have you ever wondered how many people you overlap with in a store or retail shop? This is fascinating
question on its own, but it is especially important given the current COVID-19 pandemic. Much of the
work on COVID-19 has focused on using deterministic compartmentalized style models to estimate the
infection rate and dynamics of the spread, see for example Dandekar et al. [2], Nguemdjo et al. [20],
and Kaplan [14]. However, we know that stochastic effects can play an important role in determining
the spread, see for example Drakopoulos et al. [9], Palomo et al. [22], Pang and Pardoux [23], Forien
et al. [11], and Moein et al. [19]. As shoppers crowd a store to stock up on water or large amounts of
non-perishable items, it is inevitable that the virus would spread. To combat the spread of the virus,
many service facilities and systems have installed new air filters and transparent barriers, and have asked
that patrons wear facial masks. Moreover, these service systems also have implemented various forms
of social/physical distancing in order to minimize close proximity of one customer to another Bove and
Benoit [1].

However, there are some places where people work or shop that limiting distance is not feasible. In
this case, we really care about how much customers overlap with one another. Recently, there has been
new work by Kang et al. [13] and Palomo and Pender [21] that explores how one can calculate the overlap
times of customers in multi-server and single server queues, respectively. More specifically, Kang et
al. [13] show how to use the overlaps to compute a new 𝑅0 value for understanding infection rates in
compartmentalized epidemic models and Palomo and Pender [21] prove that the overlap distribution
is exponential for the M/M/1 queue and show via simulation that a similar result holds for the non-
Markovian setting as well. Our analysis is important because it can demonstrate, exactly, how much
overlap occurs and can provide distributional information or prediction intervals for possible overlap.
Moreover, it can be used as a tool to prevent large overlaps and as a design tool to construct appropriate
overlap by restricting the arrival rate or service distributions.

In addition to understanding lightly loaded systems with our infinite server queue overlap analysis,
there are many other applications where studying overlap times is essential. The first application is from
queues with advanced reservations, see for example [17]. Companies such as AirBnB, HomeAway, and
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Vrbo all have systems where the arrival process is an incoming stream of customer booking requests
from customers and an important object of study is the maximum number of overlapping customers.
Moreover, in the context of spot welding in production lines, it is known that multiple welders trying
to access the same power source is detrimental to the welding process. In order to understand the
interference that is caused when multiple welders are using the same power source, it is important to
derive the distribution of the maximum number of overlapping welders at any given instant in a simple
closed network, see for example [26]. Thus, the study of overlap times is critical to developing a thorough
understanding of these applications.

In this paper, we extend the overlap time analysis to the setting of the infinite server queue. At first
glance, the infinite server queue analysis might not seem relevant, however, for service entities such as
grocery stores, outlets, restaurants, and retail shops, an infinite server queue is quite relevant as there is
not much waiting or the waiting to check out may be insignificant when compared with the shopping
time. Moreover, the overlap times in the infinite server queue serve as a lower bound for the overlap
times that a customer might experience in systems where there is significant waiting or in a multi-
server setting. What also makes the infinite server queue important is that we are able to derive explicit
formulas for the overlap distribution and residual overlap distributions as well as the number of people
that a customer will overlap with during the duration of their service experience.

1.1. Contributions and organization of the paper

In Section 2, we describe the stochastic model that we will use in this work. We derive an equation for
describing the overlap times for customers in the infinite server queue. We use this equation to compute
the steady-state distribution of the overlap time of customers such that exactly 𝑘 − 1 other customers
arrived between their arrival times. In Section 3, we compute the mean and variance of the number of
customers a customer will overlap with during their time in the queue. We also show how to compute
a residual version of the overlap time where a customer must overlap at least 𝛿 units of time. Finally, in
Section 4, we provide a conclusion and some future research directions.

2. Infinite server overlap times

In this section, we study the infinite server queue with the intention of understanding how much time
consecutive customers spend in the system together. A similar type of analysis has been completed
[13,21] albeit in Markovian systems.

