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GLOBAL SMOOTHNESS PRESERVATION BY
MULTIVARIATE SINGULAR INTEGRALS

GEORGE A. ANASTASSIOU AND SORIN G. GAL

By using various kinds of moduli of smoothness, it is established that the multivari-
ate variants of the well-known singular integrals of Picard, Poisson-Cauchy, Gauss-
Weierstrass and their Jackson-type generalisations satisfy the "global smoothness
preservation" property. The results are extensions of those proved by the authors for
the univariate case.

1. INTRODUCTION

Let / be a function defined on R m with values in R. Throughout the article,
we use S, x, h consistently to represent m-tuples 5 = (Si,... ,Sm), x = (x\,...,xm),
h — (hi,..., hm) of real numbers. We adopt also the notation

r • (r\
AIi/(a:):= E ^ 1 ) ' " ! J/(a: + *ft)> reN-

We define the rth-ZZ-modulus of smoothness over Rm, 1 ^ p ^ oo, by

(1) uJr(f;S)p:=oSnpjA'hf(-)\\LPiKmy

(see, for example [3, p.126]), where

U+oo f+ao\ ip 1 llp

^ ••• J _ ^ \ f ( x i , . . . , x m ) \ d x i . . . d x m ^ , i f l ^ p -
; xt € R, i = T7m|, i f p = + o o .

Here as subsequently 0 ^ h ^ 5 means 0 ^ hi ^ 6i, i = 1, m.

We define also the rth-//-modulus of smoothness over / = [a, b]m, a,b G R, a < b,

1 ^ p < co, by
(2) W r ( / ; 5 ) p : ^ W r ( / ;
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490 G.A. Anastassiou and S.G. Gal [2]

where /,-,/, = [a,b — rhi] x . . . x [a,b — rhm] and 0 ^ h ^ S.

When / € L^(Rm) = {/ : R m -4 R ; / is 27r-periodic in each variable and

II/Hi" (Rm) < + ° ° } ! w e define the rth-I^-modulus of smoothness by

where 0 ^ h ^ S and

; xt <= [—TT.TT], i = l 7 m | , ifp = +oo.

Next we define the multivariate Ditzian-Totik modulus of smoothness over [a, 6]
(see [2]). First we define the r th symmetric difference

0, otherwise.

For r € N and / € CMa, b]mj, the space of all real functions continuous on [o, 6]m, the
r th uniform Ditzian-Totik modulus is

where 0 ^ h ^ S, <j>{x) = {(f(xi),..., ip(xmj), h<p{x) :- (hi<p(xi),..., hmip{xm)) and

In the above definitions and in what follows, we consider only functions with finite
modulus of smoothness.

Put

(5) Erf (x{) := -j= \ ' e~^ dtu x{ € R,

V71" ' i

and note that
(6) — | ° V
and

Also, (2 /^ ) tan"1 (TT/^) , Erf ( T T / V ^ ) both tend to 1 as & -> 0.
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Next, for £ > 0 we define the multivariate Picard, Poisson-Cauchy and Gauss-
Weierstrass singular integrals

"1[ r+oo r+oo

n / /
. = 1

t = i

(8)

n (<?+«?

and

w((f){x):= f n v ^ i r•• rH*I+ti,...,xm+tm)
U=i J J~n J-n

(10)

We study also the generalised multivariate singular integrals

+oo r+oo

y (/
+oo r

-ln+1 ./.,_|_-

and

Lx=i J k=i

(13) •/ . . . / / ( n + «!,...,a:TO + * t r a ) n «

fit n

of Jackson type for f > 0, where C(&) = / e~'i/4i d*it i = l ,m.

Finally, when / e C([0, l]m) or / € ^([O, l ]m) , 1 ^ p < oo, we study the multi-
variate Picard-type singular integral

w - [n (,]" jf... jf / g ^) (n «-**) *... -u

https://doi.org/10.1017/S0004972700022516 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022516


492 G.A. Anastassiou and S.G. Gal [4]

for £ > 0. Obviously £{(/)(z) 6 R, for all x € [0, l]m and / e C([0, l]m). Otherwise we

assume / e ^( [0 , l]m). Also

(15) i f°
« •'0

U = 1, fc e R, ft > 0, * = I~

In [1] the authors obtained results regarding global smoothness preservation by the
univariate cases of the operators defined by (8)-(14). The purpose of the present paper
is to extend these results to the above multivariate singular integrals given by (8)-(14).
Our global smoothness inequalities involve all kinds of moduli of smoothness introduced
by (l)-(4).

