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Abstract. Given E, an elliptic curve defined over K, a field of positive characteristic, provided that
j, the Weierstrass j-invariant, is not an element of Kp, we construct explicitly, that is, we give by a
closed form formula, a non-trivial homomorphism, �:E(K)!K+, from the group of K-rational
points of E to K+, the additive group of K. In the course of our analysis we discover a canonical
differential, !q 2
KjFp , associated to E and we relate it to the differential dq=q associated to the
Tate curve. If the transcendence degree of K over Fp is equal to one, as for example is the case for
function fields in one variable, then � is a p-descent map, that is, its kernel is equal to pE(K) and the
explicit formula for � can be used to provide effective proofs of analogues of classical theorems on
elliptic curves. For example, in the author’s thesis at The University of Texas at Austin the analogue
of Siegel’s Theorem on the finiteness of integral points of E(K) is proved effectively.

Mathematics Subject Classifications (1991): Primary: 11G05; Secondary: 11G07, 14K99.
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1. Introduction

Here we extend work of Kramer [Kra], Voloch [Vol] and Ulmer [Ulm] and we
present the p-descent map concretely in closed form. Our method works for general
prime p and quite general field K , see Subsections (2.1), (4.1) and (4.6), but it is
simpler to state the main result uniformly for all p > 5 and restrict ourselves in the
function field case with [K: Fp ]tr = 1.

MAIN THEOREM. Let K be a function field in one variable, of characteristic
p > 5, and let E: y2 = x3 + a4x+ a6, a4; a6 2K , be an elliptic curve with origin
O. Assume that the Hasse invariant A is nonzero and dj 6= 0 for d the canonical
derivation which maps K to 
KjFp

. Let D = 18(a6=a4)j(d=dj). Then we have
a homomorphism �:E(Ks)!K+

s which is Galois equivariant with respect to
G = Gal(Ks jK), defined by �(E[2]) = f0g and

�(x; y) = �

�
Dx

2y

�
+ yM(x) + �

 
�2x2 � 1

6
D�

�
x� 4

3a4

2y

!
if y 6= 0;

where all quantities above can be computed directly from a4 and a6. That is:
j is the j-invariant, � the discriminant, A the Hasse invariant, � is defined by

? This is part of the author’s dissertation at The University of Texas at Austin
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126 A. BROUMAS

�(z) = zp �Az and M is defined by: (x3 + a4x+ a6)
(p�1)=2 = xpM(x)+ lower

order terms.

All our work is based on two different descriptions of the Galois group G of the
field extension Ks(E

(p)) j Ks(E) where E(p) is the Frobenius curve associated to
E andKs(E

(p)) is viewed as an extension of Ks(E) via the Verschiebung, the dual
isogeny to the Frobenius map. See Section (3). Then in Section (4) a generalized
Manin map, see [M], of order 1, that is a homomorphism involving only first order
differentiation is constructed from E(p)(Ks) to K+

s and normalized in accordance
with the Galois action of G. This map has a very simple expression in coordinates
and this allows us to produce a formula for the Manin map � from E(Ks) to K+

s .
The expositions of Voloch [Vol] and Ulmer [Ulm] are naturally the origins of

this work and only after reading through them everything presented here can be
seen via the right historical perspective.

Having � explicitly given, certain applications become accessible. For example,
in [B], one finds an effective proof of Siegel’s Theorem on the finiteness of integral
points on a non-isotrivial elliptic curve defined over a function field finitely gen-
erated over Fp , of transcendence degree one. There, a careful local investigation,
facilitating the formula for �, compares height with local distance from the origin,
and passing to global, the height of the integral points is bounded, which amounts
to effectively identifying them.

We have tried to avoid computations and justify as many results as possible
using only general theory. However, all our intuition was developed via explicit
calculations for p = 5, a4 = 3t4, a6 = 4 and p = 7, a4 = 1, a6 = 5t6 and p = 11,
a4 = 5t2, a6 = t8.

2. Conventions and notation

2.1. Our field. Let K be a field of characteristic p > 0. By Ks we denote the
separable closure of K . It is crucial for our analysis that DerFpK is nonzero.
Hence, we need K 6= Kp. As it will turn out, see Section (6), we may assume
without loss of generality that K = Ks, that is that K is separably closed.