2.1. Overlap time distribution

In this section, we consider the𝐺𝐼/𝐺𝐼/∞ queue starting with 0 customers at time 0. Let 𝐴𝑖 be the arrival
time of the 𝑖th customer and we define the inter-arrival time between the 𝑖th and (𝑖 + 1)th customers to
be 𝐴𝑖+1 − 𝐴𝑖 , which are i.i.d. random variables with cumulative distribution function (cdf) 𝐹 (𝑥). We
also assume that 𝑆𝑖 is the service time of the 𝑖th customer and the service times are i.i.d. with cdf 𝐺 (𝑥).
In the infinite server queue, by definition, no customer will wait. Thus, the departure time for the 𝑛th
customer is given by the following equation

𝐷𝑛 = 𝑆𝑛 + 𝐴𝑛.

We can now construct an equation for the overlap time between consecutive customers. The overlap
time between the 𝑛th and (𝑛 + 𝑘)th customers is given by

𝑂𝑛,𝑛+𝑘 = (min(𝐷𝑛, 𝐷𝑛+𝑘 ) − 𝐴𝑛+𝑘 )
+

= (min(𝐴𝑛 + 𝑆𝑛, 𝐴𝑛+𝑘 + 𝑆𝑛+𝑘 ) − 𝐴𝑛+𝑘 )
+

= ((𝑆𝑛 − (𝐴𝑛+𝑘 − 𝐴𝑛))
+∧𝑆𝑛+𝑘 ). (1)
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It is important to observe that the overlap time between the 𝑛th and (𝑛 + 𝑘)th customers can be
decomposed into two parts. The first part (the left term in the minimum) is the time that the 𝑛th
customer overlaps with the (𝑛 + 𝑘)th customer given that the 𝑛th customer stays longer. The second part
is the service time of the (𝑛 + 𝑘)th customer if the service time of the (𝑛 + 𝑘)th stay is shorter than the
𝑛th customer’s service time minus the inter-arrival time gap. We will leverage this representation when
considering the steady-state overlap time and the fact that all of the random variables are independent
from one another in the 𝐺𝐼/𝐺𝐼/∞ queue.

Theorem 2.1. Let 𝑂𝑘 have the steady-state distribution of 𝑂𝑛,𝑛+𝑘 in the 𝐺𝐼/𝐺𝐼/∞ queue, and let S
and S̃ be two independent service times with cdf 𝐺 (𝑥), then the tail distribution of 𝑂𝑘 = lim𝑛→∞𝑂𝑛,𝑛+𝑘

is given by

P(𝑂𝑘 > 𝑡) = 𝐺 (𝑡)

∫ ∞

0
𝐺 (𝑡 + 𝑥)ℎ𝑘 (𝑥) 𝑑𝑥,

where ℎ𝑘 (𝑥) is the density of the sum of 𝑘 i.i.d. inter-arrival times.

Proof. First, we need to decompose the overlap probability into two probabilities by using a property
of the minimum of two independent random variables, that is,

P(𝑂𝑘 > 𝑡) = P(((S − A𝑘)
+∧S̃) > 𝑡)

= P((S − A𝑘 )
+>𝑡) · P(S̃ > 𝑡)

= P((S − A𝑘 )
+>𝑡) · 𝐺 (𝑡)

= 𝐺 (𝑡)

∫ ∞

0
P(S > 𝑡 + 𝑥)ℎ𝑘 (𝑥) 𝑑𝑥

= 𝐺 (𝑡)

∫ ∞

0
𝐺 (𝑡 + 𝑥)ℎ𝑘 (𝑥) 𝑑𝑥.

