
0

Introduction: glimpses of the theory beneath
Monstrous Moonshine

When you are collecting mushrooms, you only see the mushroom itself. But if
you are a mycologist, you know that the real mushroom is in the earth. There’s an
enormous thing down there, and you just see the fruit, the body that you eat. In
mathematics, the upper part of the mushroom corresponds to theorems that you
see, but you don’t see the things that are below, that is: problems, conjectures,
mistakes, ideas, etc.

V. I. Arnold [17]

What my experience of mathematical work has taught me again and again, is that
the proof always springs from the insight, and not the other way around – and
that the insight itself has its source, first and foremost, in a delicate and obstinate
feeling of the relevant entities and concepts and their mutual relations. The guiding
thread is the inner coherence of the image which gradually emerges from the
mist, as well as its consonance with what is known or foreshadowed from other
sources – and it guides all the more surely as the ‘exigence’ of coherence is stronger
and more delicate.

A. Grothendieck.1

Interesting events (e.g. wars) always happen whenever different realisations of the same
thing confront one another. When clarity and precision are added to the mix, we call this
mathematics. In particular, the most exciting and significant moments in mathematics
occur when we discover that seemingly unrelated phenomena are shadows cast by the
same beast. This book studies one who has been recently awakened.

In 1978, John McKay made an intriguing observation: 196 884 ≈ 196 883. Monstrous
Moonshine is the collection of questions (and a few answers) that it directly inspired. No
one back then could have guessed the riches to which it would lead. But in actual fact,
Moonshine (albeit non-Monstrous) really began long ago.

0.1 Modular functions

Up to topological equivalence (homeomorphism), every compact surface is uniquely
specified by its genus: a sphere is genus 0, a torus genus 1, etc. However, a (real) surface
can be made into a complex curve by giving it more structure. For a sphere, up to

1 Translated in Geometric Galois Actions 1, edited by L. Schneps et al. (Cambridge, Cambridge University
Press, 1997) page 285.
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2 Introduction

complex-analytic equivalence there is only one way to do this, namely the Riemann
sphere C ∪ {∞}. Surfaces of genus > 0 can be given complex structure in a continuum
of different ways.

Any such complex curve � is complex-analytically equivalent to one of the form
�\H. The upper half-plane

H := {τ ∈ C | Im τ > 0} (0.1.1)

is a model for hyperbolic geometry. Its geometry-preserving maps form the group SL2(R)
of 2× 2 real matrices with determinant 1, which act on H by the familiar(

a b
c d

)
. τ = aτ + b

cτ + d
. (0.1.2)

� is a discrete subgroup of SL2(R). By H here we mean H with countably many points
from its boundary R ∪ {i∞} added – these extra boundary points, which depend on �,
are needed for �\H to be compact. The construction of the space �\H of �-orbits in
H is completely analogous to that of the circle R/Z or torus R2/Z2. See Section 2.1.1
below.

The most important example is � = SL2(Z), because the moduli space of possible
complex structures on a torus can be naturally identified with SL2(Z)\H. For that �, as
well as all other � we consider in this book, we have

H = H ∪Q ∪ {i∞}. (0.1.3)

These additional boundary points Q ∪ {i∞} are called cusps.
Both geometry and physics teach us to study a geometric shape through the functions

(fields) that live on it. The functions f living on � = �\H are simply functions f :
H → C that are periodic with respect to �: that is,

f (A.τ ) = f (τ ), ∀τ ∈ H, A ∈ �. (0.1.4)

They should also preserve the complex-analytic structure of �. Ideally this would mean
that f should be holomorphic but this is too restrictive, so instead we require meromor-
phicity (i.e. we permit isolated poles).

Definition 0.1 A modular function f for some� is a meromorphic function f : H → C,
obeying the symmetry (0.1.4).

It is clear then why modular functions must be important: they are the functions living
on complex curves. In fact, modular functions and their various generalisations hold a
central position in both classical and modern number theory.