2. MAIN RESULTS

The first main result is as follows.

THEOREM 1. Let f : Rm -> R have wr(/; 5)^ < +oo, r e N, for any 6 > 0, and
be such that P((f)(x), Q({f){x), W({f)(x) e R, for all x € Rm, where £ > 0. Then for
any S > 0

(17)

and

(18) [ft (Erf (•jgj)] ^(/i
The inequalities are sharp, being attained by each fj(x) = xTj, j — \,m.

PROOF: For each 0 ^ h ^ 5, we have

rm -i-in(%) +oo +oo

and

where as subsequently t = (ti,..., tm).
We now take absolute values, using

.. jf* F(x, t) eft,... r, t)\ dtx... dtr,
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and

Inequalities (16)-(18) now follow from (5)-(7).

If fj(x) :— xrj, we have

AJ/,-(x) = £ (-I)'- ' M (XJ + ihiY
t=o W

which implies wT(fj\ 8)^ = r!<5J < +oo for any 8 > 0.

Similarly we see that

and

j[w{(/,-)](x) = r!A; fi (Erf ( ^ = ) ) .

It is apparent that (16)-(18) are attained for each function /,-, j = l,m.
Finally it is easy to show that P((fj){x) 6 R for 0 < f < 1/r, and Q((fj){x),

Wiifj^x) e R for f > 0, for all i € Rm. D
The following theorem is related.
THEOREM 2 . Let f : Rm ->• R satisfy wr(/; (5)̂  < +oo for any 8 > 0 suci that

Pni{(/)(z), Qn,i(/)(a;)) WBrf(/)(i) € R, for all x £ Rm, n 6 N and f > 0. Then for any
<S>0,

(19) ^ ( P , , ^ / ) ^ ) ^ ^ (2"+1 - l ) ^ ! / ; ^ ,

(20)

and

(21) WrfWn.ea)^)^ ^ (2"+1 - 1 ) ^ ( 7 ; ^ .

PROOF: For 0 ^ h < 8 we have
fm 1-1 n+1 /„ , i\

= - [n (%)J E (-Dfc ( 1 )
/

+OO /"+OO / "t

^ ... J^ AJ/(x + *t) y gi
' "n

. . .„«„,
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... dtm.

Reasoning as in the proof of Theorem 1 and using

n+l

gives (19)-(21). D

Next we present results on global smoothness preservation, with respect first to the
L'-norm and then the ZAnorm for p > 1.

THEOREM 3 . Suppose either f € Ll{Rm) (for P((f)) or f € L^(Rm) (for Q((f),

> ° a n d r e N- Tben for a°ys > ° w e have

(22)

(23)

(24)
uJ'T(W((f);6)i < [ g (Erf (j^

PROOF: From the proof of Theorem 1 we have for 0 ^ h ^ 5 that

(25)

(26)

and

(27)

- l

dt\ . . . dtn

https://doi.org/10.1017/S0004972700022516 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022516


[7] Global smoothness of singular integrals 495

We now integrate m times, in (25) from -oo to +oo and in (26), (27) from -IT to
7T. Use of a Fubini-type result provides

T 711£T • • 7-
A;; Hd x i • • • d x

[ m ~\~l r+oo r+oo ( r+oo r+oo i

n <%>] L - L {/oo - L K'<*+*>K ••
[

]
t = i

fi^)| r . . . r {r . .

lfl (?*-"'(s))]
and

nv^

Here we have used

t)\ fa ... dxm

hHx + h)\ d{Xl tm)

where [t - n, t + IT] = [tx - IT, tx + IT] X ... x [tm - IT, tm + IT}. Relations (22)-(24) follow

from these inequalities. D

In the case of the singular integrals given by (11)-(13), we derive the following.