This completes the proof. �

Corollary 2.2. Let 𝑂𝑘 have the steady-state distribution of 𝑂𝑛,𝑛+𝑘 in the 𝐺𝐼/𝑀/∞ queue with service
rate 𝜇 and let A1 be an inter-arrival time. Then, the tail distribution of 𝑂𝑘 = lim𝑛→∞𝑂𝑛,𝑛+𝑘 is given by

P(𝑂𝑘 > 𝑡) = 𝑒−2𝜇𝑡
E[𝑒−𝜇A1 ]𝑘 .

It is clear from this result that the functional form of the tail distribution of the overlap time is given
by the service time distribution, which is exponential in this case. The inter-arrival times do not impact
the decay rate of the tail distribution, which implies that it does not depend on the time parameter 𝑡.
Moreover, the inter-arrival time distribution only emerges as a constant that determines how many of
the overlap times are zero. Thus, the service time governs the tail behavior of the overlap time while the
inter-arrival distribution controls the probability of a specific overlap time being equal to zero.

3. Computing the number of overlaps

In addition to knowing how much time consecutive customers will spend together in a service system, it
is important to also know how many customers one expects to overlap with. In the context of epidemics,
the more customers that one actually overlaps with the greater chance that one might contract the disease.
In this section, we restrict our analysis to that of the 𝑀𝑡/𝐺/∞ queue and leverage results from Eick et
al. [10] to compute the exact distribution of overlapping customers. In what follows, we assume without
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loss of generality that all queues start with zero customers. Under this assumption, we know that the
number in the 𝑀𝑡/𝐺/∞ queue at time 𝑡 is given by the following expression

𝑄(𝑡) =
𝑁 (𝑡)∑
𝑗=1

{𝐴 𝑗 < 𝑡 < 𝐴 𝑗 + 𝑆 𝑗 },

where 𝑁 (𝑡) is the number of arrivals in the interval (0, 𝑡] and we define {A} as an indicator function
of the set A. Thus, the number of customers in the system at the time of arrival of the 𝑘th customer is
given by

𝑄(𝐴𝑘−) =
𝑁 (𝐴𝑘−)∑

𝑗=1
{𝐴 𝑗 < 𝐴𝑘 < 𝐴 𝑗 + 𝑆 𝑗 }.

In order to compute the total number of overlapping customers, we also need to calculate the number of
customers that arrive during the service time of the 𝑘th customer, which is

𝑁 (𝐴𝑘 + 𝑆𝑘 ) − 𝑁 (𝐴𝑘 ).

Adding the number of customers upon arrival and the number that arrive during service, we arrive at
an expression for 𝑀𝑘 , the total number of customers that the 𝑘th customer will overlap with.

𝑀𝑘 = 𝑁 (𝐴𝑘 + 𝑆𝑘 ) − 𝑁 (𝐴𝑘 ) +

𝑁 (𝐴𝑘−)∑
𝑗=1

{𝐴 𝑗 < 𝐴𝑘 < 𝐴 𝑗 + 𝑆 𝑗 }. (2)

Theorem 3.1. The mean number of overlaps for the 𝑘th arrival in the 𝑀/𝐺/∞ queue is equal to

E[𝑀𝑘 ] = 𝜆E[S] +
𝑘−1∑
𝑗=1

𝜆𝑘− 𝑗

Γ(𝑘 − 𝑗)

∫ ∞

0
𝐺 (𝑥)𝑒−𝜆𝑥𝑥𝑘− 𝑗−1 𝑑𝑥.

Proof.

E[𝑀𝑘 ] = E[𝑁 (𝐴𝑘 + 𝑆𝑘 ) − 𝑁 (𝐴𝑘 )] + E

[
𝑁 (𝐴𝑘−)∑

𝑗=1
{𝐴 𝑗 < 𝐴𝑘 < 𝐴 𝑗 + 𝑆 𝑗 }

]

= 𝜆E[S] + E

[
𝑘−1∑
𝑗=1

{𝐴 𝑗 < 𝐴𝑘 < 𝐴 𝑗 + 𝑆 𝑗 }

]

= 𝜆E[S] +
𝑘−1∑
𝑗=1
E[𝐺 (𝐴𝑘 − 𝐴 𝑗)]

= 𝜆E[S] +
𝑘−1∑
𝑗=1

𝜆𝑘− 𝑗

Γ(𝑘 − 𝑗)

∫ ∞

0
𝐺 (𝑥)𝑒−𝜆𝑥𝑥𝑘− 𝑗−1 𝑑𝑥.