2.2. Elliptic curves. Our object of study will be an elliptic curve, E, defined over
K . The case of characteristic p = 2 will be studied in Appendix (A) and for p 6= 2
the Weierstrass Equation forE can be taken to be: of its plane projective embedding
given by a Weierstrass Equation

E: y2 = f(x) = x3 + a2x
2 + a4x+ a6: (1)

2.3. Frobenius. For simplicity of notation we denoteE(p), the image of the relative
– with respect to K - Frobenius map, by E0

E(p)
� E0: y02 = x0

3
+ a

p
2x

02 + a
p
4x

0 + a
p
6 (2)
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EFFECTIVE p-DESCENT 127

and the Frobenius map is given by: F :E!E0: (x; y) 7! (xp; yp) and for V , its
dual isogeny, the Verschiebung:V :E0!E: (x0; y0) 7! (xver(x

0; y0); yver(x
0; y0))we

have: V � F � [p]E and F � V � [p]E0 .

The Frobenius map, F , is always inseparable but its dual isogeny, the Ver-
schiebung, V , is separable unless the Hasse invariant of E is zero.

2.4. Calculating the Hasse invariant. We will introduce A via one of its explicit
calculations. The algorithm goes back to Deuring [Deur] 8.2, p. 253. We present
here the case p > 3 with a1 = a3 = 0. Hence (1) is the equation of the elliptic curve
and one calculates A as the coefficient of xp�1 in the polynomial (f(x))(p�1)=2. In
addition define L, and M , L and M polynomials, degL 6 (p� 2), by

f(x)(p�1)=2 = (x3 + a2x
2 + a4x+ a6)

(p�1)=2

= L(x) +Axp�1 + xpM(x): (3)

Hasse, in [Ha], proves the following theorem: Let K be a separably closed field
of positive characteristic p. Then there exists a unique separable, Galois, cyclic of
order p, unramified extension of the elliptic field K(E) = K(x; y), if and only if
the Hasse invariant A is nonzero.

2.5. Some properties of A. Given the standard choices for invariant under the
group law differentials on E and E0,

! =
dx
2y

and !0 =
dx0

2y0
;

the Hasse invariant, A, can be defined equivalently via:

LEMMA 2.1. Let V denote the Verschiebung and let V ? be the induced (pull back)
map on differentials. That is: V ?:
K(E)jK!
K(E0)jK . Then

V ?(!) = A!0: (4)

Proof. This is the dual statement to 12.4.1.3 in [KM] p. 354. Since in [KM]
the Hasse invariant, A, is defined via the map tg(V ): Lie(E(p);K)!Lie(E;K),
using autoduality of elliptic curves we identify Lie(E;K) with H1(E;OE), where
OE is the structure sheaf of E, and the connection with our calculation in (3) is
provided by [Hart] IV.4. Proposition 4.21, p. 332–333. 2

See that A 6= 0 if and only if the Verschiebung is separable and in that case
the field extension K(E0) over V �(K(E))) is the unique extension of Hasse’s
Theorem.

LEMMA 2.2. For V as above and with a1 = 0 = a3 we have

yver =
1
A
y0

dxver

dx0
: (5)
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Proof. By the lemma above

V ?

�
dx
2y

�
= A

dx0

2y0
and V ?

�
dx
2y

�
=

dxver

2yver
:

[Silv] II.4.1., p. 35. 2

2.6. Denoting derivations. At this point allow us to introduce some additional
notation. We use d and d to denote the canonical derivations: d:K!
KjFp

and
d:Ks!
KsjFp

and d:Ks(E)!
Ks(E)jKs
and d:Ks(E

0)!
Ks(E0)jKs
. We use

D and � to denote field derivations, that is, elements of DerFpK or DerFpKs.
Let D be a derivation of K . Then we define ( )D to denote the derivation of

K(E0) that extends D on K and it is trivial on x0. Since E0 is defined over Kp we
also have that (y0)D = 0 and so ( )D on K[x0; y0] is simply differentiation of the
coefficients of the polynomials in x0 and y0 and extends naturally as a derivation
on K(x0; y0).

Finally, for f in Ks(E), a rational function on E defined over Ks, by Df we
denote the composition D � f jreg(f;Ks)

where reg(f;Ks) = f‘points’ of E(Ks)
where f is regularg. Similarly we define Dg0 for g0 in Ks(E

0).

3. Preliminaries

3.1. Restrictions. Later on we will require that, E0[p], the p-torsion of E0, is not
defined over Kp. This condition has various reformulations:

LEMMA 3.1. For E an elliptic curve defined over K a field separably closed of
characteristic p > 0 the following are equivalent:

(1) E can be defined over Kp.
(2) The p-torsion of E is defined over K . That is E[p] � E(K).
(3) The p-torsion of E0 is defined over Kp. That is E0[p] � E0(Kp).

