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Abstract

I argue that machine learning (ML) models used in science function as highly idealized toy
models. If we treat ML models as a type of highly idealized toy model, then we can deploy
standard representational and epistemic strategies from the toy model literature to explain
why ML models can still provide epistemic success despite their lack of similarity to
their targets.

1. Introduction
Most attention on complex machine learning (ML) models used in science has
centered around issues of opacity, such as the nature of opacity (Creel 2020; Boge
2022) and its epistemic consequences for science (Duede 2023).1 While some have
argued that ML models can still provide understanding of phenomena despite their
opacity (Meskhidze 2021; Sullivan 2022a), others demur (Räz and Beisbart 2022).
However, before the epistemic consequences of opacity become salient, there is an
underexplored prior question of representation. If ML models used in science do not
represent real-world targets in any meaningful sense, how can ML models provide
understanding in the first place?

The problem is that it seems as though ML models do not represent their targets in
any meaningful sense. For example, the similarity view of representation seems to
exclude the possibility that ML models can represent phenomena. According to the
similarity view (Mäki 2009; Giere 2004; Weisberg 2013), for a model to represent some
phenomenon requires that the model be sufficiently similar to its target. However, ML
models use methods of finding feature relationships that are highly divorced from
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their target systems, such as relying on complex computations or loose correlations
instead of causal relationships. Moreover, the data that models are trained on can be
manipulated by modelers in a way that reduces similarity. For example, the well-
known melanoma detection ML model (Esteva et al. 2017) is trained on manipulated
and resized variations on images viewed by dermatologists, and interprets RGB arrays
of pixels. Thus, if the similarity view is right, then even if model opacity qua opacity
does not get in the way of understanding, ML models may still fail to enable
understanding of phenomena because they fail to represent phenomena. This gives
rise to the following hypothesis concerning the epistemic status of ML models:

ML representation hypothesis

Complex or opaque ML models fail to enable understanding of real-world
phenomena because ML models are not similar to, and therefore fail to
represent, their targets.

In this paper, I argue that we should reject the ML representation hypothesis.
Specifically, I argue that ML models function representationally and epistemically in a
similar way as highly idealized toy models do in science. If we treat ML models as
functioning as highly idealized toy models, then there are two ways of rejecting
the ML representation hypothesis. We can (i) adopt an interpretative view of
representation (Nguyen 2020), in which case a compelling story can be told that ML
models do in fact represent their targets; or (ii) if adopting an interpretative view of
representation is unpalatable, we can still reject the ML representation hypothesis by
appealing to the epistemic status of idealizations and adopting the following
idealization failure hypothesis instead:

Idealization failure hypothesis

Complex or opaque ML models fail to enable understanding of real-world
phenomena when there is idealization failure.

Adopting the idealization failure hypothesis would mean that evaluating the
epistemic virtues and limitations of ML models requires identifying and evaluating
the idealizations within ML modeling, not necessarily striving to make ML models
more similar to their targets.

The paper proceeds as follows. First, I introduce the epistemic and representational
puzzle that toy models introduce and possible solutions to the puzzle (section 2).
Second, I argue we should think of ML models as functioning as highly idealized toy
models and apply the same solutions as we do with toy models (section 3). Lastly, in
section 4 I discuss the benefits of adopting the idealization failure hypothesis as a
necessary step for evaluating the epistemic status of ML models. In the end, even
though ML models seem to be the opposite of highly idealized toy models, there are a
number of representational and epistemic similarities between them. Thus, if we accept
that highly idealized models can either represent phenomena or still enable
understanding in the absence of representation, then the same holds for ML models.
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2. The puzzle of toy models
Toy models are models that are (i) extremely simple, (ii) highly idealized, and (iii) said
to refer to a target system in the world (Reutlinger et al. 2018). Common examples
include the hawk–dove game or Lotka–Volterra equations in population biology, Ising
physics model, and Schelling’s segregation model. Focusing on the latter, Schelling
(1971), in seeking to explain why so many cities are racially segregated, developed a
simple toy model on a checkboard. The model shows that if people move based on a
simple preference that a certain percentage of their neighbors are the same, then a
segregated board is the equilibrium state. Schelling’s model makes several idealizing
assumptions that make it unlike any city on earth. There is no cost to moving, people
are free to move to any empty space, there is no institutional racism, and people move
based on a single preference for “like neighbors.”