This completes the proof. �

Corollary 3.2. When the service distribution is given by an exponential with rate 𝜇, we have that the
mean number of overlaps for the 𝑘th arrival is equal to

E[𝑀𝑘 ] =
𝜆

𝜇
+
𝜆

𝜇
·

(
1 −

(
𝜆

𝜆 + 𝜇

) 𝑘−1
)
.
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It is important to note that the total number of overlapping customers for the 𝑘th arrival can be only
computed when the 𝑘th arrival departs the queue and it is not known at the time of arrival. Thus, the
representation of Eq. (2) for the number of overlaps provides a methodology for computing the number
of overlaps for each customer via simulation. However, this representation is customer-centered and not
time-centered. In what follows, we provide a time-centered perspective of the number of overlaps.

If a customer arrives at time 𝑡, then we define 𝑂 (𝑡) as the number of customers that the arriving
customer will overlap with. 𝑂 (𝑡) has the following expression

𝑂 (𝑡) = 𝑁 (𝑡 + S) − 𝑁 (𝑡)︸���������������︷︷���������������︸
#of customer arrivals during service

+ 𝑄(𝑡)︸︷︷︸
queue length at time 𝑡

where S is a generic service time, which is independent of the arrival process.
It is important to note here that the number of overlapping customers 𝑂 (𝑡) is not completely known

at time 𝑡. It is only fully known after the service of the customer that arrives at time 𝑡. However, we
can use the expression of 𝑂 (𝑡) to compute the distribution of the number of customers that an arrival
will overlap with at time 𝑡. In this way, it is time-centered as the expression depends on time and not
the specific number of the customer arriving. In addition to knowing the exact number of customers, an
arrival at time 𝑡 would overlap with for each sample path, we can also describe the distribution of the
number of customers that an arrival at time 𝑡 would overlap. One important ingredient to describing the
exact distribution is knowing that the number of customers upon arrival is independent of the number
of arrivals that arrive during service. We provide the exact distribution in the following theorem.

Theorem 3.3. The distribution of overlapping customers for a customers arriving at time 𝑡 in the
𝑀𝑡/𝐺/∞ queue is

𝑂 (𝑡)
𝐷
= Poisson

(∫ 𝑡+S

𝑡

𝜆(𝑠) 𝑑𝑠 +

∫ 𝑡

0
𝜆(𝑢)𝐺 (𝑡 − 𝑢) 𝑑𝑢

)
.

This result follows easily from the representation given in Eq. (2).

Corollary 3.4. The overlap distribution at time 𝑡 in the 𝑀/𝑀/∞ queue is equal to

P(𝑂 (𝑡) = 𝑘) = 𝜌𝑘 (1 − 𝜌)𝑒 (𝜇/𝜆)𝑞 (𝑡)
Γ(𝑘 + 1, 𝜆+𝜇𝜆 𝑞(𝑡))

Γ(𝑘 + 1)

and 𝑂 (𝑡) can be decomposed into a sum of geometric and Poisson random variables, that is,

𝑂 (𝑡)
𝐷
= Geometric

(
𝜆

𝜆 + 𝜇

)
+ Poisson(𝑞(𝑡)),

where 𝑞(𝑡) = 𝜆
∫ 𝑡

0 𝐺 (𝑡 − 𝑢) 𝑑𝑢.

