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Abstract. Given E, an dliptic curve defined over K, afield of positive characteristic, provided that
7, the Welerstrass j-invariant, is not an element of K7, we construct explicitly, that is, we give by a
closed form formula, a non-trivial homomorphism, u: E(K)— K™, from the group of K -rational
points of E to KT, the additive group of K. In the course of our analysis we discover a canonical
differential, wq € Qx|+, associated to £ and we relate it to the differential dg/q associated to the
Tate curve. If the transcendence degree of K over I, isequa to one, as for example is the case for
function fieldsin one variable, then n isap-descent map, that is, itskernel isequal to pE(K') and the
explicit formulafor p can be used to provide effective proofs of analogues of classical theorems on
dliptic curves. For example, in the author’s thesis at The University of Texas at Austin the analogue
of Siegel’s Theorem on the finiteness of integral points of E(K) is proved effectively.
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1. Introduction

Here we extend work of Kramer [Kra], Voloch [Vol] and Ulmer [UIm] and we
present the p-descent map concretely in closed form. Our method worksfor general
prime p and quite general field K, see Subsections (2.1), (4.1) and (4.6), but it is
simpler to state the main result uniformly for all p > 5 and restrict ourselvesin the
function field case with [K: F, i = 1.

MAIN THEOREM. Let K be a function field in one variable, of characteristic
p > 5, andlet E:y? = 23 + a4z + as, as, ag € K, be an elliptic curve with origin
O. Assume that the Hasse invariant A is nonzero and dj # 0 for d the canonical
derivation which maps K to Qg r,. Let D = 18(ag/a4)j(d/dj). Then we have
a homomorphism u: E(K,) — K which is Galois equivariant with respect to
G = Gal(K; | K), defined by u(E[2]) = {0} and

D —2¢% — 328
u(:r7y)=7r<—x> +yM(w)+7f< ~ 64

4
T — 304 .

where all quantities above can be computed directly from a4 and ag. That is:
j isthe j-invariant, A the discriminant, A the Hasse invariant, = is defined by

* Thisispart of the author’s dissertation at The University of Texas at Austin
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(%) = 27 — Az and M isdefined by: (23 + agz + ag)?~V/2 = 7 M (z)+ lower
order terms.

All our work is based on two different descriptions of the Galoisgroup G of the
field extension K, (E®)) | K,(FE) where E() isthe Frobenius curve associated to
E and K, (E®)) isviewed asan extension of K (E) viathe Verschiebung, the dual
isogeny to the Frobenius map. See Section (3). Then in Section (4) a generalized
Manin map, see [M], of order 1, that is a homomorphism involving only first order
differentiation is constructed from E?)(K) to K} and normalized in accordance
with the Galois action of GG. This map has avery simple expression in coordinates
and this allows us to produce aformula for the Manin map 1. from E(K) to K.

The expositions of Voloch [Vol] and Ulmer [UIm] are naturally the origins of
this work and only after reading through them everything presented here can be
seen viathe right historical perspective.

Having p explicitly given, certain applications become accessible. For example,
in[B], onefinds an effective proof of Siegel’s Theorem on the finiteness of integral
points on a non-isotrivial elliptic curve defined over a function field finitely gen-
erated over F,, of transcendence degree one. There, a careful local investigation,
facilitating the formulafor 1, compares height with local distance from the origin,
and passing to global, the height of the integral points is bounded, which amounts
to effectively identifying them.

We have tried to avoid computations and justify as many results as possible
using only general theory. However, al our intuition was developed via explicit
calculationsfor p =5, as = 3t*, ag =4andp = 7, a4 = 1, ag = 5t° and p = 11,
aq = 5t2, ag = t5.

2. Conventionsand notation

2.1. Our field. Let K be afield of characteristic p > 0. By K, we denote the
separable closure of K. It is crucia for our analysis that Dery, K is nonzero.
Hence, we need K # KP. As it will turn out, see Section (6), we may assume
without loss of generality that K = K, that isthat K is separably closed.