The use of toy models like this in science raises an interesting puzzle. How is it that
a model that is so highly idealized and so divorced from real-world phenomena give
us any epistemic insight? Schelling’s model is not at all similar to real cities, so how
could it be said to represent real cities in any meaningful sense? How can it provide
any understanding into why real-world cities are segregated? There are two central
ways that philosophers of science approach solutions to this puzzle. The first is to
reject the underlying similarity view of representation that seems implicit in how the
puzzle is posed and offer an alternative view of representation where similarity is not
the locus of representational content. The second approach considers the unique
epistemic status of idealizations. I consider each in turn.

2.1. Interpretative view of representation
The puzzle from toy models implicitly assumes a similarity view of representation
where a model must be “sufficiently similar” to its target for accurate representation
(Mäki 2009; Giere 2004; Weisberg 2013). However, there are alternative, and
influential, theories of representation that do not require model similarity with its
target (Nguyen 2020; Suárez 2015; Frigg and Nguyen 2018). In this paper, I will focus
on Nguyen’s (2020) interpretative view where toy models are representational in the
sense that they license truthful inferences about the target system. Importantly, for a
model to license truthful inferences, similarity does not matter, but an interpretative
function that can map model-facts to claims that could also serve as a “translation
key” that connects the model to its target (Frigg and Nguyen 2018; Nguyen 2020).
While on the similarity view of representation Schelling’s model does not represent
its target in virtue of the fact that Schelling’s model is not sufficiently similar to real
cities, on the interpretative view of representation, Schelling’s model does in fact
represent real-world segregated cities. Using an interpretative function regarding the
underlying mechanism driving Schelling’s model—that acting on certain preferences
can lead to segregated equilibriums—gives rise to a true claim about segregation,
namely that “a city whose residents have a weak preference regarding the [race] of
their neighbors has a susceptibility toward global segregation” (Nguyen 2020, 1036).
On the interpretative account, toy models are unique in that they (i) move from an
inevitability in the model to a susceptibility claim about the target, and (ii) move from
a specific model-fact to a less specific claim about the target (1036). Schelling’s model
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provides a model-based inevitability regarding the certainty of segregation to a less
specific susceptibility claim about real-world populations.

Notice that on the interpretative view of representation, the puzzle of toy models
dissolves. The reason toy models are useful and successful tools in science is because
they provide us with representational content regarding their target systems when
they enable us to make true inferences regarding the target.

2.2 Epistemology of toy models
A second set of solutions to the puzzle of toy models considers the epistemology
regarding how idealizations, despite their falsity, can still enable understanding. Such
a solution need not appeal to representation per se. While some, such as Elgin (2017),
deploy a representational view of idealizations as representing-as, many others go a
different route. For example, on Potochnik’s (2017) account, idealizations are
misrepresentations with the falsehood of the idealization playing an active role. On
the holistic distortion view (Rice 2019), true and false aspects of a representation
cannot be separated, so idealized models become holistic misrepresentations. Others
argue that idealizations are non-representational. On Lawler’s (2021) extraction
view, idealizations play an enabling role and are not constitutive of scientific
representations. Carrillo and Knuuttila (2022) propose an artifactual account of
idealization that actively rejects the need for the representation question, and instead
focuses on the way that idealizations, and models, are tools for epistemic purposes.

Despite differences between these views on the representational status of
idealizations, all of these theorists agree that idealizations either themselves
constitute epistemic success or can help point to relevant truths that enable success;
in the worst case, idealizations serve as convenience crutches (Sullivan and Khalifa
2019). Importantly, though, those that separate the idealization question from the
representation question have a tempered view of the epistemic role the heavy
idealizations in toy models provide. Toy models merely provide how-possibly
explanations if the adequate link between the model and target are in some way in
doubt. A common interpretation of the epistemic success of Schelling’s model is that
it only provides us with how it is possible segregation could occur in real-world
populations, while failing to provide an explanation of why actual cities are
segregated because it is not embedded within a larger confirmed theory (Reutlinger
et al. 2018). Understanding real-world phenomena requires establishing empirical
links outside of the model (Sullivan and Khalifa 2019; Sullivan 2022a). Thus, the
epistemic solution to the puzzle of toy models exercises caution regarding the extent
of the scientific understanding toy models may provide, but nevertheless can still
account for why toy models are useful and enable scientific understanding, albeit
understanding of possibilities.