We can construct some modular functions for � = SL2(Z) as follows. Define the
(classical) Eisenstein series by

Gk(τ ) :=
∑
m,n∈Z

(m,n)�=(0,0)

(mτ + n)−k . (0.1.5)
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The McKay equations 3

For odd k it identically vanishes. For even k > 2 it converges absolutely, and so defines
a function holomorphic throughout H. It is easy to see from (0.1.5) that

Gk

(
aτ + b

cτ + d

)
= (cτ + d)k Gk(τ ), ∀

(
a b
c d

)
∈ SL2(Z) (0.1.6)

and all τ . This transformation law (0.1.6) means that Gk isn’t quite a modular function
(it’s called a modular form). However, various homogeneous rational functions of these
Gk will be modular functions for SL2(Z) – for example, G8(τ )/G4(τ )2 (which turns out
to be constant) and G4(τ )3/G6(τ )2 (which doesn’t). All modular functions of SL2(Z)
turn out to arise in this way.

Can we characterise all modular functions, for � = SL2(Z) say? We know that any
modular function is a meromorphic function on the compact surface � = SL2(Z)\H.
As we explain in Section 2.2.4, � is in fact a sphere. It may seem that we’ve worked
very hard merely to recover the complex plane C ∼= SL2(Z)\H and its familiar com-
pactification the Riemann sphere P1(C) = C ∪ {∞} ∼= SL2(Z)\H, but that’s exactly the
point!

Although there are large numbers of meromorphic functions on the complex plane
C, the only ones that are also meromorphic at ∞ – the only functions meromorphic
on the Riemann sphere P1(C) – are the rational functions polynomial in z

polynomial in z (the others have
essential singularities there). So if J is a change-of-coordinates (or uniformising) function
identifying our surface � with the Riemann sphere, then J (lifted to a function on the
covering space H) will be a modular function for SL2(Z), and any modular function f (τ )
will be a rational function in J (τ ):

f (τ ) = polynomial in J (τ )

polynomial in J (τ )
. (0.1.7)

Conversely, any rational function (0.1.7) in J is modular. Thus J generates modular
functions for SL2(Z), in a way analogous to (but stronger and simpler than) how the
exponential e(x) = e2π i x generates the period-1 smooth functions f on R: we can always
expand such an f in the pointwise-convergent Fourier series f (x) =∑∞

n=−∞ an e(x)n .
There is a standard historical choice j for this uniformisation J , namely

j(τ ) := 1728
20 G4(τ )3

20 G4(τ )3 − 49 G6(τ )2

= q−1 + 744+ 196 884 q + 21 493 760 q2 + 864 299 970 q3 + · · · (0.1.8)

where q = exp[2π i τ ]. In fact, this choice (0.1.8) is canonical, apart from the arbitrary
constant 744. This function j is called the absolute invariant or Hauptmodul for SL2(Z),
or simply the j -function.

0.2 The McKay equations

In any case, one of the best-studied functions of classical number theory is the j-
function. However, its most remarkable property was discovered only recently: McKay’s
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approximations 196 884 ≈ 196 883, 21 493 760 ≈ 21 296 876 and 864 299 970 ≈
842 609 326. In fact,

196 884 = 196 883+ 1, (0.2.1a)

21 493 760 = 21 296 876+ 196 883+ 1, (0.2.1b)

864 299 970 = 842 609 326+ 21 296 876+ 2 · 196 883+ 2 · 1. (0.2.1c)

The numbers on the left sides of (0.2.1) are the first few coefficients of the j-function.
The numbers on the right are the dimensions of the smallest irreducible representations
of Fischer–Griess’s Monster finite simple group M.

A representation of a group G is the assignment of a matrix R(g) to each element g of
G in such a way that the matrix product respects the group product, that is R(g) R(h) =
R(gh). The dimension of a representation is the size n of its n × n matrices R(g).

The finite simple groups are to finite groups what the primes are to integers – they
are their elementary building blocks (Section 1.1.2). They have been classified (see
[22] for recent remarks on the status of this proof). The resulting list consists of 18
infinite families (e.g. the cyclic groups Zp := Z/pZ of prime order), together with 26
exceptional groups. The Monster M is the largest and richest of these exceptionals, with
order

‖M‖ = 246 · 320 · 59 · 76 · 112 · 133 · 17 · 19 · 23 · 29 · 31 · 41 · 47 · 59 · 71 ≈ 8× 1053.