2.2. Elliptic curves. Our object of study will be an elliptic curve, E, defined over
K. The case of characteristic p = 2 will be studied in Appendix (A) and for p # 2
theWeierstrass Equation for £ can betaken to be: of itsplane projective embedding
given by a Weierstrass Equation

E: y2 = f(gj) = x3 + azxz + a4 + ag. (1)

2.3. Frobenius. For simplicity of notation we denote E(?), theimage of therelative
—with respect to K - Frobenius map, by E’

12

EW) = E'y/* = P ag:vlz + ahz' + af (2
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and the Frobenius map is given by: F: E — E': (z,y) — (2P, y?) and for V, its
dual isogeny, theVerschiebung: V: E' — E: (¢, y') — (zver(2',¥'), yver (2, 4')) We
have: Vo F = [plpand F o V = [p|p:.

The Frobenius map, F, is aways inseparable but its dual isogeny, the Ver-
schiebung, V, is separable unless the Hasse invariant of E is zero.

2.4. Calculating the Hasse invariant. We will introduce A via one of its explicit
calculations. The algorithm goes back to Deuring [Deur] 8.2, p. 253. We present
herethecasep > 3witha; = a3z = 0. Hence (1) isthe equation of theelliptic curve
and one calculates A asthe coefficient of zP~1 in the polynomial (f (z))®~9/2.In
addition define L, and M, L and M polynomials, deg L < (p — 2), by

F@) P2 = (23 + ap2® + agz + ag)P~Y/?
= L(z) + AzP 1 + 2P M (). ©)

Hasse, in [Ha], provesthe following theorem: Let K be aseparably closed field
of positive characteristic p. Then there exists a unique separable, Galois, cyclic of
order p, unramified extension of the elliptic field K (E) = K(z,y), if and only if
the Hasseinvariant A is nonzero.

2.5. Some properties of A. Given the standard choices for invariant under the
group law differentialson £ and F,

dz , dx’
Ty MM Ty

the Hasseinvariant, A, can be defined equivalently via:

LEMMA 2.1. Let V denotethe Veerschiebungand let V* betheinduced (pull back)
map on differentials. That is: V*: Qg gy x — Lk (£ k- Then

V¥ (w) = Ad'. 4

w

Proof. This is the dual statement to 12.4.1.3 in [KM] p.354. Since in [KM]
the Hasse invariant, A, is defined via the map tg(V): Lie(E®), K) — Lie(E, K),
using autoduality of elliptic curvesweidentify Lie(E, K) with H*(E, Og), where
Op isthe structure sheaf of E, and the connection with our calculation in (3) is
provided by [Hart] IV.4. Proposition 4.21, p. 332-333. O

See that A # 0 if and only if the Verschiebung is separable and in that case
the field extension K (E') over V*(K(E))) is the unique extension of Hasse's
Theorem.

LEMMA 2.2. For V asabove and with a; = 0 = a3 we have

1 dw\/er
Yver = 1 y ar 5)
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Proof. By the lemma above
dz da’ dz dz
V* <—> =A-—~— ad V* <—> ==,
2y 2y’ 2y 2Yver
[SilV] I1.4.1., p. 35. O

2.6. Dencting derivations. At this point allow us to introduce some additional
notation. We use d and d to denote the canonical derivations: d: K — Qg r, and
d: K — Qe p, and d: K (E) — Qg () x, add: Ks(E') = Qg (51| i, - We use
D and § to denote field derivations, that is, elements of Dery, K or Derg, K.

Let D be a derivation of K. Then we define ( )P to denote the derivation of
K (E') that extends D on K anditistrivia onz’. Since E' is defined over K? we
also have that (y')? = 0 and so ( )P on K[z',4'] is simply differentiation of the
coefficients of the polynomialsin 2’ and ¢/ and extends naturally as a derivation
on K (z',y").

Finaly, for f in K (FE), arational function on E defined over K, by Df we
denote the composition D o f |y, x,) Where reg(f, K) = {‘points of E(K)
where f isregular}. Similarly we define D¢’ for ¢' in K (E').