3. ML models as toy models
Current ML models are not the kind of highly idealized models that philosophers of
science often discuss alongside idealization. They are complex instead of simple, they
are new instead of mature, and they are not constructed with built-in theoretical
assumptions or what Knüsel and Baumberger (2020) call process-models, where
model equations explicitly refer to processes in the target system. In contrast, the
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inner decision points in ML models are not tracking these types of processes; instead,
an ML model is essentially trying to minimize loss and satisfy a defined objective
function running a series of mathematical computations in vector space (Boge 2022).
ML models are often used precisely because causal processes are unknown, or because
researchers are interested in seeing whether there are overlooked patterns of
interest. Despite these differences with traditional model-based science, I want to
suggest that ML models used in science function in a similar way to toy models.
First, ML models (including predictive models) used in science aim to refer to various
real-world phenomena (e.g., models of new physics, disease indicators, climate
patterns, etc).2 Second, they engage heavily in idealizations across the ML modeling
pipeline. Third, central questions regarding representation and epistemic success
seem to mirror those of toy models.

3.1. ML idealizations
Even though ML models are highly complex data-driven models and are not the
simple type of model often thought of as toy models, ML models still engage in
significant idealization throughout the ML modeling pipeline.3 Table 1 provides a
(non-exhaustive) overview of where idealizations may appear in the ML pipeline,
ranging from ML architectures to data collection, model training, the learned
algorithm that results from training, and generalizing to novel cases.

For example, ML architectures idealize. The simplest type of neural network (NN)
architecture is a fully connected NN that assumes causal independence among input
variables. All input variables are treated as independent even though we know that
there is interdependence between input features. Furthermore, as the network
“learns,” each new layer “forgets” weights and influences from previous layers. Such
an architecture is an idealization because many phenomena that NNs aim to capture
do have causal interdependence among variables. For example, a deep NN (DNN)
model may seek to predict disease indicators using input data that has known strong
correlations and causal influences in the data. If researchers use a fully connected
DNN, these causal dependencies are idealized away in the initial architecture. Other,
more sophisticated, architectures, like transformer models, de-idealize these
assumptions. Specifically, transformers add attention layers that address the
“forgetful” problem in fully connected NNs but may introduce different idealizations
in the process. Importantly, what makes something an idealization is context
dependent. While in many cases fully connected NNs constitute an idealization, there
could be other cases where this is not an idealization because we have good reason to
believe there is causal independence between variables. Not every result of a
mathematical process deployed in ML will itself constitute an idealization. It
ultimately depends on the relationship between the target and what results from the
mathematical processes (Levy 2021).

2 There could be cases where an ML model does not aim to refer to real-world phenomena. In these
cases, the ML models could be closer to so-called targetless models.

3 Following Levy (2021), I take abstraction to be a relation between two representations and
idealization to be a relation between a model and the world. Thus, something can be both an abstraction
and an idealization.
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3.2. Representation and ML
Since ML models engage in idealizations and can find patterns of interest in a way
divorced from underlying real-world processes, like toy models, it seems like ML
models do not actually represent their targets and that we should accept the ML
representation hypothesis regarding their epistemic status. And indeed, in a recent
paper, Tamir and Shech (2022) argue that ML models can fail to represent their
targets, undermining their epistemic status. One example they highlight is the case of
Esteva et al.’s (2017) melanoma classifier that reportedly does better at identifying
melanoma compared to dermatologists. The ML model was trained on distortions of
the original dermatological images. For example, the Inception-v3 model that was
used requires input images of 299 × 299 pixels (Esteva 2017, 119).5 This means the
analyzed data is dissimilar to the original larger images as well as dissimilar to the
phenomena at hand (i.e., the way moles and melanoma appear on the skin). This is an
example of what I am calling a data processing idealization. Tamir and Shech (2022)
suggest that the lack of similarity resulting from data processing idealizations can
undermine how well ML models represent phenomena.

However, the worry here is largely grounded in implicitly adopting a similarity view
of representation. If we adopt an interpretative view of representation—as we do with
toy models—we get a different result. Nguyen (2020) considers an analogous case
comparing an unmodified image of Obama to a color-inverted picture. According to a
similarity view of representation, the ordinary image of Obama is more similar to him
and thereby is a more accurate representation of Obama. However, on the interpretative
view of representation, both pictures have the same representational content because
both pictures can license the same inferences about Obama. The difference is that the
function one should use to map model-facts to claims differs between the two images.