(0.2.2)

Group theorists would like to believe that the classification of finite simple groups is
one of the high points in the history of mathematics. But isn’t it possible instead that
their enormous effort has merely culminated in a list of interest only to a handful of
experts? Years from now, could the Monster – the signature item of this list – become
a lost bone in a dusty drawer of a forgotten museum, remarkable only for its colossal
irrelevance?

With numbers so large, it seemed doubtful to McKay that the numerology (0.2.1)
was merely coincidental. Nevertheless, it was difficult to imagine any deep conceptual
relation between the Monster and the j-function: mathematically, they live in different
worlds.

In November 1978 he mailed the ‘McKay equation’ (0.2.1a) to John Thompson. At
first Thompson likened this exercise to reading tea leaves, but after checking the next
few coefficients he changed his mind. He then added a vital piece to the puzzle.

0.3 Twisted #0: the Thompson trick

A nonnegative integer begs interpretation as the dimension of some vector space. Essen-
tially, that was what McKay proposed. Let ρ0, ρ1, . . . be the irreducible representations
of M, ordered by dimension. Then the equations (0.2.1) are really hinting that there is
an infinite-dimensional graded representation

V = V−1 ⊕ V1 ⊕ V2 ⊕ V3 ⊕ · · · (0.3.1)
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Monstrous Moonshine 5

of M, where V−1 = ρ0, V1 = ρ1 ⊕ ρ0, V2 = ρ2 ⊕ ρ1 ⊕ ρ0, V3 = ρ3 ⊕ ρ2 ⊕ ρ1 ⊕ ρ1 ⊕
ρ0 ⊕ ρ0, etc., and the j-function is essentially its graded dimension:

j(τ )− 744 = dim(V−1) q−1 +
∞∑

i=1

dim(Vi ) qi . (0.3.2)

Thompson [525] suggested that we twist this, that is more generally we consider what
we now call the McKay–Thompson series

Tg(τ ) = chV−1 (g) q−1 +
∞∑

i=1

chVi (g) qi (0.3.3)

for each element g ∈ M. The character ‘chρ’ of a representation ρ is given by ‘trace’:
chρ(g) = tr(ρ(g)). Up to equivalence (i.e. choice of basis), a representation ρ can be
recovered from its character chρ . The character, however, is much simpler. For exam-
ple, the smallest nontrivial representation of the Monster M is given by almost 1054

complex matrices, each of size 196 883× 196 883, while the corresponding character is
completely specified by 194 integers (194 being the number of ‘conjugacy classes’ in M).

For any representation ρ, the character value chρ(id.) equals the dimension of ρ, and
so Tid.(τ ) = j(τ )− 744 and we recover (0.2.1) as special cases. But there are many
other possible choices of g ∈ M, although conjugate elements g, hgh−1 have identical
character values and hence have identical McKay–Thompson series Tg = Thgh−1 . In fact,
there are precisely 171 distinct functions Tg . Thompson didn’t guess what these functions
Tg would be, but he suggested that they too might be interesting.

0.4 Monstrous Moonshine

John Conway and Simon Norton [111] did precisely what Thompson asked. Conway
called it ‘one of the most exciting moments in my life’ [107] when he opened Jacobi’s
foundational (but 150-year-old!) book on elliptic and modular functions and found that
the first few terms of each McKay–Thompson series Tg coincided with the first few
terms of certain special functions, namely the Hauptmoduls of various genus-0 groups
�. Monstrous Moonshine – which conjectured that the McKay–Thompson series were
those Hauptmoduls – was officially born.

We should explain those terms. When the surface �\H is a sphere, we call the group �
genus 0, and the (appropriately normalised) change-of-coordinates function from �\H
to the Riemann sphere C ∪ {∞} the Hauptmodul for �. All modular functions for a
genus-0 group � are rational functions of this Hauptmodul. (On the other hand, when �
has positive genus, two generators are needed, and there’s no canonical choice for them.)