3. Preliminaries

3.1. Restrictions. Later on we will require that, E'[p], the p-torsion of E’, is not
defined over KP. This condition has various reformulations:

LEMMA 3.1. For FE an dlliptic curve defined over K a field separably closed of
characteristicp > 0 the following are equivalent:

(1) E can be defined over KP?.
(2) The p-torsion of E is defined over K. Thatis E[p] C E(K).
(3) Thep-torsion of E’ is defined over KP. Thatis E'[p] C E'(KP).

Proof. The only inference that needs justification is (2) = (1). One may argue
as follows: if E[p] is defined over K then the quotient curve, E/E[p], see [SilV]
Proposition 4.12, p. 78, is also defined over K and the map, £ — E/E[p], is a
separableisogeny of degree p, defined over K. But then, its dual isogeny hasto be
purely inseparable because their composition gives the multiplication by [p] map,
which is not separable. See [Silv] Theorem 111.6.1., p. 84. Hence, E isthe image
of a purely inseparable map of degree p, defined over K, that is, F is defined
over K?. O

Hence, we simply require that, j, the j-invariant of £, isnot in K?. Note that
j ¢ K? implies j ¢ F,, which implies A # 0O, since al supersingular j-invariants
arein F,.. Hence, E'[p] is cyclic of order p. See [Huse] Table 2 in 13.7, p. 258.
Given that K is assumed to be separably closed we get that E'[p] is defined
over K.
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3.2. Descriptionsof G = Gal(K (E') | K(FE)). Cassels, [C] p.40 Equation (1.5),
attributes to Deuring, an alternative description of K (E'). We have K (z',y') =
K(z,y,z), for z algebraic over K(z,y), satisfying 7(z) = 2P — Az = yM(x)
where M was defined in (3). Voloch in [Vol] Lemma 1.1 calculates z explicitly as

where 2! are the ' coordinates of the points of £’ of exact order p. In fact there
are p possible choicesfor z and the one presented above is uniquely characterized
by (z — (y/z))(O’) = 0. Note that, due to symmetry, z isin K (z,y) evenif z;'s
arenotin K.

DefineG = Gal(K (E') | K(FE)). Tobeprecise, G = Ga (K (E') | V¥(K(E))).
There are two canonical descriptions of G. First we may think of it as consisting
of tranglations of the functionsin K (E’) by the points of order p on E'. That is

G ={rp:P' € E'lp]} where (1p¢')(Q) = ¢'(P' & Q') (6)
and second since K (E') = K(E)(z) one may think of G as translations of the
special function z by (p — 1)-st roots of A. Observe that, since we have assumed
K to be separably closed, z is essentially the Artin—Schreier generator of K (E")
and employing it we get

G=(0) foroiz—z+c for Pt =A (7)

Thetwo descriptions of G force acanonical isomorphism between the points of

order p on E’ and the additive subgroup of K+ generated by the (p — 1)-st roots
of A. We call the isomorphism cgal and it is defined by

cga (P) & 2(Q' @ P) - 2(Q). (®)
Theisomorphism cgal does not depend on the choice of )'. However, Q" needs
be chosen so that no poles occur in Equation (8), above.
The definition of cgal forces an isomorphism

cgal: E'[p] = (c) 9)

and employing it we can index the pointsin E’[p] by their corresponding Galois
constants — their images under cgal — and have

E'lp] = {P.:? — Ac =0}, where cga(P)) =c. (10)
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4, Proof of the main theorem

Our goal isto construct anontrivial homomorphism p: E(K) — K and caculate
w(P) explicitly in terms of z(P) and y(P). The origins of our work are in [Vol]
Theorem 3.1. and [UIm] Proposition 5.3. diagram p. 249. As Voloch and Ulmer do,
our first step is the construction of ahomomorphism 3: E'(K) — K. It turns out
that one may construct 3 directly and then obtain a closed form formula for p
based on formal manipulations of the formulafor 3. For the most part we restrict
ourselvesto p > 3 and later on to p > 3. See Appendix (A) for p = 2 and
Appendix (B) for p = 3.

THEOREM 4.1. Let E' be an elliptic curve defined over (K)P. Then for any
¢ € Derg, K the following map is a homomor phism

B(P')=0 for P'e E'[2),
B E'(K)—K™: 5z (11)

Blay) = Az dse

Equivalently 5(«',y") = A(dz'/2y") or
oy’
3(a')? + 2d5(a') + ajy’

=A

whichever iswell defined.

