C*-ALGEBRAS ASSOCIATED WITH AMALGAMATED PRODUCTS OF GROUPS

by BOLA O. BALOGUN

(Received 17 January, 1985)

1. Introduction. Let \mathbf{V} denote the class of discrete groups G which satisfy the following conditions (a), (b) and (c):
(a) $G=(A * B ; K=\varphi(H))$ is the free product of two groups A and B with the subgroup H amalgamated.
(b) H does not contain the verbal subgroup $A\left(X^{2}\right)$ of A and K does not contain the verbal subgroup $B\left(X^{2}\right)$ of B.

Consequently ($\left[5\right.$, Problem 4.2.10]), G contains a copy of F_{2} freely generated by $x=a b a$ and $y=b a b$, where $a^{2} \notin H$ and $b^{2} \notin K$. We now impose furthermore the following mild condition on G.
(c) $\left(a^{-1} H a\right) \cap H=\{e\}=\left(b^{-1} K b\right) \cap K$.

For example, if

$$
A=\left\langle a, c ; a^{3}, c^{2},(a c)^{2}\right\rangle
$$

and

$$
B=\left\langle b, d ; b^{3}, d^{2},(b d)^{2}\right\rangle
$$

the symmetric group on three objects, then the free product of A and B with the cyclic group generated by c and d amalgamated is a group in \mathbf{V}.

Let $C_{r}^{*}(G)$ denote the C^{*}-algebra generated by the left regular representation of a discrete group G. If $G=\mathbf{Z} * \mathbf{Z}, \mathbf{Z}_{2} * \mathbf{Z}_{3}$ or $G_{1} * G_{2}$, where \mathbf{Z} is the infinite cyclic group, \mathbf{Z}_{2} the cyclic group of order $2, \mathbf{Z}_{3}$ the cyclic group of order 3 , and G_{1}, G_{2} are not both of order 2, then it is known that $C_{r}^{*}(G)$ is simple and has a unique tracial state ([7], [6], [3]). In this paper, we show that $C_{r}^{*}(G)$ is simple and has a unique tracial state if $G \in \mathbf{V}$, thus generalizing the results of [7] and [6] except when $G=G_{1} * G_{2}$ where G_{1} or G_{2} only has elements of order 1 or 2 . Related work for other classes of groups is treated in [1], [2].
2. Notation and definitions. A word $R(a, b, c, \ldots)$ which defines the identity element 1 in a group G is called a relator. The equation

$$
R(a, b, c, \ldots)=S(a, b, c, \ldots)
$$

is called a relation if the word $R S^{-1}$ is a relator (or equivalently, if R and S define the same element of G).

In a group, the empty word and the words $a a^{-1}, a^{-1} a, b b^{-1}, b^{-1} b, c c^{-1}, c^{-1} c, \ldots$ are always relators; they are called the trivial relators. Suppose P, Q, R, \ldots are any relators of G. We say that the word W is derivable from P, Q, R, \ldots, if the following operations, applied a finite number of times, change W into the empty word.
(i) Insertion of one of the words $P, P^{-1}, Q, Q^{-1}, R, R^{-1}, \ldots$, or one of the trivial relators between any two consecutive symbols of W, or before W, or after W.

Glasgow Math. J. 29 (1987) 143-148.
(ii) Deletion of one of the words $P, P^{-1}, Q, Q^{-1}, R, R^{-1}, \ldots$ or one of the trivial relators, if it forms a block of consecutive symbols in W.

If every relator is derivable from the relators P, Q, R, \ldots, then we call P, Q, R, \ldots a set of defining relators for the group G on the generators a, b, c, \ldots If P, Q, R, \ldots is a set of defining relators for the group G on the generators a, b, c, \ldots, we call

$$
\langle a, b, c, \ldots ; P(a, b, c, \ldots), Q(a, b, c, \ldots), R(a, b, c, \ldots), \ldots\rangle
$$

a presentation of G and write

$$
G=\langle a, b, c, \ldots ; P, Q, R, \ldots\rangle
$$

If $a_{1}, a_{2}, \ldots, a_{n}$ are the generating symbols of a group, a word $w\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ in $a_{1}, a_{2}, \ldots, a_{n}$ will be denoted by $w\left(a_{\mu}\right)$ for simplicity.