Proof. The only inference that needs justification is (2)) (1). One may argue
as follows: if E[p] is defined over K then the quotient curve, E=E[p], see [Silv]
Proposition 4.12, p. 78, is also defined over K and the map, E!E=E[p], is a
separable isogeny of degree p, defined over K . But then, its dual isogeny has to be
purely inseparable because their composition gives the multiplication by [p] map,
which is not separable. See [Silv] Theorem III.6.1., p. 84. Hence, E is the image
of a purely inseparable map of degree p, defined over K , that is, E is defined
over Kp. 2

Hence, we simply require that, j, the j-invariant of E, is not in Kp. Note that
j =2Kp implies j =2 Fp , which implies A 6= 0, since all supersingular j-invariants
are in Fp2 . Hence, E0[p] is cyclic of order p. See [Huse] Table 2 in 13.7, p. 258.
Given that K is assumed to be separably closed we get that E0[p] is defined
over K .
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3.2. Descriptions of G = Gal(K(E0) jK(E)). Cassels, [C] p. 40 Equation (1.5),
attributes to Deuring, an alternative description of K(E0). We have K(x0; y0) �
K(x; y; z), for z algebraic over K(x; y), satisfying �(z) = zp � Az = yM(x)
where M was defined in (3). Voloch in [Vol] Lemma 1.1 calculates z explicitly as

z = �2
y0

A

(p�1)=2X
i=1

1
x0 � x0i

;

where x0i are the x0 coordinates of the points of E0 of exact order p. In fact there
are p possible choices for z and the one presented above is uniquely characterized
by (z � (y=x))(O0) = 0. Note that, due to symmetry, z is in K(x; y) even if xi’s
are not in K .

DefineG = Gal(K(E0) jK(E)). To be precise,G = Gal(K(E0) j V �(K(E))).
There are two canonical descriptions of G. First we may think of it as consisting
of translations of the functions in K(E0) by the points of order p on E0. That is

G = f�P 0 :P 0
2E0[p]g where (�P 0g0)(Q0) = g0(P 0

�Q0) (6)

and second since K(E0) = K(E)(z) one may think of G as translations of the
special function z by (p � 1)-st roots of A. Observe that, since we have assumed
K to be separably closed, z is essentially the Artin–Schreier generator of K(E0)
and employing it we get

G = h�i for �: z! z + c for c: cp�1 = A: (7)

The two descriptions of G force a canonical isomorphism between the points of
order p on E0 and the additive subgroup of K+ generated by the (p � 1)-st roots
of A. We call the isomorphism cgal and it is defined by

cgal(P 0

i )
def
= z(Q0

� P 0

i )� z(Q0): (8)

The isomorphism cgal does not depend on the choice of Q0. However, Q0 needs
be chosen so that no poles occur in Equation (8), above.

The definition of cgal forces an isomorphism

cgal:E0[p]
�
! hci (9)

and employing it we can index the points in E0[p] by their corresponding Galois
constants – their images under cgal – and have

E0[p] = fP 0

c: c
p
�Ac = 0g; where cgal(P 0

c) = c: (10)
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130 A. BROUMAS

4. Proof of the main theorem

Our goal is to construct a nontrivial homomorphism �:E(K)!K+ and calculate
�(P ) explicitly in terms of x(P ) and y(P ). The origins of our work are in [Vol]
Theorem 3.1. and [Ulm] Proposition 5.3. diagram p. 249. As Voloch and Ulmer do,
our first step is the construction of a homomorphism �:E0(K)!K+. It turns out
that one may construct � directly and then obtain a closed form formula for �
based on formal manipulations of the formula for �. For the most part we restrict
ourselves to p > 3 and later on to p > 3. See Appendix (A) for p = 2 and
Appendix (B) for p = 3.