The word ‘moonshine’ here is English slang for ‘insubstantial or unreal’, ‘idle talk
or speculation’,2 ‘an illusive shadow’.3 It was chosen by Conway to convey as well the

2 Ernest Rutherford (1937): ‘The energy produced by the breaking down of the atom is a very poor kind of
thing. Anyone who expects a source of power from the transformation of these atoms is talking
moonshine.’ (quoted in The Wordsworth Book of Humorous Quotations, Wordsworth Editions, 1998).

3 Dictionary of Archaic Words, J. O. Halliwell, London, Bracken Books, 1987. It also defines moonshine as
‘a dish composed partly of eggs’, but that probably has less to do with Conway’s choice of word.
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impression that things here are dimly lit, and that Conway and Norton were ‘distilling
information illegally’ from the Monster character table.

In hindsight, the first incarnation of Monstrous Moonshine goes back to Andrew Ogg
in 1975. He was in France discussing his result that the primes p for which the group
�0(p)+ has genus 0, are

p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.
(The group �0(p)+ is defined in (7.1.5).) He also attended there a lecture by Jacques
Tits, who was describing a newly conjectured simple group. When Tits wrote down the
order (0.2.2) of that group, Ogg noticed its prime factors coincided with his list of primes.
Presumably as a joke, he offered a bottle of Jack Daniels whisky to the first person to
explain the coincidence (he still hasn’t paid up). We now know that each of Ogg’s groups
�0(p)+ is the genus-0 modular group for the function Tg , for some element g ∈ M of
order p. Although we now realise why the Monster’s primes must be a subset of Ogg’s,
probably there is no deep reason why Ogg’s list couldn’t have been longer.

The appeal of Monstrous Moonshine lies in its mysteriousness: it unexpectedly asso-
ciates various special modular functions with the Monster, even though modular functions
and elements of M are conceptually incommensurable. Now, ‘understanding’ something
means to embed it naturally into a broader context. Why is the sky blue? Because of the
way light scatters in gases. Why does light scatter in gases the way it does? Because
of Maxwell’s equations. In order to understand Monstrous Moonshine, to resolve the
mystery, we should search for similar phenomena, and fit them all into the same story.

0.5 The Moonshine of E8 and the Leech

McKay had also remarked in 1978 that similar numerology to (0.2.1) holds if M and
j(τ ) are replaced with the Lie group E8(C) and

j(τ )
1
3 = q−

1
3 (1+ 248 q + 4124 q2 + 34 752 q3 + · · · ). (0.5.1)

In particular, 4124 = 3875+ 248+ 1 and 34 752 = 30 380+ 3875+ 2 · 248+ 1,
where 248, 3875 and 30 380 are all dimensions of irreducible representations of E8(C).
A Lie group is a manifold with compatible group structure; the groups of E8 type play
the same role in Lie theory that the Monster does for finite groups. Incidentally, j

1
3 is

the Hauptmodul of the genus-0 group �(3) (see (2.2.4a)).
A more elementary observation concerns the Leech lattice. A lattice is a discrete

periodic set L in Rn , and the Leech lattice� is a particularly special one in 24 dimensions.
196 560, the number of vectors in the Leech lattice with length-squared 4, is also close
to 196 884: in fact,

196 884 = 196 560+ 324 · 1, (0.5.2a)

21 493 760 = 16 773 120+ 24 · 196 560+ 3200 · 1, (0.5.2b)

864 299 970 = 398 034 000+ 24 · 16 773 120+ 324 · 196 560+ 25 650 · 1, (0.5.2c)
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The Moonshine of E8 and the Leech 7

where 16 773 120 and 398 034 000 are the numbers of length-squared 6- and 8-vectors
in the Leech. This may not seem as convincing as (0.2.1), but the same equations hold
for any of the 24-dimensional even self-dual lattices, apart from an extra term on the
right sides corresponding to length-squared 2 vectors (there are none of these in the
Leech).

What conceptually does the Monster, E8 and the Leech lattice have to do with the
j-function? Is there a common theory explaining this numerology? The answer is yes!