THEOREM 4 . Suppose either f e L^R™) (for Pn,i(f)) or f e L^(R m ) (for
Qn,<(/)> WUt({f)), £ > 0 and n,r e N. Then for any S > 0, we have

(28)

(29)

https://doi.org/10.1017/S0004972700022516 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022516


496 G.A. Anastassiou and S.G. Gal [8]

and
(30) "+1 - l)uj'r(f;S)v

PROOF: By the proof of Theorem 2 we have if 0 ^ h ^ 6 that

.t=i

and
- 1 ,

/ J-ir J—n

.1=1

We integrate m times, from — oo to +oo in the first inequality and from -IT to n in
the next two. Reasoning exactly as in the proof of Theorem 3 and using

J b = l

•we obtain (28)-(30).
We now extend Theorem 3 to the case 1 < p < oo.

THEOREM 5. Suppose either f £ V{Rm) (for P^f)) or f 6 L^(Rm) (for Q?(/),
W^(f)), 1 < p < oo. Let £ > 0 and g > 1, with 1/p + l/q = 1. Then for any (5 > 0 we
have

(31)

(32)

and

(33)

t = i

, - i

fl [(Erf (7r^/p/(2ei)))
1/P (Erf (TT

https://doi.org/10.1017/S0004972700022516 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700022516


[9] Global smoothness of singular integrals 497

PROOF: Let 0 ^ h ^ 6. We have

i- i

= |n(%)j L -+°° r+°°

dtl...dtm

and

/ i . . . dxn

-iw +oo r+oo +oo r+oo

i = i

i . . . dxn

Hence by Holder's inequality for multivaxiate integrals and a Fubini-type result we

get

-p

/:: • • • /:: {(/ .: • • • £><•+<>r [ n — ] *... *.)
UP

i= l -oo V-oo i = 1

that is,
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which implies (31).

In the case of Q((f)(x), we use the formula

1/9

From the formula for Au<5j(/)|(a;) in the proof of Theorem 1, we get

J\.. / _ ' | A ; [ Q { ( / ) ] (x)\Pdx1 ...dxm

VP

* • • • • * •

V«

Again by Holder's inequality and a Fubini-type result we obtain

£ • • • £ * • • • *

(/-'.-/*. * • • • • * » ) " '

Lt=i
m7T

dt\ . . . dtr,

which implies
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This immediately proves (32). In the case of W((f)(x), we use the formula

and the formula for A)|[W{(/)|(a;) in the proof of Theorem 1. By Holder's inequality, we
obtain as above that

* • • • *

But for alii = l,m,

f e-*/™* = 2 re-
J-n JO

^fq • r
Jo

/q • Erf (JT

Thus

AI

n v̂
n

n (M/p •Erf

•i/q- E r f ( 7 r A

1/p+l/g

Erf (Erf (ny/q/(2Zi)))
1/9

l/(2p) .

fl [(Erf (ffVW(2&))) ^ • (Erf (TT
1/9

giving (33).

We now generalise Theorem 4 to the case p > 1.
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THEOREM 6 . Suppose either f e L"(Rm) (for Pn,s(f)) or f E L^(Rm) (for
Qn,iU), Wn,f(/)J, 1 < p < oo. Let £ > 0 and q > 1, 1/p + \/q = 1. Then for any
6 > 0, we have

(34)

(35)

and

9

" + 1 - l)u;;(/; <5)p

p
l/(2p) .

(36) n
J = l

[Erf (TT [Erf (TT
1/9

PROOF: For k = 1, n + 1, set

f+OO /-+OO

Mfc := "
»=i

Suppose 0 ^ h ^ (5. From the first equality in the proof of Theorem 2, we have

n+l

J k = l

which implies

Putting £,' = fc^i, we have

fm I ~1 /•+oo

L*=i J -7-00
*=i

+oo r+oo
//

i = i

and by the proof of Theorem 5

Therefore we get
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which establishes (34).

For Qn,{(/)j we obtain from the second equality in the proof of Theorem 2 that

-1 n+l

with

Reasoning as for AJjlQ{(/)l) in the proof of Theorem 5 yields

(R»> ̂  ft [Itan-i (£
where by the 2?r-periodicity of / we have

{/:•

As a consequence

which establishes (35).

Finally, for Wn^(f), we get from the third equality in the proof of Theorem 2 that

II n + l

[E(-i)' [

where

IT*')
Reasoning as for in the proof of Theorem 5 we obtain

1/p

g Erf (7r
1/9
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Since

we obtain

which together the previous inequality proves (36). D

Next we establish a global smoothness preservation theory for the Li(f)(x) operators
given by (14).