THEOREM 4.1. Let E0 be an elliptic curve defined over (K)p. Then for any
� 2DerFpK the following map is a homomorphism

�:E0(K)!K+:

8><
>:
�(P 0) = 0 for P 0 2E0[2];

�(x0; y0) = A
�x0

2y0
else:

(11)

Equivalently �(x0; y0) = A(�x0=2y0) or

= A
�y0

3(x0)2 + 2ap2(x
0) + a

p
4
;

whichever is well defined.
Proof. The proof is a straightforward calculation. One should use the addition

formulae for elliptic curves in Weierstrass form; see [Ta] or [Silv], p. 58. Observe
that since E0 is defined over Kp we have

�y0 =
3(x0)2 + 2ap2(x

0) + a
p
4

2y0
�x0

and the rest is trivial. That is, for (x0; y0) = (x01; y
0

1)� (x02; y
0

2), we have explicitly
x0 = x0(x01; y

0

1; x
0

2; y
0

2) and y0 = y0(x01; y
0

1; x
0

2; y
0

2) and it is a formal identity that

�x0

y0
=

�x01
y01

+
�x02
y02

:

To verify it, a symbolic calculator may be used; we used Mathematica. 2

4.1. Canonical choice of �. Admissible derivations. Normalize � as follows:
choose �, say D, requiring that: �(P 0) = cgal(P 0) for P 0 2E0[p] and call such
derivations,D, admissible. Remember cgal was defined by Equation (8) in Subsec-
tion (3.2) and the points of order p, for each given fixed characteristic p, are explic-
itly calculated in [G]. Clearly the set of admissible derivations can be described
by
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D admissible,hD; !qi = 1 for !q =
A dx0c
c2y0c

; (12)

where P 0

c � (x0c; y
0

c) is any particular non-trivial point of order p on E0.?

See that !q is well defined and nonzero because: (1) the Hasse invariant, A is
nonzero and so we have p points of order p on E0 and cgal is well defined and
c = cgal(P 0

c) is nonzero as a (p � 1)-st root of A and (2) since E0[p] is in E(K)
but not in E(Kp) we have dx0c 6= 0; see Lemma (3.1) in Subsection (3.1).

Hence, the set of admissible derivations is nonempty and the suggested nor-
malization of � is feasible. As an illustration, consider the case when K is the
separable closure of Fp [t] and E is an elliptic curve not defined over Kp. Then not
only there exists an admissible derivation, D, but in addition, since all derivations
of K are multiples of each other, it is unique and it is determined as follows

AD(x0(P 0

c))

(2y0(P 0
c))

= cgal(P 0

c) = c,D =
c

A
2y0c

d
dx0c

: (13)

4.2. Transforming �. The steps in this subsection are presented in reverse order of
discovery. Reading [Kra], [Vol] and [Ulm] and experimenting with the computer
we guessed that

�(x; y) = �

�
Dx

2y

�
+ �(function in K(E)) + yM(x):

Following this belief, we were led to the normalization of � using cgal and then
we worked backwards rewriting the formula for �.

For g0 2K(E0) and D a derivation of K and for Dg0 and Dx0 and ( )D defined
in Subsection (2.6), we have

Dg0 =

�
dg0

dx0

�
Dx0 + ((g0)D)jreg((g0)D;K)

: (14)

In particular

Dxver =
dxver

dx0
Dx0 + xDver: (15)

Now let P 2E(K) denote a generic K rational point of E. Let P 0 = (x0; y0)
be any point in V �1(P ) so that P = V (P 0) = (xver(P

0); yver(P
0)) = (xver; yver).

Then invoking (15) above and Lemma (2.2) that gives yver = (1=A)y0(dxver=dx0),
� becomes:

? The choice of notation, !q , will be explained in Section (5).
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�(x0; y0) = A
Dx0

2y0

= A
Dx0

2y0
�

1
2yver

Dxver +
Dxver

2yver

= A
1

2y0
Dx0 �

1
2yver

�
dxver

dx0
Dx0 + xDver

�
+
Dxver

2yver

=

�
A

1
2y0
Dx0 �

1
2yver

dxver

dx0
Dx0

�
+

 
�
xDver

2yver
+
Dxver

2yver

!

=
Dxver

2yver
�

xDver

2yver
: (16)

Now adding and subtracting z and defining g0 by: g0(x0; y0) = �z � (xDver=2yver)
we obtain

�(x0; y0) =
Dxver

2yver
+ z � z �

xDver

2yver

=
Dxver

2yver
+ z + g0(x0; y0): (17)