It isn’t difficult to relate E8 to the j-function. In the late 1960s, Victor Kac [325] and
Robert Moody [430] independently (and for entirely different reasons) defined a new
class of infinite-dimensional Lie algebras. A Lie algebra is a vector space with a bilinear
vector-valued product that is both anti-commutative and anti-associative (Section 1.4.1).
The familiar vector-product u × v in three dimensions defines a Lie algebra, called
sl2, and in fact this algebra generates all Kac–Moody algebras. Within a decade it was
realised that the graded dimensions of representations of the affine Kac–Moody algebras
are (vector-valued) modular functions for SL2(Z) (Theorem 3.2.3).

Shortly after McKay’s E8 observation, Kac [326] and James Lepowsky [373] inde-
pendently remarked that the unique level-1 highest-weight representation L(ω0) of the
affine Kac–Moody algebra E8

(1) has graded dimension j(q)
1
3 . Since each homogeneous

piece of any representation L(λ) of the affine Kac–Moody algebra X�
(1) must carry

a representation of the associated finite-dimensional Lie group X�(C), and the graded
dimensions (multiplied by an appropriate power of q) of an affine algebra are modular
functions for some � ⊆ SL2(Z), this explained McKay’s E8 observation. His Monster
observations took longer to clarify because so much of the mathematics needed was still
to be developed.

Euler played with a function t(x) := 1+ 2x + 2x4 + 2x9 + 2x16 + · · · , because it
counts the ways a given number can be written as a sum of squares of integers. In his study
of elliptic integrals, Jacobi (and Gauss before him) noticed that if we change variables by
x = eπ iτ , then the resulting function θ3(τ ) := 1+ 2eπ iτ + 2e4π iτ + · · · behaves nicely
with respect to certain transformations of τ – we say today that Jacobi’s theta function
θ3 is a modular form of weight 1

2 for a certain index-3 subgroup of SL2(Z). More
generally, something similar holds when we replace Z with any other lattice L: the theta
series

L (τ ) :=
∑
n∈L

eπ i n·nτ

is also a modular form, provided all length-squares n · n are rational. In particular, we
obtain quite quickly that the theta series of the Leech lattice, divided by Ramanujan’s
modular form �(τ ), will equal J (τ )+ 24.

For both E8 and the Leech, the j-function arises from a uniqueness property (L(ω0) is
the only ‘level-1’ E8

(1)-module; the Leech lattice� is self-dual), together with the empir-
ical observation that SL2(Z) has few modular forms of small level. In these examples,
the appearance of the j-function isn’t as significant as that of modularity.
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Monster, lattices, affine algebras, ... Hauptmoduls, theta functions, ...

structures
algebraic modular

stuff??MOONSHINE??

Fig. 0.1 Moonshine in its broader sense.

0.6 Moonshine beyond the Monster

We’ve known for many years that lattices (quadratic forms) and Kac–Moody algebras are
related to modular forms and functions. But these observations, albeit now familiar, are
also a little mysterious, we should confess. For instance, compare the non-obvious fact
that θ3(−1/τ ) = √

τ
i θ3(τ ) with the trivial observation (0.1.6) that Gk(−1/τ ) = τ k Gk(τ )

for the Eisenstein series Gk . The modularity of Gk is a special case of the elementary
observation that SLn(Z) parametrises the change-of-bases of n-dimensional lattices. The
modularity of θ3, on the other hand, begs a conceptual explanation (indeed, see the quote
by Weil at the beginning of Section 2.4.2), even though its logical explanation (i.e. proof)
is a quick calculation from, for example, the Poisson summation formula (Section 2.2.3).
Moonshine really began with Jacobi and Gauss.

Moonshine should be regarded as a certain collection of related examples where
algebraic structures have been associated with automorphic functions or forms.

Grappling with that thought is the theme of our book. Chapters 1 to 6 could be (rather
narrowly) regarded as supplying a context for Monstrous Moonshine, on which we focus
in Chapter 7. From this larger perspective, illustrated in Figure 0.1, what is special about
this single instance called Monstrous Moonshine is that the several associated modular
functions are all of a special class (namely Hauptmoduls).