Let A, B, H, K and G be groups defined as follows:

$$
\begin{gathered}
A=\left\langle a_{1}, \ldots, a_{n} ; R\left(a_{\mu}\right), \ldots\right\rangle, \\
B=\left\langle b_{1}, \ldots, b_{m} ; S\left(b_{v}\right), \ldots\right\rangle \\
G=\left\langle a_{1}, \ldots, a_{n}, b_{1}, \ldots, b_{m} ; R\left(a_{\mu}\right), \ldots, S\left(b_{v}\right), \ldots,\right. \\
\left.U_{1}\left(a_{\mu}\right)=V_{1}\left(b_{v}\right), \ldots, U_{q}\left(a_{\mu}\right)=V_{q}\left(b_{v}\right)\right\rangle,
\end{gathered}
$$

H is the subgroup of A generated by $U_{1}\left(a_{\mu}\right), \ldots, U_{q}\left(a_{\mu}\right)$, and K is the subgroup of B generated by $V_{1}\left(b_{v}\right), \ldots, V_{q}\left(b_{v}\right)$. Suppose that the mapping $U_{i}\left(a_{\mu}\right) \rightarrow V_{i}\left(b_{\mu}\right)$ induces an isomorphism φ between H and K. Then we call the group G the free product of A and B with the subgroups H and K amalgamated under φ, and denote G by $(A * B ; K=\varphi(H)$); for brevity G is often called the free product of A and B with an amalgamated subgroup H. The groups A and B are called the factors of the amalgamation.

Let $G=(A * B ; K=\varphi(H))$. Suppose specific right coset representative systems for $A(\bmod H)$ and $B(\bmod K)$ have been selected. Then any element g in G can be represented uniquely as a product $h c_{1} c_{2} \ldots c_{r}$ called the reduced form of g, where $h \in H$, $c_{i} \notin H, c_{i}$ is a representative from $A(\bmod H)$ or $B(\bmod K)$ and c_{i}, c_{i+1} are not both in A or both in B. The nonnegative integer r is called the (representative) length $l(g)$ of g. If $g=h c_{1} c_{2} \ldots c_{r}$ is in the reduced form, then g is said to begin with c_{1} and end with c_{r}.

Let G be a discrete group and $w\left(X_{\mu}\right)$ a reduced word. Then the verbal subgroup $G\left(w\left(X_{\mu}\right)\right)$ of G associated with the word $w\left(X_{\mu}\right)$ is defined by

$$
G\left(w\left(X_{\mu}\right)\right)=\left\langle w\left(g_{\mu}\right) ; g_{\mu} \in G\right\rangle
$$

Let G be a discrete group and let $l^{2}(G)$ denote the Hilbert space of all complex valued square summable functions on G, with inner product

$$
(f, h)=\sum_{w \in G} f(w) \overline{h(w)}
$$

For $g \in G$ and $f \in l^{2}(G)$ define

$$
(U(g) f)(w)=f\left(g^{-1} w\right) \quad(w \in G)
$$

Then $U(g)$ is unitary on $l^{2}(G)$ and the mapping $g \rightarrow U(g)$ is the left regular representation of G. Let $\mathscr{A}(G)$ denote the pre-C*-algebra generated by $\{U(g): g \in G\}$ and $C_{r}^{*}(G)$ the norm closure of $\mathscr{A}(G)$ in $B\left(l^{2}(G)\right)$. There is a natural faithful tracial state τ on $C_{r}^{*}(G)$ defined by $\tau(T)=\left(T e_{0}, e_{0}\right)$, where e_{0} is the characteristic function of $\{e\}$. We shall show that $C_{r}^{*}(G)$ is simple when $G \in \mathbf{V}$.

3. Simplicity and uniqueness of trace.

Theorem 3.1. Let G be a group in V. Then
(i) $C_{r}^{*}(G)$ is nonnuclear;
(ii) $C_{r}^{*}(G)$ is simple;
(iii) τ is the only tracial state on $C_{r}^{*}(G)$.

The proof of the theorem above is based on the techniques of [7], [6], [3] and generalizes [7] and [6] except for groups of the form $A * B$, where A or B only has elements of order 1 or 2 .

To establish the nonnuclearity of $C_{r}^{*}(G)$, we need the following lemma.
Lemma 3.2. ([5, Problem 4.2.10]). Let $G=(A * B ; K=\varphi(H))$ where H does not contain the verbal subgroup $A\left(X^{2}\right)$ of A and K does not contain the verbal subgroup $B\left(X^{2}\right)$ of B; then G contains a free subgroup F_{2} of rank 2.

Proof. Recall that $A\left(X^{2}\right)$ is the subgroup of A generated by the squares g^{2} of all elements g of A. Hence if H does not contain $A\left(X^{2}\right)$, there exists an element $a \in A$ such that a^{2} is not in H. Similarly, we can choose an element b in B so that b^{2} is not in K. We shall show that $a b a$ and $b a b$ freely generate a subgroup of G of rank 2 .