Observe that g0(x0; y0) = (�(x0; y0) � z) � (Dxver=2yver) and viewing the Ver-
schiebung as V :E0!E: (x; y; z) 7! (x; y) we have that the functions xver and yver

are invariant under the action of the Galois group G = Gal(K(E0) jK(E)) =
Gal(K(E0) j V �(K(E))). The same holds true for the difference (�(x0; y0) � z)
due to the normalization of �. Therefore g0 is a function inK(x0; y0)which is Galois
invariant with respect to G and so g0 2V �(K(x; y)). Define g and Q functions in
K(x; y) by g � V � g0 and by (Q(x; y)=2y) = g(x; y) where Q is a mnemonic
for quadratic and was introduced anticipating the determination of g. Then for
(x; y) = (xver(x

0; y0); yver(x
0; y0)) we have

Q(x; y)

2y
= g(x; y) = g0(x0; y0) =

 
�z �

xDver

2yver

!
(x0; y0): (18)

4.3. Passing to �. We construct� exactly as Voloch and Ulmer do. Let � be defined
by:�(z) = zp�Az and introduce� requiring that the following diagram commutes

E0(K)
V
- E(K)

K+

�

?

�
- K+

�

?

(19)
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It is a rather trivial matter but let’s make sure that � is well defined. We have

�(P )
def
= �(�(P 0)) = �

�
A
Dx0

2y0

�
for any P 0

2V �1(P ): (20)

The points P 0, mentioned above, are defined over K because V , the Verschiebung,
is assumed to be separable and the choice of P 0 leads to no indeterminacy because
� annihilates �(E0[p]) and E0[p] = kerV . In addition V and � and � are group
homomorphisms and all together we have:

THEOREM 4.2. The map �, defined via (19) and (20), is a homomorphism

�:E(K)!K+:

Formulae (17) and (18) that give � and Q respectively and the fact that the
function z, see Subsection (3.2), satisfies: �(z) = yM(x), for M defined by
(3), result to a closed form formula for � that has as follows: �(E[2]) = f0g
and for (x; y)2E(K) with y 6= 0 and for (x0; y0) any point in E0(K) so that
V (x0; y0) = (x; y) we have

�(x; y)
def
= �(�(x0; y0))

(16)
= �

�
Dxver(x

0; y0)

2yver(x0; y0)

�
+ �

 
�
xDver(x

0; y0)

2yver(x0; y0)

!

(17); (18)
= �

�
Dx

2y

�
+ �

�
z +

Q(x; y)

2y

�

(3:2); (3)
= �

�
Dx

2y

�
+ yM(x) + �

�
Q(x; y)

2y

�
: (21)

See that neither a formula giving x = xver(x
0; y0) as a function of x0 and y0

nor the explicit knowledge of (x0; y0) are required for the determination of �(x; y).
There may be more than one admissible derivations, D. Each one gives rise to a
different map,�. In what follows we will determine the set of admissible derivations
and the unknown function, Q.

4.4. Identifying Q(x). Inspecting Formula (21) that gives � above and (18) that
definesQ, we realize thatQmay have poles only atO. See thatQ = �2zyver�xDver
and z, yver and xver have poles only aboveO and for ( )D, the differentiation defined
in Subsection (4.2), we have: the set of polar places of xDver is included in the set of
polar places of xver. Hence Q is a polynomial in x and y.

Let’s try to determine Q(x; y). Remember � is a homomorphism. Hence � is
an odd function. So Q is even, that is, a polynomial only in x (see [Silv] III.2.3.1.
p. 59). Finally, since �(�(xDver=2y)) = yM(x) + �(Q(x)=2y) and xDver=2y has no
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134 A. BROUMAS

poles above O, Q has to be of degree exactly 2 so that �(Q=2y) cancels the pole
due to yM(x) and � is given as

�(x; y) = �

�
Dx

2y

�
+ yM(x) + �

 
ax2 + bx+ c

2y

!
: (22)

To be exact we need a = �2 because M(x) is monic (see Equation (3)).
Now let’s repeat the process of transforming � as we did in Equation (16) but

this time starting from

�(x0; y0) = A
Dy0

3x02 + 2ap2x
0 + a

p
4

and invoking

V ?

�
dy

3x2 + 2a2x+ a4

�
= A

dy0

3x02 + 2ap2x
0 + a

p
4

:

This way we arrive at

�(x0; y0) =
Dyver

3x2
ver + 2a2xver + a4

�
yDver

3x2
ver + 2a2xver + a4

; (23)

and using (20) which defines � and our previous calculation of � in (16) we can
express � in two different ways

�(x; y) = �

�
Dxver

2yver

�
+ �

 
�
xDver

2yver

!