Proof. The proof is a straightforward calculation. One should use the addition
formulae for elliptic curvesin Weierstrass form; see [Ta] or [Silv], p. 58. Observe
that since E' is defined over K? we have

5y = 3(z')? + 2ab(x") + aﬁ(sx,
2y’

and therestistrivial. Thatis, for (2, y') = (21, y1) & (25, y5), we have explicitly
z' = 2! (2, yy, 2h, vh) and y' = o' (2, vi, 5, y5) anditisaformal identity that

v %
To verify it, asymbolic calculator may be used; we used Mathematica. O

4.1. Canonical choice of 4. Admissible derivations. Normalize G as follows:
choose ¢, say D, requiring that: 3(P') = cgal(P’) for P’ € E'[p] and call such
derivations, D, admissible. Remember cgal was defined by Equation (8) in Subsec-
tion (3.2) and the points of order p, for each given fixed characteristic p, are explic-
itly calculated in [G]. Clearly the set of admissible derivations can be described

by
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Adz!,

D admissbles (D,w,) =1 for w, = W’

(12)

where P! = (z.,y) isany particular non-trivial point of order p on E' *

See that w, is well defined and nonzero because: (1) the Hasse invariant, A is
nonzero and so we have p points of order p on E’ and cgal is well defined and
¢ = cga(P!) isnonzero asa (p — 1)-st root of A and (2) since E'[p] isin E(K)
but not in E(K?) we have dz!, # 0; see Lemma (3.1) in Subsection (3.1).

Hence, the set of admissible derivations is nonempty and the suggested nor-
malization of 3 is feasible. As an illustration, consider the case when K is the
separable closure of I, [t] and E isan elliptic curve not defined over K. Then not
only there exists an admissible derivation, D, but in addition, since all derivations
of K are multiples of each other, it isunique and it is determined as follows

_ N — _ oy 9
=cga(P;,) =ceD = Azycdx" (13

C

AD(2' ()
(2y'(F?))

4.2. Transforming 8. The stepsin this subsection are presented in reverse order of
discovery. Reading [Kral, [Vol] and [UIm] and experimenting with the computer
we guessed that

plz,y) =m (Z—Z) + n(functionin K(E)) + yM (x).

Following this belief, we were led to the normalization of 5 using cgal and then
we worked backwards rewriting the formulafor 3.

For ¢’ € K(E') and D aderivation of K and for Dg’ and Dz’ and ( )? defined
in Subsection (2.6), we have

dg’
Dy’ = (@) Dz’ + ((9)")lreg((g)2.5)- (4
In particular
dx
Dxye = d:;l?r Dz’ + *TvDer' =

Now let P € E(K) denote a generic K rational point of E. Let P' = (z/,y')
be any pointin V=1(P) sothat P = V(P') = (aver(P'), yver(P')) = (Tver, Yver)-
Then invoking (15) above and Lemma (2.2) that gives yyer = (1/A)y’ (dayer/dz’),
[ becomes:

* The choice of notation, wg, will be explained in Section (5).
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Dx'
ﬁ(x',y') = A 2y
Dz’ 1 DZyer
= — Dayer +
2y’ 2ver e 2ver
1 1 dz Dz
_ A—D I VeI’D ! D > ver
2y’ 2yver ( dz’ TE e ) ¥ 2yver
C(adowo L Op (s Do
2y’ 2yver da’ 2Yver 2Yver
Dxyer x\z,)e,
= — . 16
2yver 2yver ( )
Now adding and subtracting z and defining ¢’ by: ¢’ (z', ') = —2 — (25 /2yver)
we obtain
Dx zD
xl7l — Ver—{—z—z— ver
Bz',y') e e
D
N Zwvef +z+4¢(@y). (17)
Yver