Let $a=h_{1} a_{1}$, where $h_{1} \in H$ and a_{1} is the coset representative of a in $A(\bmod H)$. Then $b a=b \cdot h_{1} a_{1}=b \varphi\left(h_{1}\right) \cdot a_{1}=k_{1} b_{1} \cdot a_{1}$, where $k_{1} \in K$ and b_{1} is the coset representative of $b \varphi\left(h_{1}\right)$ in $B(\bmod K)$. Hence

$$
a b a=a \cdot k_{1} b_{1} \cdot a_{1}=a \varphi^{-1}\left(k_{1}\right) \cdot b_{1} \cdot a_{1}=h_{2} a_{2} \cdot b_{1} a_{1}
$$

where $h_{2} \in H$ and a_{2} is the coset representative of $a \varphi^{-1}\left(k_{1}\right)$ in $A(\bmod H)$. Hence $a b a$ begins and ends with a coset representative from A. First we assume that $n>0$ and suppose we already know that $(a b a)^{k}$ begins and ends with a coset representative from A whenever $1 \leq k<n$. Then

$$
\begin{aligned}
(a b a)^{n} & =(a b a)^{n-1} \cdot(a b a)=\left(h_{2} a_{2} b_{1} a_{1}\right)^{n-1} \cdot\left(h_{2} a_{2} b_{1} a_{1}\right) \\
& =\left(h_{2} a_{2} b_{1} a_{1}\right) \ldots\left(h_{2} a_{2} b_{1} a_{1}\right)\left(h_{2} a_{2} b_{1} a_{1}\right) \\
& =h_{2} a_{2} b_{1} a_{1} \ldots h_{2} a_{2} b_{1} \cdot\left(a_{1} h_{2} a_{2}\right) b_{1} a_{1} .
\end{aligned}
$$

If $a_{1} h_{2} a_{2}$ is in H and $b_{1} \varphi\left(a_{1} h_{2} a_{2}\right) b_{1}$ is in K then $a_{2} \varphi^{-1}\left[b_{1} \varphi\left(a_{1} h_{2} a_{2}\right) b_{1}\right] a_{1}$ cannot be in H since the reduced form of $(a b a)^{2}$ must begin and end in a coset representative from A by the hypothesis that a^{2} is not in H. On the other hand if $a_{1} h_{2} a_{2}$ is not in H, we replace it with $h_{3} a_{3}$, where $h_{3} \in H$ and a_{3} is the coset representative of $a_{1} h_{2} a_{2}$ in $A(\bmod H)$. Finally, if $a_{1} h_{2} a_{2}$ is in H but $b_{1} \varphi\left(a_{1} h_{2} a_{2}\right) b_{1}$ is not in K, then we replace the latter with $k_{1} b_{2}$,
where k_{1} is in K and b_{2} is the coset representative of $b_{1} \varphi\left(a_{1} h_{2} a_{2}\right) b_{1}$ in $B(\bmod K)$. This completes the inductive step. This conclusion is valid for all $n \neq 0$ since $(a b a)^{-n}=$ $\left(a^{-1} b^{-1} a^{-1}\right)^{n}$, and a^{2} is not in H. Similarly (bab) starts and ends with a coset representative from B if $n \neq 0$.

Now consider the subgroup N generated by $a b a$ and $b a b$. We are now in a position to show that this subgroup is freely generated by $a b a$ and $b a b$. Let $x=a b a$ and $y=b a b$. Then every element of N other than the identity element has positive length. Hence x and y freely generate N. This completes the proof of the lemma.

Thus G is not amenable by the above lemma and 4.4.22, 4.4.21 of [8]. Hence $C_{r}^{*}(G)$ is nonnuclear by Theorem 4.2 of [4]. As in [7] and [6], parts (ii) and (iii) of Theorem 3.1 are direct consequences of the following two lemmas, the first of which is a variant of Lemma 2.1 in [3] with $G \in \mathbf{V}$.

Lemma 3.3. Suppose $w_{i} \in G, w_{i} \neq e$ for $i=1,2, \ldots, m$. Then there is an integer n such that $x^{n} w_{i} x^{-n}$ (when written in reduced form) begins and ends with a coset representative from A for each $i=1,2, \ldots, m$.

Proof. If $w \in G-\{e\}$ and $l(w)=0$, then $w \in H-\{e\}$ and $x w x^{-1}=a b a w a^{-1} b^{-1} a^{-1}$. By (c) $a w a^{-1} \in A-H$. Hence $x w x^{-1}$ begins and ends with a coset representative from $A(\bmod H)$.