= �

�
Dyver

3x2
ver + 2a2xver + a4

�
+ �

 
�

yDver

3x2
ver + 2a2xver + a4

!
: (24)

Starting from the equation for E: y2 = x3 + a2x
2 + a4x + a6 and using D-

differentiation we can relate Dx and Dy via

2yDy = (3x2 + 2a2x+ a4)Dx+ ((Da2)x
2 + (Da4)x+ (Da6)):

Then (24), the equation above, invoking for one more time �(�(xDver=2yver)) =
�(Q(x)=2y) + yM(x), yields

�

 
�

yDver

3x2
ver + 2a2xver + a4

!
(25)

= �

�
Q(x)

2y

�
+ �

�
Dx

2y
�

Dy

3x2 + 2a2x+ a4

�
+ yM(x) (26)

= �

 
1

2y

 
Q(x)�

(Da2)x
2 + (Da4)x+ (Da6)

(3x2 + 2a2x+ a4)

!!
+ yM(x): (27)
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Observe now that yDver=(3x
2
ver + 2a2xver + a4) has no poles above the points of

E with y = 0 and so Q is determined by

Q(ei) =
(Da2)e

2
i + (Da4)ei + (Da6)

3e2
i + 2a2ei + a4

which also readsQ(ei) = �Dei for ei the roots of f : f(x) = x3+a2x
2+a4x+a6

and (ei; 0) are the points of order 2.

4.5. Solving Q(ei) = �Dei, i = 1; 2; 3. So we have to solve a linear system of
three equations and three unknowns a, b and c. The determinant of the system is the
Vandermode determinant of the quantities ei, i = 1; 2; 3; hence nonzero because its
square equals to 1

16� and�, the discriminant of the elliptic curve, is nonzero. Since
we already know a = �2 we can also obtain an equation binding D, the canoni-
cal derivation.

Note that due to symmetry the solutions involve only symmetric functions of e1,
e2 and e3. Hence explicit knowledge of the coordinates ei is not required and we
can proceed employing any form of the elementary symmetric functions theorem
and the fact that ei, i = 1; 2; 3, are the roots of f : f(x) = x3 + a2x

2 + a4x+ a6.
Alternatively, instead of solving the system above, we can pinpointQ as the unique
quadratic in x so that

Q(x) =
(Da2)x

2 + (Da4)x+ (Da6)

3x2 + 2a2x+ a4
modulo f:

One way or another we obtain

a = 16
�
((2a2

4 � 6a2a6)Da2 + (�a2a4 + 9a6)Da4 + (2a2
2 � 6a4)Da6);

b = 16
�
((a2a

2
4 � 3a4a6 � 2a2

2a6)Da2 + (�a2
2a4 + 2a2

4 + 3a2a6)Da4

+ (2a3
2 � 7a2a4 + 9a6)Da6);

c = 16
�
((a2a4a6 � 9a2

6)Da2 + (�2a2
2a6 + 6a4a6)Da4

+ (a2
2a4 � 4a2

4 + 3a2a6)Da6);

(28)

where � is the discriminant of the elliptic curve given in [Ta], p. 180 or [Silv],
p. 46 as a polynomial in a2, a4 and a6.

To simplify the presentation we will treat the case p = 3 in Appendix (B).

4.6. Calculation for p > 3. In this case a linear change of variables allows us to
assume without loss of generality that a2 in (1) is equal to zero. Then we obtain

a =
3(2a4Da6 � 3a6Da4)

4a3
4 + 27a2

6
;

b = �
1
6
D�

�
where � = �16(4a3

4 + 27a2
6); (29)

c = 2
3a4a = �4

3a4:
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In order to have a = �2 we realize that admissible derivations,D, are the ones that
satisfy*

D;
9a6(da4)� 6a4(da6)

2(4a3
4 + 27a2

6)

+
= 1

and so we obtain an alternative description of !q. That is, comparing with (12) in
Subsection (4.1), we have

!q =
A dx0c
c2y0c

=
a4 dj
18a6j

; (30)

where j is the Weierstrass j invariant given by j = (�48a4)
3=�.

Note that our restriction j =2Kp, see Subsection (3.1), guarantees: j 6= 0, a6 6= 0,
a4 6= 0 and dj 6= 0. Hence, once more we see that !q is well defined and nonzero;
cf. Subsection (4.1).