In addition to understanding the distribution of the number of overlapping customers at any point in
time, one might be interested in counting the number of customers that overlap by at least 𝛿 amount of
time. In this case, we can define the thinned arrival process counting only the customers with service
times that exceed 𝛿 so 𝜆𝛿 (𝑡) = 𝜆(𝑡) ·𝐺 (𝛿) and 𝐺 𝛿 (𝑥) = 𝐺 (𝑥)/𝐺 (𝛿) for 𝑥 ≥ 𝛿. Then, the thinned process
𝑂 (𝑡, 𝛿) has the same distribution as Eq. (3.4) where S is replaced by (S − 𝛿)+, 𝜆 is replaced by 𝜆𝛿 , and
𝐺 (𝑥) is replaced by 𝐺 𝛿 (𝑥).
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4. Conclusion and future work

In this paper, we consider the overlap times for customers in an infinite server queue. The infinite server
model is appropriate in retail settings where the time a customer waits is small relative to their shopping
experience. We derive the steady-state distribution for the overlap time of customers that are 𝑘 arrivals
apart. We also compute explicitly the distribution of the number of customers that a randomly arriving
customer will overlap with as the sum of a Poisson random variable and Poisson with a random arrival
rate. Finally, we compute an expression for the number of customers that a random arrival will overlap
at least 𝛿 time units. We compute the mean and variance for this quantity and are able to provide a
prediction interval for a randomly arriving customer at any time. Our analysis has implications for
understanding the interaction time between customers in a pandemic setting and sheds light on the
interactions of customers.

Despite our analysis, there are many avenues for additional research. First, we would like to complete
our analysis by analyzing the 𝐺/𝐺/∞ queue in explicit detail. Issues like dependent arrivals or service
times like in Pang and Whitt [24,25], Daw and Pender [5,6], Koops et al. [15,16], and Daw et al. [3]
would be interesting to explore as well. Second, we would like to extend our analysis to more complicated
queueing systems like the Erlang-A, see for example Daw and Pender [7], Massey and Pender [18], and
Hampshire et al. [12] where customers can abandon the system. Abandoning customers clearly reduces
the number of overlapping customers, but by how much? It would also be great to extend our analysis
to queueing systems with batch arrivals. In this case, the scaled Poisson decomposition of Daw and
Pender [8] and Daw et al. [4] might be helpful in replicating our analysis in the batch setting. Finally,
we would like to extend our analysis to spatial point processes and think about the overlap in terms of
not only time, number, but spatial distance as well.

We are also interested in knowing the overlap distribution for more than two customers. For example,
if one considers the overlap time of three customers (𝑛, 𝑛 + 𝑗 , 𝑛 + 𝑘) where 1 ≤ 𝑗 < 𝑘 , then one obtains
the following overlap time for the 𝑛th, (𝑛 + 𝑗)th, and the (𝑛 + 𝑘)th customers as

𝑂𝑛,𝑛+ 𝑗 ,𝑛+𝑘 = (min(𝐷𝑛, 𝐷𝑛+ 𝑗 , 𝐷𝑛+𝑘 ) − 𝐴𝑛+𝑘 )
+

= (min(𝐴𝑛 + 𝑆𝑛, 𝐴𝑛+ 𝑗 + 𝑆𝑛+ 𝑗 , 𝐴𝑛+𝑘 + 𝑆𝑛+𝑘 ) − 𝐴𝑛+𝑘 )
+

= (𝑆𝑛 + 𝐴𝑛 − 𝐴𝑛+𝑘 )
+ ∧ (𝑆𝑛+ 𝑗 + 𝐴𝑛+ 𝑗 − 𝐴𝑛+𝑘 )

+ ∧ 𝑆𝑛+𝑘

= (𝑆𝑛 + 𝐴𝑛 − 𝐴𝑛+𝑘 )
+ ∧ (𝑆𝑛+ 𝑗 + 𝐴𝑛 + (𝐴𝑛+ 𝑗 − 𝐴𝑛) − 𝐴𝑛+𝑘 )

+ ∧ 𝑆𝑛+𝑘 .

Unlike the two customer situation, it is clear here that the random variables are not independent anymore.
This presents a new issue that must be resolved in future work.
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