Observe that ¢'(z',y') = (B(2,y') — 2) — (Dzver/2yver) and viewing the Ver-
schiebungasV: E' — E: (z,y, z) — (z,y) we have that the functions e and yyer
are invariant under the action of the Galois group G = Ga(K(E') | K(E)) =
Ga(K(E')|V*(K(FE))). The same holds true for the difference (5(z',y’) — 2)
dueto thenormalization of 3. Therefore ¢’ isafunctionin K (2',y') whichisGalois
invariant with respect to G and so ¢’ € V*(K (z,y)). Define g and @ functionsin
K(z,y) by goV = ¢ and by (Q(z,y)/2y) = g(z,y) where @) is a mnemonic
for quadratic and was introduced anticipating the determination of g. Then for
(,9) = (zver(2',Y), pver(2',y')) We have

xr {L‘D
Q(ZJy) — g(x’y) — gl(xl’yl) = (—Z — 2V€f > (wl,yl)- (18)
Y Yver

4.3. Passingto u.. We construct . exactly as Voloch and Ulmer do. Let 7 be defined
by: 7(z) = 2P — Az andintroduce . requiring that the following diagram commutes

E'(K) —Y— B(K)

Kt —T K7
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Itisarather trivial matter but let’s make sure that . is well defined. We have

/

2;, ) for any P! € V-1(P). 20)

The points P’, mentioned above, are defined over K because V', the Verschiebung,
is assumed to be separable and the choice of P’ leads to no indeterminacy because
7 annihilates 5(E'[p]) and E'[p] = ker V. In addition V' and  and = are group
homomorphisms and all together we have:

THEOREM 4.2. The map p, defined via (19) and (20), is a homomor phism
wE(K)— KT,

Formulae (17) and (18) that give g8 and (Q respectively and the fact that the
function z, see Subsection (3.2), satisfies: n(z) = yM (x), for M defined by
(3), result to a closed form formula for 4 that has as follows: u(E[2]) = {0}
and for (z,y) € E(K) with y # 0 and for (z/,4') any point in E'(K) so that
V(',y') = (z,y) we have

def

uey) € wpEy)
* G ()
22,3 W(Z_jpymx)ﬂ(%ﬁ). (21)

See that neither a formula giving z = zver(z',y') as a function of z’ and 3/
nor the explicit knowledge of (', y') arerequired for the determination of 1.(z, y).
There may be more than one admissible derivations, D. Each one givesrise to a
different map, 1. Inwhat followswewill determinethe set of admissiblederivations
and the unknown function, Q).

4.4. |dentifying Q(z). Inspecting Formula (21) that gives ;. above and (18) that
defines Q, werealizethat Q may havepolesonly at O. Seethat Q = —2zyyer — 5y
and z, yver and zver have polesonly above © andfor ()P, the differentiation defined
in Subsection (4.2), we have: the set of polar places of =, isincluded in the set of
polar places of zye. Hence Q isapolynomia in x and y.

Let's try to determine Q(x, y). Remember . is a homomorphism. Hence 1 is
an odd function. So () is even, that is, apolynomial only in z (see[Silv] 111.2.3.1.
p. 59). Finaly, since 7(— (2R, /2y)) = yM (z) + n(Q(x)/2y) and zL, /2y hasno
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poles above O, @ hasto be of degree exactly 2 so that 7(Q/2y) cancels the pole
dueto yM (z) and p isgiven as

2
Dx axr +bx+c> ‘ 22)

,u(x,y):7r<5> —i—yM(:r)—i—W( 2

To be exact we need a = —2 because M (x) is monic (see Equation (3)).
Now let’s repeat the process of transforming 3 as we did in Equation (16) but
thistime starting from
Dy
3% + 21" + aly

plz',y') = A

and invoking

. dy dy’
V* (5 =A_— .
304 + 2001 + aq 3z’ + Zagx’ + aﬁ
Thisway we arrive at

D
,G(LEI, yl) _ Dyver yver (23)

322y + 2a0Tve + ag B 302, + 2a0Tver + ag’

and using (20) which defines 1 and our previous calculation of g in (16) we can
express i in two different ways

Dxyer > :v\?er
T,Yy) =T +7| —5—
M( y) < 2yver ( 2yver

_ W< Dtpva >+ |- Vi . (24
312y + 2a2Tver + as 312y + 2a27ver + as

Starting from the equation for E:y? = 2° 4 a2z + a4z + ag and using D-
differentiation we can relate Dz and Dy via

2yDy = (322 + 2025 + a4)Dz + ((Dag)z? + (Das)z + (Dag)).