Under a change of variables xu = u2x; yu = u3y, !q changes to (!q)u =
u�2!q. When we started working in this problem this was one of our first observa-
tions and at that time it helped us guess

!q = r
a4 dj
a6

for r2K(j):

See that even if K is not separably closed, still !q is in 
KjFp
. In particular, if

we work over Fp(j) or any function field in one variable then the unique choice for
D is

D =
2(4a3

4 + 27a2
6) d

9a6(da4)� 6a4(da6)
= 18

a6

a4
j

d
dj
:

Overall, provided that some admissible derivation, D, does exist, (21), the
formula for � becomes: �(E[2]) = f0g and for y 6= 0

�(x; y) = �

�
Dx

2y

�
+ yM(x) + �

 
�2x2 � 1

6
D�

�
x� 4

3a4

2y

!
(31)

and this concludes the proof of our main theorem.

5. Tate’s curve and Serre’s derivation

In order to justify the notation !q, we need refer to the connection between !q and
dq=q, the canonical differential of the ground field, Fp((q)), of the Tate curve, dual
to Serre’s derivation, @ = q(d=dq). The canonical differential, dq=q, which also
appears in Ulmer’s work, see [Ulm], p. 254, is given by

dq
q

=
3E6 dE4 � 2E4 dE6

E3
4 �E2

6
;
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where E2k are the Eisenstein series normalized so that their q expansion starts with
1. To compare the two expressions

!q =
a4 dj
18a6j

and !q =
dq
q
;

note that our curve E: y2 = x3 + a4x+ a6 is isomorphic to the Tate curve

Eq: ~y2 + ~x~y = ~x3 + h4~x+ h6 for

h4 =
1
48 + a4; h6 =

1
1728 + a6 +

a4
12 ;

~x = x� 1
12 and ~y = y � 1

2(x�
1
12):

Given the classical q-expansions for h4 and h6 (see [Silv], p. 356 Sect. 14) we get
the following q-expansions for a4 and a6

a4 = �
1
48 � 5

X
n>1

n3qn

1� qn
and a6 =

1
864 �

7
12

X
n>1

n5qn

1� qn
; (32)

and employing them, for

j =
6912a3

4

4a3
4 + 27a2

6
; we obtain

a4 dj
18a6j

=
dq
q
:

Alternatively, following Tate’s suggestion, we can use the correspondences
E4$ c4 and E6$ � c6, where c4 and c6 are the parameters introduced by Tate
in [Ta] and which for a1 = a3 = a2 = 0 become c4 = �48a4 and c6 = �864a6.
Then !q becomes

c4

c6

dj
j

= �
E4

E6

dj
j

=
dq
q

and from a theorem of Ramanujan, see [SD], p. 78, (q(d=dq)�)=� = E2 and the
formula for � reads

�(x; y) = �

 
q d

dqx

2y

!
+ yM(x) + �

 
�2x2 � 1

6E2x+
1

36E4

2y

!
: (33)

6. Working over K not separably closed

In fact, the only place, where we used that K is separably closed, is when we
claimed that the extension K(E0) jK(E) is Galois, with Galois group G =

https://doi.org/10.1023/A:1000170513383 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000170513383


138 A. BROUMAS

Gal(K(E0) jK(E)). According to Hasse, see [Ha], we need A, the Hasse invari-
ant, to be nonzero and a (p � 1)-st power. Hence, the extension from K to K1,
for K1 = K(A1=(p�1) would be sufficient. Note that, since K contains Fp , if it
contains one (p� 1)-st root of A then it contains them all.

Arguing from general principles one may be able to prove that the maps � and
�, defined in (11) and (19), can be chosen to be Galois equivariant with respect
to Gs = Gal(Ks jK). However, in our case, see Section (4) and Appendix (A),
we have produced explicit expressions for � and � and have specified the set of
admissible derivations via the explicit calculation of !q.

Hence, we need only observe that !q is defined over the field of definition,
K = Fp(a1; a3; a2; a4; a6), of our elliptic curve, E, even if K is not separably
closed. Hence, provided that j =2Kp a derivation D of Ks defined over K can be
chosen so that hD; !qi 6= 0 resulting to � and � also defined over K . In particular,
for E defined over Fp(j), for j the Weierstrass j-invariant of E, then � and � can
be defined over Fp(j) too.

7. Applications

We attempt here a brief synopsis of the relevant contents of [Vol], [Ulm] and [B].