If $l(w)=1$, then $w \in A-H$ or $w \in B-K$. If $w \in A-H$ and $a w a^{-1} \in H-\{e\}$, then by (c) bawa ${ }^{-1} b^{-1} \in B-K$ and so the reduced form of $a b a w a^{-1} b^{-1} a^{-1}$ begins and ends with a coset representative from $A(\bmod H)$. On the other hand, if $w \in A-H$ and $a w a^{-1} \in A-H$, then $x^{2} w x^{-2}$ begins and ends with a coset representation from $A(\bmod H)$. To complete the length one case, we note that if $w \in B-K$ then $x^{2} w x^{-2}$ begins and ends with a and a^{-1} respectively and so the reduced form has the desired property.

If $l(w)=2$, we show that $x^{3} w x^{-3}$ begins and ends with a coset representative from $A(\bmod H)$. We suppose first of all that $w=h p q$, where $p \in A-H, q \in B-K$ and $h \in H$. If furthermore $a h p \in A-H$, the desired conclusion is clearly true. However, if $a h p \in H$, there are three possibilities: $b a h p q=e$, bahpq $\in H-\{e\}$ or $b a h p q \in B-K$. In the first case, $x^{3} w x^{-3}=x^{2} b^{-1} a^{-1} x^{-1}$ which has the desired property. In the second case, we have abahpq $\in A-H$ and so $l(a b a h p q)=1$; thus x^{2}.abahpq. x^{-2} begins with a and ends with a^{-1} by the length one case. Hence $x^{3} w x^{-3}$ has the required property since $a^{2} \notin H$ by the choice of a. The third case is quite clear. To complete the length 2 case, we note that if $w=h^{\prime} q^{\prime} p^{\prime}$ with $h^{\prime} \in H, q^{\prime} \in B-K$ and $p^{\prime} \in A-H$ we consider $p^{\prime} a^{-1}$ instead of $a h p$.

For the inductive step, we assume that the reduced form of $x^{l(w)+1} w x^{-(l(w)+1)}$ begins and ends with a coset representative from A whenever $1<l(w) \leq s$, and consider the case $l(w)=s+1$.

If $l(w)$ is odd, say $s+1=2 n+1$ and w has a reduced form $h w_{1} w_{2} \ldots w_{2 n+1}$, where $w_{1}, w_{2 n+1}$ are both in $B-K$, then it is clear that $x^{s+2} w x^{-(s+2)}$ has the required property.

Next we suppose w has a reduced form $w=h w_{1} w_{2} \ldots w_{2 n+1}$, where $w_{1}, w_{2 n+1}$ are in $A-H$. If $a h w_{1} \in H$, then $b a h w_{1} \in B-K$ and there are three possibilities: $b a h w_{1} w_{2}=e$, $b a h w_{1} w_{2} \in H-e$ or $b a h w_{1} w_{2} \in B-K$. In the first case we have $x h w_{1} w_{2}$ is an element of
$\{e\}, H-\{e\}$, or $A-H$ and so the induction hypothesis takes care of this case. In the second case we consider $x h w_{1} w_{2}$ and use the induction hypothesis. In the third case, we consider $w_{2 n+1} a^{-1}$. If $w_{2 n+1} a^{-1}$ is in $A-H$, it is clear that $x^{2 n+2} w x^{-(2 n+2)}$ begins with a and ends with a^{-1}. If $w_{2 n+1} a^{-1}=e$, then $w_{2 n} \cdot w_{2 n+1} a^{-1} b^{-1}=w_{2 n} b^{-1}$ and so if $w_{2 n} b^{-1}$ is in $B-K$, no further consolidation can take place. However, if $w_{2 n} b^{-1}$ is in H then $w_{2 n} b^{-1} a^{-1}$ is in $A-H$ and we can use the induction hypothesis. Finally, if $w_{2 n+1} a^{-1} \in$ $H-\{e\}$, then $w_{2 n+1} a^{-1} b^{-1} \in B-K$ and no further consolidation can take place, and so $x^{2 n+2} w x^{-(2 n+2)}$ begins with a and ends with a^{-1}. This completes the proof for the odd length case.

Suppose now that $l(w)$ is even, say $s+1=2 k, k \geq 2$, and that w has the reduced form $w=h w_{1} w_{2} \ldots w_{2 k}$, where $w_{1} \in A-H$ and $w_{2 k} \in B-K$. If $a h w_{1} \in A-H$, then no further consolidation can take place. However if $a h w_{1} \in H$, then $b a w_{1} \in B-K$ and again no further consolidation can take place.