Then (24), the equation above, invoking for one more time 7(— (x5, /2yver)) =
(Q(x)/2y) +yM(z), yields

y\?er
— 25
a ( 337\2/3' + 202%ver + a4> (25)
B Q(%‘)> (& _ Dy >
-7 ( 2y T 2y 3x2+ 2ao7 + ay +yM(z) (26)

- ( 1 <Q(:r) B (Daz)x? + (Dag)x + (Dag)

2y (322 + a1 + ag)

2 >> + yM (z). 27)
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Observe now that y, / (312, + 2a2zver + a4) has no poles above the points of
E with y = 0 and so () is determined by

(Daz)ef + (Das)e; + (Dag)

Qles) = 3ez~2 + 2aze; + aa

which alsoreads Q(e;) = —De; for e; theroots of f: f(z) = 22+ axx® + a4z +ap
and (e;, 0) are the points of order 2.

4.5. Solving Q(e;) = —De;, i = 1,2,3. So we have to solve a linear system of
three equations and three unknownsa, b and c. The determinant of the systemisthe
Vandermode determinant of the quantitiese;, : = 1, 2, 3; hence nonzero becauseits
squareequalsto %A and A, thediscriminant of theelliptic curve, isnonzero. Since
we aready know ¢ = —2 we can aso abtain an equation binding D, the canoni-
cal derivation.

Notethat dueto symmetry the solutionsinvolve only symmetric functionsof e;,
ez and e3. Hence explicit knowledge of the coordinates ¢; is not required and we
can proceed employing any form of the elementary symmetric functions theorem
and the fact that e;, i = 1,2, 3, aretheroots of f: f(z) = 3 + azz? + asz + as.
Alternatively, instead of solving the system above, we can pinpoint (2 asthe unique
quadraticin z so that

Q) = (Daz)x? + (Dag)x + (Das)
N 322 + 2a07 + as
One way or another we obtain

modulo f.

a= %‘5((201421r — 6azap)Day + (—aas + 9ag)Dag + (Za% — 6a4)Dag),
b= %((‘12“421 — 3ag4a6 — Za%ae)Daz + (—a%a4 + 2a£ + 3azag)Dag
+ (2ag — Tazaq + 9ag)Dag), (28)
c = 1K6((a2a4a6 — 9ag)Da2 + (—Za%ae + 6asag)Dag
+ (a%cu, — 4a§ + 3a2a5)Da6),
where A is the discriminant of the elliptic curve given in [Ta], p. 180 or [Silv],

p. 46 asapolynomia in az, a4 and ae.
To smplify the presentation we will treat the casep = 3 in Appendix (B).

4.6. Calculation for p > 3. In this case a linear change of variables allows us to
assume without loss of generality that a; in (1) is equal to zero. Then we obtain

3(2a4Dag — 3asDas)

4af{ + 27a% ’
b= —é% where A = —16(4a3 + 2743), (29)

2 4
CcC = §a4a = —§a4.
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Inorder to havea = —2 weredlize that admissible derivations, D, are the onesthat
satisfy

9ag(das) — 6a4(dag)
D, =1
2(4a3 + 27a3)

and so we obtain an alternative description of w,. That is, comparing with (12) in
Subsection (4.1), we have

Adzl,  aady
wg = =

(30)

c2y!.  18agj’

where j isthe Weierstrass j invariant given by j = (—48a4)3/A.

Notethat our restriction j ¢ K?, see Subsection (3.1), guarantees. j # 0, ag # 0,
as # 0and dj # 0. Hence, once more we see that w, is well defined and nonzero;
cf. Subsection (4.1).

Under a change of variables z,, = u?z,y, = uy, w, changesto (wy), =
u~2w,. When we started working in this problem thiswas one of our first observa-
tions and at that time it helped us guess

for re K(j).