Table 1. Idealizations across the ML pipeline

ML architectures Idealizations introduced by architecture choice.
Example: Fully connected networks assume independence of input variables

Data choices Idealizations introduced through data choices.
Example: Data manipulation as part of data processing

Model training Idealizations that emerge through model training.
Example: Backpropagation techniques finding local minima through gradient
descent

Learned ML
algorithm

Idealizations present in the ML model after training.
Example: ML models relying on reliable proxies or not relying on relevant causal
influences in the target

Generalization Idealizations that are created when applying an ML model to novel data.
Example: Deploying model on data that is dissimilar to testing and training data

Explaining model
decisions

Idealizations that are introduced when applying explainability methods to
explain ML model decisions.

Example: Linear approximations of local decisions4

4 See Fleisher (2022) for a discussion of idealizations in explainable AI.
5 See https://cloud.google.com/tpu/docs/inception-v3-advanced) for more detail on Inception-v3.
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The inverted photo requires a color_inversion()function that converts the
inversion to derive true inferences. The same is true of various data idealizations in ML
modeling. In the dermatological example, the data processing that involves image
distortion and representing images as RGB arrays requires the right interpretative
function, for example, a resize_image()or array_to_pic()function to map
model-facts to claims about a mole. The fact that the data becomes less similar to the
target does not imply it becomes less representative of the target, with the right
interpretative function.

The interpretative view can be pushed even further regarding other distortions
and idealizations in ML modeling, even to the aspects of ML models that seem the
most dissimilar to their targets, such as finding patterns by manipulating vector
space. For example, Boge (2022) argues that the hyperparameters within a DNN in the
best case give us ambiguous meanings, and in the worst case are simply meaningless
and thus cannot represent phenomena. However, it is compatible with the
interpretative view that some lower-level internals of a DNN may not represent;
as long as we can map abstract high-level ML model-facts to claims, the ML model can
be said to represent phenomena. Knowing the high-level model-facts—that these sets
of features contributed most to the decision—is possible through interpretability
techniques (Creel 2020; Sullivan 2022a).

Mapping ML model-facts to claims will likely involve a two-step process.
Consider the dermatology example. First, an interpretability method must map a
series of weights in a DNN to a set of understandable features (e.g., attention layer
map, SHAP values, etc), where the interpretability method is itself an idealized
model (Fleisher 2022). Second, an interpretative function is needed that connects
the set of understandable features the model relies on to the target phenomena. For
example, just as with toy models, the dermatology ML model (i) moves from an
inevitability in the model concerning feature importance and classification to a
susceptibility claim about the target system, namely that certain pigmentation
differences indicate a susceptibility to be a melanoma. And (ii) we move from a very
specific (and very local) model fact—that this particular mole was classified as a
melanoma—to a less specific claim about identifying cases of melanoma in real
cases (i.e., that it is possible that these features are indicators of melanoma). If
anything, since evaluating ML models, due to model opacity, relies on another
idealized model (interpretability methods), ML models could be described as relying
on idealization more than toy models.

The challenge on the interpretative view of representation in the case of ML
becomes finding the correct interpretative map that can reinterpret the
idealizations and distortions that the ML model makes to the actual target. Such
an interpretative map may not be known, depending on the specific model and
target phenomena. However, notice that this question—the absence of a known
map—is a different consideration from the ML representation hypothesis that
focuses on representation with regard to similarity. It might be that this is where
ML opacity starts to become an issue. Moreover, interpretability techniques
themselves might be subject to idealization failures that can prevent understanding,
which again signals that the idealization failure hypothesis is better suited to
evaluate the epistemic status of ML models.
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3.3. Epistemology of ML models
Recall that a second approach to solving the problem of toy models is to understand
idealizations’ epistemic value. Here too ML models in science function epistemically
as toy models. In the toy model literature, Reutlinger et al. (2018) distinguish highly
idealized toy models that are embedded in and are models of an empirically well-
confirmed theory from “autonomous” models, where the science is still out, and are
successful in virtue of enabling how-possibly explanations or how-possibly under-
standing. ML models function largely the same way. Sullivan (2022a, 2022b) argues it
is other evidential support external to the model that can render an ML model as
facilitating or inducing understanding. Most ML models, on this view, have a high
level of “link-uncertainty” such that the ML model merely provides a type of how-
possibly explanation, like toy models. Zednik and Boelsen (2022) also argue that ML
models in science chiefly serve as hypothesis-generating tools. Indeed, toy models are
largely circumscribed as playing such a heuristic role (Sullivan and Khalifa 2019).