The first major step in the proof of Monstrous Moonshine was accomplished in the mid-
1980s with the construction by Frenkel–Lepowsky–Meurman [200] of the Moonshine
module V � and its interpretation by Richard Borcherds [68] as a vertex operator algebra.
A vertex operator algebra (VOA) is an infinite-dimensional vector space with infinitely
many heavily constrained vector-valued bilinear products (Chapter 5). It is a natural,
though extremely intricate, extension of the notion of a Lie algebra. Any algebra A can
be interpreted as an assignment of a linear map A⊗ · · · ⊗A→ A to each binary tree;
from this perspective a VOA V associates a linear map V ⊗ · · · ⊗ V → V with each
‘inflated’ binary tree, that is each sphere with discs removed.

In 1992 Borcherds [72] completed the proof of the original Monstrous Moonshine
conjectures4 by showing that the graded characters Tg of V � are indeed the Hauptmoduls
identified by Conway and Norton, and hence that V � is indeed the desired representation

4 As we see in Chapter 7, most Moonshine conjectures involving the Monster are still open.
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Vertex operator algebrasstructures
algebraic modular

stuff

Fig. 0.2 The algebraic meaning of Moonshine.

V of M conjectured by McKay and Thompson. The explanation of Moonshine suggested
by this picture is given in Figure 0.2. The algebraic structure typically arises as the
symmetry group of the associated VOA – for example, that of V � is the Monster M.
By Zhu’s Theorem (Theorem 5.3.8), the modular forms/functions appear as graded
dimensions of the (possibly twisted) modules of the VOA. In particular, the answer this
framework provides for what M, E8 and the Leech have to do with j is that they each
correspond to a VOA with a single simple module; their relation to j is then an immediate
corollary to the much more general Zhu’s Theorem.

It must be emphasised that Figure 0.2 is primarily meant to address Moonshine in
the broader sense of Figure 0.1, so certain special features of, for example, Monstrous
Moonshine (in particular that all the Tg are Hauptmoduls) are more subtle and have
to be treated by special arguments. These are quite fascinating by themselves, and are
discussed in Chapter 7. Even so, Figure 0.2 provides a major clue:

If you’re trying to understand a seemingly mysterious occurrence of the Monster,
try replacing the word ‘Monster’ with its synonym ‘the automorphism group of the
vertex operator algebra V �’.

This places the Monster into a much richer algebraic context, with numerous connections
with other areas of mathematics.

0.7 Physics and Moonshine

Moonshine is profoundly connected with physics (namely conformal field theory and
string theory). String theory proposes that the elementary particles (electrons, photons,
quarks, etc.) are vibrational modes on a string of length about 10−33 cm. These strings
can interact only by splitting apart or joining together – as they evolve through time,
these (classical) strings will trace out a surface called the world-sheet. Quantum field
theory tells us that the quantum quantities of interest (amplitudes) can be perturbatively
computed as weighted averages taken over spaces of these world-sheets. Conformally
equivalent world-sheets should be identified, so we are led to interpret amplitudes as
certain integrals over moduli spaces of surfaces. This approach to string theory leads
to a conformally invariant quantum field theory on two-dimensional space-time, called
conformal field theory (CFT). The various modular forms and functions arising in Moon-
shine appear as integrands in some of these genus-1 (‘1-loop’) amplitudes: hence their
modularity is manifest.
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Conformal field theoriesstructures
algebraic modular

stuff

Fig. 0.3 The stringy picture of Moonshine.

Many aspects of Moonshine make complete sense within CFT, something which helps
make the words of Freeman Dyson ring prophetic:

I have a sneaking hope, a hope unsupported by any facts or any evidence, that
sometime in the twenty-first century physicists will stumble upon the Monster
group, built in some unsuspected way into the structure of the universe [167].

All that said, here we are, sometime in the twenty-first century, and alas the Monster
still plays at best a peripheral role in physics. And some aspects of Moonshine (e.g. the
Hauptmodul property) remain obscure in CFT. In any case, although this is primarily
a mathematics book, we often sit in chairs warmed by physicists. In particular, CFT
(or what is essentially the same thing, perturbative string theory5) is, at least in part, a
machine for producing modular functions. Here, Figure 0.2 becomes Figure 0.3. More
precisely, the algebraic structure is an underlying symmetry of the CFT, and its graded
dimensions are the various modular functions. VOAs can be regarded as an algebraic
abstraction of CFT, since they arise quite naturally by applying the Wightman axioms
of quantum field theory to CFT. The lattice theta functions come from bosonic strings
living on the torus Rn/L . The affine Kac–Moody characters arise when the strings live
on a Lie group. And the Monster is the symmetry of a string theory for a Z2-orbifold of
free bosons compactified on the Leech lattice torus R24/�.