See that evenif K is not separably closed, still wg isin Qg . In particular, if
wework over If, (j) or any function field in one variable then the unique choice for
Dis

Do 2(4a3+27a)d | a.d
 9ag(dag) — 6ag(dag) az’ dj’

Overadl, provided that some admissible derivation, D, does exist, (21), the
formulafor . becomes: ;(E[2]) = {0} andfory # 0

Dz —292 —1DA, 44,
p(z,y) =m <Z> +yM(z)+7 ( 623 4 (31)

and this concludes the proof of our main theorem.

5. Tate'scurveand Serre sderivation

In order to justify the notation w,, we need refer to the connection between w, and
dq/q, the canonical differential of the ground field, F, ((¢)), of the Tate curve, dual
to Serre’s derivation, 0 = ¢(d/dg). The canonical differential, dg/q, which aso
appearsin Ulmer's work, see [UIm], p. 254, is given by

@ o 3E6 dE4 — 2E4 dEe
q E} — EZ ’
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where E;. arethe Eisenstein series normalized so that their ¢ expansion starts with
1. To compare the two expressions

w:a4dj an w:%
" 18agj T g7

note that our curve E:y? = 22 + agz + ag isisomorphic to the Tate curve
By ? + &) = &+ ha® + he  for
ha = %+a4, he = T128+a6+%,

(& = 45)-

Given the classical g-expansionsfor hy and hg (see [Silv], p. 356 Sect. 14) we get
the following ¢g-expansionsfor a4 and ag

T=x— andg=y—

Rl
NI

3.n 5 n
1 n-q 1 7 n-q
4=~z =52 o A a=g-n) 7o (32)

nx1 n>1 q

and employing them, for

B 6912@2
- 4aﬁ + 27a%’

: agdj  dg
we obtain = —.
18aej ¢

J

Alternatively, following Tate's suggestion, we can use the correspondences
E4¢>cq and Eg < — cg, Where ¢4 and c¢g are the parameters introduced by Tate
in [Ta] and which for a1 = az = ap = 0 become ¢4 = —48a4 and cg = —864ae.
Then w, becomes

cadj _ Fadj _ dg

c6 J Eg j q

and from a theorem of Ramanujan, see [SD], p. 78, (¢(d/dg)A)/A = E, and the
formulafor y reads

da 2 1 1
T —2zc — zF 2= F.
w(z,y) = (qdq ) Y yM(z) + 7 ( i 4) . (33)

2y 2y

6. Working over K not separably closed

In fact, the only place, where we used that K is separably closed, is when we
claimed that the extension K(E') | K(E) is Galois, with Galois group G =
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Ga(K(E')| K(FE)). According to Hasse, see [Ha], we need A, the Hasse invari-
ant, to be nonzero and a (p — 1)-st power. Hence, the extension from K to K,
for K3 = K(AY®-1) would be sufficient. Note that, since K contains F,, if it
containsone (p — 1)-st root of A then it containsthem all.

Arguing from general principles one may be able to prove that the maps 5 and
., defined in (11) and (19), can be chosen to be Galois equivariant with respect
to Gy = Gal(K, | K). However, in our case, see Section (4) and Appendix (A),
we have produced explicit expressions for 5 and p and have specified the set of
admissible derivations via the explicit calculation of wy,.

Hence, we need only observe that w, is defined over the field of definition,
K = F,(a1,as,a2,a4,as), of our eliptic curve, £, even if K is not separably
closed. Hence, provided that j ¢ KP aderivation D of K, defined over K can be
chosen so that (D, w,) # 0 resulting to 3 and 1. also defined over K. In particular,
for £ defined over F, (), for j the Weierstrass j-invariant of £, then 8 and p can
be defined over F, (5) too.