Finally we note that the case in which $w=h w_{1} w_{2} \ldots w_{2 k}$ with $w_{1} \in B-K$ and $w_{2 k} \in A-H$ is similarly treated by considering $w_{2 k} a^{-1}$. This concludes the proof of the inductive step. The lemma now follows by setting $n=\max \left\{l\left(w_{i}\right)+1: i=1,2, \ldots, m\right\}$.

Lemma 3.4. Let Ge in V. Suppose

$$
T=\sum_{i=1}^{m}\left[\alpha_{i} U\left(w_{i}\right)+\bar{\alpha}_{i} U\left(w_{i}\right)^{-1}\right]
$$

where α_{i} are complex numbers and w_{i} are nonidentity elements of G. Then there exist $t_{r} \in G, r=1,2, \ldots, n$, such that

$$
\left\|\frac{1}{n} \sum_{r=1}^{n} U\left(t_{r}\right) T U\left(t_{r}^{-1}\right)\right\| \leq \frac{2}{\sqrt{n}}\|T\| .
$$

Proof. By Lemma 3.3, there exists an integer k such that $x^{k} w_{i} x^{-k}$ begins and ends with coset representatives from $A(\bmod H)$ for $i=1,2, \ldots, m$. For $r=1,2, \ldots, n$, let $t_{r}=x^{r} y x^{k}$, where as before $y=b a b$. Let S_{r} denote the set of words w in G such that $x^{-r} w$ begins with a coset representative from B. Then $\left\{S_{r}: r=1,2, \ldots, n\right\}$ are pairwise disjoint; and if $z \in G-S_{r}$, then $y^{-1} x^{-r} z$ begins with a coset representative from $B(\bmod K)$. Consider $l^{2}\left(S_{r}\right)$ as a closed subspace of $l^{2}(G)$ in the natural way. Let E_{r} denote the Hermitian projection associated with $l^{2}\left(S_{r}\right)$. Since the S_{r} are pairwise disjoint, it follows that the E_{r} are pairwise orthogonal. Given a function f in $l^{2}(G)$ with support in $G-S_{r}$, let z be an element of $G-S_{r}$; then $y^{-1} x^{-r} z$ begins with a coset representative from $B(\bmod K)$. Hence

$$
t_{r} w_{i} t_{r}^{-1} z=x^{r} y \cdot x^{k} w_{i} x^{-k} \cdot y^{-1} x^{-r} z
$$

begins with a coset representative from $A(\bmod H)$ since no reduction can take place between x^{-k} and y^{-1} or between y and x^{k}. Thus $\left(I-E_{r}\right) U\left(t_{r} w_{i} t_{r}^{-1}\right)\left(I-E_{r}\right)$ is zero for $r \geq 1$.

The rest of the proof of the lemma can now be completed as in [6, p. 214]. Indeed, if T is any bounded operator on a Hilbert space H and P is a projection such that
$(I-P) T(I-P)=0$, then $\|(T f, f)\| \leq 2\|T\|\|P f\|$ for all f in H with $\|f\| \leq 1$. Then we apply this to the operator U and the projections E_{r} to deduce that for every f in the unit ball of $l^{2}(G)$,

$$
\left(\frac{1}{n} \sum_{r=1}^{n} U\left(t_{r}\right) T U\left(t_{r}^{-1}\right) f, f\right) \leq \frac{1}{n} \sum_{r=1}^{n} 2\|T\|\left\|E_{r} f\right\| \leq \frac{2}{\sqrt{n}}\|T\| .
$$

REFERENCES

1. C. A. Akemann, Operator algebras associated with Fuchsian groups, Houston J. Math., 7 (1981), 295-301.
2. C. A. Akemann and Tan-Yu Lee, Some simple C^{*}-algebras associated with free groups, Indiana Univ. Math. J., 29 (1980), 501-511.
3. M. Choi, A simple C^{*}-algebra generated by two finite-order unitaries, Canad. J. Math., 31 (1979), 867-880.
4. E. C. Lance, On nuclear C*-algebras, J. Functional Analysis, 12 (1973), 157-176.
5. W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory (Interscience, 1966).
6. W. L. Paschke and N. Salinas, C*-algebras associated with free products of groups, Pacific J. Math., 82 (1979), 211-221.
7. Robert T. Powers, Simplicity of the C^{*}-algebra associated with the free group on two generators, Duke Math., J., 42 (1975), 151-156.
8. S. Sakai, C*-algebras and W^{*}-algebras (Springer-Verlag, 1971).

University of Ife, Ile-Ife, Nigeria.