Physics reduces Moonshine to a duality between two different pictures of quantum field
theory: the Hamiltonian one, which concretely gives us from representation theory the
graded vector spaces, and another, due to Feynman, which manifestly gives us modularity.
In particular, physics tells us that this modularity is a topological effect, and the group
SL2(Z) directly arises in its familiar role as the modular group of the torus.

Historically speaking, Figure 0.3 preceded and profoundly affected Figure 0.2. One
reason the stringy picture is exciting is that the CFT machine in Figure 0.3 outputs much
more than modular functions – it creates automorphic functions and forms for the various
mapping class groups of surfaces with punctures. And all this is still poorly explored.
We can thus expect more from Moonshine than Figure 0.2 alone suggests. On the other
hand, once again Figure 0.3 can directly explain only the broader aspects of Moonshine.

5 Curiously, although nonperturbative string theory should be physically more profound, it is the perturbative
calculations that are most relevant to the mathematics of Moonshine.

https://doi.org/10.1017/9781009401548.001 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401548.001


Braided #0: the meaning of Moonshine 11

0.8 Braided #0: the meaning of Moonshine

In spite of the work of Borcherds and others, the special features of Monstrous Moon-
shine still beg questions. The full conceptual relationship between the Monster and
Hauptmoduls (like j) arguably remains ‘dimly lit’, although much progress has been
realised. This is a subject where it is much easier to speculate than to prove, and we are
still awash in unresolved conjectures. But most important, we need a second indepen-
dent proof of Monstrous Moonshine. In order to clarify the still murky significance of
the Monster in Moonshine, we need to understand to what extent Monstrous Moonshine
determines the Monster. More generally, we need to go beneath the algebraic explanation
of Moonshine in order to find its more fundamental meaning, which is probably topolog-
ical. Explaining something (Moonshine in this case) with something more complicated
(CFT or VOAs here) cannot be the end of the story. Surely it is instead a beginning.

To Poincaré 125 years ago, modularity arose through the monodromy of differential
equations. Remarkably, today CFT provides a similar explanation, although the rele-
vant partial differential equations are much more complicated. The monodromy group
here is the braid group B3, and the modular group SL2(Z) arises as a homomorphic
image.

Today we are taught to lift modular forms for SL2(Z) to the space L2(SL2(Z)\SL2(R)),
which carries a representation of the Lie group SL2(R). However, SL2(R) is not simply

connected; its universal cover S̃L2(R) is a central extension by Z, and the corresponding
central extension of SL2(Z) – the fundamental group of SL2(Z)\SL2(R) – is the braid
group B3. By all rights, these central extensions should be more fundamental. Indeed,
modular forms of fractional weight, such as the Dedekind eta, certainly see B3 more
directly than they do SL2(Z) (Section 2.4.3). Similar comments hold for other � – for
example, the congruence subgroup �(2) lifts to the pure braid group P3.

The best approach we know for relating the Monster and the Hauptmodul property is
Norton’s action ofB3 on G × G. This associates a genus-0 property with ‘6-transposition
groups’, which in turn points to a special role for M, as the Monster is expected to be
essentially the largest such group (Section 7.3.3). Incidentally, the number ‘6’ arises here
because the principal congruence subgroup �(N ) is genus 0 iff N < 6.

For these reasons and others we explore on the following pages, we expect a new
proof for Moonshine to involve the braid group B3. The modular groups SL2(Z) and
PSL2(Z) arise only indirectly as quotients. We also identify other promising places
to look for alternate arguments for Moonshine – for example, the partial differential
equations of CFT are built from the heat kernel, which has a long historical association
with modularity.