THEOREM 7 . Let f € C([0, l ] m ) , r € N, £ > 0. Tien for any 8 > 0,

(37) wr(Lc(/);*)o.^Wr(/;«)oo-

Inequaiity (37) is asymptotically sharp as £ -» 0, that is, asymptoticaiy attained for all
/j(i)=4i = Uxe[0,i]m

P R O O F : Let 0 ̂  h ^ <5 and Xj G [0,1 - rftj], i = l,m. We see that

i=0

where for simplicity we employ the notation el

= (Zii /e", . . . , /im/e'">), i/e* = {xje*,..., xje*-).

By (15) we have

= (e*1,... ,e t m),

" 1
oo roo

(38)

This implies (37).

Define fj(x) - xr
p j - l ,m. Then

-W dtj = -£L-, x 6 [0,1]"

On the other hand,

and
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Consequently, from

we derive equality as £j —> 0, which completes the proof.

The corresponding Ll result is as follows.

THEOREM 8 . Let f € L1 ([0, l ]m), r € N a n d O < f < l . Then for any 6 > 0,

(39)
i=\

- 1

Inequality (39) is asymptotically sharp as £ —> 0, that is, attained asymptotically for all

PROOF: By integrating (38) and emloying a Fubini-type result, we get

~Tkl ...fQ
1~"lm\Al[L((f)](x)\dx1...dxm

~l 1-r/im

(?) I (ne"""' t • • • i x A • " ' • • • * •

* • • • * • -

n
"1

S
1 roo roo f /-l-rhi/e'i

T71 I

- i

that is,
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which provides (39).

By the proof of Theorem 7 we obtain

C"-ir i • • •dXm= r\ff.t
and

while

r(L({fi);8)i = ^ f ^ - y • s u p | / ^ m ( l - r / iO ; 0 < Aj ^ ^ , j - l,m \ ,

j;S)1 = r ! s u p

This shows that (39) is attained asymptotically by each fj(x) = xj, j = 1, m, as £ -> 0. D
In what follows we present the IP (1 < p < oo) global smoothness preservation for

L{(/) operators.

THEOREM 9 . Suppose f e W([0, l]m), 1 < p < oo, r £ N and 0 < £ < p/2. Let
g > 1, 1/p + l/q = 1. Then for any S > 0 we have

(40) ^(M/);' (p - 2fc
-1/P

P R O O F : From (38) we obtain for 0 ^ x{ ^ 1 - r/ij, i = l ,m, 0 ^ h ^. 6 that

By Holder's inequality and a Fubini-type result

(
m \ ~p fl-rhi rl-rhm ( ( roo roo

• d t x ... ft C-^ '^ 'A dU... dtmY ' 1 dl , . . .
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Reasoning as in the proof of Theorem 8 shows that the last expression is in turn less than
or equal to

/ V f°° /•<» [ /•l-rh./e'l /-l-rhm/«'m

£ / U / i• • • /

oc \ IP / ' / m \ ~P

j [ j [ (f)] (n&)

Consequently we get

that is,

which proves (40). D

To conclude we give the Ditzian-Totik treatment for L^(f) operators for global

smoothness preservation.

THEOREM 1 0 . Let f e c ( [0 , i ] m ) and 4>{x) = (cp(xl),...,<p{xm)), x e [0,i]m,

tp[s) = ^s{l - s), s € [0,1], r € N, £ > 0. Tien for any S > 0 we have

P R O O F : For 0 ^ h ^ 5 we have

where
u / ( / ; <$) := sup

We see that

= E (-i
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with el, x/el as in Theorem 7 and kh = (fc/ii,..., khm), h<j>(x) = (hiip(xi),..., hmip(xm)\

Therefore

Put Xi/eu = yi. If tj € [0, oo) and x{ e [0,1], then yt € [0,1]. Thus

_

where y = (j/i, - - -, 3/m) and ft' = (/i'1;...,

Therefore

), with h'i = ht ^ 5U i = 1, m.

<«$(/; * )„ ,
which implies by (15) that

' m \ |.oo /•(» / m \

a=l V JO " J O * ' ° ° V i = 1 /

0\J ' / oo"

Relation (41) follows. D

REMARK. The convergence to unity of the above multivariate singular integrals will be
studied elsewhere.
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