Even if ML models may only provide how-possibly explanations, such explanations
can still facilitate scientific understanding. How-possibly explanations are valuable
heuristics to build better theories, discover hypotheses for future research, and
provide answers to genuine questions regarding the scope of (im)possibilities (see
Verreault-Julien 2019). Thus, again, by taking ML models in science as functioning as
highly idealized scientific models, we can reject the ML representation hypothesis
regarding the epistemic status of ML models. ML models can still provide
understanding (of possibilities) without being similar to their targets, which can
explain the success of ML models despite their known limitations.

4. Idealization failure hypothesis
The discussion so far has centered around reasons we can reject the ML
representation hypothesis regarding the epistemic status of ML models. In this last
section, I want to suggest an alternative hypothesis that treats idealization
evaluation, instead of representation, as centrally important for assessing the
epistemic status of ML models.

Idealization failure hypothesis

Complex or opaque ML models fail to enable understanding of real-world
phenomena when there is ML idealization failure.6

The idealization failure hypothesis does not appeal to representation per se since, as
discussed in section 2.2, on several accounts of idealization, idealization lacks
representational status or might misrepresent. Thus, one benefit of adopting the
idealization failure hypothesis is that it does not necessarily require adopting a strong
position regarding the representational status of ML models. But what does it mean to
have idealization failure? And when do ML model idealizations fail? I will have to

6 There may be other ways we should evaluate the epistemic status of ML models besides assessing
idealizations. The ML idealization failure hypothesis should be read as a necessary test for ML models to
pass, not a sufficiency test.
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leave a complete answer to these questions for further work, but there some avenues
worth exploring.

Current approaches to evaluating idealizations in philosophy of science are chiefly
concerned with explaining why idealizations are successful. As a result, current
idealization evaluation falls under two broad methods. The first trades on evaluating
whether idealizations achieve the scientific aims of explanation or scientific
understanding. The second method evaluates whether particular cases of idealization
instantiate a given theory of idealization. In the latter case, notions of idealization
failure are often marginalized to the negation of a positive proposal.

In general, idealizations can be successful empirically if they have predictive
power (Mizrahi 2012) or are safe for engineering use (Batterman and Rice 2014; see
Lawler 2021). On this score, ML models may do well because of their high predictive
power and usefulness. On influential accounts of idealizations, idealizations are
successful if they exemplify features of phenomena (Elgin 2017) or only distort non-
difference makers (Strevens 2016). Developing certain evaluation tests of ML may
help to uncover distortions of difference-making, such as spurious correlation tests or
novel tests that probe ML architectures to uncover structural idealizations. Lawler
(2021) proposes that idealizations can be legitimate and successful even if they only
have the potential for empirical success, as long as there is an appropriate tie to the
phenomenon in question. In the context of ML, securing the appropriate tie to
phenomena will likely require reducing link-uncertainty (Sullivan 2022a, 2022b).

Since philosophers of science discuss successful idealization using examples that
are either known successes or cases of clear problematic distortions, idealization
failure goes unaddressed, with several cases simply labelled as successful in virtue of
merely being possible explanations. There is a need for considering different
gradients of success regarding how-possibly explanation, which can further assess
cases of idealization failure and the epistemic status of idealizations in ML.7 So while,
in this paper, I cannot provide an account of idealization failure for ML models, I hope
that this paper provides motivation for considering the idealization failure hypothesis
as a way to solve the problems that emerge from the similarity between ML models
used in science and toy models.

5. Conclusion
Are ML models anything more than “mathematized science fiction?”8 In this paper,
I argued that one way of answering this question is to treat ML models as functioning
as highly idealized toy models. If we adopt the view that highly idealized toy models
can represent phenomena, then so do ML models. Of course, there could be hold-outs
to the similarity view of representation. For those holdouts, focusing more on the
epistemology of idealization can capture the extent to which ML models may enable
understanding without subscribing to the view that ML models represent targets. All
told, I believe that adopting the view that the function of ML models is the same as
highly idealized models can help us to understand not only the epistemic limitations
of ML models, but also help to explain why they have been so successful and
influential despite these epistemic limitations.

7 Grüne-Yanoff and Verreault-Julien (2021) might be useful place to start.
8 See Reutlinger et al. (2018, p. 1070) for posing the same question to toy models.
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