7.1. The kernel of �. First observe that pE(K) � ker(�). We have �(pP ) =
p�(P ) because � is a group homomorphism and p�(P ) = 0 because we work in
characteristic p. Now remember that � was defined via the commutative diagram,
(19), and � � V = � � �. Hence, �(P ) = 0,�(�(P 0)) = 0 for all P 0 in V �1(P ).
Since the kernel of � equals to fc: cp � Ac = 0g we get �(P 0)2 hci, the additive
group generated by any nonzero such c. In fact, since V �1(P ) = P 0 � E0[p] and
�(E0[p]) = hci, we may choose P 0 = (x0; y0), P 0 in V �1(P ), so that �(P 0) = 0
and since

�(P 0) = �(x0; y0) =
Dx0

2y0
;

(points of order 2 can be treated separately), we get that P 0 can be chosen so that
Dx0 = 0.

In general, D is not fully determined and the condition Dx0 = 0 is not that
informative. So, let’s restrict ourselves to the case [K: Fp ]tr = 1. In this case
D = 18(a6=a4)j(d=dj) andDx0 = 0 gives x0 2Kp. By inspection of the equation
defining E0, (2), we get y0 2Kp also. Hence, (x0; y0) = F (Q) for some Q in
E(K). As we have seen, in Subsection (2.3), V � F = [p]E and so P = V (P 0) =
(V � F )(Q) = pQ. Hence, if the transcendence degree of K over Fp is equal to
one, ker(�) � pE(K), resulting to ker(�) = pE(K). For an alterative proof see
also [Vol] Theorem 3.1.

7.2. � as a descent map. For K a function field in one variable and Kv its comple-
tion with respect to v, one of its valuations, Ulmer in [Ulm], p. 248 and 249 proves
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that Sel(Kv ; [p]), the local Selmer group for the multiplication by p map, equals
to �(E(Kv)). Ulmer calculates Sel(Kv ; [p]) in Theorem 5.5. Having � explicitly
given an alternative calculation can be based on the fact that � is continuous and
E(Kv) is compact for all local topologies. Then a continuity argument results to the
identification of �(E(Kv)). In [B] such a calculation is undertaken and the integral
points of E(K) with respect to any chosen set of valuations of K are effectively
computed.

7.3. Further research. The method presented here has been recently generalized by
the author to at least an algorithm for doing pn descent for elliptic curves in positive
characteristic. The key idea is the generalization of the Hasse invariant A to an
infinite Witt vector with effectively computable components. For a generalization
to the case of Abelian varieties see [BuVo].

Appendix A. Calculation for p = 2

The case p = 2 has already been treated by Kramer in [Kra]. See also [Vol]
Remark 3.3. Let E be given by: y2 + a1xy = x3 + a2x

2 + a6. Then � = a6
1a6 and

j = a6
1=a6 and the map � is given by

�:E(K)!K+:�(x; y) =
a6

a2
1x

2
+ �

 
a6

dx
da6

x

!
; (34)

where �(z) = z2 + a1z.
We would like to present here a direct calculation of the canonical differential

!q. Remember that � is normalized by: �(P 0) = cgal(P 0) for P 0 a non-trivial point
of order p on E0 and cgal(P 0) is a (p � 1)-st root of the Hasse invariant, A. But
presently p � 1 = 1 and we have a unique choice for the point P 0, P 0 = (0; a6)
and cgal(P 0) = A = a1. Since the invariant differential !0 on E0 is given by

!0 =
dx0

x0
and �(x0; y0) = a1

Dx0

x0
;

then D is restricted by�
D;

da6

a6

�
= 1;

and the canonical differential !q in 
KjFp
, that corresponds to E is

!q =
da6

a6
:

A routine calculation, using the formulae in [Ta], p. 181, also in [Silv], p. 46, verifies
again that

!q =
c4

c6

dj
j
:
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Appendix B. Calculation for p = 3

In this case by a linear change of variables we can assume a4 = 0 in Equation (1).
The discriminant � is given as � = 2a3

2a6 and the invariant j equals a6
2=�.

Substituting in (28) we obtain

a =
2a2

2Da6

2a3
2a6

=
Da6

a2a6
= 1;

b =
a2

2a6Da2 + 2a3
2Da6

2a3
2a6

; (35)

c = 0:

Hence, (21), the formula for � in characteristic 3 becomes

�(x; y) = �

�
Dx

2y

�
+ y + �

0
@x2 + 2Da2

a2
+ Da6

a6

2y

1
A : (36)

Note. One verifies that again we have

!q =
da6

a2a6
=

c4

c6

dj
j
$

dq
q
:
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