0.9 The book

Borcherds’ paper [72] and the resulting Fields medal close the opening chapter of the
story of Moonshine. Now, 25 years after its formulation in [111], we are in a period of
consolidation and synthesis, flames fanned I hope by this book.
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12 Introduction

Most of us might liken much of our research to climbing a steep hill against a stiff
breeze: every so often we stumble and roll to the bottom, but with persistence we eventu-
ally reach the summit and plant our flag amongst the others already there. And before our
bruises fade and bones mend, we’re off to the next hill. But perhaps research in its purest
form is more like chasing squirrels. As soon as you spot one and leap towards it, it darts
away, zigging and zagging, always just out of reach. If you’re a little lucky, you might
stick with it long enough to see it climb a tree. You’ll never catch the damned squirrel,
but chasing it will lead you to a tree. In mathematics, the trees are called theorems. The
squirrels are those nagging little mysteries we write at the top of many sheets of paper.
We never know where our question will take us, but if we stick with it, it’ll lead us to a
theorem. That I think is what research ideally is like. There is no higher example of this
than Moonshine.

This book addresses the theory of the blob of Figure 0.1. We explore some of its
versatility in Chapter 6, where we glimpse Moonshine orthogonal to the Monster. Like
moonlight itself, Monstrous Moonshine is an indirect phenomenon. Just as in the theory
of moonlight one must introduce the sun, so in the theory of Moonshine one must go well
beyond the Monster. Much as a book discussing moonlight may include paragraphs on
sunsets or comet tails, so do we discuss fusion rings, Galois actions and knot invariants.
The following chapters use Moonshine (Monstrous and otherwise) as a happy excuse to
take a rather winding little tour through modern mathematics and physics. If we offer
more questions and suggestions than theorems and answers, at least that is in Moonshine’s
spirit.

This is not a textbook. The thought bobbing above my head like a balloon while
writing was that the brain is driven by the qualitative – at the deepest level those are the
only truths we seek and can absorb. I’m trying to share with the reader my understanding
(such as it is) of several remarkable topics that fit loosely together under the motley
banner Moonshine. I hope it fills a gap in the literature, by focusing more on the ideas
and less on the technical minutiae, important though they are. But even if not, it was a
pleasure to write, and I think that comes across on every page.

This book is philosophic and speculative, because Moonshine is. It is written for both
physicists and mathematicians, because both subjects have contributed to the theory.
Partly for this reason, this book differs from other mathematics books in the lack of
formal arguments, and differs from other physics books in the lack of long formulae.
Without doubt this will froth many mouths. Because the potential readership for this
story is unusually diverse, I have tried to assume minimal formal background. Hence
when you come to shockingly trivial passages or abrasively uninteresting tangents, please
realise they weren’t written for you.

In modern mathematics there is a strong tendency towards formulations of concepts
that minimise the number and significance of arbitrary choices. This crispness tends to
emphasise the naturality of the construction or definition, at the expense sometimes of
accessibility. Our mathematics is more conceptual today – more beautiful perhaps – but
the cost of less explicitness is the compartmentalism that curses our discipline. We have
cut ourselves off not only from each other, but also from our past. In this book I’ve tried
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to balance this asceticism with accessibility. Some things have surely been lost, but some
perhaps have been gained.

The book endures some glaring and painful omissions, due mostly to fear of spousal
reprisals were I to miss yet another deadline. I hope for a second edition. In it I would
include a gentle introduction to geometric Langlands. I’d correct the total disregard here
for all things supersymmetric – after all, most of the geometric impact of string theory
involves supersymmetry. The mathematical treatment of CFT in Chapter 4 is sparser than
I’d like. Section 5.4 was originally planned to include brief reviews of the chiral algebras
of Beilinson–Drinfel’d [48] and the coordinate-free approach to VOAs developed in
[197]. Cohomological issues arise in every chapter, where they are nonetheless quietly
ignored. The lip-service paid to subfactors does no justice to their beautiful role in the
theory.

I will probably be embarrassed five years from now as to what today I feel is important.
But at worst I’ll be surprised five years from now at what today I find interesting. The
topics were selected based on my present interests. Other authors (and even me five years
from now) would make different choices, but for that I won’t apologise.

So let the chase begin. . .
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