7. Applications
We attempt here a brief synopsis of the relevant contents of [Vol], [UIm] and [B].

7.1. The kernel of . First observe that pE(K) C ker(u). We have u(pP) =
pp(P) because 11 is a group homomorphism and pu(P) = 0 because we work in
characteristic p. Now remember that 1 was defined via the commutative diagram,
(19),and ;s o V = o 8. Hence, u(P) = 0< n(B(P')) = Ofor al P inV—1(P).
Since the kernel of 7 equalsto {c: ¢ — Ac = 0} we get 5(P’) € (c), the additive
group generated by any nonzero such c. In fact, since V—1(P) = P' @ E'[p] and
B(E'[p]) = (c), we may choose P’ = (z',y'), P' in V~1(P), sothat B(P') = 0
and since

! !/ / D:I’J
IG(P)_IG(x7y)_ 2y,7
(points of order 2 can be treated separately), we get that P’ can be chosen so that
Dz’ =0.

In general, D is not fully determined and the condition Dz’ = 0 is not that
informative. So, let’s restrict ourselves to the case [K:F,ly = 1. In this case
D = 18(ap/aa)j(d/dj) and Dz’ = O givesz’ € KP. By inspection of the equation
defining E', (2), we get y' € K? also. Hence, (/,y') = F(Q) for some Q in
E(K). Aswe have seen, in Subsection (2.3), Vo F = [p]pandso P = V(P') =
(Vo F)(Q) = pQ. Hence, if the transcendence degree of K over I, is equal to
one, ker(u) C pE(K), resulting to ker(1) = pE(K). For an aterative proof see
aso [Vol] Theorem3.1.

7.2. p asadescent map. For K afunction field in one variable and K, its comple-
tion with respect to v, one of its valuations, Ulmer in [UIm], p. 248 and 249 proves
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that Sel( K, [p]), the local Selmer group for the multiplication by p map, equals
to u(E(K,)). Ulmer caculates Sel (K, [p]) in Theorem 5.5. Having . explicitly
given an alternative calculation can be based on the fact that 1 is continuous and
E(K,)iscompactfor all local topologies. Then acontinuity argument resultsto the
identification of (E(K,)). In[B] such acalculation is undertaken and the integral
points of E(K) with respect to any chosen set of valuations of K are effectively
computed.

7.3. Further research. The method presented here has been recently generalized by
the author to at least an algorithm for doing p™ descent for elliptic curvesin positive
characteristic. The key idea is the generalization of the Hasse invariant A to an
infinite Witt vector with effectively computable components. For a generalization
to the case of Abelian varieties see [BuVQ.

Appendix A. Calculation for p = 2

The case p = 2 has dready been treated by Kramer in [Kra]. See also [Vol]
Remark 3.3. Let E begivenby: y? + aizy = 23+ a2z? + ae. Then A = a?ae and
j = a8/ae and the map . is given by

dz
61,67
,u:E(K)—>K+:u(:v,y):Z—62+7r< de), (34)

a1x x
where (z) = 22+ a12.

We would like to present here a direct calculation of the canonical differential
wq. Remember that 5 isnormalized by: 3(P') = cgal(P’) for P" anon-trivial point
of order p on E’ and cgal(P’) isa (p — 1)-st root of the Hasse invariant, A. But
presently p — 1 = 1 and we have a unique choice for the point P', P’ = (0, ag)
and cgal(P') = A = aj. Sincetheinvariant differential ' on E’ isgiven by

;o dz’ Dz’

w 7 and 6($,ay,) = al?a

then D isrestricted by

<D, %> _1
ag
and the canonical differential w, in Q- , that correspondsto E is

w, = 208
q ag .
A routinecalculation, usingtheformulaein [Ta], p. 181, alsoin[Silv], p. 46, verifies
again that
cq dj
wq = — .
C6 J
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Appendix B. Calculation for p =3

In this case by alinear change of variables we can assume a4 = 0 in Equation (1).
The discriminant A is given as A = 2a3ag and the invariant j equals a$/A.
Substituting in (28) we obtain
B ZG%DCLG _ Dag
N 2a§a6 " agag

=1

- a%aeﬂ)az :—:— ZaEDaG, (35)
2a3a6

c=0.

Hence, (21), the formulafor x in characteristic 3 becomes

2 Da, Da,
D x4+ 2=22 4 =88
,lj,(.’L‘7y) =T (2—x> +y+ T ;2 a6 . (36)
Y Y

Note. One verifiesthat again we have

d dj d
by = 06 _cadi  dg

axae  Ce J q
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